
HOW TO FIND SMALL FACTORS OF INTEGERS

DANIEL J. BERNSTEIN

Abstract. This paper presents an algorithm that, given a set of positive

integers, finds all the prime factors ≤ y of each integer. If there are y/(lg y)O(1)

integers, each with (lg y)O(1) bits, then the algorithm takes time (lg y)O(1) per

integer, using fast multiplication of numbers with y(lg y)O(1) bits. This paper
also presents a comprehensive survey of previous methods and a survey of

applications. The new algorithm is useful in congruence-combination methods

to compute large factors, discrete logarithms, class groups, etc.; in particular,
it indirectly speeds up the number field sieve.

1. Introduction

Fix an integer y ≥ 2. A prime number is small if it is at most y.
Consider a positive integer n. What are all the small prime divisors of n? Is n

smooth, i.e., are all its prime divisors small?
(Readers who wish to experiment with examples may focus on the following

special case: y is 109, while n ranges up to 1060. More generally, in the applications
discussed in Section 3, log n log log n typically ranges up to roughly 2(log y)2.)

This paper presents an algorithm that answers these questions for many integers
n simultaneously. If there are y/(lg y)O(1) integers, each with (lg y)O(1) bits, then
the algorithm takes total time only y(lg y)O(1). Here lg = log2. The time per
integer is (lg y)O(1), just as if there were a polynomial-time algorithm to handle a
single n.

The algorithm is presented in a bottom-up fashion in Sections 4, 5, 6, and 7.
The reader who wishes to understand the central idea as quickly as possible may
skip to Algorithm 7.1.

The algorithm manipulates integers with as many as y(lg y)O(1) bits. The first
step—see Algorithm 7.1—is to multiply together all the integers n that we want to
factor! To achieve the time bound (lg y)O(1) stated above, one needs to multiply
integers with b bits in time b(lg b)O(1) for various b.

The fact that one can quickly find all small prime divisors of many integers is
a special case of the result proved in my recent paper [21]: given any finite subset
S of any free commutative monoid, one can very quickly factor S into coprimes, if
there are fast algorithms for multiplication, exact division, and gcd. The algorithm
in this paper is simply a streamlined version of the algorithm in the last section of
[21].

Section 2 of this paper presents a comprehensive survey of previous smoothness-
testing methods. Section 3 presents a survey of applications. The reader can find
older surveys of factorization in the books [37], [99], [159], [97], and [63].

Date: 20020923.
2020 Mathematics Subject Classification. Primary 11Y05; Secondary 11Y16.

The author was supported by the National Science Foundation under grant DMS–9970409.
1



2 DANIEL J. BERNSTEIN

Heavily tuned implementation results for the new algorithm, including various
improvements in subroutines as described in [23] and [24], will be presented in a
future paper.

Acknowledgments. Thanks to Carl Pomerance for drawing my attention to the
unsieveable integers in [55]. Thanks to Christine Swart for her comments. Thanks
to two anonymous referees for their comments.

2. Previous algorithms

The most obvious method to find small prime divisors of n is trial division:
divide n by 2, 3, 5, etc. This takes time y1+o(1) if n has yo(1) bits.

The early-abort method in [142] and [154] is a modification to trial division. The
idea is to check, after each division, how many factors of n have been discovered,
and give up if the unfactored part of n is uncomfortably large. Pomerance showed
in [142] that, for uniform random n and for a particular definition of “uncomfort-
ably large,” early-abort trial division takes average time only yo(1), while it has a
y−1/2+o(1) chance of recognizing n if n is smooth. In the applications discussed in
Section 3, the speedup outweighs the loss of effectiveness.

Pollard’s fast-factorial method in [138] achieves the same result as trial division
in time only y1/2+o(1). The o(1) can be reduced by Schönhage’s technique in [164].
Pomerance showed in [142] that early-abort fast factorial takes average time only
yo(1), while it has a y−1/4+o(1) chance of recognizing n if n is smooth.

Pollard’s ρ method in [139] seems to achieve the same result as trial division in
time y1/2+o(1), with the o(1) not quite as large as in the fast-factorial method. See
[32] and [36] for improvements, and [14] for analysis of a randomized version of the
method.

Pollard’s p − 1 method in [138] finds certain primes p quickly: in particular,
it seems to find at least one out of every z primes in time z1+o(1) if n has zo(1)

bits, where 2(log z)2 = log y log log y, The same comment applies to Williams’s
p + 1 method in [179] and Lenstra’s elliptic-curve method in [110]. A uniform
random choice of z1+o(1) elliptic curves seems to find every prime ≤ y in total
time z2+o(1) = exp

√
(2 + o(1)) log y log log y with negligible error probability. For

further discussion see [33], [121], [90], [34], [122], [10], [169], [153], [30], and [35].
The other Φk(p) methods in [15], and the hyperelliptic-curve method in [111],

seem slower than the p− 1 method. The hyperelliptic-curve method has the virtue
of provably finding every prime ≤ y in subexponential time with negligible error
probability.

Impact of the new algorithm. The algorithm introduced in this paper is faster
than any of the above methods, when y is reasonably large and when there are many
n’s to test for smoothness. Furthermore, this algorithm is easy to prove correct,
and has no chance of error.

The previous methods remain useful in two situations. First, if there are only
a few n’s to test for smoothness, the new algorithm is not much faster than trial
division. Second, in the context of special-purpose hardware, low-memory methods
such as the early-abort elliptic-curve method are more cost-effective than high-
memory methods such as the new algorithm; see [20] for further discussion.



HOW TO FIND SMALL FACTORS OF INTEGERS 3

Sieving. In some applications, the integers n are successive values of an integer
polynomial: f(0), f(1), f(2), . . .. Sieving is a well-known method of factoring many
such n’s simultaneously: build an array of, say, A successive values of n; for each
prime p, mark p at each position in the array where n is divisible by p. The set of
these positions is a union of arithmetic progressions mod p.

One can use an early abort with sieving. Sieve all primes p up through, say, B;
throw away the n’s whose unfactored part is uncomfortably large; then apply some
other method to the n’s that remain. The sieving time per number is B1+o(1)/A+
r(A)(log logB+O(1)), where r(A) is the random-access time for an array of length
A, i.e., the time needed to make a single mark. On typical computers, r(A) increases
in sudden steps: it jumps by an order of magnitude as A increases past “level-1
cache size,” then another factor of 2 or 3 as A increases past “level-2 cache size,”
then several orders of magnitude as A increases past “DRAM size.”

Impact of the new algorithm upon sieving. The speed of sieving is indirectly
affected by the speed of other factorization methods. A faster method of handling
the n’s that remain after sieving means that one can afford to look at more n’s;
so sieving can do a less precise job of identifying the interesting n’s; so one can
reduce B. If the overhead B1+o(1)/A is large then reducing B improves sieve time;
otherwise one can reduce A, hopefully enough to reduce r(A), which again improves
sieve time.

The function-field case. Many more methods are available in the function-field
case. It is already well known that univariate polynomials over finite fields can
be factored into irreducible polynomials quickly. The Kaltofen-Shoup polynomial-
factorization method in [94] could be faster or slower than the algorithm described
here; a careful comparison would account for the sizes of n and y and for many
implementation details. There are several ways to merge the ideas into a single
algorithm; this will be discussed in a future paper.

