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Abstract. Constant-time C software for various post-quantum KEMs
has been submitted by the KEM design teams to the SUPERCOP
testing framework. The ref/*.c and ref/*.h files together occupy, e.g.,
848 lines for ntruhps4096821, 928 lines for ntruhrss701, 1316 lines for
sntrup1277, and 2613 lines for kyber1024.
It is easy to see that these numbers overestimate the inherent complexity
of software for these KEMs. It is more difficult to systematically measure
this inherent complexity.
This paper takes these KEMs as case studies and applies consistent
rules to streamline the ref software for the KEMs, while still passing
SUPERCOP’s tests and preserving the decomposition of specified KEM
operations into functions. The resulting software occupies 381 lines for
ntruhps4096821, 385 lines for ntruhrss701, 472 lines for kyber1024,
and 478 lines for sntrup1277. This paper also identifies the external
subroutines used in each case, identifies the extent to which code is shared
across different parameter sets, quantifies various software complications
specific to each KEM, and finds secret-dependent timings in kyber*/ref.
Keywords: post-quantum cryptography, lattice-based cryptography,
software metrics

1 Introduction

The United Kingdom’s mass-surveillance agency [49] is called the “Government
Communications Headquarters” (GCHQ). In 2016, GCHQ introduced a new web
site called the “National Cyber Security Centre” (NCSC). The GCHQ director
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later wrote [31, pages 14–15] that “Complete ownership by GCHQ was also key
to making the NCSC acceptable to foreign intelligence allies”. In 2023, NCSC
issued a statement [41] regarding post-quantum cryptography, in particular

• discouraging immediate deployment of post-quantum software (“operational
systems should only use implementations based on the final NIST
standards”),

• discouraging deployment of the highest available post-quantum security
levels (“require greater processing power and bandwidth, and have larger
key sizes or signatures”; “may be useful for key establishment in cases where
the keys will be particularly long lived or protect particularly sensitive data
that needs to be kept secure for a long period of time”),

• discouraging deployment of the post-quantum signature systems with the
strongest security track records (“not suitable for general purpose use”; “the
signatures are large”), and

• discouraging deployment of double encryption and double signatures (“no
more security than a single post-quantum algorithm but with significantly
more complexity and overhead”).

The anti-security recommendations in [41] were surrounded by non-controversial
statements (e.g., “For users of commodity IT, such as those using standard
browsers or operating systems, the switchover to PQC will be delivered as part
of a software update and should happen seamlessly”).

None of the cost claims made in [41] were accompanied by any numbers.
Most of the cost claims, such as the claim that “the signatures are large”,
would have been very easy to quantify. This quantification would have helped
readers compare the costs to the overall costs of their applications (see, e.g.,
my papers [14, Section 2] and [15])—which, presumably, would have encouraged
rapid deployment in many (if not all) applications, evidently not the goal of [41].

The claim of “significantly more complexity” in [41] is different: it is shielded
by a lack of literature quantifying this complexity. How complex is the software
for a post-quantum KEM? How much more complex is a hybrid KEM that
combines a post-quantum KEM with X25519? What about signatures?

Given that no “complexity” metric is specified, one can dismiss the claim of
“significantly more complexity” as failing the scientific rule of falsifiability. The
claim nevertheless appears in [41] as part of a guide to real-world decisions. It is
easy to see how claims regarding complexity can be used to deter cryptographic
upgrades and to influence specific choices of cryptographic mechanisms.

1.1. Assessment challenges. Let’s focus on the first question formulated
above, the question of how complex post-quantum KEM software is. Software is
centrally available for various post-quantum KEMs in the SUPERCOP testing
framework from [18]. The real question is how to measure the complexity of that
software.

There is an extensive literature on software metrics, for example as predictors
of bugs; see, e.g., [46]. There are also reasons for caution in applying these
metrics to cryptography:
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• 2021 Blessing–Specter–Weitzner [22] evaluated vulnerability announcements
(CVEs) since 2010 in OpenSSL, GnuTLS, Mozilla TLS, WolfSSL, Botan,
Libgcrypt, LibreSSL, and BoringSSL, finding that “the rate of vulnerability
introduction is up to three times as high in cryptographic software as in
non-cryptographic software”: e.g., 1.187 CVEs per thousand lines of code
added to OpenSSL, compared to 0.403 for Ubuntu.

• Cryptographic software typically replaces secret branch conditions and
secret array indices with constant-time arithmetic, since branch conditions
and array indices are leaked through timings. Replacing a branch with
constant-time arithmetic reduces complexity in typical control-flow metrics
such as “cyclomatic complexity”, but does not eliminate bugs.

• A single cryptographic function might be shipped not just as reference
software but as dozens of different pieces of optimized software (see, e.g., the
official Keccak code package [21]), featuring mathematical optimizations
and CPU-specific optimizations such as vectorization. Hopefully any bugs
here will eventually be eliminated by formal verification that the optimized
software matches the reference software (see, e.g., [4] for recent verification
of most of the subroutines in an optimized Kyber implementation),
but presumably the complexity of the software has an influence on the
verification cost, and on the cost of writing the software in the first place.

This last point suggests a split of analyses into two scenarios:

• This paper focuses on analyzing the complexity of reference software for
post-quantum KEMs. The scenario here is that the application simply needs
the cryptographic features provided by its selected KEM, and can afford the
CPU time for the reference software for that KEM. (See, e.g., [43] and [51].)

• It would also be interesting to analyze the extra complexity of optimized
software. The scenario there would be an application where the reference
software is not fast enough.

The second scenario is more challenging to analyze—it depends on the target
CPUs, depends on the performance targets, naturally involves more code, and
raises research questions about tradeoffs between speed and code complexity,
whereas existing optimized post-quantum software usually focuses purely on
speed—so it makes sense to take the first scenario as an initial case study.

How complex are the reference implementations of post-quantum KEMs? As a
starting point, let’s simply count lines in ref/*.c and ref/*.h in SUPERCOP.
This produces tallies of, e.g.,

• 848 lines for ntruhps4096821,
• 928 lines for ntruhrss701,
• 1316 lines for sntrup1277, and
• 2613 lines for kyber1024.

All of these pieces of software were submitted to SUPERCOP by the KEM design
teams, and all of them are labeled goal-constbranch and goal-constindex,
meaning that they are designed to avoid secret branch conditions and secret
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array indices. The kyber1024 software does not pass the TIMECOP component
of SUPERCOP, but a two-line change makes it pass; see Section 6.

There are many ways to object to these line counts as (1) misleading and
(2) clearly not what the ref implementations were designed to optimize. For
example, kyber1024/ref/*.c has 77 multi-line comments describing inputs and
outputs of functions. As another example, the largest kyber1024/ref/*.c file
is fips202.c (774 lines), which implements the SHA-3 family of hash functions;
for comparison, ntruhrss701 simply calls SUPERCOP’s crypto_hash_sha3256
subroutine. Counting 774 lines for hash implementations in kyber1024 and 0 for
ntruhrss701 is unfair to kyber1024. On the other hand, replacing kyber1024’s
fips202.c with calls to subroutines available in SUPERCOP and not tallying
the subroutines would be unfair to ntruhrss701, since kyber1024 uses a wider
range of SHA-3/SHAKE functions than ntruhrss701 does. (See Section 6.)

Meanwhile sntrup1277 uses crypto_hash_sha512. Is SHA-2 more complex
than SHA-3, making this choice a complexity disadvantage? (See Section 3.2.) Or
is it a complexity advantage, since practically all environments already provide
SHA-2 (for, e.g., TLS) whereas there is a higher risk of having to add SHA-3?

1.2. Contributions of this paper. As case studies, this paper takes the four
families of lattice-based KEMs mentioned above: kyber, ntruhps, ntruhrss,
and sntrup. Section 2 applies consistent rules to streamline the ref software for
these KEMs. Streamlining does not mean pure code-size minimization (“code
golfing”): the modified software closely tracks the original software, decomposing
the specified KEM operations into functions the same way that ref does.

The new software has been added to SUPERCOP under the name “compact”
and passes SUPERCOP’s tests, including TIMECOP. Readers are cautioned,
however, that the new software has not been verified and could easily have bugs.
SUPERCOP’s tests are more thorough than many other test frameworks but do
not eliminate the possibility of bugs.

Section 3 measures the resulting software, tabulating line counts (ranging
from 381 lines for ntruhps4096821 through 497 lines for kyber512), further size
metrics, and a list of all external subroutines such as crypto_hash_sha3256.
Section 3 also measures the number of lines of code needed to merge different
parameter sets. Interestingly, even though [6, Section 6.1] claims “scalability” as
one of the two “unique advantages” of Kyber, it turns out that kyber* has the
largest code-size differences across parameter sets.

