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Abstract. This paper (1) gives an example of a cost-measurement
task for which medians and quartiles are neither robust nor stable; (2)
suggests using [1/8, 3/8], [3/8, 5/8], [5/8, 7/8] means as simple, stable,
robust replacements for quartiles; and (3) tries this replacement on the
example.
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1 Prelude: the standard praise for medians

1981 Huber [18, page 107] writes in his textbook “Robust statistics” that “the
so-called median absolute deviation (MAD) has emerged as the single most
useful ancillary estimate of scale”. The statistician is given many observations
x1, . . . , xn from some distribution; uses the median M of x1, . . . , xn to estimate
the location of the distribution; and uses the median of |x1 −M |, . . . , |xn −M |
to estimate the scale (dispersion) of the distribution. “Ancillary” refers to the
common situation that dispersion is “a nuisance parameter in location”. The top
goal is to estimate the location, but a wide distribution makes this unreliable;
one estimates dispersion as an indication of the level of unreliability.

Why estimate location and dispersion using median and median absolute
deviation instead of mean and standard deviation? The basic argument for
medians from [18, Section 4.2] is that “the median achieves the smallest
maximum bias among all translation invariant functionals”. Here “bias” refers
to the effect of starting from a normal distribution but corrupting a small
fraction ϵ of the data. Obviously this contamination can create an arbitrarily
large change in the mean no matter how small ϵ is, while the median turns out
to minimize the worst-case effect of this contamination. For other robustness
metrics favoring the median, see, e.g., 2025 Loh [22, Section 2] (“the robust
sample median . . . can be shown to have the maximal breakdown point among
all translation-invariant location estimators”; “the median was shown to be the
most B-robust estimator”).
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2 Median coin-flip timings

Let’s see how well these supposedly robust statistics do for a simple example: the
distribution of the number of times you need to flip a fair coin before it comes
up heads. The population distribution is a textbook geometric distribution: 1
with probability 1/2; 2 with probability 1/4; 3 with probability 1/8; etc.

The median of the population distribution is 1.5. The median of a large sample
is unstable: it might occasionally match 1.5 (the probability of this is Θ(1/

√
n)

if there are n observations and n is even), but it has 1/2 − O(1/
√
n) chance of

being 1 and 1/2−O(1/
√
n) chance of being 2.

For essentially the same reason, the median of this distribution is fragile under
arbitrarily small amounts of contamination: slight corruption favoring low values
will push the median from 1.5 down to 1, while slight corruption favoring high
values will push the median from 1.5 up to 2. In other words, the “influence
function” from 1968 Hampel [17] is unbounded. The median absolute deviation
similarly lacks stability and robustness.3

This is a straightforward argument against using medians and median absolute
deviations whenever a quantile function might suddenly jump—being visibly
discrete, for example. This doesn’t contradict the calculations from [18, Section
4.2]: those calculations consider only a limited class of starting distributions.
Also, this argument for avoiding the median is not an argument for going back
to the dark ages and using the mean:4 one wants a statistic that is meaningful
for discrete distributions and is robust against contamination.

3 Median software timings

For many years I have been co-managing eBACS, a project that collects
benchmarks of cryptographic software on many computers; see Section 7 for more
information. Software timings are often contaminated (for a variety of reasons:
e.g., the computer is distracted by an incoming network packet), sometimes
spoiling the mean and variance of many timings; so, from the outset, eBACS
instead reported medians of many timings, along with 1st and 3rd quartiles.
This is a simple success story for robust statistics, right?

No, it’s not that simple. More and more of the software that has been
added to eBACS over the years relies on rejection-sampling loops. The rejection
probabilities vary but sometimes, like the coin-flip example, create large jumps
in timings close to the 25th, 50th, or 75th percentile. Then the quartiles aren’t
even stable, never mind robust.

As a concrete example, consider the sample quantile function displayed in
Figure 3.1. This graph shows 93 measurements,5 sorted into increasing order,

3 2022 Akinshin [2, Section 2.1] gives a more complicated example of the instability of
the median absolute deviation—but still claims that the median absolute deviation
is a “robust measure of statistical dispersion”.

4 Regressing to the mean, one might say.
5 The measurement program has a 32-iteration loop of checking the clock and calling
the function being timed, producing 31 timings. The program was run 3 times.
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Fig. 3.1. Quantile function (transposed cdf) for 93 observations of cycle counts for
mceliece6960119 key generation on one core of a 3GHz Intel Xeon E3-1220 v5 with
overclocking disabled.

of the time to generate keys for a cryptosystem called mceliece6960119. This
cryptosystem, defined in [10] based on work going back to 1978 McEliece [23],
has been deployed and is currently under consideration for standardization by
ISO; see generally [5].