3. Applications

Consider the problem of finding all factors (not just small factors!) of a positive
integer D.

The continued-fraction factorization method. The Lehmer-Powers-Brillhart-
Morrison continued-fraction method produces a set of integers n, each n having a
known square root mod D, and finds nonempty subsets with square product. To
find such subsets, it looks for smooth n’s, factors each n as a product of powers
of −1, 2, 3, 5, . . ., and then finds linear relations among the exponent vectors mod
2. See [103], [126], [182], [142], [131], [154], [170], [183], [180], [174], [148], and
[149]. See also [151], [101], [178], [57], [56], [109], [124], [69], and [16] for relevant
linear-algebra algorithms.

The integers n in the continued-fraction method are bounded in absolute value
by x for some x ∈ D1/2+o(1); one chooses y with (log y)2 ∈ (1/2+o(1)) log x log log x.
It seems that the first y2+o(1) values of n always suffice to produce y1+o(1) smooth
integers, many square products, and the complete factorization of D. The total
time is y2+o(1) = exp

√
(1 + o(1)) logD log logD if one can recognize the smooth

n’s in time yo(1) per number. The algorithm in this paper is a very fast way to
recognize smooth n’s.



4 DANIEL J. BERNSTEIN

Rigorous factoring bounds. The methods of [70], [144], and [173] seem slower
than the continued-fraction method, but they have the virtue of provably finding the
complete factorization of every D in subexponential average time. The Schnorr-
Seysen-Lenstra-Lenstra-Pomerance class-group method developed in [163], [166],
[104], and [112] is more complicated but provably factors every composite D in
average time y2+o(1) with y as above.

Each of these methods has the same outline as the continued-fraction method.
It is crucial to provably recognize smooth n’s quickly. One can do this with the
elliptic-curve method or the hyperelliptic-curve method, but the algorithm in this
paper is faster, simpler, and much easier to prove.

The linear sieve and its descendants. Schroeppel in 1977 introduced the idea of
generating n’s as successive values of various polynomials so that many n’s could be
factored simultaneously by sieving. Pomerance’s quadratic sieve is a simplification
of Schroeppel’s linear sieve. Each method seems to always succeed in time y2+o(1)

with y as above. See [142], [81], [170], [64], [143], [67], [65], [167], [47], [152], [66],
[157], [108], [13], [146], [158], [168], [135], [68], [9], [11], [28], and [53].

As explained in Section 2, the algorithm in this paper can be used to indirectly
speed up sieving. Furthermore, a reduction in the sieve array size allows a reduction
in the size of n; see, e.g., [53].

Pollard’s number-field sieve, as generalized by Buhler, Lenstra, and Pomerance,
seems to always succeed in time exp((64/9 + o(1))1/3(logD)1/3(log logD)2/3). See
[140], [106], [107], [3], [45], [141], [61], [25], [42], [147], [123], [84], [19], [71], [150],
[74], [75], [76], [78], [62], [77], [125], [128], [132], and [129]. The algorithm in this
paper can again be used to indirectly speed up sieving and reduce the size of n.

Coppersmith’s number-field-sieve variant in [55] seems asymptotically faster,
with 64/9 reduced slightly. Coppersmith’s method factors many numbers with
a sieve, and then factors not quite as many unsieveable numbers. The algorithm
in this paper directly speeds up the handling of the unsieveable numbers; it may
make Coppersmith’s variant worthwhile for current sizes of D.

Other applications. The ideas behind these integer-factorization methods are
also used in the index-calculus method of computing discrete logarithms in finite
fields. See [177], [119], [2], [91], [27], [73], [17], [60], [102], [5], and [165] for the
basic index-calculus method; [160], [85], [161], [134], [162], [175], and [176] for an
index-calculus application of the number-field sieve; and [54], [59], [133], [117], and
[7] for a function-field analogue.

The same ideas are also used to compute class groups and regulators of number
fields. See [89], [39], [40], [92], and [41].

4. Multiplication

One can compute xz, given nonnegative integers x and z, in time at most
b(lg b)O(1) if b is a positive integer with xz < 2b. See, e.g., [22].

Starting from this bound b(lg b)O(1), one could prove similar bounds for the
amount of time spent on multiplications in Algorithms 5.1, 5.3, 6.1, 6.3, and 7.1.

However, it is easier, more illuminating, and more precise to start from a general
bound bµ(b). Here µ is any nondecreasing positive function.

Time spent on multiplications is called µ-time. The reader may check that
µ-time dominates the run time of the algorithms.



HOW TO FIND SMALL FACTORS OF INTEGERS 5

5. Division

Algorithms 5.1 and 5.3 are standard examples of Hensel’s method, i.e., 2-adic
applications of Newton’s method.

Algorithm 5.1. Given a positive integer b and an odd positive integer u, to print
a nonnegative integer v < 2b such that 1 + uv ≡ 0 (mod 2b):

1. If b = 1: Print 1. Stop.
2. Set c← db/2e.
3. Find v0 < 2c such that 1 + uv0 ≡ 0 (mod 2c) by Algorithm 5.1.
4. Set u0 ← u mod 2c and u1 ← bu/2cc mod 2c. (Now u ≡ u0 + 2cu1

(mod 22c); and 1 + u0v0 ≡ 0 (mod 2c).)
5. Set z ← ((1 + u0v0)/2c + u1v0) mod 2c. (Now 1 + uv0 ≡ 2cz (mod 22c).)
6. Set v ← v0+2czv0 mod 2b. (Now 1+uv ≡ 1+uv0+2czuv0 ≡ 2cz+2czuv0 ≡

2cz2cz ≡ 0 (mod 2b).)
7. Print v.

Theorem 5.2. Algorithm 5.1 uses µ-time at most 6(b+ dlg be − 1)µ(b+ 1).

Proof. For b = 1: Algorithm 5.1 uses no µ-time, and b+ dlg be − 1 = 0.
For b ≥ 2: By induction, step 3 uses µ-time at most 6(c+ dlg ce − 1)µ(c+ 1) ≤

6((b+ 1)/2 + dlg be − 2)µ(b+ 1). Steps 5 and 6 use µ-time at most 3(b+ 1)µ(b+ 1)
to compute the products u0v0, u1v0, and zv0, each of which is below 22c ≤ 2b+1.
The total µ-time is at most 6µ(b + 1) times (b + 1)/2 + (b + 1)/2 + dlg be − 2 =
b+ dlg be − 1. �

Algorithm 5.3. Given positive integers b and c, an odd positive integer u < 2c,
and a nonnegative integer x < 2c+b, to print a nonnegative integer r < 2c+1 such
that 2br ≡ x (mod u):

1. Find v < 2b such that 1 + uv ≡ 0 (mod 2b) by Algorithm 5.1.
2. Set x0 ← x mod 2b and x1 ←

⌊
x/2b

⌋
. (Now x = 2bx1 + x0.)

