Symbolically executing emulators

Daniel J. Bernstein'?
! Department of Computer Science, University of Illinois at Chicago, USA
2 Institute of Information Science, Academia Sinica, Taiwan
djb@cr.yp.to

Abstract. This paper reports experiments showing that it is sometimes
affordable to carry out symbolic execution of an instruction set by
applying a symbolic-execution tool for another instruction set to an
emulator for the first instruction set. In particular, this paper reports
verifying sparc32 object code for all 248 functions in the latest version
of cryptoint (including 76 functions that have sparc32 assembly
implementations), by using the angr toolkit to symbolically execute
an amd64 binary that uses the unicorn toolkit to emulate sparc32
instructions. This paper also reports proof-of-concept experiments using
symbolic execution to automatically extract partial instruction semantics
from an emulator.

1 Introduction

A computer executing a program follows one instruction after another inside the
program. The computer’s state is a sequence of bits modified by the instructions.
For example, if the first bit is a 1, and the second bit is also a 1, then XORing
the second bit into the first bit will change the first bit to 0.

Symbolic execution also follows one instruction after another, but applies
the instructions to a more complicated machine state in which bits are replaced
with symbolic bits. A symbolic bit is allowed to be not just 0 or 1 but also
a more general formula in terms of specified variables. For example, if the first
symbolic bit is the formula x&y (in C notation), and the second symbolic bit
is the formula z, then XORing the second symbolic bit into the first symbolic
bit will change the first symbolic bit to the formula (x&y) ~z. Typically the user
chooses some inputs to replace with formulas, and then a symbolic-execution tool
automatically traces through the formulas produced by the program starting
from those inputs—in much the same way that a human sometimes writes

This work was funded by the Intel Crypto Frontiers Research Center,
and by the Taiwan’s Executive Yuan Data Safety and Talent Cultivation
Project (AS-KPQ-109-DSTCP). “Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s).”
Permanent ID of this document: 176cb11d2d75435bd573694a62a8ecabb497bf53.
Date: 2025-05-05.

2 Daniel J. Bernstein

down formulas for each result computed in the program, but one hopes that
a symbolic-execution tool will be faster and less error-prone than a human.

Some tools for symbolic execution (e.g., SymCC [40] and SymQEMU [41])
are limited to concolic execution. This means that the instruction pointer is
a concrete number at each moment (each bit being 0 or 1), while other parts of
the machine state can store more complicated formulas.® The traditional form
of program execution, where each bit is 0 or 1, is called concrete execution.

This paper will say more later about a program-analysis tool called angr,
which was introduced in [48] and has received many subsequent updates. This
tool isn’t limited to concrete execution, or even to concolic execution: if a branch
condition is more complicated than just “true” or “false” then angr creates a
symbolic instruction pointer. Internally, angr splits symbolic execution into two
universes, one for each direction of the branch, and then continues with each
universe, so the instruction pointer within each universe is concrete.* One can
see the full symbolic instruction pointer by asking angr for the branch conditions
that define each universe.

The literature explains many applications that take advantage of the extra
flexibility of symbolic execution compared to concrete execution. As one example
that motivated this paper, Section 2 reviews an application of symbolic execution
to equivalence verification, checking that two code snippets compute the same
output for each possible input.

1.1 Extending instruction sets

What happens if one wants to symbolically execute a type of program not
supported by existing symbolic-execution tools? Concretely, angr understands
how to execute many different machine instructions for today’s most popular
CPUs, but what happens when an program uses an instruction-set extension
beyond what angr supports, or has been compiled for a different CPU?

The conventional answer is to add support for further instructions to the
symbolic-execution tool. This is easier said than done, especially if one is
concerned with accuracy. There are more than 1000 different instructions on
Intel’s current CPUs (see, e.g., [14]), with tens of thousands of details that one
might get wrong (see, e.g., the discrepancies detected in [17]), not to mention

3 This description assumes that there is no data flow from symbolic bits to branch
conditions. More generally, concolic execution replaces each bit with a pair (b, f)
where b is a bit and f is a symbolic bit, and uses b to control branches, so the
symbolic bits f provide formulas for the behavior of the program for all inputs that
produce the same control flow as the bits b. The name “concolic” was introduced in
[47] as a portmanteau of “concrete” for b and “symbolic” for f. Software automating
this type of execution had appeared in [22] without the name “concolic”.

Further symbolic branches then split the universes further. This does not imply that
one has to accept an exponential explosion of universes: it is possible to merge
universes that have the same instruction pointer, so one can limit the number
of universes to the number of reachable instructions or, better, to the number of
reachable basic blocks.

Symbolically executing emulators 3

all the other CPUs of interest. Fortunately, there is another approach, as we’ll
see in a moment.

1.2 Contributions of this paper

This paper reports successful equivalence-verification experiments using angr to
symbolically execute various binaries compiled for sparc32, which is a popular
architecture for CPUs used today in space applications® but not an instruction
set supported by angr.

These experiments do mnot involve any new code to interpret SPARC
instructions. In particular, these experiments do not add SPARC patches to
angr or to any of the CPU-support libraries used inside angr. Instead these
experiments

e take an emulator (compiled for amd64) that simulates a sparc32 CPU
running the binaries, and then
e use angr to symbolically execute the emulator.

Wait, doesn’t simulation of a SPARC CPU need to understand the SPARC
instruction set? Yes, it does, but that isn’t new code: the popular gemu emulator
introduced in [7] already includes support for many CPUs, including SPARC.

Structurally, it’s obvious that one can obtain “symbolically execute platform
S” by composing “symbolically execute platform A” with “use A to emulate S”,
as long as one can afford to pile the symbolic-execution slowdowns on top of
the emulation slowdowns. In particular, angr advertises support for amd6é4, and
gemu running on those CPUs simulates other CPUs.

On the other hand, a platform is more than a CPU, and running gemu under
angr turns out to encounter a series of mismatches between what qemu relies
upon and what angr provides. Some mismatches are easy to work around;
this paper handles the others by building a small replacement emulator that is
adequate for this paper’s applications to equivalence verification. See Section 3.
This replacement emulator still does not require new code to interpret SPARC
instructions: it uses the unicorn instruction-set simulator from [38], which copies
the instruction-set handling from gemu and in particular supports sparc32.

This paper also reports experiments that—subject to limitations described
later; this is just a proof of concept—automatically extract instruction semantics
from an emulator via symbolic execution of emulation of a single instruction.
See Section 4. This extraction is a first step towards automatic compilation of
emulators into symbolic-execution tools that will take less CPU time than the
approach from Section 3. Section 4 also summarizes other potential applications
of this extraction, such as automatic emulator verification.

® See, e.g., [33], [39], and [15], all of which use the radiation-hardened LEON3-FT
CPU. This CPU is part of a series of CPUs that, as explained in [20], selected the
SPARC architecture as an established non-proprietary architecture. RISC-V is also
non-proprietary and perhaps will eventually replace SPARC; see, e.g., [49].

4 Daniel J. Bernstein

2 Equivalence verification via symbolic execution

As a specific example of an application of symbolic execution, this section reviews
how saferewrite uses symbolic execution via angr to verify that compiled
versions of the cryptoint functions match reference implementations for all
inputs. Here angr is from [48], as mentioned in Section 1; saferewrite is a
small wrapper around angr that I introduced in [8] in 2021; and cryptoint,
described in [10], is an almost-header-only C library that I introduced in 2024
for carrying out various basic integer operations in constant time.