The software actually relies on multiple rejection-sampling loops, but the
most important rejection-sampling loop tries to invert a random-looking d × d
matrix with entries in the field of 2 elements, specifically with d = 1547. The
probability pd of invertibility for a d× d matrix generated uniformly at random
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is
∏

1≤i≤d(1− 1/2i) by, e.g., [12, page 77, Theorem 99], and one has

lim
d→∞

pd =
∏
i≥1

(1− 1/2i) =
∑
k∈Z

(−1)k2−k(3k+1)/2 ≈ 0.288788

by Euler’s [13] pentagonal-number theorem; pd is only negligibly different from
the limit for d ≥ 20. The population distribution thus jumps at pd ≈ 0.288788, at
1−(1−pd)

2 ≈ 0.494178, at 1−(1−pd)
3 ≈ 0.640253, at 1−(1−pd)

4 ≈ 0.744144,
etc. Sampling randomly nudges the jumps, so there is nothing surprising about
the second jump in Figure 3.1 being after 0.5 instead of before 0.5, producing a
sample median around 2.7 · 108 where the population median is around 3.2 · 108.
(The population mean is around 3.5 · 108.)

2008 Larocque–Randles [21], as part of justifying a simplified definition of the
population median, comment that “it is a rare discrete population” for which
the image of the cdf includes exactly 0.5. Formally, the rejection-sampling loop
described above is not an exception: 0.494178 is not 0.5. But 0.494178 is close
enough to 0.5 to create instability of the sample median until the sample size is
very large. Even with 10000 observations, there will be variations on the scale
of 0.01 starting from 0.494178, so both 2.7 · 108 and 3.2 · 108 have a good chance
of appearing as the sample median. Similar comments apply to other quartiles,
the median absolute deviation, etc.

4 Solutions in the literature

The literature on robust statistics considers many location statistics other than
the median. For example, 1960 Tukey [28, Section 17] writes the following: “In
large samples the sample mean is not nearly so safe an indicator of location
as is the mean of the observations which remain after a small percentage of
the highest, and an equal percentage of the lowest, have been set aside (use
of a lightly truncated mean).” An example is the interquartile mean, although
Tukey’s examples of “light” truncation are at most 6% rather than 25%.

1920 Daniell [11] already considered “discard averages”, as noted by, e.g.,
2010 Stigler [27].6 Today “trimmed means” are well known, even if not as well
known as medians.7 An interquartile mean is simple, easy to compute, and not

6 Daniell in turn cites 1912 Poincaré [25, page 211] for discarding outliers (“rejeter
une observation qui présente avec toutes les autres une divergence exagérée”).
Poincaré [25, pages 212ff] considers different models for a contaminated distribution
and obtains different rules for which outliers to discard; Daniell starts with more
general approaches such as “quartile-discard averages” (interquartile means), and
analyzes how well those approaches work for various distributions.

7 I tried Google Scholar searches on 19 July 2025 for articles since 2024, putting search
phrases into quotes. Google Scholar reported (“about”) 11600 results for “trimmed
mean”; 477 results for “truncated mean”; 319 results for “interquartile mean”; and
63500 results for “median”, although a skim rapidly found that some of these were
for, e.g., “median sternotomy”.
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afraid of discrete distributions. For the coin-flip example from Section 2, the
interquartile mean of a large sample is consistently close to 1.5.

There are other choices in the literature, including choices that have
advantages over trimmed means. For example, 1974 Stigler [26] shows that

samples of a smoothed trimmed mean such as 16
∫ 0.75

0.25
(0.25− |x− 0.5|)Q(x) dx

are asymptotically normal under weak assumptions on the quantile function

Q, while a similar result for samples of the interquartile mean 2
∫ 0.75

0.25
Q(x) dx

requires more stringent assumptions about the behavior of Q at 0.25 and at 0.75.
On the other hand, trimmed means are easier to explain. Explainability is an

important feature for someone like me choosing statistics to use in an application,
whereas it’s not clear why this application needs Stigler’s asymptotic normality
result—yes, Q in Figure 3.1 jumps close to 0.25 and close to 0.75; one can’t
expect the distribution of the sample interquartile mean to be close to normal;
so what? Why should normality be a goal when it does not arise naturally?
None of the other robust-even-for-the-discrete-case location statistics seem to be
as popular as simple trimmed means.

