
A SIMPLE UNIVERSAL PATTERN-MATCHING AUTOMATON

DANIEL J. BERNSTEIN

Abstract. Consider an infinite non-deterministic automaton with one state
p for each regular expression p; transitions q

c→ qS whenever S is a

character set containing c; and null transitions q ⇒ qr , qrr ⇒ qr ,

qr ⇒ q(r′ ∪ r) , and qr′ ⇒ q(r′ ∪ r) . If this automaton starts at the

empty regular expression, then p recognizes exactly the language defined by

p, for every p. The subautomaton affecting p has at most 1 + len p states.

1. Introduction

This paper presents a nondeterministic infinite automaton that recognizes all
regular expressions simultaneously. A portion of the automaton is shown in Figure
1 below.

The automaton has one state p for each regular expression p, and no other

states. The language recognized by p is exactly the language defined by p. The

subautomaton affecting p has at most 1 + len p states. Here len p is the number of

non-parenthesis symbols in p; for example, the length of ?xyxz is 7, and the length
of ((xy ∪ z)z) ∪ yyy is 9.

Is it surprising that such an automaton exists? Of course not. It is well known
that, for each p, there is a nondeterministic automaton recognizing p with at most
1 + len p states. One can mechanically assign to each state a corresponding regular
expression, and finally merge the automata for all p into a single infinite automaton
that behaves as described above.

What is surprising about the automaton in this paper is that its definition is

extremely short. There is one transition q
c→ qC for each regular expression q,

character c, and character set C containing c. There are null transitions q ⇒ qr ,

qrr ⇒ qr , qr ⇒ q(r′ ∪ r) , and qr′ ⇒ q(r′ ∪ r) , for all regular expressions

q, r, r′. The automaton begins at () where () is the empty pattern. That’s it.
These transitions are visibly correct, in the sense that any string recognized by

p is in the language defined by p. It is not as easy to prove that these transitions
are adequate, in the sense that any string in the language defined by p is recognized

by p . See Theorem 4.1 and Theorem 4.2. It also takes some work to prove that
the subautomaton affecting p has at most 1 + len p states. See Theorem 7.2. These
proofs occupy the remaining sections of this paper.

Date: 20000806.

2000 Mathematics Subject Classification. Primary 68Q45.
Key words and phrases. Regular expressions, nondeterministic infinite automata.

The author was supported by the National Science Foundation under grant DMS–9600083.

1



2 DANIEL J. BERNSTEIN

()

�$

x // x
y // xy

z // xyz
z // xyzz

y // xyzzy

��
? +3

z

yy

y

��
x

��

?xy
x // ?xyx

z //

y

��

?xyxz +3 ?xyxz ∪ xyzzy

??

AI

?xyxy

_g

Figure 1. A portion of the automaton over the alphabet {x, y, z}.

Notation and terminology. The string (c1, . . . , cn) is abbreviated as “c1 . . . cn”.
For example, “x”, “xyz”, and “xyzzy” are strings over the alphabet {x, y, z}.

A constant is a set of single-character strings. The set of all single-character
strings is denoted ?. At the risk of confusion, I abbreviate the constant {“c”} as c
for each character c.

A pattern algebra is a set with an associative binary operation “composition”
written p, q 7→ pq, a neutral element for composition written (), a unary operation
“closure” written p 7→ p, and a binary operation “union” written p, q 7→ p ∪ q.
For example, the set of regular languages is a pattern algebra with composition
L,M 7→ LM = {st : s ∈ L, t ∈M}; neutral element () = {“”}; union equalling the
usual set union; and closure L 7→ L = L0 ∪ L1 ∪ · · · .

A pattern is an element of the free pattern algebra on the set of constants. In
other words, a pattern is a formula built up from constants via union, closure, and
composition, modulo redundant parentheses and the associativity of composition.
Every pattern falls into one of the four forms (), qC, qr, or q(r′ ∪ r); here q, r′, and
r are patterns, and C is a constant.

I write s ∈ p, and say p matches s, to mean that s is contained in the language
defined by p. Here p is a pattern and s is a string.