Sections 4, 5, and 6 look more closely at various aspects of the KEM software,
in particular giving quantified examples of inherent software complications
specific to each family of lattice-based KEMs. (Note that it is invalid to select any
particular complication as an indication of one KEM being more complex than
another; these complications are merely contributing factors to total complexity.)
As a spinoff, Section 4.2 identifies secret-dependent timings in kyber*/ref.

Finally, Section 7 looks at how various security and efficiency design goals for
these KEMs led to these software complications.
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2 Streamlining the reference software

This section specifies the rules used to convert the existing ref implementations
into this paper’s compact implementations. An overarching principle behind this
section’s rules is the principle of sharing any existing streamlining: if a particular
type of streamlining is visible in one KEM’s software, and makes sense for other
KEMs, then it should be applied to the other KEMs.

This section is organized in roughly decreasing order of code-size impact.
Verifying whether this is actually decreasing order would take extra work, since
this paper’s software was not written in this order.

2.1. Using external subroutines. All of ntruhps*/ref, ntruhrss*/ref, and
sntrup*/ref reuse external hash subroutines, so this paper also replaces the
SHA-3/SHAKE functions in kyber*/ref with calls to external hash subroutines.
See Section 6 for further information on how hashing is used.

Both ntruhps*/ref and sntrup*/ref also call an external sorting subroutine,
but there were no evident opportunities to use sorting in kyber*/ref and
ntruhrss*/ref. Each kyber*/ref has two lines calling memcpy, but this does
not appear to qualify as streamlining given the need to include string.h.

For integer types, some of the ref software uses, e.g., int16_t from stdint.h,
which is more streamlined than using crypto_int16 from SUPERCOP’s
crypto_int16.h, so this paper always uses stdint.h.

SUPERCOP provides various further subroutines that could have been
used at a few spots in each KEM, such as crypto_int16_nonzero_mask and
crypto_verify_*, but none of the ref software uses these subroutines.

2.2. One parameter set. ntruhps2048677/ref has some code that does not
appear in ntruhps4096821/ref, and vice versa. sntrup*/ref instead merges
code across parameter sets: almost all files are shared across parameter sets,
except for an 11-line paramsmenu.h file and the 4-line api.h file required by
SUPERCOP. Similarly, kyber*/ref shares all files across parameter sets except
for a 48-line params.h file with one line changing across parameter sets.

This paper reports various separate measurements of the code for each
parameter set. With separate measurements, code for a single parameter
set is more streamlined than merged code, so this paper applies the same
streamlining to each parameter set for kyber* and sntrup*. Concretely, this
means eliminating code that applies only to other parameter sets, eliminating
macros that control the code inclusion, and specializing api.h to 4 lines of
precomputed numbers. For example, code in kyber* to support kyber90s* is
removed, as is code in sntrup* to support ntrulpr*.

For applications that support multiple parameter sets, it is also interesting to
measure the extent to which code is shared across parameter sets. Section 3.3
reports the size of code merged across various pairs of parameter sets.

2.3. One file. A KEM can split subroutines into many *.c files, but this
requires extra code in *.h files to declare each subroutine. Most of these
declarations are skipped by sntrup1277/ref, which puts almost all functions
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into a single kem.c, except for a few general-purpose utility functions for integer
arithmetic, integer encoding, and integer decoding. The number of ref/*.c files
is 5 for sntrup1277, 10 for kyber1024, and 13 for ntruhrss701.

This paper merges the code for each parameter set into a single kem.c file
(plus the 4-line api.h file required by SUPERCOP), eliminating the need for
subroutine declarations (and namespace declarations). Sometimes this eliminates
multiple identical static subroutines: for example, ntruhrss701/ref has three
mod3 subroutines. Actually, one of those mod3 subroutines is a variant, skipping
some initial lines that are no-ops in context; this paper eliminates that variant.

2.4. Integer and polynomial operations. Sections 4 and 5 identify specific
differences in how the ref code for different KEMs (and sometimes within a
single KEM) carries out various operations on integers and polynomials. This
paper consistently applies the more concise approach across KEMs.

2.5. Comments. There is a very long history of debates regarding the proper
levels of comments in code and in separate documentation. None of the ref
implementations consistently have (1) comments on code sections (kyber* and
ntru* skip this) and (2) comments on each function (ntru* usually skips this;
sntrup* sometimes skips this) and (3) comments on any potentially interesting
step in a function (kyber* skips this; sntrup* usually skips this).

Code-measurement tools often say that they disregard comments. To ensure
that comments do not influence any of the numbers in Section 3, this paper
simply removes all comments from the source code.

2.6. Unused code. Some code turns out to be unused, before or after the
other changes applied in this paper. For example, kyber*/ref/reduce.h defines
a MONT macro that is not used except in a comment in kyber*/ref/ntt.c;
kyber*/ref/kem.h defines a CRYPTO_ALGNAME macro that matters only for
a NIST test program, not inside SUPERCOP; and ntruhrss*/ref/owcpa.c
includes a uint16_t t = 0 initializer that is followed immediately by setting t
to ciphertext[NTRU_CIPHERTEXTBYTES-1]. This paper eliminates any detected
unused code, although this is not necessarily comprehensive.

Some abstraction layers are, in the context of handling just one parameter set
(see Section 2.2), simply renaming X as Y for some X and Y . In these cases, this
paper merges the names X and Y into a single name, eliminating the renaming
step. For example, kyber1024/ref/cbd.c has functions poly_cbd_eta1 and
poly_cbd_eta2 that, for kyber1024, simply call cbd2, so this paper eliminates
those functions in favor of calling cbd2 directly. This paper does not merge
multi-step functions into their callers, even when there is just one caller: this
would go beyond renaming into changing functional decomposition.

For the same reason, this paper does not generally eliminate macros. However,
some macros are redundant, and are eliminated, given the availability of
SUPERCOP macros such as crypto_kem_CIPHERTEXTBYTES.
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2.7. Formatting. The ref software for these KEMs varies in code formatting.
For example, ntruhrss701/ref/*.c puts opening braces on separate lines—

for(i=0; i<NTRU_N; i++)
{

...
}

—whereas kyber1024/ref/*.c puts opening braces on the previous line (this is
widely known as the “One True Brace Style”), sometimes even for functions:

void ntt(int16_t r[256]) {
...

}

Streamlining is often measured by line counts, so this paper always puts opening
braces on the previous line.

More broadly, this paper reformats all code with clang-format using Google
style (which, among other things, always puts opening braces on the previous
line), except for “SortIncludes: false” to avoid sorting #include directives
(this simplifies comparisons to ref), and “ColumnLimit: 9999” to allow very
long lines (otherwise the line count is sensitive to how long the variable names are
and whether pointers as function parameters are expressed with array lengths).
This can be viewed as too generous to kyber* since it compresses

const int16_t zetas[128] = {
-1044, -758, -359, -1517, 1493, 1422, 287, 202,
-171, 622, 1577, 182, 962, -1202, -1474, 1468,
573, -1325, 264, 383, -829, 1458, -1602, -130,

-681, 1017, 732, 608, -1542, 411, -205, -1571,
1223, 652, -552, 1015, -1293, 1491, -282, -1544,
516, -8, -320, -666, -1618, -1162, 126, 1469,

-853, -90, -271, 830, 107, -1421, -247, -951,
-398, 961, -1508, -725, 448, -1065, 677, -1275,
-1103, 430, 555, 843, -1251, 871, 1550, 105,

422, 587, 177, -235, -291, -460, 1574, 1653,
-246, 778, 1159, -147, -777, 1483, -602, 1119,
-1590, 644, -872, 349, 418, 329, -156, -75,

817, 1097, 603, 610, 1322, -1285, -1465, 384,
-1215, -136, 1218, -1335, -874, 220, -1187, -1659,
-1185, -1530, -1278, 794, -1510, -854, -870, 478,
-108, -308, 996, 991, 958, -1460, 1522, 1628

};

into a single 787-character line, but this is an exceptional case. The byte counts
in Section 3 show that the average line lengths are similar across KEMs.

This paper removes all blank lines inside functions, leaves only one blank line
between functions, and collects macros at the top of each file with no blank lines
between macros.
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3 Measurements of the streamlined software

This section applies various metrics to the compact software produced by the
rules in Section 2; lists the external subroutines used by this software; and tallies
the number of lines used when software for different parameter sets is merged
within the same KEM family.

This tables in this section were produced by various scripts attached to this
PDF, except that Table 3.2.1 was assembled by hand.

