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Abstract. This paper gives an example of a real-world benchmarking
task for which medians and quartiles are neither robust nor stable. This
paper suggests using [1/8, 3/8], [3/8, 5/8], [5/8, 7/8] means as simple,
stable, robust replacements for quartiles.

1 The standard praise for medians

In his 1981 textbook “Robust statistics”, Huber [10, page 107] (see also [11, page
106]) wrote that “the so-called median absolute deviation (MAD) has emerged as
the single most useful ancillary estimate of scale”. The statistician is given many
observations x1, . . . , xn from some distribution; uses the median M of x1, . . . , xn

to estimate the location (center) of the distribution; and uses the median of
|x1 − M |, . . . , |xn − M | to estimate the scale (dispersion) of the distribution.
“Ancillary” refers to the common situation that scale is “a nuisance parameter in
location”. The top goal is to estimate the location, but a wide distribution makes
this unreliable; one estimates scale as an indication of the level of unreliability.

Why estimate location and scale using median and median absolute deviation
instead of mean and standard deviation? The basic argument for medians in [10,
Section 4.2] is that “the median achieves the smallest maximum bias among all
translation invariant functionals”. Here “bias” refers to the effect of starting from
a normal distribution but corrupting a small fraction ε of the data. Obviously
this contamination can create an arbitrarily large change in the mean no matter
how small ε is, while the median turns out to minimize the worst-case effect
of this contamination. For other robustness metrics favoring the median, see,
e.g., [14, Section 2] (“the robust sample median . . . can be shown to have the
maximal breakdown point among all translation-invariant location estimators”;
“the median was shown to be the most B-robust estimator”).
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2 Median coin-flip timings

Let’s see how well these supposedly robust statistics do for a simple example: the
distribution of the number of times you need to flip a fair coin before it comes
up heads. The population distribution is a textbook geometric distribution: 1
with probability 1/2; 2 with probability 1/4; 3 with probability 1/8; etc.

The median of the population distribution is 1.5. The median of a large sample
is unstable: it might occasionally match 1.5 (the probability of this is Θ(1/

√
n)

if there are n observations and n is even), but it has 1/2 − O(1/
√

n) chance of
being 1 and 1/2 − O(1/

√
n) chance of being 2.

For essentially the same reason, the median of this distribution is fragile under
arbitrarily small amounts of contamination: slight corruption favoring low values
will push the median from 1.5 down to 1, while slight corruption favoring high
values will push the median from 1.5 up to 2. In other words, Hampel’s “influence
function” from [9] is unbounded. The median absolute deviation similarly lacks
stability and robustness.3

This is a straightforward argument against using medians and median absolute
deviations whenever a quantile function might be non-differentiable or might
have large derivatives: in particular, for discrete distributions. This doesn’t
contradict the calculations in [10, Section 4.2]: those calculations consider only
a limited class of starting distributions. Also, this argument for avoiding the
median is not an argument for going back to the dark ages and using the mean:4
one wants a statistic that is meaningful for discrete distributions and is robust
against contamination.

3 A real example from software benchmarking

For many years I have been co-managing a project that collects benchmarks
of cryptographic software on many computers; see [4]. Software timings are
often contaminated (for a variety of reasons: e.g., the computer is distracted
by an incoming network packet), sometimes spoiling the mean and variance of
many timings; so, from the outset, the project instead reported medians of many
timings, along with 1st and 3rd quartiles. This is a simple success story for robust
statistics, right?

No, it’s not that simple. More and more of the software that has been added
to the project over the years relies on rejection-sampling loops. The rejection
probabilities vary but sometimes, like the coin-flip example, create large jumps
in the quantile function close to 25%, 50%, or 75%.

As a concrete example, consider the sample quantile function displayed in
Figure 3.1. This graph shows 93 measurements,5 sorted into increasing order, of
3 For comparison, [1, Section 2.1] gives a more complicated example of the instability

of the median absolute deviation—but still claims that the median absolute deviation
is a “robust measure of statistical dispersion”.