Historical notes. Thompson in [1] constructed an automaton recognizing p with
O(len p) states. See [2] for a coherent survey of subsequent constructions. My
construction is simpler than any of the constructions in [2].

I wrote down my automaton in June 1991, and distributed an implementation in
a posting to alt.sources in January 1992. I was not familiar with the literature;
the construction seemed so obvious that I assumed it was what everyone had always
done. In April 1994, after reading a preliminary version of the taxonomy in [2], I
announced my automaton in a posting to comp.theory.

2. Pattern implication

The relation “p′⇒p” is the transitive closure of the basic implications “q⇒qr”,
“qrr⇒qr”, “qr⇒q(r′∪r)”, and “qr′⇒q(r′∪r)”. In other words, p′⇒p if and only
if there is a chain p′ = p0⇒ p1⇒ · · · ⇒ pn = p of basic implications. In particular
p⇒ p.

For example, ()⇒ ?, and ?⇒ ?xy, so ()⇒ ?xy.

Theorem 2.1. If p′⇒ p and s ∈ p′ then s ∈ p.



A SIMPLE UNIVERSAL PATTERN-MATCHING AUTOMATON 3

Proof. It suffices to check the basic implications: if s ∈ q or s ∈ qrr then s ∈ qr;
and if s ∈ qr or s ∈ qr′ then s ∈ q(r′ ∪ r).

Theorem 2.2. If p′⇒ p then p′′p′⇒ p′′p.

Proof. This is a purely formal consequence of the definition: p′′qrr⇒ p′′qr, p′′q⇒
p′′qr, p′′qr⇒p′′q(r′∪r), and p′′qr′⇒p′′q(r′∪r), so given a chain of basic implications
we may prepend p′′ to each term.

3. The impl function

Define recursively

impl p =


{p} if p = () or p = qC,

impl qr′ ∪ impl qr if p = q(r′ ∪ r),

impl q ∪ {qry : y ∈ impl r, y 6= ()} if p = qr.

For example, impl ?xy =
{

(), ??, ?xyxy
}

.

Theorem 3.1. If x ∈ impl p then x⇒ p.

Proof. Induct on len p. First, if p = () or p = qC then x = p so x⇒ p.
Second, say p = q(r′ ∪ r). If x ∈ impl qr′ then by induction x⇒ qr′ ⇒ p. If

x ∈ impl qr then by induction x⇒ qr⇒ p.
Third, say p = qr. If x ∈ impl q then by induction x⇒ q⇒ p. If x = qry, with

y ∈ impl r, then by induction y⇒ r, so x = qry⇒ qrr⇒ p by Theorem 2.2.

Theorem 3.2. If x ∈ impl p then x is empty or ends with a constant.

Proof. Induct on len p. First, if p = () or p = qC then x = p.
Second, if p = q(r′ ∪ r) then x ∈ impl qr′ or x ∈ impl qr; by induction x is empty

or ends with a constant.
Third, say p = qr. If x ∈ impl q then by induction x is empty or ends with

a constant. If x = qry, with () 6= y ∈ impl r, then by induction y ends with a
constant, so x does too.

Theorem 3.3. If s ∈ p then s ∈ x for some x ∈ impl p.

Proof. Induct on len p. First, if p = () or p = qC then p ∈ impl p so there is nothing
to prove.

Second, if p = q(r′ ∪ r) then s ∈ qr′ or s ∈ qr. So by induction s ∈ x where
x ∈ impl qr′ or x ∈ impl qr. Either way x ∈ impl p.

Third, if p = qr then s = t′t with t′ ∈ q, t ∈ r. If t = “” then s = t′ ∈ q so
by induction there is an x ∈ impl q with s ∈ x; and x ∈ impl p. If t 6= “” we may
write t = uv where u ∈ r and v ∈ r, v 6= “”. By induction there is a y ∈ impl r
with v ∈ y; since v is nonempty we cannot have y = (). Thus qry ∈ impl p, and
s = t′uv ∈ qry as desired.