3. Set q ← vx0 mod 2b. (Now x0 + uq ≡ x0 + uvx0 ≡ 0 (mod 2b).)
4. Set r ← x1 + (x0 + uq)/2b. (Now 2br = x+ uq ≡ x (mod u); and r < 2c+1

since x+ uq < 2c+b + 2c2b = 2c+b+1.)
5. Print r.

Theorem 5.4. Algorithm 5.3 uses µ-time at most 12(b+ c)µ(2(b+ c)).

Proof. Step 1 uses µ-time at most 6(b+dlg be−1)µ(b+1) ≤ 9bµ(b+1) by Theorem
5.2. Step 3 uses µ-time at most 2bµ(2b) to compute vx0. Step 4 uses µ-time
at most (b + c)µ(b + c) to compute uq. The total is at most µ(2b + 2c) times
9b+ 2b+ b+ c < 12b+ 12c. Note that these bounds are rather crude. �

Notes. Algorithms 5.1 and 5.3 have some redundancy that can be removed; see
[23]. The techniques of [23] also apply to Algorithms 6.3 and 7.1.

When b is larger than c, one can save time in Algorithm 5.3 by handling x in
chunks. See [97, Exercise 4.3.3–13] and [97, Algorithm 4.3.1–D].

One could use real division instead of 2-adic division in the subsequent sections,
but 2-adic division is easier to implement.

6. Multipoint evaluation

Algorithm 6.3 is a standard example of the Borodin-Moenck method in [29],
which reduces a large integer modulo many small integers in essentially linear time.



6 DANIEL J. BERNSTEIN

Let m be a positive integer. Let P = (p1, p2, . . . , pm) be a sequence of positive
integers. The product tree of P is a binary tree of positive integers defined as
follows. The root of the tree is p1p2 · · · pm. If m = 1, the root has no children. If
m ≥ 2, the root has the product tree of p1, p2, . . . , pbm/2c as its left subtree, and the
product tree of pbm/2c+1, . . . , pm as its right subtree. Observe that each non-leaf
vertex in the product tree is the product of its two children.

For example, here is the product tree of (2, 3, 5, 7, 11, 13, 17):

510510

30

33

17017

kk

2

??

15

gg

77

77

221

gg

3

??

5

__

7

??

11

__

13

??

17

__

To reduce an integer x modulo 2, 3, 5, 7, 11, 13, 17, Algorithm 6.3 first reduces x
modulo 510510, then reduces the result modulo 30 and 17017, etc.

Define bits(p1, . . . , pm) = dlg(p1 + 1)e + · · · + dlg(pm + 1)e. The root of the
product tree of P is smaller than 2bitsP .

Algorithm 6.1. Given positive integers m, p1, p2, . . . , pm, to print the product tree
of (p1, p2, . . . , pm):

1. If m = 1: Print p1. Stop.
2. Print the product tree T of (p1, p2, . . . , pbm/2c) by Algorithm 6.1.
3. Print the product tree U of (pbm/2c+1, . . . , pm) by Algorithm 6.1.
4. Print the product of the roots of T and U .

Theorem 6.2. If b = bits(p1, p2, . . . , pm), m ≤ 2k, and k ≥ 0 then Algorithm 6.1
uses µ-time at most kbµ(b).

Proof. If m ≤ 1 then Algorithm 6.1 uses no µ-time. So assume m ≥ 2; then k ≥ 1.
By induction on k, step 2 uses µ-time at most (k − 1)a times µ(a) ≤ µ(b), where
a = bits(p1, p2, . . . , pbm/2c); and step 3 uses µ-time at most (k − 1)(b − a) times
µ(b−a) ≤ µ(b). Step 4 uses µ-time at most bµ(b). The total µ-time is at most µ(b)
times (k − 1)a+ (k − 1)(b− a) + b = kb. �

Algorithm 6.3. Given a nonnegative integer x, and given the product tree T of a
nonempty sequence P of odd positive integers, to print {p ∈ P : x mod p = 0}:

1. Set u← the root of T .
2. Set c← dlg(u+ 1)e and d← dlg(x+ 1)e. (Now 1 ≤ 2c−1 ≤ u < 2c.)
3. If d > c + 1: Apply Algorithm 5.3 to (d − c, c, u, x) to find a nonnegative

integer r < 2c+1 such that 2d−cr ≡ x (mod u).
4. If d ≤ c+ 1: Set r ← x.
5. (Now 0 ≤ r < 4u, and 2kr ≡ x (mod u) for some k.) If the root of T has

no children: Print u if r ∈ {0, u, u+ u, u+ u+ u}. Stop.
6. Apply Algorithm 6.3 to r and the left subtree of T .
7. Apply Algorithm 6.3 to r and the right subtree of T .

Theorem 6.4. If b = bitsP , #P ≤ 2k, k ≥ 0, x < 2e, and e ≥ 0 then Algorithm
6.3 uses µ-time at most e+ 2kb+ 2k+1 − 2 times 12µ(2 max {e, b+ 1}).



HOW TO FIND SMALL FACTORS OF INTEGERS 7

Proof. First u < 2b so c ≤ b; also d ≤ e. Step 3 uses µ-time at most 12eµ(2e) by
Theorem 5.4, whether or not d > c+ 1.

For k = 0: There is no other µ-time; and e+ 2kb+ 2k+1 − 2 = e.
For k ≥ 1: Write a = bitsQ where Q is the left half of P . By induction on k,

step 6 uses µ-time at most (c + 1) + 2(k − 1)a + 2k − 2 ≤ b + 2(k − 1)a + 2k − 1
times 12µ(2 max {c+ 1, a+ 1}) ≤ 12µ(2(b + 1)). Similarly, step 7 uses µ-time
at most b + 2(k − 1)(b − a) + 2k − 1 times 12µ(2(b + 1)). The total is at most
e+ 2b+ 2(k− 1)b+ 2k+1 − 2 = e+ 2kb+ 2k+1 − 2 times 12µ(2 max {e, b+ 1}). �

Notes. The product tree for P takes substantially more memory than P does. One
can save memory by discarding portions of the product tree and recomputing them
on demand.

Algorithm 5.1 can be sped up in the context of Algorithm 6.3. Say one wants to
divide by pp′, then by p, then by p′. Algorithm 5.1 finds an approximate reciprocal
of pp′ by Newton iteration starting from 1. It is better to start from the product
of approximate reciprocals of p and p′.

Strassen in [172] suggested multiplying elements of P in a different order: replace
the two smallest elements of P by their product, then repeat. One can use a heap to
rapidly identify the smallest elements of P at each step; see [181], [79], [98, Exercise
5.2.3–18], and [98, Exercise 5.2.3–28]. This saves time in Algorithms 6.1 and 6.3
when the elements of P have wildly varying sizes.

7. Factorization

Algorithm 7.1. Given a sequence P = (p1, p2, . . . , pm) of odd primes, and a
nonempty finite multiset N of positive integers, to print (n, {p ∈ P : n mod p = 0})
for each n ∈ N :

1. If m = 0: Print (n, {}) for each n ∈ N . Stop.
2. Compute x←

∏
n∈N n by Algorithm 6.1.

3. Compute the product tree T of P by Algorithm 6.1.
4. Compute P ′ ← {p ∈ P : x mod p = 0} by Algorithm 6.3. (The elements of
P ′ are exactly the primes relevant to factorizations of elements of N .)

