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Keywords: subset sum, quantum search, quantum walks, radix trees,
decoding, SVP, CVP

1 Introduction

The subset-sum problem is the problem of deciding, given integers x1, x2, . . . , xn
and s, whether there exists a subset I of {1, 2, . . . , n} such that

∑
i∈I xi = s; i.e.,

whether there exists a subsequence of x1, x2, . . . , xn with sum s. Being able to
solve this decision problem implies being able to find such a subset if one exists:
for n > 1 one recursively tries x1, x2, . . . , xn−1 with sum s or, if that fails, sum
s− xn.

The reader should imagine, as a typical “hard” case, that x1, x2, . . . , xn are
independent uniform random integers in {0, 1, . . . , 2n}, and that s is chosen as
a uniform random integer between (n/2 −

√
n)2n−1 and (n/2 +

√
n)2n−1. The

number of subsets I ⊆ {1, 2, . . . , n} with
∑
i∈I xi = s then has a noticeable

chance of being larger than 0 but is quite unlikely to be much larger, say larger
than n.
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The subset-sum problem is, historically, one of the first problems to be proven
NP-complete. A polynomial-time non-quantum algorithm for the subset-sum
problem would violate the standard P 6= NP conjecture; a polynomial-time
quantum algorithm for the subset-sum problem would violate the standard
NP 6⊆ BQP conjecture. There is, however, a very large gap between polyno-
mial time and the time needed for a naive search through all 2n subsets of
{1, 2, . . . , n}. The standard NP 6⊆ BQP conjecture does not rule out faster
exponential-time algorithms, or even subexponential-time algorithms, or even
algorithms that take polynomial time for most inputs. This paper studies faster
exponential-time algorithms.

Variations. Often one is interested only in sums of fixed weight, or of limited
weight. We are now given integers x1, x2, . . . , xn, s, and w; the problem is to
decide whether there is a subset I of {1, 2, . . . , n} such that

∑
i∈I xi = s and

#I = w. In the special case s = 0 with w 6= 0, such a subset I immediately
produces a short nonzero vector in the lattice L of vectors v ∈ Zn satisfying∑
i xivi = 0: specifically, the characteristic function of I is a vector of length√
w in L. In many applications this is the shortest nonzero vector in L; in some

applications this vector can be found by standard SVP algorithms.
For s 6= 0 one can instead compute a vector r ∈ Rn satisfying

∑
i xiri = s, and

then observe that subtracting the characteristic function of I from r produces
an element of L. In many applications this is the vector in L closest to r; in some
applications this vector can be found by standard CVP algorithms.

A variant of the same problem is the central algorithmic problem in coding
theory. The input now consists of vectors x1, x2, . . . , xn, a vector s, and an integer
w; these vectors all have the same length and have entries in the field F2 of
integers modulo 2. The problem, as above, is to decide whether there is a subset
I of {1, 2, . . . , n} such that

∑
i∈I xi = s and #I = w.

We do not mean to suggest that these problems are identical. However, the
algorithmic techniques used to attack subset-sum problems are among the central
algorithmic techniques used to attack lattice problems and decoding problems.
For example, the best attack known against code-based cryptography, at least
asymptotically, is a very recent decoding algorithm by Becker, Joux, May, and
Meurer [4], improving upon a decoding algorithm by May, Meurer, and Thomae
[24]; the algorithm of [4] is an adaptation of a subset-sum algorithm by Becker,
Coron, and Joux [3], improving analogously upon a subset-sum algorithm by
Howgrave-Graham and Joux [17].

There is also a line of work on building cryptographic systems whose security
is more directly tied to the subset-sum problem. For example, Lyubashevsky,
Palacio, and Segev in [22] propose a public-key encryption system and prove that
being able to break it implies being able to solve modular subset-sum problems
of the following type: find a random subset I ⊆ {1, 2, . . . , n} given random
x1, x2, . . . , xn modulo M and given

∑
i∈I xi modulo M , where M is roughly

(10n log n)n. They claim in [22, Section 1] that “there are currently no known
quantum algorithms that perform better than classical ones on the subset sum
problem”.
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Exponent Quantum Split Algorithm

1 No 1 Brute force
0.5 Yes 1 Quantum search; §2
0.5 No 1/2 Left-right split; §2
0.5 No 1/4 Left-right split with a modulus; §4
0.375 Yes 1/4 Quantum search with a modulus; §4
0.337. . . No 1/16 Moduli + representations; §5
0.333. . . Yes 1/3 Quantum left-right split; §2
0.333. . . Yes 1/2 Quantum walk; §3
0.3 Yes 1/4 Quantum walk with a modulus; §4
0.291. . . No 1/16 Moduli + representations + overlap; [3]
0.241. . . Yes 1/16 New; quantum walk + moduli + representations; §5

Table 1.1. Heuristic asymptotic performance of various subset-sum algorithms. An
algorithm using 2(e+o(1))n operations is listed as “exponent” e.

Contents of this paper. We introduce the first subset-sum algorithm that
beats 2n/4. Specifically, we introduce a quantum algorithm that, under rea-
sonable assumptions, uses at most 2(0.241...+o(1))n qubit operations to solve a
subset-sum problem. This algorithm combines quantum walks with the central
“representations” idea of [17]. Table 1.1 compares this exponent 0.241 . . . to the
exponents of other algorithms.

One can reasonably speculate that analogous quantum speedups can also be
applied to the algorithms of [24] and [4]. However, establishing this will require
considerable extra work, similar to the extra work of [24] and [4] compared to
[17] and [3] respectively.

Cost metric and other conventions. This paper follows the tradition of
measuring algorithm cost as the number of bit operations or, more generally,
qubit operations. In particular, random access to an array of size 2O(n) is assumed
to cost only nO(1), even if the array index is a quantum superposition.