3.1. Metrics. This section uses the following metrics for the *.c and *.h files,
in some cases computed by the lizard tool from [53]:

• “bytes”: total number of bytes;
• “bytesw”: total number of bytes after replacement of each alphanumeric

stretch (including underscore) with a single letter;
• “tokens”: total number of tokens reported by lizard across all functions;
• “bytesz”: total number of bytes after gzip -9 compression of each file;
• “byteswz”: total number of bytes after gzip -9 compression of the results

of replacing each alphanumeric stretch;
• “lines”: total number of lines;
• “loc”: number of lines of code (nloc) reported by lizard (this excludes blank

lines between functions, macros outside functions, etc.);
• “funloc”: total of the number of lines of code reported by lizard within

functions;
• “cyc”: total across functions of the per-function cyclomatic complexity

reported by lizard (i.e., number of functions plus number of branches);
• “funs”: number of functions reported by lizard.

Table 3.1.1 tallies the results of applying these numerical metrics to the compact
software. Also, to illustrate the effect of (not) streamlining, Table 3.1.2 tallies
the results of applying the same numerical metrics to the original ref software.

3.2. Measuring external subroutines. Table 3.2.1 lists the external
subroutines called by the compact software.

The complexity of these subroutines is not accounted for in the metrics
from Table 3.1.1. This complexity is of interest for environments where these
subroutines are not already available. More broadly, this complexity should
be weighted by the extent to which these subroutines are shared by other
applications.

Table 3.2.2 reports metrics for this paper’s compact versions of various
subroutines. These implementations are streamlined as in Section 2, starting
from crypto_hashblocks/sha512/compact4, crypto_sort/int32/portable3,
and crypto_sort/uint32/useint32, plus crypto_xof/shake256/tweet in
libmceliece [17], which in turn is based on TweetFIPS202 [19].

There are two exceptionally long lines in sha512/compact: 1875 characters
for a round array, and 421 characters for an iv array. There are also 8 lines of
macros carrying out computations in sha512/compact; if these were rewritten
as functions then formatting would cost 7 lines.
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KEM bytes bytesw tokens bytesz byteswz lines loc funloc cyc funs
kyber512 17176 9110 4645 4169 1377 497 425 411 116 49
kyber768 16403 8629 4395 4092 1362 469 400 386 110 46
kyber1024 16549 8773 4471 4121 1371 472 403 389 114 46
ntruhps2048509 13151 7279 4030 2820 1097 393 338 329 93 34
ntruhps2048677 13152 7279 4030 2821 1097 393 338 329 93 34
ntruhps4096821 12856 7051 3911 2775 1066 381 326 317 91 34
ntruhrss701 13322 7441 4232 2864 1144 385 333 325 90 33
sntrup653 13306 8630 4660 3205 1266 478 424 415 125 41
sntrup761 13308 8630 4660 3205 1266 478 424 415 125 41
sntrup857 13308 8630 4660 3204 1266 478 424 415 125 41
sntrup953 13308 8630 4660 3229 1276 478 424 415 125 41
sntrup1013 13309 8630 4660 3208 1266 478 424 415 125 41
sntrup1277 13309 8630 4660 3207 1266 478 424 415 125 41

Table 3.1.1. Numerical measurements of this paper’s compact software for each
parameter set for each KEM. See text for description of the columns.

KEM bytes bytesw tokens bytesz byteswz lines loc funloc cyc funs
kyber512 85105 46836 9488 19479 5902 2613 1270 1064 180 79
kyber768 85105 46836 9488 19479 5902 2613 1270 1064 180 79
kyber1024 85105 46836 9488 19479 5902 2613 1270 1064 180 79
ntruhps2048509 26369 14786 6138 9372 3767 918 589 515 98 38
ntruhps2048677 26370 14786 6138 9373 3767 918 589 515 98 38
ntruhps4096821 23247 12416 4730 8846 3600 848 525 451 89 38
ntruhrss701 27069 15372 6254 9636 3959 928 585 512 96 37
sntrup653 26426 15114 6441 8128 3163 1316 744 693 161 66
sntrup761 26428 15114 6441 8127 3163 1316 744 693 161 66
sntrup857 26428 15114 6441 8130 3163 1316 744 693 161 66
sntrup953 26428 15114 6441 8129 3163 1316 744 693 161 66
sntrup1013 26428 15114 6441 8130 3163 1316 744 693 161 66
sntrup1277 26428 15114 6441 8128 3163 1316 744 693 161 66

Table 3.1.2. Numerical measurements of the existing ref software for each parameter
set for each KEM. See text for description of the columns.

Further hashing subroutines are needed for kyber* and are not listed in
Table 3.2.2. These subroutines would be able to share most of their code with
the sha3256 code.

3.3. Line counts for merging parameter sets. Table 3.3.1 lists, for various
pairs of parameter sets, the number of lines for a merged version of kem.c across
the pairs (not considering api.h). This table covers all pairs of kyber* parameter
sets, all pairs of ntruhps* parameter sets, and all pairs of sntrup* parameter
sets.

The table also covers pairs crossing ntruhps* and ntruhrss*, given that [24,
page 4] says “We have unified all aspects of the designs except for the use of
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KEM external subroutines
kyber* SHA3_256, SHA3_512, SHAKE256, four Sponge* subroutines
ntruhps* crypto_hash_sha3256, crypto_sort_int32
ntruhrss* crypto_hash_sha3256
sntrup* crypto_hash_sha512, crypto_sort_uint32

Table 3.2.1. List of external subroutines called by this paper’s compact software for
each KEM beyond memcpy (twice in kyber*), crypto_declassify (once in kyber* and
once in sntrup*), and randombytes. For kyber*, the “four Sponge* subroutines” listed
in the table are described in Section 6.

subroutine bytes bytesw tokens bytesz byteswz lines loc funloc cyc funs
hash/sha512 4466 1902 636 1916 379 65 49 45 17 4
hash/sha3256 1778 1401 715 736 374 67 59 57 23 4
sort/int32 754 564 264 393 229 31 28 26 11 2
sort/uint32 846 634 304 416 239 33 30 28 13 2

Table 3.2.2. Numerical measurements of this paper’s compact software for some of
the subroutines used in KEM software. See text for description of the columns.

fixed-weight sampling”. Beware that these pairs are not directly comparable
to the others. The table does not cover kyber* vs. kyber90s*, or sntrup*
vs. ntrulpr*.

Recall from Section 1 that [6, Section 6.1] claims “scalability” as one of the
two “unique advantages” of Kyber. The full quote is as follows:

Scalability: Switching from one Kyber parameter set to another only
requires changing the matrix dimension (i.e., a #define in most C
implementations), the noise sampling, and the rounding of the ciphertext
via different parameters to the Compressq function.

However, Table 3.3.1 shows that merging the streamlined code for kyber512 and
kyber1024 increases the line counts from 493 and 468 to 574, jumps of 81 lines
and 106 lines respectively, whereas the maximum jump for ntruhps is 33 lines
and the jump for sntrup is just 6 lines.

Part of the issue here is that the kyber512 code uses specific noise-sampling
functions not used in kyber768 and kyber1024, namely cbd3 (14 lines) and,
inside that, load24_littleendian (6 lines). A larger part of the issue is how
parameter sets vary in functions for encoding and decoding; see Section 5. It
is also interesting to observe that the Kyber software from [4] supports only
kyber512 and kyber768.

4 Subroutines for arithmetic

In the 1998 NTRU cryptosystem [33], a ciphertext has the form Gb + d. Here
b, d are secret integer vectors with small entries, and G is a public linear
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KEM 1 KEM 2 lines 1 lines 2 lines merged
kyber512 kyber768 493 465 512
kyber512 kyber1024 493 468 574
kyber768 kyber1024 465 468 531
ntruhps2048509 ntruhps2048677 389 389 393
ntruhps2048509 ntruhps4096821 389 377 410
ntruhps2048677 ntruhps4096821 389 377 410
ntruhps2048509 ntruhrss701 389 381 476
ntruhps2048677 ntruhrss701 389 381 476
ntruhps4096821 ntruhrss701 377 381 448
sntrup653 sntrup761 474 474 480
sntrup653 sntrup857 474 474 480
sntrup653 sntrup953 474 474 480
sntrup653 sntrup1013 474 474 480
sntrup653 sntrup1277 474 474 480
sntrup761 sntrup857 474 474 480
sntrup761 sntrup953 474 474 480
sntrup761 sntrup1013 474 474 480
sntrup761 sntrup1277 474 474 480
sntrup857 sntrup953 474 474 480
sntrup857 sntrup1013 474 474 480
sntrup857 sntrup1277 474 474 480
sntrup953 sntrup1013 474 474 480
sntrup953 sntrup1277 474 474 480
sntrup1013 sntrup1277 474 474 480

Table 3.3.1. Line counts for merges of compact/kem.c across two parameter sets. The
4 lines in each compact/api.h are not included here.

transformation on vectors of integers mod q. The modulus q is a cryptosystem
parameter.