5. If #N = 1: Find n ∈ N . Print (n, P ′). Stop.
6. Select M ⊆ N with #M = b#N/2c.
7. Apply Algorithm 7.1 to (M,P ′).
8. Apply Algorithm 7.1 to (N −M,P ′).

For example, given P = (3, 5, 7, 11, 13, 17, 19) and N = {492, 2567, 3135, 5889},
Algorithm 6.3 computes x = 492 · 2567 · 3135 · 5889 and P ′ = {3, 5, 11, 13, 17, 19}.
It recursively factors M = {492, 2567} and N −M = {3135, 5889} using P ′. The
following picture shows the subsequent levels of recursion:

492, 2567, 3135, 5889
3, 5, 11, 13, 17, 19

uu ))
492, 2567

3, 17

zz $$

3135, 5889
3, 5, 11, 13, 19

zz $$
492
3

2567
17

3135
3, 5, 11, 19

5889
3, 13



8 DANIEL J. BERNSTEIN

Theorem 7.2. If #N ≤ 2j, j ≥ 0, b = bitsP , #P ≤ 2k, and k ≥ 0 then Algorithm
7.1 uses µ-time at most (100jk + 108j + j(j + 1)/2 + 12) bitsN + 25kb + 24 · 2k
times µ(2 max {bitsN, b+ 1}).

Proof. Step 4 uses µ-time at most 12(bitsN + 2kb+ 2k+1)µ(2 max {bitsN, b+ 1})
by Theorem 6.4. Steps 2 and 3 use µ-time at most j(bitsN)µ(bitsN) + kbµ(b) by
Theorem 6.2.

For j = 0: The total is at most (12 bitsN+25kb+24·2k)µ(2 max {bitsN, b+ 1}).
For j ≥ 1: The point is that P ′ cannot be much larger than N . Each element of

P ′ divides x, so
∏

p∈P ′ p divides x, so
∑

p∈P ′ lg p ≤ lg x < bitsN . The crude bound

dlg(p+ 1)e ≤ 2 lg p then implies that bitsP ′ ≤ 2 bitsN . Also, #P ′ < bitsN , so

2k
′
< 2 bitsN if k′ is the least nonnegative integer with #P ′ ≤ 2k

′
.

Therefore, by induction on j, step 7 uses µ-time at most

(100(j − 1)k′ + 108(j − 1) + (j − 1)j/2 + 12) bitsM + 25k′ bitsP ′ + 24 · 2k′

≤ (100(j − 1)k + 108(j − 1) + (j − 1)j/2 + 12) bitsM + (50k + 48) bitsN

times µ(2 max {bitsM,bitsP ′ + 1}) ≤ µ(2 max {bitsN, b+ 1}). Similarly, step 8
uses µ-time at most (100(j − 1)k + 108(j − 1) + (j − 1)j/2 + 12) bits(N −M) +
(50k + 48) bitsN times µ(2 max {bitsN, b+ 1}).

The total is µ(2 max {bitsN, b+ 1}) times 12 bitsN+24kb+12 ·2k+1+j bitsN+
kb + (100(j − 1)k + 108(j − 1) + (j − 1)j/2 + 12) bitsN + (100k + 96) bitsN =
(100jk + 108j + j(j + 1)/2 + 12) bitsN + 25kb+ 12 · 2k+1 as claimed. �

Notes. Before feeding n to Algorithm 7.1, one should trial-divide n by 2, and
perhaps by a few more primes. The unfactored portion of n often takes slightly less
space than n, speeding up Algorithm 7.1. The speedup should be balanced against
the time taken by trial division.

In step 6 of Algorithm 7.1, rather than continuing the recursion, one can trial-
divide each element of N by P ′. The best cutoff for the size of N depends on the
relative speeds of trial division and Algorithm 6.3.

In step 5 of Algorithm 7.1, if one wants to know whether n is smooth, one can
simply trial-divide n by P ′. At this point P ′ has very few elements. See [21] for
asymptotically faster algorithms.

One can save some time in Algorithm 7.1 by recording the product tree for N
in step 2, then reusing the tree in steps 7 and 8.

In practice, P ′ is rarely as large as N . One can profitably split N into more than
two pieces at the end of Algorithm 7.1.

References

[1] —, 20th annual symposium on foundations of computer science, IEEE Computer Society,

New York, 1979. MR 82a:68002.
[2] Leonard M. Adleman, A subexponential algorithm for the discrete logarithm problem with

applications to cryptography, in [1] (1979), 55–60.

[3] Leonard M. Adleman, Factoring numbers using singular integers, in [12] (1991), 64–71.
[4] Leonard M. Adleman, The function field sieve, in [8] (1994), 108–121; newer version in [7].

MR 96d:11135.

[5] Leonard M. Adleman, Jonathan DeMarrais, A subexponential algorithm for discrete loga-
rithms over all finite fields, Mathematics of Computation 61 (1993), 1–15; draft in [6]. MR

94e:11140.

[6] Leonard M. Adleman, Jonathan DeMarrais, A subexponential algorithm for discrete loga-
rithms over all finite fields, in [171] (1994), 147–158; newer version in [5]. MR 95d:94013.



HOW TO FIND SMALL FACTORS OF INTEGERS 9

[7] Leonard M. Adleman, Ming-Deh Huang, Function field sieve method for discrete logarithms

over finite fields, Information and Computation 151 (1999), 5–16; draft in [4].

[8] Leonard M. Adleman, Ming-Deh Huang (editors), Algorithmic number theory: ANTS-I,
Lecture Notes in Computer Science, 877, Springer-Verlag, Berlin, 1994. ISBN 3–540–58691–

1. MR 95j:11119.

[9] W. R. Alford, Carl Pomerance, Implementing the self-initializing quadratic sieve on a dis-
tributed network, in [155] (1995), 163–174. MR 96k:11152.

[10] A. O. L. Atkin, Francois Morain, Finding suitable curves for the elliptic curve method of

factorization, Mathematics of Computation 60 (1993), 399–405. MR 93k:11115.
[11] Derek Atkins, Michael Graff, Arjen K. Lenstra, Paul C. Leyland, The magic words are

squeamish ossifrage (extended abstract), in [137] (1995), 263–277. MR 97b:94019.

[12] Baruch Awerbuch (editor), Proceedings of the 23rd annual ACM symposium on the theory
of computing, Association for Computing Machinery, New York, 1991.

[13] Eric Bach, Intractable problems in number theory, in [83] (1990), 77–93. MR 92a:11149.
[14] Eric Bach, Toward a theory of Pollard’s rho method, Information and Computation 90

(1991), 139–155. MR 92a:11151.

[15] Eric Bach, Jeffrey Shallit, Factoring with cyclotomic polynomials, Mathematics of Compu-
tation 52 (1989), 201–219. MR 89k:11127.

[16] Edward A. Bender, E. Rodney Canfield, An approximate probabilistic model for structured

Gaussian elimination, Journal of Algorithms 31 (1999), 271–290. MR 2000i:65064.
[17] Renet Lovorn Bender, Carl Pomerance, Rigorous discrete logarithm computations in finite

fields via smooth polynomials, in [43] (1998), 221–232. MR 99c:11156.