4. Consequences of impl

Theorem 4.1 says that my automaton works for the empty string. Theorem 4.2
says that, if my automaton works for a string t, then it also works for t plus any
character.

Theorem 4.1. “” ∈ p if and only if ()⇒ p.



4 DANIEL J. BERNSTEIN

Proof. Say ()⇒ p. Certainly “” ∈ (); by Theorem 2.1, “” ∈ p.
Conversely, say “” ∈ p. By Theorem 3.3, “” ∈ x for some x ∈ impl p. Since

“” ∈ x, x cannot end with a constant; thus, by Theorem 3.2, x = (). By Theorem
3.1, () = x⇒ p.

Theorem 4.2. t“c” ∈ p if and only if there exist q and C such that t ∈ q, “c” ∈ C,
and qC⇒ p.

Proof. If t ∈ q and “c” ∈ C then t“c” ∈ qC; if also qC ⇒ p then t“c” ∈ p by
Theorem 2.1.

Conversely, say t“c” ∈ p. By Theorem 3.3, t“c” ∈ x for some x ∈ impl p. Since
t“c” 6= “”, x cannot be empty; thus, by Theorem 3.2, x ends with a constant. Write
x = qC. Then t ∈ q and “c” ∈ C. Finally qC = x⇒ p by Theorem 3.1.

5. Left subpatterns

The relation “p′ is a left subpattern of p” is the transitive closure of the relations
“q is a left subpattern of qC”, “qrr is a left subpattern of qr”, “q is a left subpattern
of qr”, “qr is a left subpattern of q(r′∪r)”, and “qr′ is a left subpattern of q(r′∪r)”.

In other words, p′ is a left subpattern of p if and only if p′ affects p in my
automaton. Therefore, if s ∈ p, then any prefix s′ of s satisfies s′ ∈ p′ for some left
subpattern p′ of p.

Example: ?? is a left subpattern of ?, which is a left subpattern of ?xy, which
is a left subpattern of ?xyx, which is a left subpattern of ?xyxz. So ?? is a left
subpattern of ?xyxz.

6. The left function

Define left0 p = p. Define leftn+1 p for each n as follows:

leftn+1 p =



undefined if p = ()

leftn q if p = qC

leftn qrr if p = qr, n < len r

leftn−len r q if p = qr, n ≥ len r

leftn qr if p = q(r′ ∪ r), n < len r

leftn−len r qr
′ if p = q(r′ ∪ r), n ≥ len r.

For example, the values of leftn ?xyxz, as n increases from 0 through 7, are
?xyxz, ?xyx, ?xy, ?xyxy, ?xyx, ?, ??, and (). For n > 7, leftn ?xyxz is undefined.

The reader may enjoy verifying certain facts not needed in this paper: leftlen p p =
(); if n < len p then leftn p is defined and nonempty; if n ≤ len p then leftn p

′p =
p′ leftn p; if leftn p is defined then it is a left subpattern of p.

Theorem 6.1. If n > len p then leftn p is undefined.

Proof. Induct on n. Note that n > 0.
If p = () then leftn p is undefined. If p = qC then n > n − 1 > len q so

leftn−1 q is undefined by induction; so leftn p = leftn−1 q is undefined. If p = qr
then n > n − 1 − len r > len q so leftn−1−len r q is undefined by induction; so
leftn p = leftn−1−len r q is undefined. If p = q(r′ ∪ r) then n > n − 1 − len r >
len qr′ so leftn−1−len r qr

′ is undefined by induction; so leftn p = leftn−1−len r qr
′ is

undefined.



A SIMPLE UNIVERSAL PATTERN-MATCHING AUTOMATON 5

Theorem 6.2. leftn p
′p = leftn−len p p

′ if n ≥ len p.

