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Abstract. State-of-the-art modular-root signature systems incorporate
many useful features that were not present in the original RSA signature
system. This paper surveys those features.

1 Introduction

You're a cryptographer. You know the general idea of modular-root signature
systems such as “RSA”: a signature is an eth root modulo a public key n whose
prime factorization is known to the signer. But did you know that signatures
can be compressed to 1/2 size? That keys can be compressed to 1/3 size? That
signature verification can be much faster than modular cubing—in fact, even
faster than modular squaring?

State-of-the-art modular-root signature systems have evolved far beyond the
very simple signature system published by Rivest, Shamir, and Adleman thirty
years ago. The first few steps in this evolution, the most dramatic improvements
in speed and in security, are integrated into typical “RSA” descriptions and are
well known; but it seems to me that most cryptographers haven’t heard about the
most recent improvements and don’t realize how small and fast these signature
systems can be.

My goal in this paper is to explain, starting from the original 1977/1978
RSA signature system, the changes that have produced today’s state-of-the-art
signature systems. Specifically:

e Section 2, hashing (1979 Rabin): Messages are scrambled by a public hash
function H. A signature of m is an eth root of H(m), not an eth root of m.
This is essential for security.

e Section 3, small exponent (1979 Rabin): The exponent e in the signature
equation s¢ = --- is a small fixed integer such as 3, rather than a large
integer chosen randomly by the signer. This makes verification much faster,
and saves space in public keys.

e Section 4, exponent 2 (1979 Rabin): The exponent is 2 rather than 3. This
slightly complicates signing, but it speeds up verification, and it improves
the signature-compression and signature-expansion features discussed later.



e Section 5, hash randomization (1979 Rabin): The signer inserts a B-bit ran-
dom string 7 in front of a message m being signed. A signature of m is a root
of H(r,m). Interesting options for B include B = 0, B = 1, and B = 128;
each option has advantages and disadvantages.

e Section 6, tweaks (1980 Williams): Square roots s are replaced by tweaked
square roots (e, f, s). This speeds up signing.

e Section 7, signature lifting (1997 Bernstein): A square root s of h modulo
pq is transmitted as (s,t) satisfying s> — tpg = h. This option doubles the
space taken by signatures but allows extremely fast verification.

e Section 8, message recovery: Hash functions H are designed so that the first
C bits of (r,m) can be efficiently computed from H (r, m). This allows users
to compress signed messages by C' bits with efficient decompression.

e Section 9, lattice signature compression (2004 Bleichenbacher): A square root
s is transmitted as the largest under-half-size denominator in the continued
fraction for fs/pg. This option requires some computation for compression
and decompression, but eliminates 1/2 of the space taken by signatures.

e Section 10, lattice key compression (2003 Coppersmith): Keys are chosen to
share the top 2/3 of their bits with a standard key. This option takes extra
time in key generation but eliminates 2/3 of the space taken by keys.

Implementors will have to consult other sources to see how state-of-the-art hash
functions H are constructed, but all other details of modular-root signature
systems should be clear from this paper.

I don’t mean to suggest that the only interesting signature systems are
modular-root signature systems. In applications where signature length is much
more important than verification time, systems of ElGamal-Schnorr—ECDSA
type are better choices than modular-root signature systems.

2 Hashing

In state-of-the-art systems, messages are scrambled by a public hash function
H. A signature of m is not an eth root of m modulo the public key n; it is an
eth root of H(m) modulo the public key n. This is essential for security.

History. The system proposed by Rivest, Shamir, and Adleman did not hash
messages; it was trivially breakable. Specifically, [31, page 122, first display]
defines a signature S of a message M under a public key B by “S = Dg(M),”
never mentioning hashing; [31, page 122, third display| defines D as a power of
its input. One trivial attack is to forge the message 1 with signature 1.

Rabin’s system in [30] did hash messages; it remains unbroken today. The
apparent security benefit of hashing was mentioned in [30, page 10, last sentence]:
“Actually, this [attack idea] does not seem a serious threat because of the hashing
effected by C(M).”