We systematically suppress cost factors polynomial in n; our concern is with
asymptotic exponents such as the 0.241 . . . in 2(0.241...+o(1))n. We also assume
that the inputs x1, x2, . . . , xn, s have nO(1) bits. These conventions mean, for
example, that reading the entire input x1, x2, . . . , xn, s costs only 1.

Almost all of the algorithms discussed here split size-n sets into parts, either
2 or 3 or 4 or 16 parts, as indicated by the “Split” column in Table 1. Any
reasonably balanced split is adequate, but to simplify the algorithm statements
we assume that n is a multiple of 2 or 3 or 4 or 16 respectively.

The algorithms in this paper are designed to work well for random inputs,
particularly in the “hard” case that x1, x2, . . . , xn, s each have about n bits. Our
analyses — like the analyses of state-of-the-art algorithms for integer factoriza-
tion, discrete logarithms, and many other problems of cryptographic interest —
are heuristic. We do not claim that the algorithms work for all inputs, and we
do not claim that what we call the “hard” case is the worst case. Even for ran-
dom inputs we do not claim that our analyses are proven, but we do speculate
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that they are provable by an adaptation of the proof ideas stated in [17, eprint
version].

Acknowledgments. This work was initiated during the Post-Quantum Cryp-
tography and Quantum Algorithms workshop at the Lorentz Center in Novem-
ber 2012. We acknowledge helpful discussions with Andris Ambainis, Frédéric
Magniez, Nicolas Sendrier, and Jean-Pierre Tillich.

2 Searches

Define Σ as the function that maps I ⊆ {1, 2, . . . , n} to
∑
i∈I xi. Recall that we

assume that x1, x2, . . . , xn, s have nO(1) bits, and that we suppress polynomial
cost factors; evaluating Σ therefore has cost 1.

The subset-sum problem is the problem of deciding whether there exists I
with Σ(I) = s, i.e., whether the function Σ− s has a root. A classical search for
a root of Σ− s uses 2n evaluations of Σ− s, for a total cost of 2n. Of course, the
search can finish much sooner if it finds a root (one expects only 2n−1 evaluations
on average if there is 1 root, and fewer if there are more roots); but as discussed
in Section 1 we focus on “hard” cases where there are not many roots, and
then the cost is 2n (again, suppressing polynomial factors) with overwhelming
probability.

This section reviews two standard ways to speed up this brute-force search.
The first way is Grover’s quantum search algorithm. The second way is de-
composing Σ(I) as Σ(I1) + Σ(I2), where I1 = I ∩ {1, 2, . . . , n/2} and I2 =
I ∩ {n/2 + 1, . . . , n}; this split was introduced by Horowitz and Sahni in [16].

Review: The performance of quantum search. Consider any computable
function f with a b-bit input and a unique root. Grover’s algorithm [15] finds
the root (with negligible failure chance) using approximately 2b/2 quantum eval-
uations of f and a small amount of overhead.

More generally, consider any computable function f with a b-bit input and
r > 0 roots. Boyer, Brassard, Høyer, and Tapp in [6] introduced a generalization
of Grover’s algorithm (almost exactly the same as Grover’s original algorithm but
stopping after a particular r-dependent number of iterations) that finds a root
(again with negligible failure chance) using approximately (2b/r)1/2 quantum
evaluations of f and a small amount of overhead. One can easily achieve the
same result by using Grover’s original algorithm sensibly (as mentioned in [15]):
choose a fast but sufficiently random map from b − dlg re bits to b bits; the
composition of this map with f has a good chance of having a unique root;
apply Grover’s algorithm to this composition; repeat several times so that the
failure chance becomes negligible.

Even more generally, consider any computable function f with a b-bit input. A
more general algorithm in [6] finds a root using approximately (2b/r)1/2 quantum
evaluations of f and a small amount of overhead, where r is the number of roots.
If no root exists then the algorithm says so after approximately 2b/2 quantum
evaluations of f . As above, the algorithm can fail (or take longer than expected),
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but only with negligible probability; and, as above, the same result can also be
obtained from Grover’s algorithm.

As a trivial application, take b = n and f = Σ − s: finding a root of Σ − s
costs 2n/2. Some implementation details of this quantum subset-sum algorithm
appeared in [9] in 2009. We emphasize, however, that the same operation count
is achieved by well-known non-quantum algorithms, and is solidly beaten by
recent non-quantum algorithms.

Review: Left-right split. Define L1 = {(Σ(I1), I1) : I1 ⊆ {1, 2, . . . , n/2}} and
L2 = {(s−Σ(I2), I2) : I2 ⊆ {n/2 + 1, n/2 + 2, . . . , n}}. Note that each of these
sets has size just 2n/2.

Compute L1 by enumerating sets I1. Store the elements of L1 in a table, and
sort the table by its first coordinate. Compute L2 by enumerating sets I2. For
each (s−Σ(I2), I2) ∈ L2, look for s−Σ(I2) by binary search in the sorted table.
If there is a collision Σ(I1) = s−Σ(I2), print out I1 ∪ I2 as a root of Σ − s and
stop. If there are no collisions, print “there is no subset-sum solution” and stop.

This algorithm costs 2n/2. It uses 2n/2 memory, and one can object that
random access to memory is expensive, but we emphasize that this paper follows
the tradition of simply counting operations. There are several standard variants
of this algorithm: for example, one can sort L1 and L2 together, or one can store
the elements of L1 in a hash table.

Quantum left-right split. Redefine L1 as {(Σ(I1), I1) : I1 ⊆ {1, 2, . . . , n/3}};
note that n/2 has changed to n/3. Compute and sort L1 as above; this costs
2n/3.

Consider the function f that maps a subset I2 ⊆ {n/3 + 1, n/3 + 2, . . . , n} to
0 if s − Σ(I2) is a first coordinate in L1, otherwise to 1. Binary search in the
sorted L1 table costs only 1, so computing f costs only 1.

Now use quantum search to find a root of f , i.e., a subset I2 ⊆ {n/3 + 1, . . . , n}
such that s − Σ(I2) is a first coordinate in L1. There are 2n/3 bits of input to
f , so the quantum search costs 2n/3.