What about dispersion statistics? Again the literature provides various
options—for example, Tukey writes that “the use of truncated variances is likely
to be quite satisfactory”—but these seem far less widely used than (untrimmed)
standard deviations, quartiles, and the interquartile range,8 all of which are
unsatisfactory.

In short, the literature has solutions to the problem at hand, but it seems
that the solutions are popular only for location, not for dispersion. I see this as
another indication of the importance of explainability. I’m not satisfied saying
“you know about mean and standard deviation already; I’ll use trimmed mean
and trimmed standard deviation”. Even without trimming, standard deviation is
more complicated than mean: consider the squares, the square roots, the common
variants that differ noticeably from each other when the sample size is small, the
tricky visual interpretation. This is all to make some formulas work out nicely,
but trimming breaks those formulas. What do I say to a reader who complains
that a trimmed standard deviation is neither comprehensible nor standard?

Furthermore, I want to have three statistics rather than two, to see not
just location and dispersion but also asymmetry—the skewness of Figure 3.1,
for example. Can I really explain replacing the 1st quartile with, say, the
interquartile mean of the variable number of observations below the interquartile
mean of the sample? I’d rather have something simpler.

8 More Google Scholar searches on 19 July 2025 for articles since 2024: 49800 results
for “standard deviation”; 22600 results for “interquartile range”; 18900 results for
“quartile”; 12 results for “truncated standard deviation”; 45 results for “trimmed
standard deviation”; 73 results for “truncated variance”; 15 results for “trimmed
variance”. Note that “interquartile range” typically refers to the difference between
the 3rd quartile and the 1st quartile, rather than the two statistics separately—this
is, as 2024 Haanappel–Voor in ‘t holt [16] note, bad terminology that should be
fixed—but, either way, just a few quantiles are being used.
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Fig. 5.1. First graph, in black: averages on [1/8, 3/8] and [3/8, 5/8] and [5/8, 7/8] of
the quantile function from Figure 3.1. Second graph, in black: averages on [1/16, 3/16]
etc. Third graph, in black: averages on [1/32, 3/32] etc. Original quantile function is
shown in light red.

5 Stabilized quartiles

The first black graph in Figure 5.1 is a graph of the following three numbers
derived from the sample in Figure 3.1:

• “[1/8, 3/8] mean” or “StQ1”: the mean between the 1st and 3rd octiles, as
a stabilized substitute for the 1st quartile.

• “[3/8, 5/8] mean” or “StQ2”: the mean between the 3rd and 5th octiles, as
a stabilized substitute for the 2nd quartile.

• “[5/8, 7/8] mean” or “StQ3”: the mean between the 5th and 7th octiles, as
a stabilized substitute for the 3rd quartile.

Figure 5.2 shows how easy it is to compute these three statistics in Python.
One can use these statistics in the same way as quartiles: computing the
difference of StQ3 and StQ1 as an overall estimate of dispersion, computing
appropriate ratios as an estimate of asymmetry, etc. For example, where [29]
uses Bowley’s skewness coefficient (Q3 +Q1 − 2 ·Q2)/(Q3 −Q1), one can instead
use (StQ3 +StQ1 − 2 · StQ2)/(StQ3 − StQ1).

For a normal distribution D, these stabilized quartiles are numerically close
to quartiles: an integration exercise concludes that StQ3(D)− StQ1(D) is

25/2π−1/2
(
exp

(
− erf−1(1/4)2

)
− exp

(
− erf−1(3/4)2

))
≈ 1.3867336971

times the standard deviation, while Q3(D) − Q1(D) is 23/2 erf−1(0.5) ≈
1.3489795004 times the standard deviation.

These stabilized quartiles are robust against contamination. Their breakdown
points (1/8 for the 1st and 3rd, 3/8 for the 2nd) are not as high as for quartiles
(1/4, 1/2) or median absolute deviation (1/2); but, again, influence functions
and sampling show that quartiles and median absolute deviation are fragile and
unstable starting from the distribution in Section 2.

Asymmetrically trimmed means aren’t new (for example, 1998 Kearns [20]
found them useful as predictors of inflation), but I haven’t found literature
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def mean(S):

S = list(S)

return sum(S)/len(S)

def stq(S):

S = sorted(8*list(S))

n = len(S)//8

return mean(S[n:3*n]),mean(S[3*n:5*n]),mean(S[5*n:7*n])

Fig. 5.2. Python 3 function stq to compute the three stabilized quartiles of a sample.
In applications where the sample already has length divisible by 8, one can skip the
initial multiplication by 8; one can also, by adding code to handle edges, avoid the
initial multiplication in all cases.

proposing these statistics as an easy improvement over quartiles. I think
the description above in terms of octiles is simpler than a description
as interquartile means of (1) the observations below the median, (2) the
interquartile observations, and (3) the observations above the median.