Many authors unjustifiably refer to an oversimplified, trivially breakable,
non-hashing system as “Rabin’s system”; consider, for example, the claim by
Goldwasser, Micali, and Rivest in [17, Section 3] that “Rabin’s signature scheme



is totally breakable if the enemy uses a directed chosen-message attack.” Some
authors incorrectly describe hashing as merely a way to handle long messages,
rather than as an essential component of the system no matter what the message
length might be; see, e.g., [32, Section 7.1]. Modern treatments of “RSA” usually
include hashing but usually fail to give Rabin any credit for the idea.

3 Small exponent

In state-of-the-art systems, the exponent e in the signature equation s¢ = --- is
a small fixed integer, rather than a large integer chosen randomly by the signer.
This makes verification much faster. It also saves space in public keys.

History. The system proposed by Rivest, Shamir, and Adleman used large
exponents. See [31, page 123, fifth line]: “You then pick the integer d to be a
large, random integer which is relatively prime to (p—1)*(¢—1) ... The integer
e is ... the ‘multiplicative inverse’ of d.”

Rabin in [30, page 5] pointed out the tremendous speed advantage of small
exponents: “computation time for this function is several hundred times faster ...
than the corresponding algorithms in [the 1978 RSA paper].”

Most modern descriptions of “RSA,” and all serious “RSA” implementations,
include small fixed exponents, typically 3 or 17 or 65537. Most of the descriptions
fail to give Rabin any credit for the idea, and many of the descriptions actively
miscredit small exponents to the RSA papers [16] and [31]. For example, Knuth
in [22, pages 386-389] (and again in [23, pages 403-406]) explained an exponent-
3 system and unjustifiably called it “RSA.” As another example, here’s a quote
from a well-known algorithms book by Cormen, Leiserson, Rivest, and Stein:
“The RSA cryptosystem ... Select a small odd integer e ... The RSA cryp-
tosystem was proposed in 1977 by Rivest, Shamir, and Adleman.” (Emphasis
added.)

Large exponents have inexplicably attracted more attention than small fixed
exponents as the topic of security proofs, even though small exponents are just
as easy for theoreticians to handle and much more interesting for practition-
ers. Bellare and Rogaway in [6] analyzed a traditional system that they called
“FDH,” and a system of their own design called “PSS,” in both cases using
large exponents. See [6, Section 2.1]; see also Coron’s [13, Section 2.3] and [15,
Definition 4]. Katz and Wang were exponent-agnostic in [18]: they stated their
results for more general “claw-free permutation pairs.” The “PRab” claim in [6,
Theorem 6.1] used a small exponent, but the proof was merely outlined; [14,
Theorem 4] used a small exponent, but no proof was given.

“Strong RSA” proofs require large exponents, but “strong RSA” signature
systems do not provide fast verification and do not seem to have attracted any
practical interest.



4 Exponent 2

State-of-the-art systems use exponent 2 rather than exponent 3. This speeds up
verification, and improves the signature-compression and signature-expansion
features discussed in subsequent sections. The signer’s secret primes p and g are
chosen from 3 + 4Z to simplify signing.

How signers choose square roots. A square h modulo pq usually does not
have a unique square root. Which choice does the signer make? One can find
three answers in the literature.

Principal square roots: The signer finds the unique square root s of h such
that s is itself a square. The most obvious choice of a square root of A modulo
p is h®tD/4 mod p; the most obvious choice of a square root of h modulo ¢ is
h(at1)/4 mod ¢; combining these two choices by the Chinese remainder theorem
produces the principal square root of A modulo pq. This is the simplest, and the
most popular, signing algorithm.

|Principal| square roots: The signer finds the principal square root s of h as
above, and then replaces s with min{s, pg — s}. The point is that min{s, pq — s}
takes a bit less space than s.

Unstructured square roots: The signer chooses s from the uniform distri-
bution among square roots of h. There is a danger here: revealing two uniform
random square roots of A has a good chance of immediately revealing a factor
of n. The easiest way to avoid this danger is to use fixed square roots, i.e., to
repeat the same square root of h if the same h appears again.