Proof. Induct on n.
If p = () then len p = 0 and p′p = p′ as desired. If p = qC then n > n− 1 ≥ len q

so
leftn p

′p = leftn−1 p
′q = leftn−1−len q p

′ = leftn−len p p
′

by induction. If p = qr then n > n− 1− len r ≥ len q so

leftn p
′p = leftn−1−len r p

′q = leftn−1−len r−len q p
′ = leftn−len p p

′

by induction. If p = q(r′ ∪ r) then n > n− 1− len r ≥ len qr′ so

leftn p
′p = leftn−1−len r p

′qr′ = leftn−1−len r−len qr′ p
′ = leftn−len p p

′

by induction.

7. The J function

Theorem 7.2 states that all left subpatterns of p are values of leftn p for n ∈
{0, 1, . . . , len p}. Thus the number of states affecting p in my automaton is at
most 1 + len p.

Define J(p,m, 0) = m. For each n define J(p,m, n + 1) =

undefined if p = ()

J(q,m, n) + 1 if p = qC

J(qrr,m, n) + 1 if p = qr, n < len r, J(qrr,m, n) < len r

J(qrr,m, n)− len r if p = qr, n < len r, J(qrr,m, n) ≥ len r

J(q,m, n− len r) + len r + 1 if p = qr, n ≥ len r

J(qr,m, n) + 1 if p = q(r′ ∪ r), n < len r, J(qr,m, n) < len r

J(qr,m, n) + len r′ + 1 if p = q(r′ ∪ r), n < len r, J(qr,m, n) ≥ len r

J(qr′,m, n− len r) + len r + 1 if p = q(r′ ∪ r), n ≥ len r.

Theorem 7.1. leftm leftn p = leftJ(p,m,n) p if leftn p is defined.

Proof. If n = 0 then J(p,m, n) = m and leftn p = p; thus leftJ(p,m,n) p = leftm p =
leftm leftn p.

Now induct on n. Assume leftn+1 p is defined. Note that n + 1 ≤ len p by
Theorem 6.1, so p 6= (). I will show that leftm leftn+1 p = leftJ(p,m,n+1) p.

1. Say p = qC. Write j = J(q,m, n). Then

leftm leftn+1 p = leftm leftn q = leftj q = leftj+1 p.

2. Say p = qr and n < len r. Write j = J(qrr,m, n). Observe that

leftm leftn+1 p = leftm leftn qrr = leftj qrr.

If j < len r then leftj qrr = leftj+1 p; else leftj qrr = leftj−len r qr = leftj−len r p.
3. Say p = qr and n ≥ len r. Write j = J(q,m, n− len r). Then

leftm leftn+1 p = leftm leftn−len r q = leftj q = leftj+len r+1 p.

4. Say p = q(r′ ∪ r) and n < len r. Write j = J(qr,m, n). Observe that

leftm leftn+1 p = leftm leftn qr = leftj qr.

If j < len r then leftj qr = leftj+1 p; otherwise

leftj qr = leftj−len r q = leftj−len r+len r′ qr
′ = leftj+len r′+1 p.



6 DANIEL J. BERNSTEIN

5. Say p = q(r′ ∪ r) and n ≥ len r. Write j = J(qr′,m, n− len r). Then

leftm leftn+1 p = leftm leftn−len r qr
′ = leftj qr

′ = leftj+len r+1 p.

Theorem 7.2. If p′ is a left subpattern of p then p′ = leftn p for some n.

Proof. If p = qC then q = left1 p.
If p = qr then q = leftlen r+1 p. Furthermore qrr = left1 p if r 6= (); qrr = left0 p

if r = ().
If p = q(r′ ∪ r) then qr′ = leftlen r+1 p. Furthermore qr = left1 p if r 6= (). If

r = () then qr = q = leftlen r′ qr
′ = leftlen r′+1 p by Theorem 6.2.

Finally, by Theorem 7.1, the relation “p′ is leftn p for some n” is transitive.

References

[1] Ken Thompson, Regular expression search algorithm, Communications of the ACM 11 (1968),

419–422.
[2] Bruce W. Watson, Taxonomies and toolkits of regular language algorithms, Ph.D. thesis,

Eindhoven University of Technology, 1995.

Department of Mathematics, Statistics, and Computer Science, The University of
Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@pobox.com