Section 2.1 reviews the general problem of equivalence verification. Section 2.2
explains how saferewrite uses symbolic execution to verify equivalence.
Section 2.3 explains why, before the work explained in Section 3, saferewrite
didn’t support code compiled for SPARC.

2.1 The danger of rewriting code

Suppose someone is rewriting a code snippet—perhaps to accelerate it, or to
simplify it, or to make it more portable, or to make it less likely to trigger
compiler bugs, or to avoid leaking secret data through timing. How do we make
sure that the rewrite hasn’t introduced any bugs?

Maybe someone started with the C code

int64_t if_positive_then_else(int64_t x,int64_t p,int64_t n) {
if (x > 0) return p;
return n;

}

and decided to rewrite it as

int64_t if_positive_then_else(int64_t x,int64_t p,int64_t n) {
return n ~ ((m = p) & ((-x) >> 63));
}

to remove the conditional branch, making sure to compile with gcc -fwrapv so
that int64_t arithmetic is fully defined (in particular, the signed right shift is
defined on negative inputs). This rewrite passes many random tests—but it still
has a bug: namely, if x is —2°3 then -x is also —253 because int64_t arithmetic
is modulo 2%, so (-x) >> 63 is —1, and the code ends up returning p instead
of the desired n.

There are natural types of tests that will catch this particular bug: for
example, trying random inputs with just a few bits set, or testing a generalization
from int64_t to other sizes—hoping that any bugs in the int64_t code are also
visible as bugs for, say, int8_t; there are only 224 possible inputs to the int8_t
version of this function (and almost 2!¢ of them will trigger this bug). But the
bigger picture is that passing tests cannot guarantee that a rewrite is correct.
Experience indicates that bugs apply to varying fractions of all inputs, sometimes
caught by tests but sometimes not.

Symbolically executing emulators 5)

dpkg --add-architecture arm64
dpkg --add-architecture armel
dpkg --add-architecture i386
dpkg --add-architecture mips64el
apt update
apt install \
python3 python3-dev python3-venv \
build-essential clang valgrind \
binutils-aarch64-linux-gnu crossbuild-essential-arm64 \
libc6:arm64 libstdc++6:armé4 \
binutils-arm-linux-gnueabi crossbuild-essential-armel \
libc6:armel libstdc++6:armel \
binutils-i686-1linux-gnu crossbuild-essential-i386 \
1ibc6:1386 libstdc++6:1386 \
binutils-mips64el-linux-gnuabi64 crossbuild-essential-mips64el \
libc6:mips64el libstdc++6:mips64el \
binfmt-support gemu-user gemu-user-static

Fig.2.2.1. Commands for root to install packages used by saferewrite on a 64-bit
Intel or AMD server running Debian 12.

A reviewer can try to catch a bug in a rewrite by thinking through what the
code does—but, hmmm, what if the reviewer makes the same mistake that the
code author made? Perhaps more convincing is for the reviewer to write a proof
of correctness—but, hmmm, does that really stop the reviewer from making a
mistake? Even more convincing is a computer-checked proof (see generally [9]),
but can we afford to scale this effort to many rewrites of many code snippets?

The cryptoint library mentioned above is the result of hundreds of rewrites
of simple reference code into more complicated code snippets. This poses obvious
correctness questions, which are addressed in Section 2.2.

2.2 Equivalence testing with saferewrite

The saferewrite package includes an analysis tool and various examples of
code rewrites. The following text focuses on one example, cmp_64xint16.
The src/cmp_64xint16/ref directory has one file, verify.c:

#include <stdint.h>

int cmp_64xint16(const uintl16_t *x,const uintl6_t *y)
{
for (int i = 0;i < 64;++1i)
if (x[i] !'= y[il])
return -1;
return O;

3

6 Daniel J. Bernstein

VENV=saferewrite
SAFEREWRITE=20250505
wget https://pgsrc.cr.yp.to/saferewrite-$SAFEREWRITE.tar.gz
tar -xf saferewrite-$SAFEREWRITE.tar.gz
cd saferewrite-$SAFEREWRITE
mkdir -p $HOME/.virtualenvs
python3 -m venv $HOME/.virtualenvs/$VENV
export PATH=$HOME/.virtualenvs/$VENV/bin:$PATH
for cross in \
aarch64-linux-gnu arm-linux-gnueabi \
i686-1linux-gnu mips64el-linux-gnuabi64
do
1n -s /usr/bin/clang $HOME/.virtualenvs/$VENV/bin/${cross}-clang
1n -s /usr/bin/clang++ $HOME/.virtualenvs/$VENV/bin/${cross}-clang++
done
pip install angr==9.2.102 setproctitle
chmod +t src/*
chmod -t src/cmp*
time ./analyze

Fig. 2.2.2. Commands for an unprivileged user to run saferewrite on the cmp*
example included with saferewrite, after root installs packages as in Figure 2.2.1.

This is reference code for comparing two int16[64] arrays. There are then
ten further src/cmp_64xint16/* directories that are intended to—but don’t
always!l-—do the same thing as the reference code. One of those directories,
namely src/cmp_64xint16/openssl, has more files than verify.c: there is
a memcmp.s straightforwardly derived from assembly in OpenSSL, and there
is an architectures file saying amd64, which tells saferewrite to compile
this rewrite only for that architecture. Also, src/cmp_64xint16/bitopscpp has
verify.cc rather than verify.c.

Figure 2.2.2 shows how to download and run saferewrite-20250505 to
analyze cmp_64xint16, after root installs packages as shown in Figure 2.2.1.
These instructions assume a 64-bit Intel or AMD server running Debian 12. On
a dual EPYC 7742 without overclocking, analyzing cmp_64xint16 completed in
1 minute 58 seconds of real time, using 74 core-minutes of user time and 4.5
core-minutes of system time.

The results of the analysis are in 122 directories build/*/*/*/analysis
containing 883 files build/*/*/*/analysis/*. One of those files has name

build/cmp_64xint16/frodo2/gcc_-03_-march_native_-mtune_native
/analysis
/unsafe-differentfrom-ref-gcc_-03_-march_native_-mtune_native

(modulo line breaks). The contents of that file include an input for which
src/cmp_64xint16/frodo2 compiled with gcc -03 produces a different output
from src/cmp_64xint16/ref compiled with gcc -03.

Symbolically executing emulators 7

The frodo2 code is from real cryptographic software that had a bug pointed
out in [43]. What this example is showing is that saferewrite automatically
catches this bug. On the other hand, random unit tests would have also caught
this bug if they had been applied to the software in the first place.

Let’s now move on to an example of something that random tests cannot do.
Another result file is an empty file

build/cmp_64xint16/bitopscpp/clang++_-01_-fwrapv_-march_native
/analysis/equals-ref-gcc_-03_-march_native_-mtune_native

whose name asserts that src/cmp_64xint16/bitopscpp compiled with
clang++ -01 -fwrapv produces the same outputs for all possible inputs as
src/cmp_64xint16/ref compiled with gcc -03.