[18] Bruce C. Berndt, Harold G. Diamond, Adolf J. Hildebrand, Analytic number theory, volume
2, Birkhauser, Boston, 1996. ISBN 0–8176–3933–0. MR 97c:11001.

[19] Daniel J. Bernstein, The multiple-lattice number field sieve, chapter 3, Ph.D. thesis (1995),

University of California at Berkeley. Available from http://cr.yp.to/papers.html.
[20] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). Available from

http://cr.yp.to/papers.html.
[21] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal

of Algorithms. Available from http://cr.yp.to/papers.html.

[22] Daniel J. Bernstein, Multidigit multiplication for mathematicians. Available from
http://cr.yp.to/papers.html.

[23] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration, draft. Avail-

able from http://cr.yp.to/papers.html.
[24] Daniel J. Bernstein, Faster multiplication of integers, draft. Available from http://cr.yp.

to/papers.html.

[25] Daniel J. Bernstein, Arjen K. Lenstra, A general number field sieve implementation, in [105]
(1993), 103–126.

[26] Thomas Beth, Norbert Cot, Ingemar Ingemarsson (editors), Advances in cryptology: EU-

ROCRYPT ’84, Lecture Notes in Computer Science, 209, Springer-Verlag, Berlin, 1985.
ISBN 3–540–16076–0. MR 86m:94003.

[27] Ian F. Blake, Ryoh Fuji-Hara, Ronald C. Mullin, Scott A. Vanstone, Computing logarithms
in finite fields of characteristic two, SIAM Journal on Algebraic and Discrete Methods 5

(1984), 276–285. MR 86h:11109.

[28] Henk Boender, Herman J. J. te Riele, Factoring integers with large-prime variations of the
quadratic sieve, Experimental Mathematics 5 (1996), 257–273. MR 97m:11155.

[29] Allan Borodin, Robert T. Moenck, Fast modular transforms, Journal of Computer and

System Sciences 8 (1974), 366–386; older version, not a subset, in [120]. MR 51 #7365.
[30] Wieb Bosma, Arjen K. Lenstra, An implementation of the elliptic curve integer factorization

method, in [31] (1995), 119–136. MR 96d:11134.

[31] Wieb Bosma, Alf J. van der Poorten (editors), Computational algebra and number the-
ory: CANT2, Kluwer Academic Publishers, Dordrecht, 1995. ISBN 0–7923–3501–5. MR

96c:00019.

[32] Richard P. Brent, An improved Monte Carlo factorization algorithm, BIT 20 (1980), 176–
184. MR 82a:10017.

[33] Richard P. Brent, Some integer factorization algorithms using elliptic curves, Australian

Computer Science Communications 8 (1986), 149–163.



10 DANIEL J. BERNSTEIN

[34] Richard P. Brent, Parallel algorithms for integer factorisation, in [115] (1990), 26–37. MR

91h:11148.

[35] Richard P. Brent, Factorization of the tenth Fermat number, Mathematics of Computation
68 (1999), 429–451. MR 99e:11154.

[36] Richard P. Brent, John M. Pollard, Factorization of the eighth Fermat number, Mathematics

of Computation 36 (1981), 627–630. MR 83h:10014.
[37] David M. Bressoud, Factorization and primality testing, Springer-Verlag, New York, 1989.

ISBN 0–387–97040–1. MR 91e:11150.

[38] Ernest F. Brickell (editor), Advances in cryptology: CRYPTO ’92, Lecture Notes in Com-
puter Science, 740, Springer-Verlag, Berlin, 1993. ISBN 3–540–57340–2. MR 95b:94001.

[39] Johannes Buchmann, A subexponential algorithm for the determination of class groups and

regulators of algebraic number fields, in [82] (1990), 27–41. MR 92g:11125.
[40] Johannes Buchmann, Stephan Düllmann, A probabilistic class group and regulator algorithm

and its implementation, in [136] (1991), 53–72. MR 92m:11150.
[41] Johannes Buchmann, Michael J. Jacobson, Jr., Stefan Neis, Patrick Theobald, Damian

Weber, Sieving methods for class group computation, in [116] (1999), 3–10. MR 2000a:11177.

[42] Johannes Buchmann, J. Loho, Joerg Zayer, An implementation of the general number field
sieve (extended abstract), in [171] (1993), 159–165. MR 95e:11132.

[43] Duncan A. Buell, Jeremy T. Teitelbaum (editors), Computational perspectives on number

theory, American Mathematical Society, Providence, 1998. MR 98g:11001.
[44] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture Notes in Computer

Science, 1423, Springer-Verlag, Berlin, 1998. ISBN 3–540–64657–4. MR 2000g:11002.

[45] Joe P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the number
field sieve, in [105] (1993), 50–94.

[46] Jacques Calmet (editor), Computer algebra: EUROCAM ’82, Lecture Notes in Computer

Science, 144, Springer-Verlag, Berlin, 1982. ISBN 3–540–11607–9. MR 83k:68003.
[47] T. R. Caron, Robert D. Silverman, Parallel implementation of the quadratic sieve, Journal

of Supercomputing 1 (1988), 273–290.
[48] Srishti D. Chatterji (editor), Proceedings of the International Congress of Mathematicians,

Birkhauser Verlag, Basel, 1995. ISBN 3–7643–5153–5. MR 97c:00049.

[49] David Chaum (editor), Advances in cryptology: Crypto 83, Plenum Press, New York, 1984.
ISBN 0–306–41637–9. MR 86f:94001.

[50] David Chaum, Ronald L. Rivest, Alan T. Sherman (editors), Advances in cryptology, Plenum

Press, New York, 1983. ISBN 0–306–41366–3. MR 84j:94004.
[51] David V. Chudnovsky, Gregory V. Chudnovsky, Harvey Cohn, Melvyn B. Nathanson (edi-

tors), Number theory, Lecture Notes in Mathematics, 1240, Springer-Verlag, Berlin, 1987.

[52] Henri Cohen (editor), Algorithmic number theory: ANTS-II, Lecture Notes in Computer
Science, 1122, Springer-Verlag, Berlin, 1996. ISBN 3–540–61581–4. MR 97k:11001.

[53] Scott P. Contini, Factoring integers with the self-initializing quadratic sieve, M.A. thesis,

University of Georgia, 1997.
[54] Don Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Trans-

actions on Information Theory 30 (1984), 587–594. MR 85h:65041.
[55] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993),

169–180. MR 94h:11111.

[56] Don Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear
Algebra and its Applications 192 (1993), 33–60. MR 94i:65044.

[57] Don Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann

algorithm, Mathematics of Computation 62 (1994), 333–350. MR 94c:11124.
[58] Don Coppersmith (editor), Advances in cryptology—CRYPTO ’95, Lecture Notes in Com-

puter Science, 963, Springer-Verlag, Berlin, 1995. ISBN 3–540–60221–6.

[59] Don Coppersmith, James H. Davenport, An application of factoring, Journal of Symbolic
Computation 1 (1985), 241–243. MR 87b:11125.