4 Regressing to the mean, one might say.
5 The measurement program has a 32-iteration loop of checking the clock and calling

the function being timed, producing 31 timings. The program was run 3 times.
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Fig. 3.1. Quantile function (transposed cdf) for 93 observations of cycle counts for
mceliece6960119 key generation on one core of a 3GHz Intel Xeon E3-1220 v5 with
overclocking disabled.

the time to generate keys for a cryptosystem called mceliece6960119 described
in [2]. This software actually relies on multiple rejection-sampling loops, but the
most important rejection-sampling loop tries to invert a random-looking d × d
matrix with entries in the field of 2 elements, specifically with d = 1547. The
probability pd of invertibility for a d × d matrix generated uniformly at random
is

∏
1≤i≤d(1 − 1/2i) by, e.g., [6, page 77, Theorem 99], and one has

lim
d→∞

pd =
∏
i≥1

(1 − 1/2i) =
∑
k∈Z

(−1)k2−k(3k+1)/2 ≈ 0.288788
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by Euler’s pentagonal-number theorem [7]; pd is only negligibly different from
the limit for d ≥ 20. The population distribution thus jumps at pd ≈ 0.288788, at
1−(1−pd)2 ≈ 0.494178, at 1−(1−pd)3 ≈ 0.640253, at 1−(1−pd)4 ≈ 0.744144,
etc. Sampling randomly nudges the jumps, so there is nothing surprising about
the second jump in Figure 3.1 being after 0.5 instead of before 0.5, producing a
sample median around 2.7 · 108 where the population median is around 3.2 · 108.
(The population mean is around 3.5 · 108.)

In [13], as part of justifying a simplified definition of the population median,
Larocque and Randles comment that “it is a rare discrete population” for which
the image of the cdf includes exactly 0.5. Formally, the rejection-sampling loop
described above is not an exception: 0.494178 is not 0.5. But 0.494178 is close
enough to 0.5 to create a large influence function, and to create instability of the
sample median until the sample size is very large. Even with 10000 observations,
there will be variations on the scale of 0.01 starting from 0.494178, so both
2.7 · 108 and 3.2 · 108 have a good chance of appearing as the sample median.
Similar comments apply to other quartiles, the median absolute deviation, etc.

Thousands of cryptographic functions are benchmarked in [4], and most
of them do not trigger the same issue. On the other hand, this particular
function has been deployed and is one of relatively few functions currently under
consideration for standardization by ISO; see generally [3]. In any event, I would
like all of the reported benchmark numbers to be reliable.

4 Solutions in the literature

The literature on robust statistics considers many location statistics other than
the median. For example, Tukey wrote the following in 1960 [19, Section 17]:
“In large samples the sample mean is not nearly so safe an indicator of location
as is the mean of the observations which remain after a small percentage of
the highest, and an equal percentage of the lowest, have been set aside (use
of a lightly truncated mean).” An example is the interquartile mean, although
Tukey’s examples of “light” truncation were at most 6% rather than 25%.

Daniell [5] had already considered “discard averages” in 1920, as noted in,
e.g., [18].6 Today “trimmed means” are well known, even if not as well known
as medians.7 An interquartile mean is easy to compute, easy to explain, and
6 Daniell cites Poincaré [16, page 211] for discarding outliers (“rejeter une observation

qui présente avec toutes les autres une divergence exagérée”). Poincaré in [16, pages
212ff] considers different models for a contaminated distribution and obtains different
rules for which outliers to discard; Daniell starts with more general approaches such
as “quartile-discard averages” (interquartile means), and analyzes how well those
approaches apply to various distributions.

7 I tried Google Scholar searches on 19 July 2025 for articles since 2024, putting search
phrases into quotes. Google Scholar reported (“about”) 11600 results for “trimmed
mean”; 477 results for “truncated mean”; 319 results for “interquartile mean”; and
63500 results for “median”, although a skim rapidly found that some of these were
for, e.g., “median sternotomy”.
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not afraid of discrete distributions. For the coin-flip example from Section 2, the
interquartile mean of a large sample is consistently close to 1.5.