The justification for this assertion relies on symbolic execution. Internally,
saferewrite uses angr to symbolically execute the compiled binaries, in effect
unrolling the binaries into formulas; saferewrite then uses an SMT solver
(namely Z3 from [35], via a wrapper provided by angr) to show that the resulting
formulas are equal for all inputs.

The compilers used for the analysis are listed in . /compilers, currently listing
13 C compilers and 12 C++ compilers. These include various cross-compilers,
as one would expect from Figures 2.2.1 and 2.2.2. Also, as

build/cmp_64xint16/ref

/aarch64-linux-gnu-gcc_-03_
-march_armv8-a_-mtune_cortex-ab3_-mgeneral-regs-only
/analysis/equals-ref-gcc_-03_-march_native_-mtune_native

illustrates, the analysis checks equivalence of code compiled for one architecture
against code compiled for another architecture, perhaps catching compiler bugs
or portability issues that might not be caught by single-architecture tests.

Extending saferewrite to test another rewrite is straightforward. For
example, here is how to test the if_positive_then_else rewrite from
Section 2.1:

e Create directories src/ifpos, src/ifpos/ref, and src/ifpos/bad.

e Copy the two snippets from Section 2.1 to src/ifpos/ref/whatever.c and
src/ifpos/bad/whatever.c respectively.

e Add #include <stdint.h> at the top of each file to define int64_t.

e To tell saferewrite what the inputs and outputs are, create a
file src/ifpos/api with lines return int64 r and in int64 x and
in int64 p and in int64 n and call if_positive_then_else.

e Run chmod +t src/*; chmod -t src/ifpos; ./analyze to analyze these
src/ifpos rewrites.

This ifpos analysis is faster than the cmp_64xint16 analysis: in 9 seconds of
real time (56 core-seconds of user time, 51 core-seconds of system time) on the
machine mentioned above, this analysis produces 6 unsafe-differentfrom files,
each showing in_x_0 = 9223372036854775808 (i.e., x is 29%) along with some

8 Daniel J. Bernstein

choices of p and n. To me, seeing an SMT solver find this example says that the
SMT solver is doing something useful, whereas merely seeing an SMT solver say
“yes, equal” is less convincing.

Why are there are only 6 unsafe-differentfrom files when there are 12
compilers? Answer: The other 6 compilers use gcc -03 for various architectures.
As discussed in [10, Section 4.8], gce starting in 2021 includes an “optimization”
that, when -fwrapv is not set, replaces (-x)>>63 with -(x>0). For ifpos/bad,
this change produces compiled code that always matches ifpos/ref, and
saferewrite correctly reports equals-ref for the compiled code.

Adding another rewrite src/ifpos/good/fixed.c with

#include <stdint.h>

int64_t if_positive_then_else(int64_t x,int64_t p,int64_t n) {
int64_t y = -x;
return n ~ ((n " p) & ((y ~ (x & y)) >> 63));

}

produces 12 build/ifpos/good/*/analysis/equals-ref-* files as expected.
(There is still a risk of problems with other compiler options or with future
compilers; see [10] for how I recommend writing this type of code.)

Some other symbolic-execution tools directly analyze C code (and in principle
could replace angr in Section 3), or analyze intermediate languages such as
LLVM IR. Analyzing binaries has the advantage of being able to catch problems
in the translations from those languages to binaries, whether the problems are
indisputable compiler bugs or merely what one might call surprises. Analyzing
binaries also has the advantage of being able to handle code written in assembly.
Conventional unit tests have the same feature of testing binaries, but, as the
above examples illustrate, conventional tests are missing the SMT solver’s ability
to consider all possible inputs.

SMT solvers promise that whatever answers they give are correct. However,
they do not guarantee that they will give answers. For slightly more complicated
examples, SMT solving does not complete in a reasonable time. On the
other hand, saferewrite includes many examples where SMT solving does
rapidly give a “yes, this always matches” or “no, it doesn’t always match”
answer. In particular, saferewrite gives equals-ref answers for all 248
cryptoint functions compiled with various compilers. The analysis averages
a few core-seconds per implementation-compiler pair; see README-resources in
the saferewrite package for more details.

I don’t recommend abandoning conventional tests in favor of saferewrite.
It is conceivable that a bug in a rewrite will be hidden by a bug in an SMT
solver, or by another bug in angr, or by a bug in the saferewrite code. But
supplementing conventional tests with symbolic execution reduces risks.

2.3 The case of SPARC

Compiling and assembling C code into a binary involves architecture-specific
code in compilers and assemblers: even when the original C code is portable, the

Symbolically executing emulators 9

target language is not. What angr is doing in symbolically executing a binary
is similarly architecture-specific: the target language, essentially Z3 formulas, is
portable, but the source language is not.

Internally, angr relies on (and is named by reference to) the VEX component
of valgrind. VEX translates binaries into a somewhat simpler language.
Normally valgrind executes instructions in that language; angr instead
translates that language into Z3 formulas. Supporting an instruction set inside
saferewrite thus requires support from VEX and support from angr.

Even for popular CPUs from Intel and AMD, this instruction support is not
complete. For example, valgrind AVX-512 patches from [34] were not integrated
into the official valgrind distribution, never mind the further work required for
angr to support AVX-512. So it’s unsurprising that a valgrind SPARC patch
reportedly distributed by Oracle many years ago also wasn’t added to valgrind.

I have been adding assembly rewrites to cryptoint for reasons explained in
[10, Section 6.3.1]. Equivalence testing via saferewrite, as in Section 2.2, is an
important part of the assurance mechanisms described in [10, Section 6.4]. So,
when I added sparc32 assembly to cryptoint, I was faced with the problem of
how to symbolically execute sparc32 binaries.

One possibility is to write new patches for valgrind and angr, but this sounds
error-prone, even for an instruction set as small as the SPARC instruction set.
The point of Section 3 is a different approach that, as emphasized in Section 1,
doesn’t require any new code to interpret SPARC instructions.

3 Symbolic execution of emulation of a program

The current version of saferewrite includes an option to compile and analyze
sparc32 binaries, despite angr not supporting sparc32. Internally, what
saferewrite is doing for sparc32 is symbolic execution using angr of an amd64
binary that emulates a sparc32 binary. My original plan was for the amd64
binary to be gemu-sparc, but, as noted in Section 1, I ended up building a
replacement emulator on top of unicorn. The rest of this section explains various
issues that I encountered, and how I worked around those issues.

3.1 The platform for a binary

When the operating-system kernel runs a binary, it allocates the right amount
of RAM for the binary, copies the binary from disk into RAM, and then jumps
to the entry point of the binary, at which point the CPU starts executing
instructions from the binary. One complication is that binaries are usually
dynamically linked; there is then initial code that (1) allocates further RAM
for libraries and (2) links the libraries appropriately. Another complication is
system calls: trap instructions that pass requests such as read or write to the
operating-system kernel. There are many different system calls, with semantics
operating on a multifaceted process state: each process has not just RAM but
also permissions, timers, file descriptors, and more.

10 Daniel J. Bernstein

A full-fledged emulator such as gemu (or valgrind, but valgrind is not useful
in this section since it does not support SPARC) includes a large amount of
code trying to simulate all aspects of the process state.® As an illustration of
the costs, calling qemu-x86_64-static to run a statically linked program that
simply calls _exit(0) takes more than 30 million instructions, according to
perf stat. Running the program directly takes 21537 instructions.