All of the KEMs considered in this paper reuse the same basic structure, but
with differences in the details. This section looks at various details that matter
for code complexity.

4.1. Modular reduction. In ntru*, the modulus q is chosen as a power of 2,
and reduction modulo q is simply a mask in ntru*/ref:

#define MODQ(X) ((X) & (NTRU_Q - 1))

However, there is also arithmetic modulo 3, which ntru*/ref carries out as
in Figure 4.1.1. The first few lines reduce r to the range {0, 1, 2, 3, 4, 5}. The
last line uses various logic operations to select either r − 3 or r, after a
twos-complement shift >>15 to convert negative integers into −1 and nonnegative
integers into 0. (The C language does not guarantee twos-complement arithmetic,
but SUPERCOP always sets the compiler’s -fwrapv option, which guarantees
twos-complement arithmetic.) One can easily test that this function works for
all possible inputs.



12 Daniel J. Bernstein

static uint16_t mod3(uint16_t a)
{

uint16_t r;
int16_t t, c;

r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255
r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15
r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3
r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

t = r - 3;
c = t >> 15;

return (c&r) ^ (~c&t);
}

Fig. 4.1.1. Example of a modular-reduction function from ntru*/ref, reducing a 16-bit
input mod 3.

In sntrup*, the modulus q is chosen as a prime (4591 for sntrup653, for
example, and 7879 for sntrup1277) rather than as a power of 2; there is
also arithmetic modulo 3. The sntrup*/ref code includes a general-purpose
int32_mod_uint14 function used for reduction mod q and reduction mod 3.

In kyber*, there is arithmetic modulo the prime q = 3329 for every parameter
set (and no arithmetic modulo 3). There is a reduction function in kyber*/ref
that reduces 16-bit inputs modulo q (with outputs between −(q − 1)/2 and
(q − 1)/2) by multiplying by an approximation to 226/q:

int16_t barrett_reduce(int16_t a) {
int16_t t;
const int16_t v = ((1U << 26) + KYBER_Q/2)/KYBER_Q;

t = ((int32_t)v*a + (1<<25)) >> 26;
t *= KYBER_Q;
return a - t;

}

This is more concise than int32_mod_uint14 (which uses similar ideas but allows
an unnecessarily wide input range) or mod3, so this paper applies the same
streamlining across all the KEMs (also rearranging barrett_reduce to be more
concise). The F3_freeze function in sntrup*/compact does

return x - 3 * ((10923 * x + 16384) >> 15);

to reduce modulo 3 with inputs between −214 and 214 − 1 and outputs in
{−1, 0, 1}. The mod3 function in ntru*/compact does

return x - 3 * ((10923 * x) >> 15);
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to reduce modulo 3 with inputs between 0 and 215 − 1 and outputs in {0, 1, 2}.
The Fq_freeze function in sntrup*/compact does

const int32_t q16 = (0x10000 + q / 2) / q;
const int32_t q20 = (0x100000 + q / 2) / q;
const int32_t q28 = (0x10000000 + q / 2) / q;
x -= q * ((q16 * x) >> 16);
x -= q * ((q20 * x) >> 20);
return x - q * ((q28 * x + 0x8000000) >> 28);

to reduce modulo odd q < 213 with inputs between −2q2 and 2q2 and outputs
in {−(q − 1)/2, . . . , (q − 1)/2}.

4.2. Protecting against timing attacks. The reader might be wondering
why the reference code does not simply use C’s built-in division and mod
operators (“/” and “%”). The usual answer is as follows:

• Compilers often convert these operators directly into the CPU’s division
instructions—and division instructions typically take variable time, perhaps
leaking secret information to attackers through timing. (Compilers might
instead convert divisions into multiplication instructions, but one can’t rely
on this happening. For example, testing various recent versions of gcc, such
as version 11.4.0 in current Ubuntu LTS, shows that some optimization
options convert divisions into multiplication instructions, but also shows
that the -Os option for size optimization produces division instructions.)

• Consequently, all of the KEM software avoids these operators—except for
computations on public data, such as the kyber*/ref computation of v
displayed in Section 4.1.

But is it actually true that KEM software uses these operators only for public
data? Scanning for “/KYBER_Q” in kyber*/ref/* finds some divisions where the
numerator is a run-time variable, not just a cryptosystem parameter. In at least
one case, this variable is derived from secrets: indcpa_dec combines the secret
key with a ciphertext and then calls poly_tomsg (see Section 5.4), which, when
the work for this paper began, had a line

t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;

dividing secret results by q. (The line counts and other measurements reported
in this paper are after patches to remove this division.)

Checking (not comprehensively) Kyber implementations listed in [8] shows
that the same division was copied into at least [39, “kyber.cpp”], [5, “poly.rs”],
[26, “Poly.java”], [38, “poly.go”], and [50, “kyber512.js”, “kyber768.js”, and
“kyber1024.js”], although in the case of [50] the choice of JavaScript raises larger
questions about constant-time behavior; see generally [47].

There are many tools available to check for timing variations. See [37]
for a survey. Some tools, such as saferewrite from [11], check for division
instructions. But most tools don’t, and TIMECOP doesn’t, and in any case the
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tools don’t help if they aren’t used. As noted in Section 1, the submitted kyber*
code doesn’t even pass TIMECOP.

This paper’s investigation led to the discovery of this variable-time division
on 14 December 2023 and an announcement on 15 December 2023. It turned out
that this division had been eliminated in the official Kyber software repository
two weeks earlier, with credit to Goutam Tamvada, Karthikeyan Bhargavan, and
Franziskus Kiefer—without a vulnerability announcement, and without notice
to downstream projects such as [39], [5], [26], [38], [50], and SUPERCOP.

In response to the 15 December 2023 announcement, the maintainer of the
official Kyber software asked whether there was in fact a time variation “on any
particular CPU” for the range of numerators in this division (namely (q−1)/2 =
1664 through 5(q−1) = 8320). The answer is yes. For example, AMD Zen 2 takes
an extra cycle when the numerator is 8192 or larger; and SiFive U74 (RISC-V)
takes extra cycles starting at 4096 and at 8192. CacheBleed [52] is an example
of a timing attack exploiting single-cycle variations; the only safe presumption
is that this Kyber division is also exploitable.

Division is not the only potential issue. The C language does not guarantee
that any instructions take constant time. The ref code assumes, for example,
that multiplication of an integer type such as int32_t takes constant time;
C compilers typically compile each integer multiplication to a single CPU
multiplication instruction; but some CPUs have variable-time multipliers. See,
e.g., [29] and [44]. Eliminating variable-time multiplications is outside the scope
of this paper.

4.3. Concise polynomial multiplication. In ntru*, the multiplication of G
by b, as part of building a ciphertext Gb+d, is a multiplication of two polynomials
mod xn − 1 (where n is a parameter), where the polynomial coefficients are
integers mod q. The code for this in ntru*/ref is as follows:

void poly_Rq_mul(poly *r, const poly *a, const poly *b)
{

int k,i;
for(k=0; k<NTRU_N; k++)
{

r->coeffs[k] = 0;
for(i=1; i<NTRU_N-k; i++)
r->coeffs[k] += a->coeffs[k+i] * b->coeffs[NTRU_N-i];

for(i=0; i<k+1; i++)
r->coeffs[k] += a->coeffs[k-i] * b->coeffs[i];

}
}

The indices in the first i loop incorporate reduction modulo xn − 1. Reductions
mod q are delayed until ciphertext encoding (Section 5.2).

In sntrup*, xn − 1 is replaced with xp − x − 1, so the coefficient of xp+k

has to be added to the coefficients of both xk and xk+1. The multiplication
code in sntrup*/ref carries out this reduction as a separate step, but reduces
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mod q in each arithmetic operation. Delaying the reduction until the end of the
multiplication is more concise. Here is Rq_mult_small in sntrup*/compact:

static void Rq_mult_small(Fq *h, const Fq *f, const small *g) {
int32_t fg[p + p - 1];
int i, j;
for (i = 0; i < p + p - 1; ++i) fg[i] = 0;
for (i = 0; i < p; ++i)

for (j = 0; j < p; ++j) fg[i + j] += f[i] * (int32_t)g[j];
for (i = p; i < p + p - 1; ++i) fg[i - p] += fg[i];
for (i = p; i < p + p - 1; ++i) fg[i - p + 1] += fg[i];
for (i = 0; i < p; ++i) h[i] = Fq_freeze(fg[i]);

}

This is 10 lines; poly_Rq_mul in ntru*/compact is shorter, 8 lines.
In Rq_mult_small, the f coefficients are between −q/2 and q/2, and the g

coefficients are between −1 and 1, so the polynomial product fg has coefficients
between −pq/2 and pq/2, or between −3pq/2 and 3pq/2 after reduction (see [16,
Theorem 1] for better bounds), safely inside the range −2q2 through 2q2.