Fixed unstructured square roots might seem to require the signer to remem-
ber all previous choices of square roots. However, the signer can produce indistin-
guishable results without memory, assuming standard conjectures in secret-key
cryptography. The trick is simple: the signer replaces the random bits with se-
cret functions of h. This trick was posted to sci.crypt in 1997 by Barwood
and independently by Wigley; see [3] and [33]. The general idea of replacing
a randomly generated array by output of a secret function, so that the array
can be regenerated on demand (and can have exponential size or more) without
consuming memory, was published by Goldreich in 1986, with credit to Levin;
but Goldreich’s signatures were not fixed.

Security proofs require different work for principal square roots, |principall
square roots, and unstructured square roots. Unstructured square roots allow
the simplest proofs, and seem to allow “tight” proofs in some cases where prin-
cipal signatures seem to allow only “loose” proofs. See my paper [10] for further
discussion.

History. Exponent 2 was introduced by Rabin in [30]. Most writers fail to give
credit to Rabin for hashing and small exponents but do give credit to Rabin for
exponent 2. I see no reason to use any other exponent; perhaps 2 will eventually
become the most popular exponent, and, as a side effect, Rabin will receive more
of the recognition that he deserves.



5 Hash randomization: r

In Rabin’s system, the signer actually computes a square root of H(r,m), not
a square root of H(m). Here r is a string selected randomly by the signer. The
number of bits of r is a system parameter B. This randomization was introduced
by Rabin in [30]: specifically, Rabin suggested that the signer choose a random
60-bit string r.

One can see, in the literature, five different strategies to choose the parameter
B:

e Choose B = 0. This means that r is empty and that the H input is not
actually randomized. The main argument for this choice is that any larger
B means extra effort to generate r, extra effort to include r in the H input,
and extra effort to transmit r along with s.

e Choose B = 1. The main argument for this choice is that a nonzero B is
required for the type of tight security proof introduced by Katz and Wang in
[18]. The conventional wisdom is that B = 0 does not allow a tight security
proof; see the “FDH” analyses in [6] and [13]. On the other hand, my paper
[10] proves tight security for fixed unstructured signatures even in the case
B = 0. Koblitz and Menezes conjecture in [24, Section 3.4] and [25, Section
4.3] that B = 1 has the same security as B = 0.

e Choose B = 8. As a historical matter, Rabin’s system was able to produce
signatures for only about 1/4 of all choices of r (since only a small fraction of
all integers mod pq are squares), and Rabin suggested trying again if the first
r failed; having 256 choices of r means that all choices will fail with prob-
ability about 27196, However, the Rabin-Williams system eliminates these
failures, as discussed in Section 6. The only remaining argument for B = 8
is that it marginally improves the tightness of the Katz—Wang approach.

e Choose B large enough to prevent the attacker from guessing r in advance;
for example, B = 128. This choice allows a different type of tight secu-
rity proof that seems to have been rendered obsolete by the idea of “fixed”
signatures.

e Choose B large enough to prevent all collisions in 7: for example, B = 256.
This choice allows an older type of tight security proof that seems to have
been obsolete for many years.

My impression is that, in practice, the choice B = 0 is by far the most popular
choice, although I have not done an exhaustive study.

One might wonder, from the above description, why large choices of B would
attract any interest, and in particular why Rabin chose B = 60 rather than B =
8. The answer is that large choices of B are often conjectured to make non-generic
attacks, attacks that pay attention to the hash function H, more difficult. For
example, MD5-based signatures have been broken for B = 0 but not for B = 128.
Does a larger B allow us to choose a smaller, faster hash function H? Could this
compensate for the direct costs of a longer 7 Resolving these questions means
understanding the cost-security tradeoff for hash functions, obviously not an



easy task. For the moment I recommend that theoreticians and practitioners
remain agnostic and continue to investigate all possible B’s.