Symbolic execution in angr is faced with an even tougher simulation job, given
the extra complications of applying instructions to a symbolic process state. For
example, angr simulates a filesystem containing symbolic data, and simulates
read and write functions in a way that can handle symbolic data. The angr
documentation does not claim completeness of the process simulation; it provides
a SimProcedure mechanism to extend the simulation with support for further
functions as needed.

Unsurprisingly, running gemu under angr encounters gemu calling functions
that angr does not support. I started on a cycle of looking at the first call that
breaks, fixing that, and trying again, but I abandoned this when it became clear
that the approach of Section 3.2 would involve less development time and less
CPU time.

3.2 Using unicorn

The unicorn toolkit from [38] was forked from gemu in 2015. The toolkit provides
a C library interface to the instruction emulator inside gemu. The toolkit removes
gemu’s support for loading binaries, for process state beyond RAM, etc.

I wrote a small emulator, elfulator, on top of unicorn. This emulator has a
few hundred lines for ELF parsing, and a few hundred lines for calling unicorn
and handling traps from unicorn. This is far from a full-fledged emulator—for
example, it supports only statically linked binaries, and only a few system calls
from those binaries (see Section 3.3)—but it does what saferewrite needs.

There are still some library calls from unicorn beyond what angr supports,
but few enough that handling them wasn’t a serious problem:

e I linked elfulator with simple assembly for setjmp, longjmp, sigsetjmp,
and siglongjmp, tweaking assembly available from [30].

e | intercepted clock_gettime and gettimeofday with C functions in
elfulator.c returning time 0.

e I patched unicorn to replace some calls to mmap and munmap with,
respectively, malloc and nothing.

e In saferewrite’s script that calls angr, I added SimProcedures
to adequately simulate posix_memalign, and to pass sysconf and
getpagesize and strerror through to the surrounding operating system.

The library calls depend somewhat on which CPU is being emulated: e.g.,
unicorn’s ARM emulation calls vasprintf.

6 There is also a full-system mode of gemu that tries to simulate a complete computer,
but what matters for this paper is gemu’s user mode.

Symbolically executing emulators 11

3.3 System calls

There are three obviously critical system calls that elfulator allows from the
binary it is emulating:

e read for the emulated program to receive symbolic inputs;
e write for the emulated program to provide symbolic outputs; and
e exit for the emulated program to say that it’s done.

In earlier versions of saferewrite, I communicated symbolic inputs and
symbolic outputs by directly accessing RAM in the binary being run by angr.
Functions are provided by angr to access the binary’s symbol table and the
corresponding RAM locations. However, composing this with a layer of emulation
would trigger obvious complications, so I switched to read and write.

A typical C library invokes more system calls for a variety of reasons not
relevant to saferewrite. I instead compiled with one of the smallest available C
libraries, namely dietlibc, which was introduced in [32]. For compilation with
a current SPARC cross-compiler, I made a minor patch to dietlibc, namely
replacing glob with globl in sparc/memcmp.S.

Various system-call details are CPU-specific. For testability, I found it
convenient to develop elfulator starting with amd64 and arm64 binaries, and
continuing with arm32 and x86 as 32-bit platforms supported by more tools than
sparc32. I also included mmap for some platforms. Each platform needs a few
extra lines for each system call, plus some lines of generic platform support. All
of this is still in elfulator as experimental code. The implementations have
many limitations that are not a problem for saferewrite, such as assuming
that read is from file descriptor 0.

The unicorn toolkit provides an interface for callers to read and write CPU
registers, but the list of registers is generally incomplete. On SPARC, system
calls indicate success or failure via a register called PSR. I patched unicorn to
add support for PSR, and to adjust the SPARC instruction pointer appropriately
after trap instructions.

3.4 Symbolic-execution speed

There are some options bult into angr to save time in symbolic execution.
Perhaps the most important is angr.options.unicorn, not to be confused with
the usage of unicorn in Section 3.2. What angr.options.unicorn does is have
angr call unicorn to run blocks of code if the relevant program state is concrete,
rather than resorting to to angr’s Python-level simulation of each instruction.

In the context of saferewrite, most of the elfulator execution is concrete:
reading the binary to be tested, setting up unicorn, etc. Symbolic data first
appears inside elfulator when the emulated binary that was cross-compiled
by saferewrite calls read. I killed one angr run after 60 hours where
angr.options.unicorn reduced the time to 10 minutes.

I ran into some angr crashes with angr.options.unicorn, but did not
encounter any crashes after I took the following two steps in saferewrite:

12 Daniel J. Bernstein

first, disable the angr.options.UNICORN_SYM_REGS_SUPPORT component of
angr.options.unicorn; second, fully disable angr.options.unicorn after any
program step that reads file descriptor 0.

I also tried replacing python3 with pypy3. This reduced CPU time by
about 2x while increasing RAM usage by about 1.5x. However, I encountered
occasional hangs of pypy3. (Running gdb on pypy3 shows that the hangs were
in __futex_abstimed_wait_common64.) Currently saferewrite does not know
how to recognize the hang and restart the process.

A different possibility for gaining speed would be to run elfulator outside
angr, dumping core after precomputations, and then load the core dump into
angr for symbolic execution; or similarly dump the angr state at that moment.

The code inside unicorn to emulate any particular CPU instruction is being
symbolically executed every time the instruction appears in the instruction
stream for any of the programs being emulated. It would be faster to use
symbolic execution just once for each instruction to extract the semantics of
the instruction set, and then compile those semantics into a symbolic-execution
tool that no longer incurs any of the overhead of an extra layer of emulation.
See Section 4 for proof-of-concept experiments in this direction.

3.5 Results

Figure 3.5.1 presents commands to enable the sparc32 option in saferewrite:
using buildroot to install a sparc-linux-gcc cross-compiler; compiling a
patched dietlibc for sparc32; compiling a patched unicorn; and compiling
elfulator. After these steps, each ./analyze run automatically uses sparc32.

This option successfully analyzes all 248 cryptoint functions compiled for
sparc32, including 76 functions written in sparc32 assembly. For each function,
the saferewrite package includes reference code, the cryptoint rewrite, and
sometimes further rewrites (e.g., several rewrites of int32_sort2), on average
2.6 implementations per function.

On the aforementioned dual EPYC 7742, an analysis of one implementation
for sparc32 takes roughly 20 core-minutes instead of a few core-seconds, for a
total of under 300 core-hours for all of the implementations. One experiment
that I tried used 64 threads (half of the available 128 cores) and handled all of
the cryptoint functions in under 6 hours of real time. RAM usage varied but
was always below 300GB.

For some of the functions, there were problems compiling or unrolling ref
for sparc32. For example, int16_load/ref/load.c relies on lel6toh, which
dietlibc does not support. However, each cryptoint implementation was
successfully compiled for sparc32, unrolled via elfulator, and matched by SMT
solving against ref for amd64, either directly or via an intermediate equality with
ref for sparc32.

At that point I declared success: I released cryptoint-20250228, including
the sparc32 code, and saferewrite-20250228, including elfulator. I re-ran
(and re-released) saferewrite for the subsequent cryptoint-20250414 release,
and I plan to similarly test further cryptoint releases.