Both ref and compact rely on similar range calculations for R3_mult in
sntrup*, and for poly_S3_mul in ntru*. Internally, poly_S3_mul is only 4
lines, reusing poly_Rq_mul (and taking advantage of the fact that poly_Rq_mul
does not actually reduce mod q), while R3_mult is another 10 lines. It
would be possible to similarly merge R3_mult and Rq_mult_small, either
through macro-based templates (a form of streamlining that none of the ref
implementations use) or through eliminating the small type, but this would
deviate from the functional decomposition in ref.

4.4. NTTs and matrices. The multiplication code in kyber*/compact is
longer than in ntru*/compact or sntrup*/compact, for two reasons.

First, polynomial multiplication in kyber*/compact transforms each of the
input polynomials modulo x256+1 to “NTT domain” (13 lines for ntt, and 1 long
line for the zetas array quoted in Section 2), carries out “base multiplications”
in NTT domain (4 lines for basemul), and transforms the product back from
NTT domain (15 lines for invntt).

NTTs are used the same way in kyber*/ref; but why use NTTs when other
multipliers are more concise? The answer comes from an interesting feature of
this KEM family: namely, ciphertexts et al. are sent in NTT domain. This limits
the implementor’s choices of multiplication algorithms.

As an example of this limit, consider [1], which has been listed since at
least 2021 on the Kyber page [7] as one of the “third-party implementations
of Kyber”. The paper [1] uses an existing big-integer multiplier on an SLE 78
smart card to multiply polynomials, and reports “Kyber768 key generation in
79.6 ms, encapsulation in 102.4 ms and decapsulation in 132.7 ms”. However,
a closer look shows that the cryptosystem in [1] is actually “not interoperable
with Kyber”, in particular because “Kyber explicitly requires the usage of the



16 Daniel J. Bernstein

Number Theoretic Transform (NTT), which we cannot realise efficiently with
our approach”.

The same limit rules out the possibility of kyber*/compact having a multiplier
as simple as the multipliers in ntru*/compact or sntrup*/compact. Having
ciphertexts sent in NTT domain also removes multiplication as an abstraction
layer: there are 10 lines calling ntt and invntt in each kyber*/compact.

The second reason that the multiplication code in kyber*/compact is longer
is that b is actually a length-k vector of polynomials modulo x256 + 1, and
G is actually a k × k matrix of polynomials modulo x256 + 1, where k is 2
or 3 or 4 for kyber512 or kyber768 or kyber1024 respectively. The resulting
polyvec abstraction layer includes 34 lines (2 of which are calls to ntt and
invntt mentioned above) in functions for encoding, decoding, NTT, inverse
NTT, dot products, reduction, and addition. There are further length-k loops
for, e.g., matrix handling. Loops of length k end up appearing 17 times in each
kyber*/compact (and 19 times in each kyber*/ref).

It is difficult to come up with a total line count for multiplication in the kyber*
software because components of multiplication are spread through so many
different functions, but 75 lines are mentioned above in ntt, zetas, basemul,
invntt, the calls to those functions, and the polyvec abstraction layer.

4.5. Polynomial inversion. In sntrup*/compact, R3_recip (36 lines) inverts
a polynomial mod xp − x − 1 with coefficients mod 3, and Rq_recip3 (36 lines)
inverts a polynomial mod xp − x − 1 with coefficients mod q, also multiplying
the result by 3.

Inversion is more complicated in ntru*/compact because q is not prime: there
are functions poly_S3_inv (35 lines) and poly_R2_inv (34 lines) working mod 3
and mod 2, but there is also poly_Rq_inv (5 lines), built from poly_R2_inv and
poly_R2_inv_to_Rq_inv (14 lines). There is no polynomial inversion in kyber*.

The four inversion functions with prime moduli (R3_recip and Rq_recip3 for
sntrup*; poly_S3_inv and poly_R2_inv for ntru*) are all very similar, using
the inversion algorithm from [20]. As in Section 4.3, it would be possible to
merge these.

4.6. Further arithmetic. This section is not meant to tally all arithmetic
operations in these KEMs. For example, each ntru* has a poly_lift function,
which is 27 lines in ntruhrss*/compact and 5 lines in ntruhps*/compact.

5 Subroutines for encoding and decoding

These KEMs use various types of conversions between byte strings and vectors
of integers in various ranges:

• Vectors of small integers are saved inside secret keys. See Section 5.1.
• Vectors of integers mod q are communicated as public keys and as

ciphertexts. See Section 5.2.
• Byte strings are converted to integers used in noise generation. See

Section 5.3. This is only decoding, not encoding.
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• For kyber*, a 32-byte message is converted to and from a vector of 256
integers in {0, (q + 1)/2}, where “from” rounds other integers mod q to 0 or
to (q + 1)/2. See Section 5.4.

Not all of the details are required for interoperability. In particular, changing
secret-key formats would preserve interoperability; also, for ntru* and sntrup*,
changing noise-decoding methods would preserve interoperability. Investigating
alternatives could be interesting but is outside the scope of this paper.

5.1. Encoding and decoding small integers. For kyber*, secret vectors
have entries in {−3, −2, −1, 0, 1, 2, 3} (and more specifically in {−2, −1, 0, 1, 2}
for kyber768 and kyber1024). However, the vectors are encoded in secret keys
as integers mod q = 3329 without regard to their smallness. Each integer mod q
is encoded as 12 bits, and 2 integers are packed into 3 bytes. In kyber*/compact,
encoding and decoding of 256 integer coefficients are handled by poly_tobytes
(12 lines) and poly_frombytes (7 lines); see also Section 4.4 regarding the matrix
layer on top of the polynomial layer.

For sntrup*, secret vectors have entries in {−1, 0, 1}. Each integer is encoded
as 2 bits, and 4 integers are packed into a byte. In sntrup*/compact, encoding
and decoding of p small integer coefficients are handled by Small_encode (9
lines) and Small_decode (8 lines).

For ntru*, 5 elements of {0, 1, 2} are packed into a byte in radix 3 as v0+3v1+
9v2 + 27v3 + 81v4. In ntru*/compact, encoding and decoding of n small integer
coefficients are handled by poly_S3_tobytes (13 lines) and poly_S3_frombytes
(19 lines). The ntru*/ref code for this is larger since various loops are unrolled;
this paper consistently rolls loops for conciseness.

5.2. Encoding and decoding big integers. For ntru*, public keys and
ciphertexts are vectors of n − 1 integers mod q; recall that q is a power of
2, such as 2048 for ntruhps2048677. Each integer is encoded as log2 q bits, so
each stretch of 8 integers fits into log2 q bytes. The code for handling 8 integers
is unrolled in ntruhps2048*/ref, producing the 47-line encoding function in
Figure 5.2.1 and a 31-line decoding function.

The ntruhrss*/ref code is longer: it has q = 8192, with 13 bytes at a
time rather than 11. The ntruhps4096*/ref code is shorter: it has q = 4096,
and packs each 2 integers into 3 bytes. In ntru*/compact, poly_Sq_tobytes
(see Figure 5.2.2) and poly_Sq_frombytes loop over bits and each take just 5
lines. One line in poly_Sq_tobytes is long enough to be split into two lines
in Figure 5.2.2, but a large part of the length comes from the length of macro
names, illustrating Section 2.7’s rationale for allowing long lines.

For sntrup*, a public key is a vector of p integers mod q, where again q
depends on the parameter set but now q is a prime rather than a power of 2.
A ciphertext is a vector of p integers rounded to multiples of 3, effectively an
integer mod (q + 2)/3 rather than mod q. There is a 31-line general-purpose
Encode function that uses multiplications to encode a sequence of integers for
any specified moduli, and there is a 45-line general-purpose Decode function; on
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void poly_Sq_tobytes(unsigned char *r, const poly *a)
{
int i,j;
uint16_t t[8];

for(i=0;i<NTRU_PACK_DEG/8;i++)
{

for(j=0;j<8;j++)
t[j] = MODQ(a->coeffs[8*i+j]);

r[11 * i + 0] = (unsigned char) ( t[0] & 0xff);
r[11 * i + 1] = (unsigned char) ((t[0] >> 8) | ((t[1] & 0x1f) << 3));
r[11 * i + 2] = (unsigned char) ((t[1] >> 5) | ((t[2] & 0x03) << 6));
r[11 * i + 3] = (unsigned char) ((t[2] >> 2) & 0xff);
r[11 * i + 4] = (unsigned char) ((t[2] >> 10) | ((t[3] & 0x7f) << 1));
r[11 * i + 5] = (unsigned char) ((t[3] >> 7) | ((t[4] & 0x0f) << 4));
r[11 * i + 6] = (unsigned char) ((t[4] >> 4) | ((t[5] & 0x01) << 7));
r[11 * i + 7] = (unsigned char) ((t[5] >> 1) & 0xff);
r[11 * i + 8] = (unsigned char) ((t[5] >> 9) | ((t[6] & 0x3f) << 2));
r[11 * i + 9] = (unsigned char) ((t[6] >> 6) | ((t[7] & 0x07) << 5));
r[11 * i + 10] = (unsigned char) ((t[7] >> 3));