Some further options. The second and third graphs in Figure 5.1 are similar
to the first but show stabilized octiles and stabilized hexadeciles.9 The narrower
spacing makes each statistic less stable, and (because the spacing comes closer
to the edges) makes the outer statistics more vulnerable to contamination; but
using more statistics provides more information, coming closer and closer to
showing the full sample distribution, which in turn says something useful about
the population distribution if there are enough samples.

One can instead work directly with the full sample distribution. I normally
graph any distribution that I want to study; sometimes I compare it directly
to a model distribution. But I also want to compress this information to a few
statistics. For numerical tables summarizing benchmark results, I continue to
think that 3 statistics are the right level of detail, so I’m switching to stabilized
quartiles, as in the first graph in Figure 5.1. See Section 6 for an example of
the stability of stabilized quartiles, and Section 7 for the impact of stabilized
quartiles on eBACS.

A histogram also compresses a sample distribution to fewer numbers, but
a histogram starts by choosing a spacing of values. The numbers here, like
conventional quartiles, start by choosing a spacing of probabilities. A separate
issue is that a histogram traditionally displays density, which is less stable than
distribution. Differences of quartiles (and ratios of those differences) are similarly
less stable than the quartiles per se.

9 Note that stabilization pays attention to denominators: the jth stabilized d-ile is the
[(2j − 1)/2d, (2j +1)/2d] mean, so the 4th stabilized octile is the [7/16, 9/16] mean,
the 2nd stabilized quartile is the [3/8, 5/8] mean, and the stabilized median is the
[1/4, 3/4] mean, i.e., the usual interquartile mean.
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Fig. 6.1. Distribution of StQ1 (bottom, blue), StQ2 (middle, orange), and StQ3 (top,
green) for n observations of the number of coin flips to obtain heads, where n = 100
(left), n = 1000 (middle), or n = 10000 (right). Each distribution is computed from a
size-10000 sample of size-n samples, and is displayed as a quantile function.

If stability were the only goal then by default I would take every opportunity
to add another layer of integration: not just switching from trimmed means to
Stigler’s smoothed trimmed means but also switching the smoothing function
from a triangle to something infinitely differentiable, such as the function p 7→
exp(1/(16(p−1/2)2−1)) on [1/4, 3/4]. But this doesn’t score well on simplicity.

6 Stability evaluation

Let’s evaluate the stability of StQ1, StQ2, and StQ3 on a specific distribution D
for which medians are unstable. For simplicity and reproducibility, let’s take D
as the coin-flip distribution from Section 2. The stabilized quartiles of D are 1,
1.5, and 2.5. The hope is that the stabilized quartiles of a sample from D will
be not just stable but unbiased, close to the stabilized quartiles of D; but one
also expects deviations on the scale of 1/

√
n for size-n samples.

The three graphs in Figure 6.1 are produced by a simple Python script
available from [6] as a supplement to this paper. The script calculates stabilized
quartiles for a size-10000 sample of size-100 samples from D, and plots the
resulting observed distributions of StQ1, StQ2, and StQ3, obtaining the three
curves in the left graph in Figure 6.1. It then does the same for a size-10000
sample of size-1000 samples from D, and for a size-10000 sample of size-10000
samples from D, obtaining the other two graphs.

One sees from the n = 100 graph that StQ1 is occasionally above 1 (the right
side of the curve shows occasional samples where ≥2 appeared before the 3rd
octile), but is almost always 1. StQ2 is occasionally 1, and occasionally 2 or
higher, but between 1.4 and 1.6 about half the time. StQ3 has a broader range
and an evident asymmetry (the right side is pushed up by the frequent cases
where ≥4 appears before the 7th octile) but is between 2.4 and 2.7 about half
the time.

The n = 1000 and n = 10000 graphs in Figure 6.1 show that, unsurprisingly,
the observed distribution of StQi for size-n samples from D tightens around
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Fig. 6.2. Distribution of
√
n(StQ3 −2.5) for n observations of the number of coin flips

to obtain heads, where n = 100 (blue), n = 1000 (orange), n = 10000 (green). Each
distribution is computed from a size-10000 sample of size-n samples, and is displayed
as a quantile function.