There are other choices in the literature, including choices that have
advantages over trimmed means. For example, Stigler [17] showed in 1974 that
samples of a smoothed trimmed mean such as 16

∫ 0.75
0.25 (0.25 − |x − 0.5|)Q(x) dx

are asymptotically normal for a wide range of quantile functions Q, while a
similar result for samples of the interquartile mean 2

∫ 0.75
0.25 Q(x) dx requires more

stringent assumptions about the behavior of Q at 0.25 and at 0.75.
On the other hand, trimmed means are easier to explain, even for an audience

that hasn’t seen them before. Explainability is an important feature for someone
like me choosing statistics to use in an application, whereas I don’t see why
this application needs the asymptotic normality result in [17] (even though I’m
looking at Q in Figure 3.1 that really does jump close to 0.25 and close to 0.75!).
None of the other robust-even-for-the-discrete-case location statistics seem to be
as popular as trimmed means.

What about scale statistics? Again the literature provides various options—for
example, Tukey writes that “the use of truncated variances is likely to be quite
satisfactory”—but these seem far less widely used than standard deviations,
quartiles, and the interquartile range,8 all of which are unsatisfactory.

In short, the literature has solutions to the problem at hand, but it seems that
the solutions are popular only for location, not for scale. This makes it even more
important for me to be able to explain whichever solution I end up using. From
this perspective, I’m not satisfied saying “you know about mean and standard
deviation already; I’ll use trimmed mean and trimmed standard deviation”. Even
without trimming, standard deviation is more complicated than mean: consider
the squares, the square roots, the common variants that differ noticeably from
each other when the sample size is small, the tricky visual interpretation. This is
all to make some formulas work out nicely, but trimming breaks those formulas.
What do I say to a reader who complains that a trimmed standard deviation is
neither comprehensible nor standard?

Furthermore, I want to have three statistics rather than two, to see not just
location and scale but also skewness—the asymmetry of Figure 3.1, for example.
Can I really explain replacing the 1st quartile with, say, the interquartile mean of
the variable number of observations below the interquartile mean of the sample?
I’d rather have something simpler.
8 More Google Scholar searches on 19 July 2025 for articles since 2024: 49800 results

for “standard deviation”; 22600 results for “interquartile range”; 18900 results for
“quartile”; 45 results for “trimmed standard deviation”; 12 results for “truncated
standard deviation”; 73 results for “truncated variance”; 15 results for “trimmed
variance”. Note that “interquartile range” typically refers to the difference between
the 3rd quartile and the 1st quartile, rather than the two statistics separately—this
is confusing terminology and should be fixed; see generally [8]—but, either way, just
a few quantiles are being used.
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Fig. 5.1. First graph, in black: averages on [1/8, 3/8] and [3/8, 5/8] and [5/8, 7/8] of
the quantile function from Figure 3.1. Second graph, in black: averages on [1/16, 3/16]
etc. Third graph, in black: averages on [1/32, 3/32] etc. Original quantile function is
shown in light red.

5 Stabilized quartiles

The first black graph in Figure 5.1 is a graph of the following three numbers
derived from the sample in Figure 3.1:

• “[1/8, 3/8] mean” or “StQ1”: the mean between the 1st and 3rd octiles, as a
stabilized substitute for the 1st quartile.

• “[3/8, 5/8] mean” or “StQ2”: the mean between the 3rd and 5th octiles, as
a stabilized substitute for the median.

• “[5/8, 7/8] mean” or “StQ3”: the mean between the 5th and 7th octiles, as
a stabilized substitute for the 3rd quartile.

Figure 5.2 shows how easy it is to compute these three statistics in Python. One
can use these statistics in the same way as quartiles: for example, computing
the difference of StQ3 and StQ1 as an overall estimate of scale, or computing
appropriate ratios as an estimate of skewness. As a concrete example, where [20]
uses Bowley’s skewness coefficient (Q3 + Q1 − 2Q2)/(Q3 − Q1), one can instead
use (StQ3 + StQ1 − 2 · StQ2)/(StQ3 − StQ1).

For a normal distribution, these stabilized quartiles are numerically close to
quartiles: an integration exercise concludes that StQ3 − StQ1 is

25/2π−1/2 (
exp

(
− erf−1(1/4)2)

− exp
(
− erf−1(3/4)2))

≈ 1.3867336971

times the standard deviation, while the difference of third and first quartiles is
23/2 erf−1(0.5) ≈ 1.3489795004 times the standard deviation.