}

for(j=0;j<NTRU_PACK_DEG-8*i;j++)
t[j] = MODQ(a->coeffs[8*i+j]);

for(; j<8; j++)
t[j] = 0;

switch(NTRU_PACK_DEG&0x07)
{

// cases 0 and 6 are impossible since 2 generates (Z/n)* and
// p mod 8 in {1, 7} implies that 2 is a quadratic residue.
case 4:

r[11 * i + 0] = (unsigned char) (t[0] & 0xff);
r[11 * i + 1] = (unsigned char) (t[0] >> 8) | ((t[1] & 0x1f) << 3);
r[11 * i + 2] = (unsigned char) (t[1] >> 5) | ((t[2] & 0x03) << 6);
r[11 * i + 3] = (unsigned char) (t[2] >> 2) & 0xff;
r[11 * i + 4] = (unsigned char) (t[2] >> 10) | ((t[3] & 0x7f) << 1);
r[11 * i + 5] = (unsigned char) (t[3] >> 7) | ((t[4] & 0x0f) << 4);
break;

case 2:
r[11 * i + 0] = (unsigned char) (t[0] & 0xff);
r[11 * i + 1] = (unsigned char) (t[0] >> 8) | ((t[1] & 0x1f) << 3);
r[11 * i + 2] = (unsigned char) (t[1] >> 5) | ((t[2] & 0x03) << 6);
break;

}
}

Fig. 5.2.1. Example of an encoding function from ntruhps2048*/ref, packing n − 1
11-bit integers into bytes. Compare Figure 5.2.2.
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static void poly_Sq_tobytes(unsigned char *r, const poly *a) {
int i;
for (i = 0; i < crypto_kem_PUBLICKEYBYTES; i++) r[i] = 0;
for (i = 0; i < NTRU_LOGQ * NTRU_PACK_DEG; i++)

r[i / 8] |= (1 & (a->coeffs[i / NTRU_LOGQ] >> (i % NTRU_LOGQ))) << (i % 8);
}

Fig. 5.2.2. Example of an encoding function from ntruhps2048*/compact, packing
n − 1 11-bit integers into bytes. The last loop is broken into two lines for display here.
Compare Figure 5.2.1.

top of these are four 7-line functions for encoding and decoding of vectors mod
q and of rounded vectors mod q.

For kyber*, there are three different formats. There is a format for the
public key, handled by the same poly_tobytes and poly_frombytes as in
Section 5.1. There is a format for part of the ciphertext, rounding to 10 bits for
kyber512 and kyber768 or 11 bits for kyber1024 and then packing the resulting
integers into bytes; kyber*/compact uses 16 lines for polyvec_compress, and
12 lines for polyvec_decompress. There is also a format for another part of
the ciphertext, rounding to 4 bits for kyber512 and kyber768 or 5 bits for
kyber1024; kyber*/compact uses 12 or 14 lines respectively for poly_compress
(not to be confused with polyvec_compress), and 8 or 9 lines respectively for
poly_decompress.

5.3. Decoding for noise generation. In ntruhps*/compact, there is a
function sample_fixed_type (11 lines) that generates a secret vector with
entries 0, 1, 2 as follows: decode an array of secret bytes into n − 1 integers,
each integer having 30 bits; convert each integer i into 4i+1 in the first q/16−4
positions, 4i+2 in the next q/16−4 positions, and 4i in the remaining positions;
sort the array; and extract the bottom 2 bits at each position. This is another
case where the ref code is strikingly less concise, unrolling the conversion of 15
bytes into 4 integers.

Sorting is used similarly in sntrup*/compact (and not in ntruhrss* or
kyber*; see Table 3.2.1), although the usage is split into three subroutines:
urandom32 (8 lines) generates 4 bytes and then decodes those into a 32-bit
integer; Short_fromlist (8 lines) adjusts the bottom 2 bits at each position in an
array of 32-bit integers, sorts, and then extracts the bottom 2 bits; Short_random
(6 lines) calls urandom32 repeatedly and then Short_fromlist.

There is a function sample_iid (5 lines) in ntru*/compact that generates a
secret vector with entries 0, 1, 2 in another way: start with a secret array of bytes
and reduce each byte mod 3. In ntruhrss*/compact, there is also a function
sample_iid_plus (10 lines) that first calls sample_iid and then adjusts the
resulting vector to be “positive”; this does not involve further decoding steps.

In kyber*/compact, there is a function cbd2 (13 lines) that generates a secret
vector with entries in {−2, −1, 0, 1, 2}, where each entry is computed as a + b −
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c − d for 4 bits a, b, c, d. This uses a function load32_littleendian (6 lines)
that decodes 4 bytes into a 32-bit integer, and arithmetic on 4-bit subsequences
of the integer.

In kyber512/compact, along with cbd2, there is a function cbd3 (14 lines)
generating secret vectors with entries in {−3, −2, −1, 0, 1, 2, 3}, where each entry
is computed as a + b + c − d − e − f for 6 bits a, b, c, d, e, f . This uses another
function load24_littleendian (6 lines).

5.4. Encoding and decoding messages. In kyber*/compact, there is a
function poly_frommsg (9 lines) that encodes a 32-byte (256-bit) message as
a polynomial mod x256 + 1, each coefficient being 0 or (q + 1)/2. There is also a
function poly_tomsg (11 lines) that, given a polynomial mod x256 + 1, rounds
each coefficient to 0 or (q + 1)/2 to recover a 32-byte message.

There are no analogous functions in ntru* or sntrup*. In those KEMs,
the underlying encryption and decryption functions transmit vectors of small
integers; there are no separate messages. See Section 7.1.

It is possible to merge encoding and decoding for the kyber* message format
with encoding and decoding for two of the three kyber* formats from Section 5.2.
This is a case where deviating from ref’s function structure would probably be
an improvement: a proliferation of encoding and decoding functions is a risk. As
pointed out in Section 4.2, there were secret-dependent timings in divisions in
poly_tomsg in kyber*/ref until December 2023.

6 Subroutines for hashing

This section looks more closely at how hashing is used in these KEMs.

6.1. Hashing for noise generation. All of these KEMs generate long secret
vectors of small random integers. One of the KEM families, kyber*, requires a
long secret vector to be generated as a deterministic function of a short secret
message; interoperability requires all kyber* software to use this function. Part
of this function is the decoding covered in Section 5.3, but there is a preliminary
step of applying a hash function to expand the short secret message to a long
string provided to the decoding. This expansion is part of the KEM software,
separate from whatever expansion is used inside the environment’s RNG.

For example, inside kyber512/compact, poly_getnoise_3 (5 lines) converts
a 32-byte seed and a 1-byte nonce into 192 bytes of random data by calling
a prf function, and then converts those 192 bytes into 256 small integers by
calling cbd3 (see Section 5.3). The prf function (6 lines) concatenates its inputs
and then calls SHAKE256 from the Keccak code package. The same functions
(modulo streamlining) appear in kyber512/ref, along with an implementation
of SHAKE256. Internally, SHAKE256 generates 272 bytes in two 136-byte
blocks; the first 192 bytes are used.
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6.2. Matrix generation. Each use of kyber* deterministically expands a
public 32-byte seed into a matrix of integers modulo 3329: in total 2 ·512 integers
for kyber512, 3 · 768 integers for kyber768, or 4 · 1024 integers for kyber1024.

The expansion uses SHAKE128 to generate a long output from the 32-byte
seed. The output is parsed into 12-bit integers, and then integers ≥3329 are
rejected, leaving a sequence of integers between 0 and 3328.

Internally, SHAKE128 “absorbs” the seed into a 200-byte state, applies the
Keccak permutation to that state, “squeezes” 168 bytes out of the state, applies
Keccak again, “squeezes” 168 more bytes out of the state, etc. Presumably
SHAKE128 never ends up stuck in a loop generating only integers ≥3329.

The kyber*/ref software includes various functions for initializing, absorbing,
permuting, and squeezing the SHAKE128 state. For kyber*/compact, these
are replaced by calls to four external KeccakWidth1600_Sponge subroutines
from the official Keccak code package: SpongeInitialize, SpongeAbsorb,
SpongeAbsorbLastFewBits, and SpongeSqueeze. There is still some code in
kyber*/compact on top of these functions: a 9-line xof_absorb, plus a few
state-management lines in gen_matrix.