Symbolically executing emulators 13

VENV=saferewrite
BUILDROOT=buildroot-2024.11
DIETLIBC=dietlibc-0.35
export LIBRARY_PATH=$HOME/unicorn/build
export LD_LIBRARY_PATH=$HOME/unicorn/build
export CPATH=$HOME/unicorn/include
(cd
wget https://buildroot.org/downloads/$BUILDROOT.tar.xz
tar -xf $BUILDROOT.tar.xz
cd $BUILDROOT
echo BR2_sparc=y > configs/sparc_defconfig
make sparc_defconfig
time make
)
1n -s $HOME/$BUILDROOT/output/host/bin/* $HOME/.virtualenvs/$VENV/bin/
(cd
wget https://wuw.fefe.de/dietlibc/$DIETLIBC.tar.xz
tar -xf $DIETLIBC.tar.xz
cd $DIETLIBC
sed -i 's/glob /globl /' sparc/memcmp.S
time make -3j8
time make -j8 ARCH=sparc CROSS=sparc-linux- CFLAGS='-0s -static' all
)
1n -s $HOME/$DIETLIBC/bin-sparc/diet $HOME/.virtualenvs/$VENV/bin/
cp unicorn-patch $HOME
(cd
git clone https://github.com/unicorn-engine/unicorn.git
cd unicorn
git checkout 8a2846369c4070c948d8b1d3b84069ded4ab86blc
patch -pl < ../unicorn-patch
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
time make -3j8
)
1n -s $HOME/unicorn/build/libunicornx
gcc -0s -o elfulator elfulator.c setjmp.s -lunicorn

Fig.3.5.1. Commands for an unprivileged user to enable the sparc32 option in
saferewrite, after the pip install step in Figure 2.2.2.

4 Symbolic execution of emulation of an instruction

Recall from Section 3.4 the possibility of using symbolic execution of an emulator
to automatically extract the semantics of the CPU’s instruction set. This has a
variety of potential applications:

14 Daniel J. Bernstein

e Projects to verify the correctness of machine code such as [13], [37],
[44], and [23] rely on specifications of the semantics of the relevant
machine instructions. Official machine-readable instruction-set specifications
are already available for some architectures, but one can imagine handling
more architectures by automatically deriving specifications from emulators.

e [29], starting with the official machine-readable ARM instruction-set
specification, automatically generated test cases for gemu, finding some
bugs in gemu. One can imagine obtaining another specification of the same
instruction set via symbolic execution of gemu or unicorn, and then verifying
equivalence with the official instruction-set specification, as in [31, Section
IV]; this would, similarly to Section 2, address concerns about bugs slipping
past the test cases in [29].

e [25] and [26], starting with the official SPARC documentation, manually
built a machine-readable instruction-set specification, and then tested it
against a physical SPARC CPU. Again one can imagine verifying equivalence
against another specification obtained via symbolic execution, and further
verifying equivalence against a freely available SPARC HDL implementation.

e One can imagine using an instruction-set specification to automatically build
a full suite of binary-analysis tools for that instruction set, including lifters
as in [31] and [16], memory-error detectors such as valgrind, and the
symbolic-execution engine inside angr. Presumably this would be easier and
less error-prone than constructing similar tools by hand, and it would provide
a speedup mentioned in Section 3.4: symbolic execution for that instruction
set would no longer need to incur the overhead of symbolically executing an
emulator.

The necessary information about the instruction set is already stated in
computer-readable form inside the code for the emulator. The task at hand
is to extract that information into an easier-to-use form.

Conceptually, it is clear how to begin: pick an instruction; symbolically execute
the emulation of that instruction. This might sound like a straightforward special
case of symbolically executing the emulation of a complete program. However,
the inputs and outputs in Section 3 were short bit strings, whereas instruction
semantics are normally expressed in terms of a larger, more complicated machine
state with RAM, an instruction pointer, flags, general-purpose registers, and
usually more types of registers such as vector registers.

Section 4.1 reports proof-of-concept experiments focusing on arithmetic
instructions, using symbols for the contents of flags and general-purpose
registers. One experiment takes as input a single 32-bit sparc32 arithmetic
instruction, for example 0x82808003, and extracts semantics for this instruction
in under 20 minutes on one core of the machine mentioned earlier in this paper.
These semantics are in a simple language, suitable for equivalence checking
against other specifications of the same instruction. Note that 20 minutes are
probably slower than testing 232 inputs to an instruction but much faster than
testing 264 inputs.

Symbolically executing emulators 15

The closest work that I am aware of is [24], which symbolically executed the
gcc code generator to extract a mapping from gcc’s intermediate representation
to x86 instructions, and then inverted this mapping to guess semantics of the x86
instructions. [24, Section 4] argues that these guesses are sufficient for analyzing
binaries generated by compilers, despite usually leaving flags undefined. The
experiments in Section 4.1 instead produce formulas showing how unicorn
computes flags.

4.1 Experiments handling emulated register contents as variables

Running ./syminsn-sparc32 0x82808003 in the saferewrite directory, after
the commands in Figure 3.5.1, compiles an amd64 program that does the
following;:

e Initialize unicorn for sparc32.

e Read 31 int32 values (in little-endian form) from standard input, and use
those values to initialize unicorn’s emulated sparc32 registers g1, g2, etc.

e Read 4 bytes from standard input, and use the bottom bits of those bytes
to initialize unicorn’s emulated sparc32 flags cf, vf, zf, and nf.

e Read 4 more bytes from standard input, and run unicorn on those bytes
viewed as an instruction (in big-endian form).

e Write the resulting registers and flags to standard output, in the same format
as the input.

The syminsn-sparc32 script then runs this program under angr, providing
symbolic registers, symbolic flags, and a concrete instruction 0x82808003.

The output of this experiment is Figure 4.1.1, which gives formulas (in
angr’s Z3-like language—for example, ULE is an unsigned less-than-or-equal-to
operation) for various output registers such as out_g1 in terms of various input
registers. These are formulas for the effect of sparc32 instruction 0x82808003,
or at least for what unicorn thinks the effect is. Part of Figure 4.1.1 is setting
out_gl to __add__(in_g2,in_g3); inspecting other parts shows that, e.g.,
out_cf is the carry bit from that addition.

One can manually write down such formulas by studying the official SPARC
documentation [27, page 108] for the “ADDcc” instruction. This type of
manual work is what went into the gemu emulation code in the first place.
Instead of redoing that work, this experiment reuses that work, extracting the
self-contained Figure 4.1.1 as a description of the effect of this instruction. I tried
similar experiments with several other arithmetic instructions, and checked that
the results looked reasonable.

I also tried experiments handling multiple instructions at a time—for example,
handling an immediate or a register index as a symbol-—but encountered errors
from angr that I didn’t figure out how to work around. More work is also required
for handling load/store instructions. So I’ll leave it as an open question to cover
a full instruction set.