Finally, find an I1 such that s − Σ(I2) = Σ(I1), and print I1 ∪ I2. Like the
previous algorithm, this algorithm finds a root of Σ − s if one exists; any root I
of Σ − s can be expressed as I1 ∪ I2.

Note that, with the original split of {1, . . . , n} into left and right halves,
quantum search would not have reduced cost (modulo polynomial factors). Gen-
eralizing the original algorithm to allow an unbalanced split, and in particular a
split into n/3 and 2n/3, is pointless without quantum computers but essential
for the quantum optimization. The split into n/3 and 2n/3 imitates the approach
used by Brassard, Høyer, and Tapp in [8] to search for hash-function collisions.

This algorithm uses 2n/3 memory, and as before one can object that random
access to memory is expensive, especially when memory locations are quantum
superpositions. See [5] for an extended discussion of the analogous objection to
[8]. We again emphasize that this paper follows the tradition of simply counting
operations; we do not claim that improved operation counts imply improvements
in other cost models.
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3 Walks

This section summarizes Ambainis’s unique-collision-finding algorithm [2] (from
the edge-walk perspective of [23]); introduces a new way to streamline Ambai-
nis’s algorithm; and applies the streamlined algorithm to the subset-sum context,
obtaining cost 2n/3 in a different way from Section 2. This section’s subset-sum
algorithm uses collision finding as a black box, but the faster algorithms in Sec-
tion 5 do not.

Review: Quantum walks for finding unique collisions. Consider any com-
putable function f with b-bit inputs such that there is a unique pair of colliding
inputs, i.e., exactly one pair (x, y) of b-bit strings such that f(x) = f(y). The
problem tackled in [2] is to find this pair (x, y).

The algorithm has a positive integer parameter r < 2b, normally chosen on
the scale of 22b/3. At each step the algorithm is in a superposition of states of the
form (S, f(S), T, f(T )). Here S and T are sets of b-bit strings such that #S = r,
#T = r, and #(S∩T ) = r−1; i.e., S and T are adjacent vertices in the “Johnson
graph” of r-subsets of the set of b-bit strings, where edges are between sets that
differ in exactly one element. The notation f(S) means {f(x) : x ∈ S}.

The algorithm begins in a uniform superposition of states; setting up this
superposition uses O(r) quantum evaluations of f . The algorithm then performs
a “quantum walk” that alternates two types of steps: diffusing each state to a
new choice of T while keeping S fixed, and diffusing each state to a new choice
of S while keeping T fixed. Only one element of T changes when S is fixed (and
vice versa), so each step uses only O(1) quantum evaluations of f .

Periodically (e.g., after every 2d
√
re steps) the algorithm negates the ampli-

tude of every state in which S contains a colliding pair, i.e., in which #f(S) < r.
Because f(S) has already been computed, checking whether #f(S) < r does not
involve any evaluations of f . One can object that this check is nevertheless ex-
tremely expensive; this objection is discussed in the “data structures” subsection
below.

Ambainis’s analysis shows that after roughly 2b/
√
r steps the algorithm has

high probability of being in a state in which S contains a colliding pair. Observing
this state and then sorting the pairs (f(x), x) for x ∈ S reveals the colliding pair.
Overall the algorithm uses only O(22b/3) evaluations of f .

As in the case of Grover’s algorithm, this algorithm is easily generalized to
the case that there are p pairs of colliding inputs, and to the case that p is not
known in advance. The algorithm is also easily generalized to functions of S
more complicated than “contains a colliding pair”.

Data structures. The most obvious way to represent a set of b-bit strings
is as a sorted array. The large overlap between S and T suggests storing the
union S ∪ T , together with a pointer to the element not in S and a pointer to
the element not in T ; similar comments apply to the multisets f(S) and f(T ).
Keeping a running tally of #f(S) allows easily checking whether #f(S) < r.

To decide whether a b-bit string x is suitable as a new element of T , one
must check whether x ∈ S. Actually, what the diffusion steps need is not merely



Quantum algorithms for the subset-sum problem 7

knowing whether x ∈ S, but also knowing the number of elements of S smaller
than x. (“Smaller” need not be defined lexicographically; the real objective is to
compute a bijective map from b-bit strings to

{
1, 2, 3, . . . , 2b

}
that maps S to

{1, 2, 3, . . . , r}.) The obvious sorted-array data structure allows these questions
to be efficiently answered by binary search.

The big problem with this data structure is that inserting the new string into
T requires, in the worst case, moving the other r elements of the array. This
cost-r operation is performed at every step of the quantum walk, and dominates
the total cost of the algorithm (unless evaluating f is very slow).

There is an extensive literature on classical data structures that support these
operations much more efficiently. However, adapting a data structure to the
quantum context raises three questions:

• Is the data-structure performance a random variable? Many data structures
in the literature are randomized and provide good average-case performance
but not good worst-case performance. The standard conversion of an al-
gorithm to a quantum circuit requires first expressing the algorithm as a
classical combinatorial circuit; the size of this circuit reflects the worst-case
performance of the original algorithm.

• Does the performance of the data structure depend on S? For example, a
standard hash table provides good performance for most sets S but not for
all sets S.

• Is the data structure history-dependent? For most data structures, the rep-
resentation of a set S depends on the order in which elements were added
to and removed from the set. This spoils the analysis of the quantum walk
through sets S, and presumably spoils the actual performance of the walk.

The first problem is usually minor: one can simply stop each algorithm after a
constant time, where the constant is chosen so that the chance of an incorrect
answer is negligible. The second problem can usually be converted into the first
problem by some extra randomization: for example, one can choose a random
hash function from a suitable family (as suggested by Wegman and Carter in
[33]), or encrypt the b-bit strings before storing them. But the third problem
is much more serious: it rules out balanced trees, red-black trees, most types of
hash tables, etc.