[60] Don Coppersmith, Andrew M. Odlyzko, Richard Schroeppel, Discrete logarithms in GF(p),

Algorithmica 1 (1986), 1–15. MR 87g:11167.
[61] Jean-Marc Couveignes, Computing a square root for the number field sieve, in [105] (1993),

95–102.



HOW TO FIND SMALL FACTORS OF INTEGERS 11

[62] James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra, Peter L.

Montgomery, Joerg Zayer, A World Wide number field sieve factoring record: on to 512

bits, in [96] (1996), 382–394.
[63] Richard Crandall, Carl Pomerance, Prime numbers. A computational perspective, Springer-

Verlag, New York, 2001. ISBN 0–387–94777–9. MR 2002a:11007.

[64] James A. Davis, Diane B. Holdridge, Factorization using the quadratic sieve algorithm, in
[49] (1984), 103–113. MR 86j:11128.

[65] James A. Davis, Diane B. Holdridge, New results on integer factorizations, Congressus

Numerantium 46 (1985), 65–78. MR 86f:11098.
[66] James A. Davis, Diane B. Holdridge, Factorization of large integers on a massively parallel

computer, in [87] (1988), 235–243. MR 90b:11139.

[67] James A. Davis, Diane B. Holdridge, Gustavus J. Simmons, Status report on factoring (at
the Sandia National Laboratories), in [26] (1985), 183–215. MR 87f:11105.

[68] Thomas F. Denny, Bruce Dodson, Arjen K. Lenstra, Mark S. Manasse, On the factorization
of RSA-120, in [171] (1994), 166–174. MR 95d:11170.

[69] Thomas F. Denny, Volker Mueller, On the reduction of composed relations from the number

field sieve, in [52] (1996), 75–90. MR 98k:11184.
[70] John D. Dixon, Asymptotically fast factorization of integers, Mathematics of Computation

36 (1981), 255–260. MR 82a:10010.

[71] Bruce Dodson, Arjen K. Lenstra, NFS with four large primes: an explosive experiment, in
[58] (1995), 372–385. MR 98d:11156.

[72] Taher ElGamal, A subexponential-time algorithm for computing discrete logarithms over

GF(p2), in [49] (1984), 275–292; newer version in [73]. MR 86j:11129.
[73] Taher ElGamal, A subexponential-time algorithm for computing discrete logarithms over

GF(p2), IEEE Transactions on Information Theory 31 (1985), 473–481; draft in [72]. MR

86j:11130.
[74] R.-Marije Elkenbracht-Huizing, Historical background of the number field sieve factoring

method, Nieuw Archief voor Wiskunde 14 (1996), 375–389. MR 97i:11121.
[75] R.-Marije Elkenbracht-Huizing, An implementation of the number field sieve, Experimental

Mathematics 5 (1996), 231–253. MR 98a:11182.

[76] R.-Marije Elkenbracht-Huizing, A multiple polynomial general number field sieve, in [52]
(1996), 99–114. MR 98g:11142.

[77] R.-Marije Elkenbracht-Huizing, Factoring integers with the number field sieve, Ph.D. thesis,

University of Leiden, 1997.
[78] R.-Marije Elkenbracht-Huizing, Peter L. Montgomery, Robert D. Silverman, R. K. Wacker-

barth, Samuel S. Wagstaff, Jr., The number field sieve on many computers, in [88] (1996),

81–85. MR 2000e:11157.
[79] Robert W. Floyd, Algorithm 245: Treesort3, Communications of the ACM 7 (1964), 701.

ISSN 0001–0782.

[80] Walter Gautschi (editor), Mathematics of Computation 1943–1993: a half-century of com-
putational mathematics, American Mathematical Society, Providence, 1994. ISBN 0–8218–

0291–7. MR 95j:00014.

[81] Joseph L. Gerver, Factoring large numbers with a quadratic sieve, Mathematics of Compu-
tation 41 (1983), 287–294. MR 85c:11122.

[82] Catherine Goldstein (editor), Séminaire de Théorie des Nombres, Paris 1988–1989,
Birkhauser, Boston, 1990. ISBN 0–8176–3493–2. MR 91k:11104.

[83] Shafi Goldwasser (editor), Advances in cryptology: CRYPTO ’88, Lecture Notes in Com-

puter Science, 403, Springer-Verlag, Berlin, 1990. ISBN 3–540–97196–3. MR 90j:94003.
[84] Roger A. Golliver, Arjen K. Lenstra, Kevin S. McCurley, Lattice sieving and trial division,

in [8] (1994), 18–27. MR 96a:11142.

[85] Daniel M. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM Journal
on Discrete Mathematics 6 (1993), 124–138. MR 94d:11104.

[86] Louis C. Guillou, Jean-Jacques Quisquater (editors), Advances in cryptology: EURO-

CRYPT ’95, Lecture Notes in Computer Science, 921, Springer, Berlin, 1995. ISBN 3–
540–59409–4. MR 96f:94001.

[87] Christoph G. Günther, Advances in cryptology: EUROCRYPT ’88, Lecture Notes in Com-

puter Science, 330, Springer-Verlag, Berlin, 1988. ISBN 3–540–50251–3. MR 90a:94002.



12 DANIEL J. BERNSTEIN

[88] Rajiv Gupta, Kenneth S. Williams (editors), Number theory, American Mathematical Soci-

ety, Providence, 1999. ISBN 0–8218–0964–4. MR 99k:11005.

[89] James L. Hafner, Kevin S. McCurley, A rigorous subexponential algorithm for computation
of class groups, Journal of the American Mathematical Society 2 (1989), 837–850. MR

91f:11090.

[90] James L. Hafner, Kevin S. McCurley, On the distribution of running times of certain integer
factoring algorithms, Journal of Algorithms 10 (1989), 531–556. MR 91g:11157.

[91] Martin E. Hellman, J. M. Reyneri, Fast computation of discrete logarithms in GF(q), in

[50] (1983), 3–13.
[92] Michael J. Jacobson, Jr., Applying sieving to the computation of quadratic class groups,

Mathematics of Computation 68 (1999), 859–867. MR 99i:11120.

[93] David S. Johnson, Takao Nishizeki, Akihiro Nozaki, Herbert S. Wilf, Discrete algorithms
and complexity, Academic Press, Boston, 1987. ISBN 0–12–386870–X. MR 88h:68002.

[94] Erich Kaltofen, Victor Shoup, Subquadratic-time factoring of polynomials over finite fields,
Mathematics of Computation 67 (1998), 1179–1197. MR 99m:68097.

[95] Richard M. Karp (chairman), 13th annual symposium on switching and automata theory,

IEEE Computer Society, Northridge, 1972.
[96] Kwangjo Kim, Tsutomu Matsumoto (editors), Advances in cryptology: ASIACRYPT ’96,

Lecture Notes in Computer Science, 1163, Springer-Verlag, Berlin, 1996. ISBN 3–540–61872–

4. MR 98g:94001.
[97] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

3rd edition, Addison-Wesley, Reading, 1997. ISBN 0–201–89684–2.

[98] Donald E. Knuth, The art of computer programming, volume 3: sorting and searching, 2nd
edition, Addison-Wesley, Reading, 1998. ISBN 0–201–89685–0.