Reader beware: Many authors have failed to give Rabin proper credit for his
randomized signatures (r, s). For example, Goldwasser and Bellare have posted
lecture notes (1) claiming that Rabin introduced a signature system with neither
H nor 7; (2) assigning credit to a 1983 paper of Goldwasser, Micali, and Yao for
“pioneering” randomized signatures; and then (3) describing a “PSS0” system—
randomized (r, s)—as if it were new. Similar comments apply to the “PFDH”
system in [15] and [18].

6 The tweaks e and f

Recall that Rabin’s system needed to try several values of r, on average about 4
values, before finding a square H(r,m) modulo pg. The Rabin—Williams system
eliminates this problem by using tweaked square roots in place of square roots.
A tweaked square root of h modulo pq is a vector (e, f, s) such that e € {—1, 1},
f € {1,2}, and efs® — h € pqZ; the signer’s secret primes p and ¢ are chosen
from 3 + 8Z and 7 + 8Z respectively. Each h has exactly four tweaked square
roots, so each choice of r works, speeding up signatures.

Avoiding Jacobi symbols. I've noticed that some programmers fear exponent
2. There appears to be a widespread belief that fast exponent-2 signing requires
Fuclid-type computations of Jacobi symbols. For example, the “IEEE Standard
Specifications for Public-Key Cryptography” claim that, compared to exponent
2, exponent 3 has a “code-size and speed advantage because there is no need to
compute the Jacobi symbol.”

The simple fact, however, is that Euclid-type computations of Jacobi symbols
are not required for Rabin-Williams signatures. Here is a straightforward high-
speed fault-tolerant algorithm that, given h, p, g, computes a tweaked square root
(e, f,s) of h modulo pq:

Compute U «— hlat1)/8 mod q.

If U* — hmod q = 0, set e = 1; otherwise set e = —1.

Compute V « (eh)®=3)/8 mod p.

If (V4(eh)? — eh) mod p = 0, set f = 1; otherwise set f = 2.

Precompute 2(3975)/8 mod ¢; compute W «— f(37-5)/3(] mod q.
Precompute 297~11/8 mod p; compute X «— fOP~1D/8y3¢h mod p.
Precompute ¢?~2 mod p; compute Y «— W + ¢(¢?~2(X — W) mod p).
Compute s « Y2 mod pq.

Fault tolerance: If efs? mod pgq # h, start over. (This never happens if all
calculations are carried out correctly.)

© 0N TR W

The bottlenecks in this algorithm are one exponentiation modulo ¢ in the first
step and one exponentiation modulo p in the third step. The information that
would be extracted from a Euclid-type Jacobi-symbol computation is trivially
extracted from a few multiplications. The output of this algorithm is the prin-
cipal tweaked square root (e, f,s) of h: this means that s is a square modulo



pq, that e is 1 if and only if A is a square modulo ¢, and that f is 1 if and only
if eh is a square modulo p.

History. The tweaks e and f were introduced by Williams in [34].

The same tweaks were republished without credit to Williams as the highlight
of the Kurosawa—Ogata paper [27] two decades later. Specifically: [27, Section
3] reviews “Rabin’s digital signature scheme” with verification equation “x? =
H(M o R) mod N”; [27, Section 4] presents “our basic scheme” with verification
equation “z? = a; H(M) mod N” using constants ag = 1,1, 0,03 = ajag
with different quadratic characters; [27, Section 1] advertises the omission of r
and the fact that the first square root works (“much faster”); [27, Section 5]
presents “our improved scheme” that specifies a; = —1 and ap = 2; [27, Section
7] presents a “further improvement” where the choice among {—2,—1,1,2} is
transmitted as part of the signature rather than reconstructed by the verifier.

I posted the comment “The only Jacobi symbols used are b®~1/2 mod p,
in situations where b®+1/4 mod p is going to be computed in any case” to
sci.crypt in October 2000, in response to the comment “the Jacobi symbol

is hard to grasp by the implementor.” See [8].