Ambainis handles these issues in [2, Section 6] with an ad-hoc “combination
of a hash table and a skip list”, requiring several pages of analysis. We point out
a much simpler solution: storing S etc. in a radix tree. Presumably this also saves
time, although the speedup is not visible at the level of detail of our analysis.

The simplest type of radix tree is a binary tree in which the left subtree stores
{x : (0, x) ∈ S} and the right subtree stores {x : (1, x) ∈ S}; subtrees storing
empty sets are omitted. To check whether x ∈ S one starts from the root of the
tree and follows pointers according to the bits of x in turn; the worst-case number
of operations is proportional to the number of bits in x. Counting the number of
elements of S smaller than x is just as easy if each tree node is augmented by a
count of the number of elements below that node. A tree storing f(S), with each
leaf node accompanied by its multiplicity, allows an efficient running tally of the
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number #f(S) of distinct elements of f(S), and in particular quickly checking
whether #f(S) < r.

Randomizing the memory layout of the nodes for the radix tree for S (induc-
tively, by placing each new node at a uniform random free position) provides
history-independence for the classical data structure: each possible representa-
tion of S has equal probability to appear. Similarly, creating a uniform superpo-
sition over all possible memory layouts of the nodes produces a unique quantum
data structure representing S.

Subset-sum solutions via collisions. It is straightforward to recast the subset-
sum problem as a collision-finding problem.

Consider the function f that maps (1, I1) toΣ(I1) for I1 ⊆ {1, 2, . . . , n/2}, and
maps (2, I2) to s − Σ(I2) for I2 ⊆ {n/2 + 1, n/2 + 2, . . . , n}. Use the algorithm
described above to find a collision in f . There are only n/2 + 1 bits of input to
f , so the cost of this algorithm is only 2n/3.

In the “hard” cases of interest in this paper, there are not likely to be many
collisions among inputs (1, I1), and there are not likely to be many collisions
among inputs (2, I2), so the collision found has a good chance of having the
form Σ(I1) = s − Σ(I2), i.e., Σ(I1 ∪ I2) = s. One can, alternatively, tweak the
algorithm to ignore collisions among (1, I1) and collisions among (2, I2) even if
such collisions exist.

4 Moduli

This section discusses the use of a “modulus” to partition the spaces being
searched in Section 2. The traditional view is that this is merely a method
to reduce memory consumption (which we do not measure in this paper); but
moduli are also an essential building block for the faster algorithms of Section 5.
This section reviews the traditional left-right split with a modulus, and then
states a quantum algorithm with a modulus, as a warmup for the faster quantum
algorithm of Section 5.

Schroeppel and Shamir in [29] introduced an algorithm with essentially the
same reduction of memory consumption, but that algorithm does not use moduli
and does not seem helpful in Section 5. Three decades later, Howgrave-Graham
and Joux in [17, eprint version, Section 3.1] described the left-right split with
a modulus as a “useful practical variant” of the Schroeppel–Shamir algorithm;
Becker, Coron, and Joux stated in [3] that this was a “simpler but heuristic
variant of Schroeppel–Shamir”. A more general algorithm (with one minor re-
striction, namely a prime choice of modulus) had already been stated a few years
earlier by Elsenhans and Jahnel; see [10, Section 4.2.1] and [11, page 2]. There
are many earlier papers that used moduli to partition input spaces without stat-
ing the idea in enough generality to cover subset sums; we have not attempted
to comprehensively trace the history of the idea.
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Review: Left-right split with a modulus. Choose a positive integer M ≈
2n/4, and choose t ∈ {0, 1, 2, . . . ,M − 1}. Compute

L1 = {(Σ(I1), I1) : I1 ⊆ {1, 2, . . . , n/2}, Σ(I1) ≡ t (mod M)}.

The problem of finding all I1 here is a size-n/2 subset-sum problem modulo M .
This problem can, in turn, be solved as a small number of size-n/2 subset-sum
problems without moduli, namely searching for subsets of x1 mod M,x2 mod
M, . . . , xn/2 mod M having sum t or t + M or . . . or t + (n/2 − 1)M . Note,
however, that it is important for this size-n/2 subroutine to find all solutions
rather than just one solution.

A reasonable choice of subroutine here is the original left-right-split algorithm
(without a modulus). This subroutine costs 2n/4 for a problem of size n/2, and
is trivially adapted to find all solutions. For this adaptation one must add the
number of solutions to the cost, but in this context one expects only about
2n/2/M ≈ 2n/4 subsets I1 to satisfy Σ(I1) ≡ t (mod M), for a total cost of
2n/4. One can also tweak this subroutine to work directly with sums modulo M ,
rather than separately handling t, t+M , etc.

Similarly compute

L2 = {(s−Σ(I2), I2) : I2 ⊆ {n/2 + 1, . . . , n}, Σ(I2) ≡ s− t (mod M)}.

Store L1 in a sorted table, and for each (s − Σ(I2), I2) ∈ L2 check whether
s − Σ(I2) appears in the table. If there is a collision Σ(I1) = s − Σ(I2), print
I1 ∪ I2 as a root of Σ − s and stop. Otherwise try another value of t, repeating
until all choices of t ∈ {0, 1, 2, . . . ,M − 1} are exhausted.

One expects each choice of t to cost 2n/4, as discussed above. There are
M ≈ 2n/4 choices of t, for a total cost of 2n/2. If there is a subset-sum solution
then it will be found for some choice of t.

Quantum search with a modulus. The algorithm above is a classical search
for a root of the function that maps t to 0 if there is a collision Σ(I1) = s−Σ(I2)
satisfying Σ(I1) ≡ t (mod M) (and therefore also satisfying Σ(I2) ≡ s − t
(mod M)). One way to take advantage of quantum computers here is to instead
search for t by Grover’s algorithm, which finds the root with only

√
M ≈ 2n/8

quantum evaluations of the same function, for a total cost of 2n/82n/4 = 23n/8.