These stabilized quartiles are robust against contamination. Their breakdown
points (1/8 for the 1st and 3rd, 3/8 for the 2nd) are not as high as for quartiles
(1/4, 1/2) or median absolute deviation (1/2); but, again, influence functions
and sampling show that quartiles and median absolute deviation are fragile and
unstable starting from the distribution in Section 2.

Asymmetrically trimmed means aren’t new (see, e.g., [12]), but I haven’t
found literature proposing these statistics as an easy replacement for quartiles. I
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def mean(S):
S = list(S)
return sum(S)/len(S)

def stq(S):
S = sorted(8*list(S))
n = len(S)//8
return mean(S[n:3*n]),mean(S[3*n:5*n]),mean(S[5*n:7*n])

Fig. 5.2. Python 3 function stq to compute the three stabilized quartiles of a sample.
In applications where the sample already has length divisible by 8, one can skip the
initial multiplication by 8; one can also, by adding code to handle edges, avoid the
initial multiplication in all cases.

think the description above in terms of octiles is simpler than a description
as interquartile means of (1) the observations below the median, (2) the
interquartile observations, and (3) the observations above the median.

The second and third graphs in Figure 5.1 are similar to the first but
show stabilized octiles and stabilized hexadeciles. The narrower spacing makes
each statistic less stable, and (because the spacing comes closer to the edges)
makes the outer statistics more vulnerable to contamination; but using more
statistics provides more information, coming closer and closer to showing the full
sample distribution, which in turn says something useful about the population
distribution if there are enough samples.

One can instead work directly with the full sample distribution. I normally
graph the distribution; sometimes I compare it directly to a model distribution.
But I also want to compress this information to a few statistics. For numerical
tables summarizing benchmark results, I continue to think that 3 statistics are
the right level of detail, so I’m planning to switch to stabilized quartiles.

A histogram also compresses a sample distribution to fewer numbers, but a
histogram chooses an equal (often artificial) spacing of values. The numbers here,
like conventional quartiles, choose an equal spacing of probabilities, with values
naturally dictated by the sample provided as input. A separate issue is that a
histogram traditionally displays density, which is less stable than distribution.

6 Experimental stability evaluation

To close, I’ll experimentally evaluate the stability of StQ1, StQ2, and StQ3
on a specific distribution for which medians are unstable. For simplicity and
reproducibility, I’ll again take the coin-flip distribution from Section 2.

I tried 100 observations of the number of coin flips—simulated as the number
of random.randrange(2)—required to obtain heads, and calculated stabilized
quartiles for that sample. The hope, of course, is to obtain not just something
stable but something unbiased, close to the stabilized population quartiles 1,
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Fig. 6.1. Experimental distribution of StQ1 (bottom, blue), StQ2 (middle, orange),
and StQ3 (top, green) for n observations of the number of coin flips to obtain heads,
where n = 100 (left), n = 1000 (middle), or n = 10000 (right). Each distribution is
displayed as a quantile function for 10000 size-n samples.

1.5, and 2.5; but with sample size 100 one also expects deviations on the scale
of 0.1.

I repeated the computation for 10000 samples, and plotted the resulting
experimental distributions of StQ1, StQ2, and StQ3, obtaining the three curves
in the left graph in Figure 6.1. One sees from the graph that StQ1 is occasionally
(right side of the graph) above 1 (for the occasional samples where ≥2 appeared
before the 3rd octile), but is almost always 1. StQ2 is occasionally 1, and
occasionally 2 or higher, but between 1.4 and 1.6 about half the time. StQ3
has a broader range and an evident asymmetry (the right side is pushed up by
the frequent cases where ≥4 appears before the 7th octile) but is between 2.4
and 2.7 about half the time.

The other two graphs in Figure 6.1 come from taking 10000 size-1000 samples
and 10000 size-10000 samples. Unsurprisingly, the experimental distributions of
the stabilized sample quartiles tighten around the stabilized population quartiles
as the sample size increases.

Finally, as a closer look at the shrinkage, Figure 6.2 plots the experimental
distributions of

√
n(StQ3 − 2.5) for n ∈ {100, 1000, 10000}. These distributions

are very close to each other, as one would hope. Given that the jump in the
population distribution at the 7th octile is at the edge of StQ3, and given the
aforementioned asymptotic results from Stigler [17], it is unsurprising that there
is a persistent asymmetry in Figure 6.2 as n increases.
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