As noted in Section 1, kyber*/ref does not pass TIMECOP; the above
variable-time rejection-sampling loops are the reason. Modifying kyber*/ref
to pass TIMECOP is a simple matter of including crypto_declassify.h and
inserting crypto_declassify(&state, sizeof state) after the initialization
of the SHAKE128 state; kyber*/compact includes this change.

6.3. What API is required? The 20 lines of code mentioned in Sections 6.1
and 6.2 for poly_getnoise_3, prf, and xof_absorb are assuming the best
case for kyber*: the environment provides a Keccak library that supports
application-selected SHAKE256 output lengths and incremental SHAKE128
squeezing, rather than just a traditional hash-function API generating
fixed-length output.

Incrementality is not critical here. One can replace the calls to Sponge* with
calls to a simpler SHAKE128 interface that generates enough output all at once.
This might also save a few lines of calling code. This would change the functional
decomposition of ref; also, one would have to add an analysis of how much
output is enough.

6.4. Session keys as hashes. Each KEM produces a 32-byte (256-bit) session
key as a hash of a secret plaintext that the receiver recovers by decrypting
the ciphertext. This hash function is SHAKE256 (shared with Section 6.1) for
kyber*, SHA3-256 for ntru*, and truncated SHA-512 for sntrup*.

The session-key hashing is always one hash call in enc and one in dec,
sometimes with a few more lines to assemble inputs (e.g., hashing the plaintext
together with the ciphertext); see also the variations in Section 6.6.

6.5. Plaintext confirmation. For sntrup*, another hash of the plaintext is
included as an extra component in the ciphertext. This hash is called “plaintext
confirmation”. There is no plaintext confirmation for ntru* or kyber*.
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The plaintext-confirmation hash for sntrup* includes the public key as an
extra input. Actually, this extra input is a hash of the public key, and that hash
is cached in the secret key. Furthermore, the plaintext is hashed before it is given
to the session hash and to the confirmation hash.

The input to each hash is prefixed by a byte indicating its role. One hash
input is byte 4 followed by the public key; one hash input is byte 3 followed
by the plaintext; the plaintext-confirmation hash input is byte 2 followed by
the plaintext hash and public-key hash; and the session-hash input is byte 1 (or
byte 0 for invalid ciphertexts; see Section 6.6) followed by the plaintext hash and
ciphertext.

There is code for all of this hashing (and caching), including an 8-line
Hash_prefix wrapping SHA-512, a 7-line HashConfirm, a 7-line HashSession,
5 lines of further calls to these functions (including the 2 calls to HashSession
mentioned above), and a few more lines handling the cache.

6.6. Reencryption and implicit rejection. After decrypting a ciphertext to
produce a plaintext, kyber* and sntrup* reencrypt the plaintext to see whether
it produces the same ciphertext. For kyber*/compact, the reencryption is a line
in crypto_kem_dec calling indcpa_enc, and the ciphertext comparison is a line
calling a 6-line verify function. For sntrup*/compact, the reencryption is a
line in crypto_kem_dec calling Hide, and the ciphertext comparison is a line
calling a 6-line Ciphertexts_diff_mask function.

For ntru*/compact, decapsulation does not factor in the same way through
encryption, but a test with the same effect is handled by a few lines in owcpa_dec,
plus a call to owcpa_check_r (11 lines).

In all cases, if the ciphertext does not match, crypto_kem_dec does not report
a failure, but instead “implicitly” rejects the ciphertext. This means returning a
secretly keyed hash of the ciphertext as a session key, instead of the usual hash
of the plaintext. The secret hash key is included in the KEM’s secret key.

For sntrup*/compact, there is a line in crypto_kem_dec overwriting the
plaintext with the secret hash key in case of failure, so that the subsequent
computation of H(1, m, c) instead computes H(0, k, c). For ntru*/compact,
there are 4 lines in crypto_kem_dec computing H(k, c) and using that to
overwrite H(m) in case of failure, calling a separate cmov (5 lines). Similar
lines in kyber*/compact are subject to change since NIST has expressed plans
to remove some of the hashing from kyber*.

7 Design goals for the KEMs

A reader seeing complications in KEM software may be wondering why the
complications are there—especially in cases where a complication appears in
only one of the studied KEMs. This section looks at how the design goals for
the KEMs led to various software complications.
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7.1. Encryption and decryption. In all of these KEMs, public keys reveal
A = aG+e where G is public and a, e are small secrets. Also, in all of these KEMs,
ciphertexts include the traditional NTRU ciphertexts B = Gb + d mentioned in
Section 4, where b, d are small secrets. There are two different strategies for
decryption:

• In Quotient NTRU, G is chosen as −e/a, so A = 0. Then aB = aGb + ad =
ad − eb, which is small and thus does not involve reduction mod q. One can
choose a to be a multiple of 3, and then dividing by −e mod 3 gives b.

• In Product NTRU, there is an extra ciphertext component C = M + Ab + c,
where b, c are small secrets and M is an encoded message. Then C − aB =
M + (aG + e)b + c − a(Gb + d) = M + eb + c − ad, which is close to M since
eb + c − ad is small. Suitable decoding recovers the message M .

The original 1998 NTRU system, ntru*, and sntrup* are examples of Quotient
NTRU; kyber* is an example of Product NTRU. For security comparisons, see
[10] and [42].

The choice between Quotient NTRU and Product NTRU directly accounts
for some of the software complications appearing earlier in this paper:

• Both strategies involve arithmetic mod q, but Quotient NTRU also involves
arithmetic mod 3. This produces, e.g., extra functions F3_freeze and
R3_mult for sntrup*. See Sections 4.1 and 4.3.

• Quotient NTRU involves inversions in key generation, both mod q and
mod 3; see Section 4.5. These two functions can be merged into one, and
a modified KEM can skip the mod-3 inversion entirely (see, e.g., [32,
Algorithm 1]), but there will be at least one inversion function.

• Product NTRU involves encoding the message M , and decoding M + eb +
c − ad back to M . See Section 5.4.

• Product NTRU involves hashing for noise generation, specifically to
deterministically derive b, c, d from M . See Section 6.1. This is essential for
reencryption; see Section 7.4.

7.2. Minimizing size. Product NTRU might seem at first to have keys twice
as large as Quotient NTRU, since Quotient NTRU sets A = 0 and does not need
to transmit A. However, NewHope [3] eliminates almost all of the space for G
by deterministically computing G from a short seed; kyber* does the same. See
Section 6.2.

Product NTRU might also seem to have ciphertexts twice as large as Quotient
NTRU, since there are two components (B, C) instead of just one. However, one
can choose the errors d, c so that B and C are rounded to limited subsets of the
integers mod q, and then use this limit to save space in ciphertexts. Decryption
requires keeping eb + c − ad small, putting less pressure on c than on d and thus
allowing more rounding of C than of B; this is why kyber* has two different
formats for ciphertext components. See Section 5.2.

One can also choose B to be rounded in Quotient NTRU, and sntrup* does
this, accounting for the sntrup* ciphertext format being different from the
public-key format. See again Section 5.2.
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Size is also the reason that some of the encoders in Section 5 involve
multiplications rather than just bit shifts. In particular, the general-purpose
Encode and Decode in sntrup* (see Section 5.2) are designed for space efficiency
of keys and ciphertexts. There are also multiplications by 3 in an ntru* encoder
(see Section 5.1), although this affects only secret-key size.

The above comments should not be viewed as endorsing the idea that any
of these size reductions are important for users. For examples of quantifying
cryptographic costs in context, see [14, Section 2] and [15].

7.3. Minimizing CPU cycles. The kyber* complications in Section 4.4 arise
as follows.

NewHope [3] chooses its dimension n as a power of 2, and chooses its modulus
q as a prime for which xn + 1 factors mod q into polynomials of small degree.
These choices are copied in kyber*, and allow multiplication mod xn + 1 to be
carried out with three size-n NTTs mod q (one NTT of each input, a simpler
multiplication in NTT domain, and then an inverse NTT). This uses fewer CPU
cycles than various other multiplication methods. Communicating objects in
NTT domain then allows some NTTs to be skipped.

Unlike NewHope, kyber* allows just one choice of n, namely n = 256, and uses
matrices to support multiple security levels. The following statement appears in
[6, Section 6]:

Optimized implementations only have to focus on a fast dimension-256
NTT and a fast Keccak permutation. This will give very competitive
performance for all parameter sets of Kyber.

If “competitive” is understood as comparing to other possible KEMs then this
would appear to be a claim that the use of matrices of length-256 polynomials,
rather than longer polynomials, is beneficial for performance.