16

vl
v2
v3

v4 =

vb
v6
v7

v8 =

v9
v10

vil =
vi2 =

vi3
vid

vlb =

vié
vi7
v18

v19 =
v20 =

v21
v22

v23 =

v24
v25

v26 =
v27 =

v28

Daniel J. Bernstein

= in_g2 v29 = in_ib
. . out_ol = v9
= in_g3 v30 = in_i6 £ 09 10
out_o2 = v
= __add__(v1,v2) v31 = in_i7 out_03 - i1
in_gl v32 = ULE(v1,v3) -
. out_o4 = v12
= in_gb v33 = constant(1,0)
. out_ob = v13
= in_g6 v34 = constant(1,1) out o6 = vid
= in_g7 v35 = If(v32,v33,v34) -
. out_o7 = vi1b
in_o0 v36 = Extract(v2,31,31)
. out_10 = v16
= in ol v37 = Extract(v1,31,31)
. out_11 = v17
= in_o2 v38 = __xor__(v36,v37) out 12 = v18
in_o3 v39 = Extract(v3,31,31) -
. out_13 = v19
in_o4 v40 = __xor__(v39,v37)
. . out_14 = v20
= in_ob v4l = __invert__(v40)
. out_15 = v21
= in_o6 v42 = __or__(v38,v41)
. . out_16 = v22
in_o7 v43 = __invert__(v42) out 17 = v93
= in_10 v44 = constant (32,4294967295) -
. out_i0 = v24
= in_11 v45 = __mul__(v44,v2) i
] out_il = v25
= in_12 v46 = __eq__(v1,v45) out i2 = v26
in_13 v47 = If(v46,v34,v33) out-i3 = yo7
in_14 v48 = If(v46,v33,v39) -,
. out_i4 = v28
= in_15 out_gl = v3 .
. out_ib = v29
= in_16 out_g2 = vi .
] out_i6 = v30
in_17 out_g3 = v2 .
. out_i7 = v31
= in_i0 out_g4 = v4
. out_cf = v35
= in_i1l out_gb = vb
L. out_vf = v43
in_i2 out_g6 = v6
. out_zf = v47
in_i3 out_g7 = v7
. out_nf = v48
= in_i4 out_o0 = v8

Fig.4.1.1. Results of symbolic execution of unicorn emulating sparc32 instruction
0x82808003 on 31 symbolic general-purpose registers and 4 symbolic flags.

References

[1]

2]

— (no editor), Proceedings of the FREENIX track: 2005 USENIX annual
technical conference, April 10-15, 2005, Anaheim, CA, USA, USENIX, 2005.
See [7].

— (no editor), IEEE symposium on security and privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, IEEE Computer Society, 2016. ISBN 978-1-5090-0824-7.
URL: https://ieeexplore.ieee.org/xpl/conhome/7528194/proceeding. See
48].

[—](no editor), 28th annual network and distributed system security symposium,
NDSS 2021, virtually, February 21-25, 2021, The Internet Society, 2021. URL:
https://www.ndss-symposium.org/ndss2021/. See [41].

— (no editor), 2023 IEEE space computing conference (SCC), Pasadena, CA,
USA, 18-21 July 2023, IEEE Computer Society, 2023. DOI: 10.1109/SCC57168.
2023. See [33].

— (no editor), 2024 IEEE aerospace conference, Big Sky, MT, USA, 02-09
March 2024, IEEE Computer Society, 2024. DOI: 10.1109/AER058975.2024.
See [39].

https://ieeexplore.ieee.org/xpl/conhome/7528194/proceeding
https://www.ndss-symposium.org/ndss2021/
https://doi.org/10.1109/SCC57168.2023
https://doi.org/10.1109/SCC57168.2023
https://doi.org/10.1109/AERO58975.2024

[20]

[21]

Symbolically executing emulators 17

— (no editor), 81st IEEE international conference on electronics, circuits and
systems (ICECS), 18-20 Nov. 2024, IEEE Computer Society, 2024. DOI: 10.
1109/ICECS61496.2024. See [49].

Fabrice Bellard, QEMU, a fast and portable dynamic translator, in USENIX ATC
FREENIX 2005 [1] (2005), 41-46. URL: https://www.usenix.org/events/
usenix05/tech/freenix/bellard.html. Citations in this document: §1.2.
Daniel J. Bernstein, Fast verified post-quantum software (2021). URL: https://
cr.yp.to/talks/2021.09.03/slides-djb-20210903-saferewrite-4x3.pdf.
Citations in this document: §2.

Daniel J. Bernstein, Papers with computer-checked proofs (2024). URL: https://
cr.yp.to/papers.html#pwccp. Citations in this document: §2.1.

Daniel J. Bernstein, The cryptoint library (2025). URL: https://cr.yp.to/
papers.html#cryptoint. Citations in this document: §2, §2.2, §2.2, §2.3, §2.3.
Tim Brecht, Carey Williamson (editors), Proceedings of the 27th ACM
symposium on operating systems principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, ACM, 2019. ISBN 978-1-4503-6873-5. URL:
https://dl.acm.org/citation.cfm?id=3341301. See [37].

Srdjan Capkun, Franziska Roesner (editors), 29th USENIX security
symposium, USENIX security 2020, August 12-14, 2020, USENIX Association,
2020. ISBN 978-1-939133-17-5. URL: https://www.usenix.org/conference/
usenixsecurity20. See [40].

Mario Carneiro, Specifying verified x86 software from scratch (2019). URL:
https://arxiv.org/abs/1907.01283. Citations in this document: §4.

Felix Cloutier, 286 and amd64 instruction reference (2024). URL: https://www.
felixcloutier.com/x86/. Citations in this document: §1.1.

AAC Clyde Space, SIRIUS-OBC-LEONSFT (2025), accessed 1 March
2025. URL: https://www.aac-clyde.space/what-we-do/space-products-
components/command-data-handling/smallsat-sirius-obc. Citations in this
document: §1.2.

Nicholas Coughlin, Alistair Michael, Kait Lam, Lift-offline: instruction lifter
generators, in SAS 2024 [21] (2024), 86-119. DOI: 10.1007/978-3-031-74776-
2_4. Citations in this document: §4.

Jos Craaijo, Freek Verbeek, Binoy Ravindran, libLISA: instruction discovery
and analysis on x86-64, Proc. ACM Program. Lang. 8 (2024), 333-361. DOI:
10.1145/3689723. Citations in this document: §1.1.

Babak Falsafi, Michael Ferdman, Shan Lu, Thomas F. Wenisch (editors),
ASPLOS ’22: 27th ACM international conference on architectural support
for programming languages and operating systems, Lausanne, Switzerland, 28
February 2022—/ March 2022, ACM, 2022. ISBN 978-1-4503-9205-1. DOI: 10.
1145/3503222. See [29].

John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, Anna Philippou
(editors), FFM 2016: formal methods—21st international symposium, Limassol,
Cyprus, November 9—11, 2016, proceedings, 9995, 2016. ISBN 978-3-319-48988-9.
DOI: 10.1007/978-3-319-48989-6. See [25].

Jiri Gaisler, LEON-1 processor—first evaluation results, in ESCCON 2000
[46] (2000). URL: https://adsabs.harvard.edu/pdf/2000ESASP.439. .183G.
Citations in this document: §1.2.