Quantum walks with a modulus. A different way to take advantage of quan-
tum computers is as follows.

Recall that the collision-finding algorithm of Section 3 walks through adjacent
pairs of size-r sets S, searching for sets that contain collisions under a function
f . Each set S is stored in a radix tree, as is the multiset f(S). Each radix tree
is augmented to record at each node the number of distinct elements below that
node, allowing fast evaluation of the number of elements of S smaller than a
specified input and fast evaluation of whether S contains a collision.

One can design this collision-finding algorithm in four steps:

• Start with a simple classical collision-finding algorithm that computes f(S)
where S is the set of all 2b b-bit strings.
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• Generalize to a lower-probability algorithm that computes f(S) where S is
a set of only r strings and that checks whether S contains the collision.

• Build a data structure that expresses the entire computation of the lower-
probability algorithm. Observe that this data structure allows efficiently
moving from S to an adjacent set: a single element of S has only a small
impact on the computation.

• Apply a quantum walk, walking through adjacent pairs of size-r sets S while
maintaining this data structure for each S. This takes O(

√
r/
√
p) steps where

p is the success probability of the previous algorithm, plus cost r to set up
the data structure in the first place.

We now imitate the same four-step approach, starting from the classical left-
right split with a modulus and ending with a new quantum subset-sum algorithm.
The following description assumes that the correct value of t is already known;
the overhead of searching for t is discussed after the algorithm.

First step: Classical algorithm. Recall that the subroutine to find all I1 with
Σ(I1) ≡ t computes Σ(I11) mod M for all I11 ⊆ {1, 2, . . . , n/4}; computes t −
Σ(I12) mod M for all I12 ⊆ {n/4 + 1, n/4 + 2, . . . , n/2}; and finds collisions be-
tween Σ(I11) mod M and t−Σ(I12) mod M . Similarly, the subroutine to find all
I2 finds collisions between Σ(I21) mod M for I21 ⊆ {n/2 + 1, n/2 + 2, . . . , 3n/4}
and s− t−Σ(I22) mod M for I22 ⊆ {3n/4 + 1, 3n/4 + 2, . . . , n}. The high-level
algorithm finishes by finding collisions between Σ(I1) and s−Σ(I2).

Second step: Generalize to a lower-probability computation by restricting the
sets that contain collisions. Specifically, instead of enumerating all subsets I11,
take a random collection S11 containing exactly r such subsets; here r ≤ 2n/4

is an algorithm parameter optimized below. Similarly take a random collection
S12 of exactly r subsets I12. Find collisions between Σ(I11) mod M and t −
Σ(I12) mod M ; one expects about r2/M collisions, producing r2/M sets I1 =
I11 ∪ I12 satisfying Σ(I1) ≡ t (mod M). Similarly take random size-r sets S21

and S22 consisting of, respectively, subsets I21 and I22; find collisions between
Σ(I21) mod M and s−t−Σ(I22) mod M , obtaining about r2/M sets I2 satisfying
Σ(I2) ≡ s−t (mod M). Finally check for collisions between Σ(I1) and s−Σ(I2).
One can visualize the construction of I = I1∪I2 as a three-level binary tree with
I as the root, I1 and I2 as its left and right children, and I11, I12, I21, I22 as the
leaves.

Recall that we are assuming that the correct value of t is known, i.e., that the
desired subset-sum solution is expressible as I1 ∪ I2 with Σ(I1) ≡ t (mod M)
and Σ(I2) ≡ s− t (mod M). Then S11 has probability r/2n/4 of containing the
set I11 = I1 ∩ {1, 2, . . . , n/4}. Similar comments apply to S12, S21, and S22, for
an overall success probability of (r/2n/4)4.

The optimal choice of r is discussed later, and is far below the classical extreme
2n/4. This drop is analogous to the drop in list sizes from a simple left-right split
(list size 2n/2) to the quantum-walk subset-sum algorithm of Section 3 (list size
2n/3). This drop has an increasingly large impact on subsequent levels of the
tree: the number of sets I11, I12, I21, I22 is reduced by a factor of 2n/4/r, and the
number of sets I1, I2 is reduced by a factor of (2n/4/r)2.
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An interesting consequence of this drop is that one can reduce M without
creating bottlenecks at subsequent levels of the tree. Specifically, taking M ≈ r
means that one expects about r sets I1 and about r sets I2.

Third step: Data structure. This lower-probability computation is captured
by a data structure that contains the following sets in augmented radix trees:

• The size-r set S11 of subsets I11 ⊆ {1, 2, . . . , n/4}.
• The set {(Σ(I11) mod M, I11) : I11 ∈ S11}.
• The size-r set S12 of subsets I12 ⊆ {n/4 + 1, n/4 + 2, . . . , n/2}.
• The set {(t−Σ(I12) mod M, I12) : I12 ∈ S12}.
• The set S1 of I11 ∪ I12 for all pairs (I11, I12) ∈ S11×S12 such that Σ(I11) ≡
t−Σ(I12) (mod M), subject to the limit discussed below.

• The size-r set S21 of subsets I21 ⊆ {n/2 + 1, n/2 + 2, . . . , 3n/4}.
• The set {(Σ(I21) mod M, I21) : I21 ∈ S21}.
• The size-r set S22 of subsets I22 ⊆ {3n/4 + 1, 3n/4 + 2, . . . , n}.
• The set {(s− t−Σ(I22) mod M, I22) : I22 ∈ S22}.
• The set S2 of I21 ∪ I22 for all pairs (I21, I22) ∈ S21×S22 such that Σ(I21) ≡
s− t−Σ(I22) (mod M).

• The set {(Σ(I1), I1) : I1 ∈ S1}.
• The set {(s−Σ(I2), I2) : I2 ∈ S2}.
• The set S of I1∪I2 for all pairs (I1, I2) ∈ S1×S2 such that Σ(I1) = s−Σ(I2),

subject to the limit discussed below.