StQi(D) as n increases. As a closer look at this tightening—with the caveat
that taking a size-10000 sample of statistics for size-n samples can still
produce visible deviations from the population distribution of statistics for
size-n samples—Figure 6.2 plots the observed distributions of

√
n(StQ3 −2.5)

for n ∈ {100, 1000, 10000}. These distributions are very close to each other.
Given that the jump in D at the 7th octile is at the edge of StQ3, and given
the aforementioned asymptotic results from [26], it is also unsurprising that the
StQ3 asymmetry visible in Figure 6.1, with the right tail thicker than the left
tail, persists in Figure 6.2 as n increases.
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7 Impact on a large collection of benchmarks

Finally, let’s look at what happens when quartiles are replaced with stabilized
quartiles in cryptographic benchmarks.

Status quo, part 1: context. Speed evaluations play a major role in
cryptography; see [4] for examples and references. Often people carry out
their own ad-hoc speed evaluations, but hundreds of people have contributed
thousands of cryptographic implementations to eBACS for central evaluation
reported by [9] with continual updates. Google Scholar says there are 398
citations of eBACS, and a Bing search for bench.cr.yp.to in quotes currently
says “About 61,700 results”.

Status quo, part 2: the scale of eBACS. The latest release [8] of the
eBACS benchmarking toolkit is 45MB and contains 4601 implementations of
1430 cryptographic “primitives” in hundreds of different families.10 The eBACS
web pages currently show results from this toolkit on 44 computers, plus results
from some stragglers using older versions of the toolkit.

For concreteness, I’ll focus here on a computer named samba. The dataset
collected by samba (155MB compressed, 1.5GB uncompressed) is available from
[1], using the format described in [9]. This dataset contains samples from 2499504
time distributions, along with various other test results that are not relevant to
this paper.

There are two basic reasons that the number of time distributions exceeds
the number of primitives. First, a single primitive usually provides multiple
functions: e.g., one function to sign a message and another to verify a signature.
Second, a function is often measured for many different input sizes: e.g., different
lengths of messages to be signed.

The online comparison table for, e.g., signing a 59-byte message shows
183 signature primitives sorted by 2nd quartiles. Equal table space is given
to the other quartiles: the objective is for large dispersion—discounting
contamination—to be visible as a large interquartile distance, and for asymmetry
to also be visible. If Q1 < 0.8Q3 then all three quartiles are marked in red with
question marks in the table.

Status quo, part 3: sample sizes. There is pressure on eBACS to keep sample
sizes small so as to keep total benchmarking time under control. On the other
hand, reliably locating the center of a broad distribution requires large sample
sizes.

One reason for variations in software timings is rejection sampling, as in
Figure 3.1. Another reason mentioned in Section 3 is contamination from the
computer taking time for unrelated activities.

10 One family typically includes multiple primitives at different sizes, where the larger
sizes are slower but hopefully more resistant to attack. Each size is benchmarked
separately.
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One can see more reasons from, e.g., [14]. For example, code that has not been
run yet has to be loaded into the CPU’s cache, producing a large slowdown when
a program runs a large function for the first time. One can thus think of timings
as a mix of two distributions, namely uncached timings and cached timings.
Uncached timings are sometimes of interest, but robustly measuring them—while
feasible for individual functions, as [3, Appendix A] illustrates—would be costly
for the number of functions handled in eBACS. The priority in eBACS is to
measure cached timings, and then uncached timings are just another form of
contamination.

Code also slows down whenever the CPU mispredicts a branch taken
by the code. Prediction, in turn, depends on recent history and, more
subtly, on virtual-memory mappings that are chosen randomly by the
operating system whenever a program is run. Experience indicates that this
variation is usually—but not always—small. To have a chance of detecting
mapping-dependent issues, the eBACS toolkit runs each measurement program
3 times and collects the observations across the runs into a single sample.

For functions whose performance is expected to be stable, the benchmarking
toolkit chooses sample size just 21, coming from 7 measurements per run times
3 runs. Notice that cache-related slowdowns in the first measurement in a run
will then increase 1/7 of the sample; this is below the breakdown point for Q3

(and for StQ2), but it has a 4(1/7− 1/8) = 1/14 effect on StQ3.
The toolkit uses larger sample sizes for some functions, as illustrated by the

93 timings used for Figure 3.1 (which is from samba). The average sample size
in the samba data set is slightly over 31, for 78400674 cycle counts overall.