7 Signature expansion

The Rabin—Williams signature system offers another attractive option for appli-
cations where verification speed is much more important than signature length:
signatures can be expanded for faster verification. Specifically, the signature
(e, f,r,s) satisfying efs? = H(r,m) (mod pg) can be converted into an ex-
panded signature (e, f,r, s, t) satisfying efs? — pqt = H(r,m). The verifier can
efficiently check the latter equation modulo a random 128-bit prime (or several
smaller primes) with negligible chance of error. The verifier can amortize the
prime-generation cost across any number of signatures by keeping the prime (or
prime list) secret and reusing it.

A similar idea applies to exponent-3 “RSA” but requires a double-length ¢,
considerably slowing down verification.

History. I posted this expansion idea to sci.crypt in March 1997. See [7].

8 Message recovery

Hash functions H can be, and often are, designed to allow “message recovery.”
This means that a fixed-length prefix of (r,m), say the first C' bits, can be
computed efficiently from H(r,m). See [6, Section 5] and [18, Section 4.2] for
generically safe methods to construct H from another hash function.

The advantage of “message recovery” is that it allows compression of signed
messages: one simply omits the first C' bits of (r,m, s). The verifier sees s, com-
putes the alleged H(r, m) by computing s? mod pq, recovers the prefix of (r,m),
and then checks that H(r, m) matches.



Message recovery is often viewed as an argument for choosing a large B, such
as B = 128. The argument is as follows: “Message recovery eliminates the space
required by r. The space required by r was the only disadvantage of a large B.
Maybe a large B stops attacks.” There are several problems with this argument.
First, bandwidth is only part of the picture: for example, a larger B means a
larger cost to generate r. Second, signed messages are usually uncompressed; one
important reason is that uncompressed signatures (and expanded signatures, as
discussed in Section 7) allow faster verification. Third, except when (r,m) is
extremely short, the alleged savings is a myth. Adding 128 bits to r means
pushing 128 bits of m out of the compressed prefix of (r,m), and therefore
adding 128 bits to the length of the signed message.

9 Signature compression

Another way to save space—more effective than message recovery when (r,m) is
short—is to transmit all of (r,m) but transmit only the top half of the bits of s.
The receiver can use Coppersmith’s algorithm (see, e.g., my survey [9]) to find a
square root of H(r, m) modulo pq given the top half of the bits of the square root.
Bleichenbacher in [11] proposed a better approach, allowing the same amount of
compression with much faster decompression and verification: s is transmitted
as the largest under-half-size denominator in the continued fraction for fs/pq.

A similar compression method applies to exponent-3 “RSA” but saves only
1/3 of the signature bits rather than 1/2.

10 Key compression

Yet another way to save space is to compress public keys pq. It is widely known
that RSA/Rabin keys can be compressed to 1/2 size. It is not so widely known
that Coppersmith found a method to compress keys to 1/3 size. It is also not
widely known that this compression—done properly!-—can be proven to preserve
security, not just against generic attacks but against all attacks. The critical point
is that generating one key p;q; in the conventional way, and then generating
another key pg that shares the top 1/2 (or 2/3) of the bits of piqi, produces
exactly the same distribution of pq that would have been produced by generating
pq in the conventional way.

Key compression has exactly the same benefits for higher-exponent “RSA.”
so it is orthogonal to a comparison of Rabin—Williams with “RSA.” It is, how-
ever, relevant to a comparison of Rabin—Williams with signature systems of
ElGamal/Schnorr /ECDSA type. For example, a 1024-bit Rabin—Williams sig-
nature can be compressed to a 512-bit signature, and a 1024-bit key can be
compressed to a 352-bit key. A typical ECDSA variant at the same conjectured
security level has a smaller signature (320 bits) and a smaller key (160 bits) but
has much slower verification; for many applications, the slowdown in verification
outweighs the 192-bit savings in signature length.



Bleichenbacher pointed out a way to further compress keys pg—all the way
down to 0 bits!l—inside vectors (pq,e, f,s,7,m). The idea is to recover pq as a
divisor of efs? — H(r,m). The standard compression method (or, as an alterna-
tive, Coppersmith’s compression method) already reveals the top 1/2 (or 2/3)
of the bits of the divisor, and the remaining bits are easily (or very easily) found
by lattice-basis-reduction techniques.
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