Roberto Giacobazzi, Alessandra Gorla (editors), Static analysis—31st
international symposium, SAS 2024, Pasadena, CA, USA, October 20-22, 2024,
proceedings, 14995, Springer, 2025. ISBN 978-3-031-74775-5. DOI: 10.1007/978-
3-031-74776-2. See [16].

https://doi.org/10.1109/ICECS61496.2024
https://doi.org/10.1109/ICECS61496.2024
https://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://cr.yp.to/talks/2021.09.03/slides-djb-20210903-saferewrite-4x3.pdf
https://cr.yp.to/talks/2021.09.03/slides-djb-20210903-saferewrite-4x3.pdf
https://cr.yp.to/papers.html#pwccp
https://cr.yp.to/papers.html#pwccp
https://cr.yp.to/papers.html#cryptoint
https://cr.yp.to/papers.html#cryptoint
https://dl.acm.org/citation.cfm?id=3341301
https://www.usenix.org/conference/usenixsecurity20
https://www.usenix.org/conference/usenixsecurity20
https://arxiv.org/abs/1907.01283
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/
https://www.aac-clyde.space/what-we-do/space-products-components/command-data-handling/smallsat-sirius-obc
https://www.aac-clyde.space/what-we-do/space-products-components/command-data-handling/smallsat-sirius-obc
https://doi.org/10.1007/978-3-031-74776-2protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 4
https://doi.org/10.1007/978-3-031-74776-2protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 4
https://doi.org/10.1145/3689723
https://doi.org/10.1145/3503222
https://doi.org/10.1145/3503222
https://doi.org/10.1007/978-3-319-48989-6
https://adsabs.harvard.edu/pdf/2000ESASP.439..183G
https://doi.org/10.1007/978-3-031-74776-2
https://doi.org/10.1007/978-3-031-74776-2

18

[22]

[24]

[25]

[26]

Daniel J. Bernstein

Patrice Godefroid, Nils Klarlund, Koushik Sen, DART: directed automated
random testing, in [45] (2005), 213-223. DOI: 10.1145/1065010.1065036.
Citations in this document: §1.

John Harrison, The 25519 function for curve25519 (2023). URL: https://
github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_
x25519.m1. Citations in this document: §4.

Niranjan Hasabnis, R. Sekar, FEztracting instruction semantics via symbolic
execution of code generators, in SIGSOFT FSE 2016 [51] (2016), 301-313. DOI:
10.1145/2950290.2950335. Citations in this document: §4, §4.

Zhe Hou, David Sanan, Alwen Tiu, Yang Liu, Koh Chuen Hoa, An executable
formalisation of the SPARCWS instruction set architecture: A case study for the
LEONS processor, in FM 2016 [19] (2016), 388-405. DOI: 10.1007/978-3-319-
48989-6_24. Citations in this document: §4.

Zhé Héu, David Sanan, Alwen Tiu, Yang Liu, Koh Chuen Hoa, Jin Song Dong,
An Isabelle/HOL formalisation of the SPARC instruction set architecture
and the TSO memory model, Journal of Automated Reasoning 65 (2021),
569-598. URL: https://research-repository.griffith.edu.au/server/
api/core/bitstreams/351fbab6-a37a-45f3-90fc-1380b27064e5/content.
DOI: 10.1007/s10817-020-09579-4. Citations in this document: §4.

SPARC International, The SPARC architecture manual: version 8, 1992. URL:
https://web.archive.org/web/20050204100221/https://www.sparc.org/
standards/V8.pdf. Citations in this document: §4.1.

Ranjit Jhala, Isil Dillig (editors), PLDI ’22: 48rd ACM SIGPLAN international
conference on programming language design and implementation, San Diego,
CA, USA, June 13-17, 2022, ACM, 2022. ISBN 978-1-4503-9265-5. DOI: 10.
1145/3519939. See [44].

Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu
Luo, Kui Ren, EXAMINER: automatically locating inconsistent instructions
between real devices and CPU emulators for ARM, in ASPLOS 2022 [18] (2022),
846-858. URL: https://arxiv.org/pdf/2105.14273. DOI: 10.1145/3503222.
3507736. Citations in this document: §4, §4.

Nicholas J. Kain, Port musl to x86-64. One giant commit! (2011). URL:
https://web.archive.org/web/20200815021735/https://git.musl-1libc.
org/cgit/musl/commit/?7id=1e12632591ab98a6ea3af8680716c28282552981.
Citations in this document: §3.2.

Kait Lam, Nicholas Coughlin, Lift-off: trustworthy ARMv8 semantics from
formal specifications, in FMCAD 2023 [36] (2023), 274-283. URL: https://
repositum.tuwien.at/bitstream/20.500.12708/188857/1/Lam-2023-Lift-
0f£%20Trustworthy’%20ARMv8%20semantics¥%20from),20formal’,20specifications-
vor.pdf. DOI: 10.34727/2023/isbn.978-3-85448-060-0_36. Citations in this
document: §4, §4.

Felix von Leitner, diet libc (2001). URL: https://www.fefe.de/dietlibc/talk.
pdf. Citations in this document: §3.3.

Daniel Liidtke, Thomas Firchau, Carlos Gonzalez Cortes, Andreas Lund, Ayush
Mani Nepal, Mahmoud M. Elbarrawy, Zain Haj Hammadeh, Jan-Gerd Me8,
Patrick Kenny, Fiona Bromer, Michael Mirzaagha, George Saleip, Hannah
Kirstein, Christoph Kirchhefer, Andreas Gerndt, ScOSA on the way to orbit:
reconfigurable high-performance computing for spacecraft, in SCC 2023 [4] (2023),
34-44. DOI: 10.1109/SCC57168.2023.00015. Citations in this document: §1.2.
Tanya Mineeva, Add support for AVX-512 instructions (2017). URL: https://
bugs.kde.org/show_bug.cgi?id=383010. Citations in this document: §2.3.

https://doi.org/10.1145/1065010.1065036
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://doi.org/10.1145/2950290.2950335
https://doi.org/10.1007/978-3-319-48989-6protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 24
https://doi.org/10.1007/978-3-319-48989-6protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 24
https://research-repository.griffith.edu.au/server/api/core/bitstreams/351fbab6-a37a-45f3-90fc-1380b27064e5/content
https://research-repository.griffith.edu.au/server/api/core/bitstreams/351fbab6-a37a-45f3-90fc-1380b27064e5/content
https://doi.org/10.1007/s10817-020-09579-4
https://web.archive.org/web/20050204100221/https://www.sparc.org/standards/V8.pdf
https://web.archive.org/web/20050204100221/https://www.sparc.org/standards/V8.pdf
https://doi.org/10.1145/3519939
https://doi.org/10.1145/3519939
https://arxiv.org/pdf/2105.14273
https://doi.org/10.1145/3503222.3507736
https://doi.org/10.1145/3503222.3507736
https://web.archive.org/web/20200815021735/https://git.musl-libc.org/cgit/musl/commit/?id=1e12632591ab98a6ea3af8680716c28282552981
https://web.archive.org/web/20200815021735/https://git.musl-libc.org/cgit/musl/commit/?id=1e12632591ab98a6ea3af8680716c28282552981
https://repositum.tuwien.at/bitstream/20.500.12708/188857/1/Lam-2023-Lift-off%20Trustworthy%20ARMv8%20semantics%20from%20formal%20specifications-vor.pdf
https://repositum.tuwien.at/bitstream/20.500.12708/188857/1/Lam-2023-Lift-off%20Trustworthy%20ARMv8%20semantics%20from%20formal%20specifications-vor.pdf
https://repositum.tuwien.at/bitstream/20.500.12708/188857/1/Lam-2023-Lift-off%20Trustworthy%20ARMv8%20semantics%20from%20formal%20specifications-vor.pdf
https://repositum.tuwien.at/bitstream/20.500.12708/188857/1/Lam-2023-Lift-off%20Trustworthy%20ARMv8%20semantics%20from%20formal%20specifications-vor.pdf
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 36
https://www.fefe.de/dietlibc/talk.pdf
https://www.fefe.de/dietlibc/talk.pdf
https://doi.org/10.1109/SCC57168.2023.00015
https://bugs.kde.org/show_bug.cgi?id=383010
https://bugs.kde.org/show_bug.cgi?id=383010

[40]

[41]

[42]

[46]

[47]

Symbolically executing emulators 19

Leonardo Mendonga de Moura, Nikolaj S. Bjgrner, Z3: an efficient SMT solver,
in TACAS 2008 [42] (2008), 337-340. DOI: 10.1007/978-3-540-78800-3_24.
Citations in this document: §2.2.