Note that this data structure supports, e.g., fast removal of an element I11
from S11 followed by fast insertion of a replacement element I ′11. Checking
for Σ(I11) mod M in the stored set {(t−Σ(I12) mod M, I12)} efficiently shows
which elements have to be removed from S1, and then a similar check shows
which elements have to be removed from S.

Each element I11 of S11 affects very few elements of S1; on average one expects
“very few” to be r/M ≈ 1. To control the time taken by each step of the
algorithm we put a polynomial limit on the number of elements of S1 involving
any particular I11. If this limit is reached then (to ensure history-independence)
we use a random selection of elements, but this limit has negligible chance of
affecting the algorithm output. Similar comments apply to I12, I21, and I22.

Fourth step: Walk through adjacent pairs of 4-tuples (S11, S12, S21, S22) of
size-r sets, maintaining the data structure above and searching for tuples for
which the final set S is nonempty. Amplifying the (r/2n/4)4 success probability
mentioned above to a high probability requires a quantum walk consisting of
O(
√
r(2n/4/r)2) steps. Setting up the data structure in the first place costs O(r).

For r on the scale of 20.2n these costs are balanced at 20.2n; but recall that
this assumes that t is already known. A classical search for t means repeating
this algorithm M ≈ r ≈ 20.2n times, for a total cost of 20.4n. We do better by
using amplitude amplification [7], repeating the quantum walk only 20.1n times,
for a total cost of 20.3n. We do not describe amplitude amplification in detail;
this subset-sum algorithm is superseded by the approach of Section 5.
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5 Representations

“Representations” are a technique to improve the “left-right split with a modu-
lus” algorithm of Section 4. Howgrave-Graham and Joux introduced this tech-
nique in [17] and obtained a subset-sum algorithm that costs just 2(0.337...+o(1))n.
Beware that [17] incorrectly claimed a cost of 2(0.311...+o(1))n; the underlying flaw
in the analysis was corrected in [3] with credit to May and Meurer.

This section reviews the Howgrave-Graham–Joux algorithm, and then presents
a new quantum subset-sum algorithm with cost only 2(0.241...+o(1))n. The new
quantum algorithm requires the quantum-walk machinery discussed in Section 3.

We simplify the algorithm statements in this section by considering only half-
weight sets I; i.e., we search only for sets I with #I = n/2 and Σ(I) = s.
We comment, however, that straightforward generalizations of these algorithms,
still within the same cost bound, handle smaller known weights (adjusting the
set sizes shown below, at the expense of some complications in notation); also
handle larger known weights (replacing I and s with their complements); and
handle arbitrary unknown weights (trying all n+ 1 possible weights).

Review: the basic idea of representations. Recall that the original left-right
split partitions I as I1 ∪ I2 where I1 ⊆ {1, . . . , n/2} and I2 ⊆ {n/2 + 1, . . . , n}.
The main idea of representations is to partition I in a different, ambiguous way
as I1 ∪ I2 with I1, I2 ⊆ {1, 2, . . . , n} and #I1 = #I2 = n/4. Note that there are(
n/2
n/4

)
≈ 2n/2 such partitions. The key observation is that finding only one out

of these exponentially many representations (I1, I2) of I is sufficient to solve the
subset-sum problem.

Recall also the idea of moduli: pick t ∈ {0, 1, 2, . . . ,M − 1} and hope that
Σ(I1) ≡ t (mod M). In Section 4, there was only one choice of I1, so one expects
each choice of t to work with probability only about 1/M , forcing a search
through choices of t. In this section, there are ≈2n/2 choices of I1, so one expects
a single choice of t to work with high probability for M as large as 2n/2.

These observations motivate the following strategy. Pick a modulus M ≈ 2n/2

and choose a random target value t ∈ {0, 1, . . . ,M − 1}. Compute

L1 = {(Σ(I1), I1) : I1 ⊆ {1, . . . , n}, #I1 = n/4, Σ(I1) ≡ t (mod M)}

and

L2 = {(s−Σ(I2), I2) : I2 ⊆ {1, . . . , n}, #I2 = n/4, Σ(I2) ≡ s− t (mod M)}.

If there is a collision Σ(I1) = s−Σ(I2) satisfying I1 ∩ I2 = {}, print I1 ∪ I2 and
stop. If there are no such collisions, repeat with another choice of t. One expects
a negligible failure probability after a polynomial number of repetitions.

(We point out that if t ≡ s − t (mod M) then computing L1 immediately
produces L2. One can arrange for this by choosing a random odd M and taking
t to be half of s modulo M ; one can also choose a random even M if s is even.
If other speed constraints prevent M from being chosen randomly then one can
still try these special values of t first. Similar comments apply to the next level of
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the Howgrave-Graham–Joux algorithm described below. Of course, the resulting
speedup is not visible at the level of detail of our analysis.)

One expects #L1 ≈
(
n
n/4

)
/2n/2 ≈ 20.311...n: there are

(
n
n/4

)
sets I1 ⊆ {1, . . . , n}

with #I1 = n/4, and one expects each I1 to satisfy Σ(I1) ≡ t (mod M) with
probability 1/M ≈ 1/2n/2. (The calculation of 0.311 . . . relies on the standard
approximation

(
n
αn

)
≈ 2H(α)n, where H(α) = −α log2 α − (1 − α) log2(1 − α).)

The same comment applies to L2. One also expects the number of collisions
between L1 and L2 to be exponentially large, about #L1#L2/2

n/2 ≈ 20.122...n,
since each Σ(I1) is already known to match each s − Σ(I2) modulo M ; but
the only collisions satisfying I1 ∩ I2 = {} are collisions arising from subset-sum
solutions.

The remaining task is to compute L1 and L2 in the first place. Howgrave-
Graham and Joux solve these two weight-n/4 modular subset-sum problems by
first applying another level of representations (using a smaller modulus that
divides M), obtaining four weight-n/8 modular subset-sum problems; they solve
each of those problems with a weight-n/16 left-right split. The details appear
below.