Trying stabilized quartiles. Figure 7.1 plots the StQi/Qi ratios against the
ratio StQ1/StQ3. These plots are produced by another supplement to this paper,
namely [7], again a simple Python script. This script takes the uncompressed
samba dataset as input. It restricts to StQ1/StQ3 ≤ 0.95 to keep plotting time
under control, and restricts to StQ1/StQ3 ≥ 0.75 for visibility of the remaining
data, so there are only 56561 dots in each graph. Separately from the graphs,
the script outputs data about all 2499504 samples for further analysis.

The blue fin-like shapes around horizontal position 0.92 in the middle graph
show some cases where StQ2 moves 4% away from Q2 while StQ3 and StQ1 are
separated by 8%. Manual investigation of the blue corners found measurements
of siphash24 (for some input sizes) concentrated on two modes. If the modes
are roughly balanced then StQ1 is stably the smaller mode, StQ3 is stably the
larger mode, StQ2 is stably in between, and Q2 unstably picks one mode or the
other.

Larger gaps between StQ2 and Q2 appear as StQ1/StQ3 drops. Beyond the
graph, the minimum StQ2/Q2 ratio is 0.78546 and the maximum is 1.39989;
there are 2601 samples below 0.99 and 3301 samples above 1.01.

The smallest and largest StQ2/Q2 ratios appear to be explained by rejection
sampling. Specifically, graphs for various samples for 3icp signing, dilithium*
signing, falcon512tree keygen, *gemss* signing, haetae* keygen and signing,
lattisigns512 signing, leda* keygen, mceliece* keygen (as in Figure 3.1) and
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Fig. 7.1. Scatterplot of StQ1/Q1 (left), StQ2/Q2 (middle), and StQ3/Q3 (right)
against StQ1/StQ3 (horizontal axis) for the 56561 samples in the samba data set having
0.75 ≤ StQ1/StQ3 ≤ 0.95. Vertical range is chosen independently by matplotlib for
each graph and is not restricted. Sample sizes are 21 (orange), 45 (blue), or 90 or larger
(green).

enc, nccsign* signing, ntruplus* keygen, pass* signing, qtesla* keygen and
signing, ronald* keygen, rsa* keygen, rwb0fuz1024 keygen, and sikep*comp

keygen suggest that all of these use rejection sampling; these account for 1804
of the 2601 + 3301 samples. Removing those cases leaves 4098 ratios StQ2/Q2

outside [0.99, 1.01], with minimum 0.95214 and maximum 1.19968.
Only 48 of those 4098 ratios are above 1.05, with 39 (including the top 12)

from a single cryptographic primitive, aeadaes192ocbtaglen128v1. These all
use sample size 21, and show a consistent pattern of the first, second, and seventh
timings in each run of 7 being higher than the others. Having 3/7 of the sample
larger than the rest easily explains StQ2 being above Q2.

Another interesting example above 1.05 is skinnyaeadtk3128128plusv1

specifically for encrypting 1-byte messages. The cycle counts in this sample are

13538, 6940, 6861, 6804, 6828, 6804, 6845,

13890, 4337, 4316, 4304, 4210, 4187, 4197,

11515, 4426, 4293, 4289, 4259, 4255, 4300

where the larger first column is from (common) cache effects and the larger first
row is from (rare) mapping-dependent effects.

None of the investigated cases show Q2 being more meaningful than StQ2,
while the rejection-sampling cases show an instability of Q2 corrected by StQ2.

As for the other quartiles: The left graph in Figure 7.1 shows StQ1/Q1 tending
to be closer to 1 than StQ2/Q2 is, but sometimes being pushed upwards by what
look like a few different effects. The blue spikes are again explained by bimodal
measurements for siphash24, this time with the jump being around 25% rather
than 50%.

Beyond the graph, StQ1/Q1 has minimum 0.79105 and maximum 1.48806.
The extremes are mostly explained by rejection sampling, examples of StQ1

being more meaningful than Q1. There were two edonk* dec samples showing
trimodal mapping-dependent effects.
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Finally, the right graph in Figure 7.1 shows more variability in StQ3/Q3,
especially upwards; note that an increase in StQ3 also reduces StQ1/StQ3.
Beyond the graph, StQ1/Q1 has minimum 0.77764 and maximum 1.53344.
Manual investigation again found a mixture of the effects described above,
including many examples of Q3 being obviously unstable. This does not mean
that StQ3 is perfectly stable, especially for small sample sizes.
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