[99] Neal Koblitz, A course in number theory and cryptography, 2nd edition, Springer-Verlag,

New York, 1994. ISBN 0–387–94293–9. MR 95h:94023.
[100] Hugo Krawczyk (editor), Advances in cryptology: CRYPTO ’98, Lecture Notes in Computer

Science, 1462, Springer-Verlag, Berlin, 1998. ISBN 3–540–64892–5. MR 99i:94059.
[101] Brian A. LaMacchia, Andrew M. Odlyzko, Solving large sparse linear systems over finite

fields, in [118] (1991), 109–133.

[102] Brian A. LaMacchia, Andrew M. Odlyzko, Computation of discrete logarithms in prime
fields, Designs, Codes and Cryptography 1 (1991), 47–62. MR 92j:11148.

[103] Derrick H. Lehmer, R. E. Powers, On factoring large numbers, Bulletin of the American

Mathematical Society 37 (1931), 770–776.
[104] Arjen K. Lenstra, Fast and rigorous factorization under the generalized Riemann hypothesis,

Mathematics of Computation 50 (1988), 443–454. MR 90a:11152.

[105] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field
sieve, Lecture Notes in Mathematics, 1554, Springer-Verlag, Berlin, 1993. ISBN 3–540–

57013–6. MR 96m:11116.

[106] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Manasse, John M. Pollard, The factor-
ization of the ninth Fermat number, Mathematics of Computation 61 (1993), 319–349. MR

93k:11116.
[107] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Manasse, John M. Pollard, The number

field sieve, in [105] (1993), 11–42.

[108] Arjen K. Lenstra, Mark S. Manasse, Factoring by electronic mail, in [156] (1990), 355–371.
MR 91i:11182.

[109] Arjen K. Lenstra, Mark S. Manasse, Factoring with two large primes, Mathematics of Com-

putation 63 (1994), 785–798. MR 95a:11107.
[110] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics 126

(1987), 649–673. MR 89g:11125.

[111] Hendrik W. Lenstra, Jr., Jonathan Pila, Carl Pomerance, A hyperelliptic smoothness test,
I, Philosophical Transactions of the Royal Society of London Series A 345 (1993), 397–408.

MR 94m:11107.

[112] Hendrik W. Lenstra, Jr., Carl Pomerance, A rigorous time bound for factoring integers,
Journal of the American Mathematical Society 5 (1992), 483–516. MR 92m:11145.

[113] Hendrik W. Lenstra, Jr., R. Tijdeman (editors), Computational methods in number theory

I, Mathematical Centre Tracts, 154, Mathematisch Centrum, Amsterdam, 1982. ISBN 90–
6196–248–X. MR 84c:10002.



HOW TO FIND SMALL FACTORS OF INTEGERS 13

[114] Xuemin Lin (editor), Computing theory ’98, Springer-Verlag, Singapore, 1998. ISBN 981–

3083–92–1. MR 2000g:68006.

[115] John H. Loxton (editor), Number theory and cryptography, London Mathematical Society
Lecture Note Series, 154, Cambridge University Press, 1990. ISBN 0–521–39877–0. MR

90m:11003.

[116] B. Heinrich Matzat, Gert-Martin Greuel, Gerhard Hiss (editors), Algorithmic algebra and
number theory, Springer-Verlag, Berlin, 1999. ISBN 3–540–64670–1. MR 99h:00020.

[117] Kevin S. McCurley, The discrete logarithm problem, in [145] (1990), 49–74. MR 92d:11133.

[118] Alfred J. Menezes, Scott A. Vanstone (editors), Advances in cryptology: CRYPTO ’90,
Lecture Notes in Computer Science, 537, Springer-Verlag, Berlin, 1991. ISBN 3–540–54508–

5. MR 94b:94002.

[119] Ralph Merkle, Secrecy, authentication, and public key systems, Ph.D. thesis, Stanford Uni-
versity, 1979.

[120] Robert T. Moenck, Allan Borodin, Fast modular transforms via division, in [95] (1972),
90–96; newer version, not a superset, in [29].

[121] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,

Mathematics of Computation 48 (1987), 243–264. MR 88e:11130.
[122] Peter L. Montgomery, An FFT extension of the ellpitic curve method of factorization, Ph.D.

thesis, University of California at Los Angeles, 1992.

[123] Peter L. Montgomery, Square roots of products of algebraic numbers, in [80] (1994), 567–571.
MR 96a:11148.

[124] Peter L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2), in

[86] (1995), 106–120. MR 97c:11115.
[125] Peter L. Montgomery, Stefania Cavallar, Herman te Riele, A new world record for the special

number field sieve factoring method, CWI Quarterly 10 (1997), 105–107. MR 98k:11182.

[126] Michael A. Morrison, John Brillhart, A method of factoring and the factorization of F7,
Mathematics of Computation 29 (1975), 183–205. MR 51 #8017.

[127] Gary L. Mullen, Peter Jau-Shyong Shiue (editors), Finite fields: theory, applications, and
algorithms, American Mathematical Society, Providence, 1994. ISBN 0–8218–5183–7. MR

95c:11002.

[128] Brian Murphy, Modelling the yield of number field sieve polynomials, in [44] (1998), 137–150.
[129] Brian Murphy, Richard P. Brent, On quadratic polynomials for the number field sieve, in

[114] (1998), 199–213. MR 2000i:11189.

[130] Melvyn B. Nathanson (editor), Number theory, Carbondale 1979, Lecture Notes in Mathe-
matics, 751, Springer-Verlag, Berlin, 1979. ISBN 3–540–09559–4. MR 81a:10004.

[131] Thorkil Naur, New integer factorizations, Mathematics of Computation 41 (1983), 687–695.

MR 85c:11123.
[132] Phong Nguyen, A Montgomery-like square root for the number field sieve, in [44] (1998),

151–168.

[133] Andrew M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,
in [26] (1985), 224–314. MR 87g:11022.

[134] Andrew M. Odlyzko, Discrete logarithms and smooth polynomials, in [127] (1994), 269–278.
MR 95f:11107.

[135] René Peralta, A quadratic sieve on the n-dimensional cube, in [38] (1993), 324–332. MR

95f:11108.
[136] Attila Petho, Michael E. Pohst, Hugh C. Williams, Horst G. Zimmer, Computational number

theory, Walter de Gruyter, Berlin, 1991. ISBN 3–11–012394–0. MR 92i:11131.

[137] Josef Pieprzyk, Reihanah Safavi-Naini (editors), Advances in cryptology: ASIACRYPT ’94,
Lecture Notes in Computer Science, 917, Springer-Verlag, Berlin, 1995. ISBN 3–540–59339–

X. MR 96h:94002.

[138] John M. Pollard, Theorems on factorization and primality testing, Proceedings of the Cam-
bridge Philosophical Society 76 (1974), 521–528. MR 50 #6992.

[139] John M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–334. MR 52

#13611.
[140] John M. Pollard, Factoring with cubic integers, in [105] (1993), 4–10.

[141] John M. Pollard, The lattice sieve, in [105] (1993), 43–49.

[142] Carl Pomerance, Analysis and comparison of some integer factoring algorithms, in [113]
(1982), 89–139. MR 84i:10005.