Review: The complete Howgrave-Graham–Joux algorithm. Choose a
positive integer M1 ≈ 2n/4. Choose a positive integer M ≈ 2n/2 divisible by
M1. Choose randomly s1 ∈ {0, 1, . . . ,M − 1} and define s2 = s − s1. Choose
randomly s11 ∈ {0, 1, . . . ,M1 − 1} and define s12 = s1 − s11. Choose randomly
s21 ∈ {0, 1, . . . ,M1 − 1} and define s22 = s2 − s21. Also choose random subsets
R111, R121, R211, R221 of {1, 2, . . . , n}, each of size n/2, and define Rij2 as the
complement of Rij1.

The following algorithm searches for a weight-n/2 subset-sum solution I de-
composed as follows: I = I1 ∪ I2 with #Ii = n/4 and Σ(Ii) ≡ si (mod M);
furthermore Ii = Ii1 ∪ Ii2 with #Iij = n/8 and Σ(Iij) ≡ sij (mod M1); fur-
thermore Iij = Iij1 ∪ Iij2 with #Iijk = n/16 and Iijk ⊆ Rijk. These constraints
are shown as a tree in Figure 5.1. One expects a weight-n/2 subset-sum solution
to decompose in this way with high probability (inverse polynomial in n), as
discussed later, and if it does decompose in this way then it is in fact found by
this algorithm.

Start with, for each (i, j, k) ∈ {1, 2}×{1, 2}×{1, 2}, the set Sijk of all subsets
Iijk ⊆ Rijk with #Iijk = n/16. Compute the sets

Lij1 = {(Σ(Iij1) mod M1, Iij1) : Iij1 ∈ Sij1},
Lij2 = {(sij −Σ(Iij2) mod M1, Iij2) : Iij2 ∈ Sij2}.

Merge Lij1 and Lij2 to obtain the set Sij of Iij1 ∪ Iij2 for all pairs (Iij1, Iij2) ∈
Sij1×Sij2 such that Σ(Iij1) ≡ sij−Σ(Iij2) (mod M1). Note that each Iij ∈ Sij
has Σ(Iij) ≡ sij (mod M1) and #Iij = n/8. Next compute the sets

Li1 = {(Σ(Ii1) mod M, Ii1) : Ii1 ∈ Si1},
Li2 = {(si −Σ(Ii2) mod M, Ii2) : Ii2 ∈ Si2}.

Merge Li1 and Li2 to obtain the set Si of Ii1∪Ii2 for all pairs (Ii1, Ii2) ∈ Si1×Si2
such thatΣ(Ii1) ≡ si−Σ(Ii2) (mod M) and Ii1∩Ii2 = {}. Note that each Ii ∈ Si



14 Bernstein, Jeffery, Lange, Meurer

I ⊆ {1, . . . , n}; #I = n/2; Σ(I) = s

I1 ⊆ {1, . . . , n}; #I1 = n/4;
Σ(I1) ≡ s1 (mod M)

::tttttttttttttt
I2 ⊆ {1, . . . , n}; #I2 = n/4;

Σ(I2) ≡ s2 (mod M)

ddJJJJJJJJJJJJJJ

I11 ⊆ {1, . . . , n};
#I11 = n/8;
Σ(I11) ≡ s11

(mod M1)

CC������
I12 ⊆ {1, . . . , n};

#I12 = n/8;
Σ(I12) ≡ s12

(mod M1)

[[777777

I21 ⊆ {1, . . . , n};
#I21 = n/8;
Σ(I21) ≡ s21

(mod M1)

CC������
I22 ⊆ {1, . . . , n};

#I22 = n/8;
Σ(I22) ≡ s22

(mod M1)

[[777777

I111
⊆ R111;
#I111

= n/16

II���
I112
⊆ R112;
#I112

= n/16

UU+++

I121
⊆ R121;
#I121

= n/16

II���
I122
⊆ R122;
#I122

= n/16

UU+++

I211
⊆ R211;
#I211

= n/16

II���
I212
⊆ R212;
#I212

= n/16

UU+++

I221
⊆ R221;
#I221

= n/16

II���
I222
⊆ R222;
#I222

= n/16

UU+++

Fig. 5.1. Decomposition of a weight-n/2 subset-sum solution I ⊆ {1, 2, . . . , n}.

has Σ(Ii) ≡ si (mod M) and #Ii = n/4. Next compute the sets

L1 = {(Σ(I1), I1) : I1 ∈ S1},
L2 = {(s−Σ(I2), I2) : I2 ∈ S2}.

Merge L1 and L2 to obtain the set S of I1∪I2 for all pairs (I1, I2) ∈ S1×S2 such
that Σ(I1) = s − Σ(I2) and I1 ∩ I2 = {}. Note that each I ∈ S has Σ(I) = s
and #I = n/2. If S is nonempty, print its elements and stop.

Review: Success probability of the algorithm. Consider any weight-n/2

subset I ⊆ {1, . . . , n} with Σ(I) = s. There are
(
n/2
n/4

)
≈ 2n/2 ≈ M ways to

partition I as I1 ∪ I2 with #I1 = n/4 and #I2 = n/4, and as discussed earlier
one expects that with high probability at least one of these ways will satisfy
Σ(I1) ≡ s1 (mod M), implying Σ(I2) ≡ s2 (mod M).

Similarly, there are
(
n/4
n/8

)
≈ 2n/4 ≈ M1 ways to partition I1 as I11 ∪ I12 with

#I11 = n/8 and #I12 = n/8. One expects that with high probability at least
one of these ways will satisfy Σ(I11) ≡ s11 (mod M1), implying Σ(I12) ≡ s12
(mod M1) (since M1 divides M and s11 + s12 = s1). Analogous comments apply
to I2, I21, I22.