The above comments should not be viewed as endorsing the idea that these
are speedups, never mind speedups large enough to be important for users. See,
e.g., the aforementioned paper [1] for an environment where these choices appear
to hurt performance; [42, Section 6.5] for reasons to believe that these choices
will generally hurt hardware performance; and [2] and [25] for fast multiplication
software for other KEMs.

7.4. Protection against chosen-ciphertext attacks. There is a long
history of chosen-ciphertext attacks against public-key cryptosystems, including
lattice-based cryptosystems.

One basic defense against chosen-ciphertext attacks was introduced by Shoup
in [48]: namely, the general concept of a KEM, and in particular the structure
of hashing a randomly chosen plaintext to obtain a session key (Section 6.4),
rather than applying public-key encryption directly to user data. All of the
KEMs considered in this paper follow this structure.

The simplest ways to build lattice-based cryptosystems allow ciphertexts to be
modified in a way that often produces valid plaintexts. The pattern of successful
modifications depends on, and reveals, secret data. Reencryption, plaintext
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confirmation, and implicit rejection (see Sections 6.5 and 6.6) are strategies to
address chosen-ciphertext attacks. See [13] for a recent attack and a survey of
defenses.

Reencryption requires all randomness used in encryption to be recovered in
decryption. This forces b, c, d in Product NTRU to be derived deterministically
from M , as noted in Section 7.1, producing the kyber* complications in
Section 6.1. This is also why interoperability requires all kyber* software to
use the same decoding function from strings to noise (Section 5.3).

The same randomness-recovery requirement is also what leads to
decapsulation in ntru* not factoring through encryption (Section 6.6). The
decryption process in ntru* recovers b as in Section 7.1, and then multiplies
by G and subtracts from B to recover d. The full reencryption process is
then optimized down to checking whether d is a valid noise vector; it would
be redundant to recompute Gb + d at this point. The situation is different for
sntrup*: Gb is simply rounded to obtain B, so decryption recovers b, and then
decapsulation calls encryption as a black box.

7.5. Minimizing morphisms. In 2014, I introduced a “subfield-logarithm”
attack [9] exploiting the structure of the algebraic number fields used in some
lattice problems. Subsequent developments of the same attack idea have broken
various lattice problems: for example, Gentry’s original FHE cryptosystem [27]
has been broken in quantum polynomial time for modulus xn + 1 when n is a
power of 2. See [42, Section 1.2] for an overview of attacks and further references,
and [12] for an example of ongoing developments.

To simplify security review, and in particular to limit the number-theoretic
structure given to the attacker, [9] also recommends

• using xp − x − 1 for prime p rather than xn ± 1,
• using a prime modulus q for which xp − x − 1 is irreducible mod q, and
• choosing q large enough to provably eliminate all decryption failures.

These recommendations have, to the extent they have been followed, improved
the security of lattice-based cryptography against subsequently published
attacks. For example, quantum polynomial-time breaks of Gentry’s system are
known for xn + 1 and not for xp − x − 1; meanwhile no proposals have been
broken for xp − x − 1 without also being broken for xn + 1. Furthermore, the
first version of the Round5 lattice-based KEM was broken [30] by an attack
exploiting decryption failures. On the other hand, so far none of the breaks of
lattice-based KEMs proposed to NIST have been because of the use of xn + 1.

The recommendations from [9] are used in sntrup*. They account for sntrup*
using different primes q for different dimensions p, and for extra code to reduce
mod xp − x − 1. See Sections 4.1 and 4.3.
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#!/usr/bin/env python3

import sys
import re
import glob
import gzip
import lizard

heading = sys.argv[1]
dirs = sys.argv[2:]

def dirorder(dir):
  predigits = ''
  digits = ''
  postdigits = ''
  for c in dir:
    if c in '0123456789':
      digits += c
    else:
      if digits == '':
        predigits += c
      else:
        postdigits += c
  return predigits,int(digits),postdigits

columns = heading,'bytes','bytesw','tokens','bytesz','byteswz','lines','loc','funloc','cyc','funs'

print(r'\begin{tabular}{l|%s}' % ('r'*len(columns[1:])))
print('&'.join(columns) + r'\\')
print(r'\noalign{\hrule}')

for dir in sorted(dirs,key=dirorder):
  bytes = 0
  bytesz = 0
  bytesw = 0
  byteswz = 0
  lines = 0
  loc = 0
  funloc = 0
  funs = 0
  tokens = 0
  cyc = 0
  for fn in sorted(glob.glob(f'{dir}/*.[ch]')):
    with open(fn,'rb') as f:
      code = f.read()
    codew = re.sub(b'[a-zA-Z0-9_]+',b'x',code)
    codez = gzip.compress(code)
    codewz = gzip.compress(codew)
    lines += len(code.splitlines())
    bytes += len(code)
    bytesw += len(codew)
    bytesz += len(codez)
    byteswz += len(codewz)
    analysis = lizard.analyze_file(fn)
    loc += analysis.nloc
    funloc += sum(fun.nloc for fun in analysis.function_list)
    funs += len(analysis.function_list)
    tokens += sum(fun.token_count for fun in analysis.function_list)
    cyc += sum(fun.cyclomatic_complexity for fun in analysis.function_list)
  op = '/'.join(dir.split('/')[:2])
  op = op.replace('crypto_','')
  if op.split('/')[0] == heading.lower(): op = op.split('/')[1]
  globals()[heading] = r'{\tt %s}' % op
  print('&'.join(str(globals()[c]) for c in columns) + r'\\')

print(r'\noalign{\hrule}')
print(r'\end{tabular}')



#!/bin/sh

./measure.py \
KEM \
crypto_kem/kyber512/compact \
crypto_kem/kyber768/compact \
crypto_kem/kyber1024/compact \
crypto_kem/ntruhps2048509/compact \
crypto_kem/ntruhps2048677/compact \
crypto_kem/ntruhps4096821/compact \
crypto_kem/ntruhrss701/compact \
crypto_kem/sntrup653/compact \
crypto_kem/sntrup761/compact \
crypto_kem/sntrup857/compact \
crypto_kem/sntrup953/compact \
crypto_kem/sntrup1013/compact \
crypto_kem/sntrup1277/compact \
> measure-compact.tex



#!/bin/sh

./measure.py \
KEM \
crypto_kem/kyber512/ref \
crypto_kem/kyber768/ref \
crypto_kem/kyber1024/ref \
crypto_kem/ntruhps2048509/ref \
crypto_kem/ntruhps2048677/ref \
crypto_kem/ntruhps4096821/ref \
crypto_kem/ntruhrss701/ref \
crypto_kem/sntrup653/ref \
crypto_kem/sntrup761/ref \
crypto_kem/sntrup857/ref \
crypto_kem/sntrup953/ref \
crypto_kem/sntrup1013/ref \
crypto_kem/sntrup1277/ref \
> measure-ref.tex



#!/bin/sh

./measure.py \
subroutine \
crypto_hash/sha512/compact \
crypto_hash/sha3256/compact \
crypto_sort/int32/compact \
crypto_sort/uint32/compact \
> measure-sub.tex



#!/bin/sh

/bin/echo '\begin{tabular}{ll|rrr}'
/bin/echo 'KEM 1&KEM 2&lines 1&lines 2&lines merged\\'
/bin/echo '\noalign{\hrule}'
(
  echo kyber512 kyber768
  echo kyber512 kyber1024
  echo kyber768 kyber1024
  echo ntruhps2048509 ntruhps2048677
  echo ntruhps2048509 ntruhps4096821
  echo ntruhps2048677 ntruhps4096821
  echo ntruhps2048509 ntruhrss701
  echo ntruhps2048677 ntruhrss701
  echo ntruhps4096821 ntruhrss701
  echo sntrup653 sntrup761
  echo sntrup653 sntrup857
  echo sntrup653 sntrup953
  echo sntrup653 sntrup1013
  echo sntrup653 sntrup1277
  echo sntrup761 sntrup857
  echo sntrup761 sntrup953
  echo sntrup761 sntrup1013
  echo sntrup761 sntrup1277
  echo sntrup857 sntrup953
  echo sntrup857 sntrup1013
  echo sntrup857 sntrup1277
  echo sntrup953 sntrup1013
  echo sntrup953 sntrup1277
  echo sntrup1013 sntrup1277
) | while read i j
do
  lines1=$(cat crypto_kem/$i/compact/kem.c | wc -l)
  lines2=$(cat crypto_kem/$j/compact/kem.c | wc -l)
  lines12=$(diff -w -Dsecond crypto_kem/$i/compact/kem.c crypto_kem/$j/compact/kem.c | wc -l)
  /bin/echo '{\tt '$i'}&{\tt '$j'}&'$lines1'&'$lines2'&'$lines12'\\'
done
/bin/echo '\noalign{\hrule}'
/bin/echo '\end{tabular}'