Alexander Nadel, Kristin Yvonne Rozier (editors), Formal methods in
computer-aided design, FMCAD 2023, Ames, 1A, USA, October 24-27, 2023,
IEEE, 2023. ISBN 978-3-85448-060-0. URL: https://ieeexplore.ieee.org/
xpl/conhome/10329310/proceeding. See [31].

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, Xi
Wang, Scaling symbolic evaluation for automated verification of systems code with
Serval, in SOSP 2019 [11] (2019), 225-242. DOI: 10.1145/3341301.3359641.
Citations in this document: §4.

Anh Quynh Nguyen, Hoang Vu Dang, Unicorn: next generation CPU emulator
framework (2015). URL: https://www.blackhat.com/docs/us-15/materials/
us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf.
Citations in this document: §1.2, §3.2.

Noah Perryman, Nicholas Franconi, Gary Crum, Christopher Wilson, Alan D.
George, SpaceCube GHOST: a resilient processor for low-power, high-reliability
space computing, in [5] (2024), 1-11. DOI: 10.1109/AER058975.2024.10521244.
Citations in this document: §1.2.

Sebastian Poeplau, Aurélien Francillon, Symbolic ezxecution with SymCC:
don’t interpret, compile!, in [12] (2020), 181-198. URL: https://www.usenix.
org/conference/usenixsecurity20/presentation/poeplau. Citations in this
document: §1.

Sebastian Poeplau, Aurélien Francillon, SymQEMU: compilation-based symbolic
execution for binaries, in NDSS 2021 [3] (2021). URL: https://www.
ndss-symposium.org/ndss-paper/symgemu-compilation-based-symbolic-
execution-for-binaries/. Citations in this document: §1.

C. R. Ramakrishnan, Jakob Rehof (editors), Tools and algorithms for the
construction and analysis of systems, 14th international conference, TACAS
2008, held as part of the joint Furopean conferences on theory and practice
of software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008,
proceedings, 4963, Springer, 2008. ISBN 978-3-540-78799-0. DOI: 10.1007/978-
3-540-78800-3. See [35].

Markku Saarinen, ROUND 8 OFFICIAL COMMENT: FrodoKEM - CCA
Bug (2020), email dated 10 Dec 2020 07:11:18 -0800. URL: https://groups.
google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5SME/m/EMFYZORNCAAJ.
Citations in this document: §2.2.

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean
Pichon-Pharabod, Derek Dreyer, Deepak Garg, Peter Sewell, Islaris: verification
of machine code against authoritative ISA semantics, in PLDI 2022 [28] (2022),
825-840. DOI: 10.1145/3519939.3523434. Citations in this document: §4.
Vivek Sarkar, Mary W. Hall (editors), Proceedings of the ACM SIGPLAN
2005 conference on programming language design and implementation, Chicago,
IL, USA, June 12-15, 2005, ACM, 2005. ISBN 1-59593-056-6. DOI: 10.1145/
1065010. See [22].

B. Schiirmann (editor), Proceedings of the FEuropean Space Components
Conferences, ESCCON 2000, 21-23 March 2000, ESTEC, Noordwijk, The
Netherlands, ESA-SP, 439, European Space Agency, 2000. See [20].

Koushik Sen, Darko Marinov, Gul Agha, CUTE: a concolic unit testing engine
for C, in [50] (2005), 263-272. DOI: 10.1145/1081706.1081750. Citations in
this document: §1.

https://doi.org/10.1007/978-3-540-78800-3protect unhbox voidb@x protect penalty @M hskip z@skip TU	extunderscore discretionary {-}{}{}protect penalty @M hskip z@skip 24
https://ieeexplore.ieee.org/xpl/conhome/10329310/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10329310/proceeding
https://doi.org/10.1145/3341301.3359641
https://www.blackhat.com/docs/us-15/materials/us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Nguyen-Unicorn-Next-Generation-CPU-Emulator-Framework.pdf
https://doi.org/10.1109/AERO58975.2024.10521244
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-540-78800-3
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/kSUKzDNc5ME/m/EMFYz9RNCAAJ
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/1065010
https://doi.org/10.1145/1065010
https://doi.org/10.1145/1081706.1081750

[51]

Daniel J. Bernstein

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser,
Christopher Kriigel, Giovanni Vigna, SOK: (state of) the art of war: offensive
techniques in binary analysis, in [2] (2016), 138-157. DOI: 10.1109/SP.2016.17.
Citations in this document: §1, §2.

Eleonora Vacca, Corrado De Sio, Sarah Azimi, Luca Sterpone, On assessing
the robustness of RISC-V soft cores for space systems by mission-tailored SEU
analysis, in [6] (2024), 1-4. Citations in this document: §1.2.

Michel Wermelinger, Harald C. Gall (editors), Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on foundations of software engineering, 2005, Lisbon,
Portugal, September 5-9, 2005, ACM, 2005. ISBN 1-59593-014-0. DOI: 10.1145/
1081706. See [47].

Thomas Zimmermann, Jane Cleland-Huang, Zhendong Su (editors), Proceedings
of the 24th ACM SIGSOFT international symposium on foundations of software
engineering, FSE 2016, Seattle, WA, USA, November 153-18, 2016, ACM, 2016.
ISBN 978-1-4503-4218-6. DOI: 10.1145/2950290. See [24].

https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/1081706
https://doi.org/10.1145/1081706
https://doi.org/10.1145/2950290

	Symbolically executing emulators
	1 Introduction
	1.1 Extending instruction sets
	1.2 Contributions of this paper

	2 Equivalence verification via symbolic execution
	2.1 The danger of rewriting code
	2.2 Equivalence testing with saferewrite
	Figure 2.2.1. Packages used by saferewrite.
	Figure 2.2.2. Running saferewrite.
	2.3 The case of SPARC

	3 Symbolic execution of emulation of a program
	3.1 The platform for a binary
	3.2 Using unicorn
	3.3 System calls
	3.4 Symbolic-execution speed
	3.5 Results
	Figure 3.5.1. Enabling the sparc32 option in saferewrite.

	4 Symbolic execution of emulation of an instruction
	4.1 Experiments handling emulated register contents as variables
	Figure 4.1.1. Partial semantics of instruction 0x82808003.

	References