A uniform random subset of a set of size n/8 has size exactly n/16 with
probability Θ(1/

√
n), so with probability Θ(1/n2) each of the four sets Iij1 =

Iij ∩ Rij1 has size exactly n/16, implying that each of the four complementary
sets Iij2 = Iij ∩Rij2 also has size exactly n/16. (Experiments indicate that the
probability is somewhat worse, although still inverse polynomial in n, if all Rij1
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are chosen to be identical, even if this set is randomized as discussed in [17].
The idea of choosing independent sets appeared in [4] with credit to Bernstein.)

Overall the probability of I being decomposed in this way, i.e., of I being
found by this algorithm, is inverse polynomial in n. As above, one expects a
negligible failure probability after a polynomial number of repetitions of the
algorithm.

Review: Cost of the algorithm. Each set Sijk has size
(
n/2
n/16

)
≈ 20.271...n.

One expects #Sij1#Sij2/M1 collisions Σ(Iij1) ≡ sij − Σ(Iij2) (mod M1), and
therefore #Sij1#Sij2/M1 ≈ 20.293...n elements in Sij .

Each Σ(Ii1) is already known by construction to be the same as each si −
Σ(Ii2) modulo M1. One expects it to be the same modulo M with probability
M1/M , for a total of #Si1#Si2M1/M ≈ 20.337...n collisions modulo M . This
also dominates the algorithm’s overall running time.

Relatively few of these collisions modulo M have Ii1 ∩ Ii2 = {}. The only
possible elements of S1 are sets I1 with Σ(I1) ≡ s1 (mod M) and #I1 = n/4;
one expects the number of such sets to be

(
n
n/4

)
/2n/2 ≈ 20.311...n. Furthermore,

as discussed earlier, each Σ(I1) is already known by construction to be the same
as each s − Σ(I2) modulo M , so one expects it to be the same integer with
probability about M/2n, for a total of #S1#S2M/2n ≈ 20.122...n collisions.

New: quantum walks with moduli and representations. We now combine
quantum walks with the idea of representations. The reader is assumed to be
familiar with the simpler quantum algorithm of Section 4.

We introduce a parameter r ≤
(
n/2
n/16

)
into the Howgrave-Graham–Joux algo-

rithm, and take each Sijk as a random collection of exactly r weight-n/16 subsets

Iijk of Rijk. The extreme case r =
(
n/2
n/16

)
is the same as the original Howgrave-

Graham–Joux algorithm: in this case Sijk is the set of all weight-n/16 subsets
of Rijk. For smaller r this generalized algorithm has lower success probability,
as discussed below, but is also faster. The resulting computation is captured by
the following 29 sets, which we store in augmented radix trees:

• For each i, j, k, a set Sijk consisting of exactly r weight-n/16 subsets of Rijk.
• For each i, j, the set Lij1 = {(Σ(Iij1) mod M1, Iij1) : Iij1 ∈ Sij1}.
• For each i, j, the set Lij2 = {(sij −Σ(Iij2) mod M1, Iij2) : Iij2 ∈ Sij2}.
• For each i, j, the set Sij of Iij1 ∪ Iij2 for all pairs (Iij1, Iij2) ∈ Sij1 × Sij2

such that Σ(Iij1) ≡ sij − Σ(Iij2) (mod M1), subject to the limit discussed
below.

• For each i, the set Li1 = {(Σ(Ii1) mod M, Ii1) : Ii1 ∈ Si1}.
• For each i, the set Li2 = {(si −Σ(Ii2) mod M, Ii2) : Ii2 ∈ Si2}.
• For each i, the set Si of Ii1 ∪ Ii2 for all pairs (Ii1, Ii2) ∈ Si1 × Si2 such

that Σ(Ii1) ≡ si −Σ(Ii2) (mod M) and Ii1 ∩ Ii2 = {}, subject to the limit
discussed below.

• The set L1 = {(Σ(I1), I1) : I1 ∈ S1}.
• The set L2 = {(s−Σ(I2), I2) : I2 ∈ S2}.
• The set S of I1∪I2 for all pairs (I1, I2) ∈ S1×S2 such that Σ(I1) = s−Σ(I2)

and I1 ∩ I2 = {}, subject to the limit discussed below.
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Like the data structure in the quantum walk of Section 4, this data structure
supports, e.g., fast removal of an element I111 from S111 followed by fast insertion
of a replacement element I ′111.

The optimal choice of r is discussed later; it is far below the starting list size(
n/2
n/16

)
≈ 20.272n used by Howgrave-Graham and Joux, and is even below 2n/4.

One expects the number of collisions modulo M1 to be r2/2n/4, which is smaller
than r, and the list sizes on subsequent levels to be even smaller. Consequently
this quantum algorithm ends up being bottlenecked at the bottom level of the
tree, while the original algorithm is bottlenecked at a higher level.

Furthermore, one expects each element Iijk of Sijk to affect, on average, ap-
proximately r/2n/4 elements of the set of collisions modulo M , and therefore
to affect 0 elements of Sij in almost all cases, 1 element of Sij with exponen-
tially small probability, 2 elements of Sij with far smaller probability, etc. As
in Section 4, to control the time taken by each step of the algorithm we put a
polynomial limit on the number of elements of Sij involving any particular Iijk,
a polynomial limit on the number of elements of Si involving any particular Iij ,
and a polynomial limit on the number of elements of S involving any particular
Ii. A constant limit of 100 seems ample, and there is no obvious problem with a
limit of 1.

Compared to the original Howgrave-Graham–Joux algorithm, the success
probability of the generalized algorithm drops by a factor of (r/

(
n/2
n/16

)
)8, since

each target Iijk has chance only r/
(
n/2
n/16

)
of being in Sijk. Amplifying this to a

high probability requires a quantum walk consisting of O(
√
r(
(
n/2
n/16

)
/r)4) steps.

Setting up the data structure in the first place costs O(r). For r on the scale of(
n/2
n/16

)4/4.5
these costs are balanced at

(
n/2
n/16

)4/4.5
, i.e., at 2(0.241...+o(1))n.
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