14 DANIEL J. BERNSTEIN

[143] Carl Pomerance, The quadratic sieve factoring algorithm, in [26] (1985), 169–182. MR

87d:11098.

[144] Carl Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in [93]
(1987), 119–143. MR 88m:11109.

[145] Carl Pomerance (editor), Cryptology and computational number theory, American Mathe-

matical Society, Providence, 1990. ISBN 0–8218–0155–4. MR 91k:11113.
[146] Carl Pomerance, Factoring, in [145] (1990), 27–47. MR 92b:11089.

[147] Carl Pomerance, The number field sieve, in [80] (1994), 465–480. MR 96c:11143.

[148] Carl Pomerance, The role of smooth numbers in number-theoretic algorithms, in [48] (1995),
411–422. MR 97m:11156.

[149] Carl Pomerance, Multiplicative independence for random integers, in [18] (1996), 703–711.

MR 97k:11174.
[150] Carl Pomerance, A tale of two sieves, Notices of the American Mathematical Society 43

(1996), 1473–1485. MR 97f:11100.
[151] Carl Pomerance, J. W. Smith, Reduction of huge, sparse matrices over finite fields via

created catastrophes, Experimental Mathematics 1 (1992), 89–94.

[152] Carl Pomerance, J. W. Smith, Randy Tuler, A pipeline architecture for factoring large
integers with the quadratic sieve algorithm, SIAM Journal on Computing 17 (1988), 387–

403. MR 89f:11168.

[153] Carl Pomerance, Jonathan Sorenson, Counting the integers factorable via cyclotomic meth-
ods, Journal of Algorithms 19 (1995), 250–265. MR 96e:11163.

[154] Carl Pomerance, Samuel S. Wagstaff, Jr., Implementation of the continued fraction integer

factoring algorithm, Congressus Numerantium 37 (1983), 99–118. MR 85c:11124.
[155] Alf J. van der Poorten, Igor Shparlinski, Horst G. Zimmer, Number-theoretic and algebraic

methods in computer science: NTAMCS ’93, World Scientific Publishing, River Edge, 1995.

ISBN 981–02–2334–X. MR 96i:11103.
[156] Jean-Jacques Quisquater, J. Vandewalle (editors), Advances in cryptology: EUROCRYPT

’89, Lecture Notes in Computer Science, 434, Springer-Verlag, Berlin, 1990. ISBN 3–540–
53433–4. MR 91h:94003.

[157] Herman te Riele, Walter Lioen, Dik Winter, Factoring with the quadratic sieve on large

vector computers, Journal of Computational and Applied Mathematics 27 (1989), 267–278.
MR 90h:11111.

[158] Herman te Riele, Walter Lioen, Dik Winter, Factorization beyond the googol with MPQS

on a single computer, CWI Quarterly 4 (1991), 69–72. MR 92i:11132.
[159] Hans Riesel, Prime numbers and computer methods for factorization, 2nd edition; Progress

in Mathematics, 126, Birkhauser, Boston, 1994. ISBN 0817637435. MR 95h:11142.

[160] Oliver Schirokauer, On pro-finite groups and on discrete logarithms, Ph.D. thesis, University
of California at Berkeley, 1992.

[161] Oliver Schirokauer, Discrete logarithms and local units, Philosophical Transactions of the

Royal Society of London Series A 345 (1993), 409–423. MR 95c:11156.
[162] Oliver Schirokauer, Damian Weber, Thomas Denny, Discrete logarithms: the effectiveness

of the index calculus method, in [52] (1996), 337–361. MR 98i:11109.
[163] Claus P. Schnorr, Refined analysis and improvements on some factoring algorithms, Journal

of Algorithms 3 (1982), 101–127. MR 83g:10003.

[164] Arnold Schönhage, Asymptotically fast algorithms for the numerical multiplication and di-
vision of polynomials with complex coefficients, in [46] (1982), 3–15. MR 83m:68064.

[165] Igor A. Semaev, An algorithm for discrete logarithms over an arbitrary finite field, Discrete

Mathematics and Applications 5 (1995), 107–116. MR 96b:11162.
[166] Martin Seysen, A probabilistic factorization algorithm with quadratic forms of negative dis-

criminant, Mathematics of Computation 48 (1987), 757–780. MR 88d:11129.

[167] Robert D. Silverman, The multiple polynomial quadratic sieve, Mathematics of Computation
48 (1987), 329–339. MR 88c:11079.

[168] Robert D. Silverman, Massively distributed computing and factoring large integers, Com-

munications of the ACM 34 (1991), 94–103. ISSN 0001–0782. MR 92j:11152.
[169] Robert D. Silverman, Samuel S. Wagstaff, Jr., A practical analysis of the elliptic curve

factoring algorithm, Mathematics of Computation 61 (1993), 445–462. MR 93k:11117.

[170] J. W. Smith, Samuel S. Wagstaff, Jr., How to crack an RSA cryptosystem, Congressus
Numerantium 40 (1983), 367–373. MR 86d:94020.



HOW TO FIND SMALL FACTORS OF INTEGERS 15

[171] Douglas R. Stinson (editor), Advances in cryptology: CRYPTO ’93, Lecture Notes in Com-

puter Science, 773, Springer-Verlag, Berlin, 1994. ISBN 3–540–57766–1. MR 95b:94002.

[172] Volker Strassen, The computational complexity of continued fractions, SIAM Journal on
Computing 12 (1983), 1–27. MR 84b:12004.

[173] Brigitte Vallée, Generation of elements with small modular squares and provably fast integer

factoring algorithms, Mathematics of Computation 56 (1991), 823–849. MR 91i:11183.
[174] Samuel S. Wagstaff, Jr., J. W. Smith, Methods of factoring large integers, in [51] (1987),

281–303. MR 88i:11098.

[175] Damian Weber, Computing discrete logarithms with the general number field sieve, in [52]
(1996), 391–403. MR 98k:11186.

[176] Damian Weber, Thomas Denny, The solution of McCurley’s discrete log challenge, in [100]

(1998), 458–471. MR 99i:94057.
[177] A. E. Western, J. C. P. Miller, Tables of indices and primitive roots, Cambridge University

Press, 1968.
[178] Douglas H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions

on Information Theory 32 (1986), 54–62. MR 87g:11166.

[179] Hugh C. Williams, A p + 1 method of factoring, Mathematics of Computation 39 (1982),
225–234. MR 83h:10016.

[180] Hugh C. Williams, Marvin C. Wunderlich, On the parallel generation of the residues for the

continued fraction factoring algorithm, Mathematics of Computation 48 (1987), 405–423.
MR 88i:11099.

[181] John W. J. Williams, Algorithm 232: Heapsort, Communications of the ACM 7 (1964),

347–348. ISSN 0001–0782.
[182] Marvin C. Wunderlich, A running time analysis of Brillhart’s continued fraction factoring

method, in [130] (1979), 328–342.

[183] Marvin C. Wunderlich, Implementing the continued fraction factoring algorithm on parallel
machines, Mathematics of Computation 44 (1985), 251–260. MR 86d:11104.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, IL 60607–7045
Email address: djb@cr.yp.to


