
MULTIDIGIT MODULAR MULTIPLICATION WITH

THE EXPLICIT CHINESE REMAINDER THEOREM

Daniel J. Bernstein

950518 (draft T)

Abstract. Fix coprime moduli m1, . . . ,ms, of a few digits each. Let n be an integer
of a few hundred digits. We show how arithmetic modulo n may be performed upon

integers u represented as vectors (u mod m1, . . . , u mod ms). This method involves

no multiprecision arithmetic, except in an easy precomputation; it is practical in
software and extremely well suited for hardware. Our main tool is the Explicit

Chinese Remainder Theorem, which says exactly how u differs from a particular

linear combination of the remainders u mod mi.

1. Introduction

Let m1, . . . ,ms be positive integers. One may reconstruct a sufficiently small
integer u from the sequence (u mod m1, u mod m2, . . . , u mod ms), which we call
the remainder representation of u; here u mod mi = u − mi bu/mic is the
remainder when u is divided by mi.

We may calculate uv mod mi as (u mod mi)(v mod mi) mod mi. So we may
find the remainder representation of uv from the remainder representations of u
and v. This is an example of remainder arithmetic. Remainder arithmetic is
particularly convenient in hardware since each mi is handled independently.

In this paper we consider the problem of performing arithmetic modulo an integer
n. To fix ideas we consider the problem of computing xk mod n, where n is a few
hundred digits long; the sufficiently imaginative reader will perhaps be able to find
some use for such a computation.

Usual solution: Start from x mod n. Multiply it by itself to obtain (x mod n)2.
Reduce that modulo n to obtain x2 mod n. Continue with an appropriate sequence
of multiplications and reductions so as to end up with xk mod n. (See [3, section
4.6.3] and [1, section 1.2].)

All we have to do, then, is multiply and reduce integers modulo n. Conventional
wisdom states that it is pointless to use the remainder representation here, since
one cannot compute xy mod n without first, in effect, converting xy back to its
usual representation as a binary expansion.

The conventional wisdom is wrong. In this paper we present a new method
of reducing a remainder representation modulo n. We do not generally obtain

1991 Mathematics Subject Classification. Primary 11Y16.
This paper was included in the author’s thesis at the University of California at Berkeley. The

author was supported in part by a National Science Foundation Graduate Fellowship.

Typeset by AMS-TEX

1

2 DANIEL J. BERNSTEIN

the smallest possible result, but we do obtain a small enough result that we may
perform further operations safely. This method is highly parallel; we draw it to the
attention of hardware designers. It is also practical in software.

The crux of our method is a fact that we dub the Explicit Chinese Remainder
Theorem. Write P = m1m2 · · ·ms. The usual Chinese Remainder Theorem states
that if mi and mj are coprime for every i 6= j then the remainder representation
of u determines u mod P . In fact, u mod P is a particular linear combination of
the remainders u mod mi. The Explicit Chinese Remainder Theorem says, in a
computationally useful form, exactly what multiple of P must be subtracted from
that linear combination to obtain u.

The Explicit Chinese Remainder Theorem has been exploited by Montgomery,
Silverman, and Couveignes; see [6], [5], and [2]. In fact, our method may be viewed
as an optimization of a slight variant of [5, equation 3.4.4].

In section 2 we state and prove the Explicit Chinese Remainder Theorem. In
section 3 we show how to compute one of the quantities in this theorem. In section
4 we explain how to convert an integer from the remainder representation to the
usual representation. In section 5 we present our method to reduce a remainder
representation modulo n. When n is fixed we may precompute various constants;
we discuss the precomputation in section 6. In section 7 we discuss possible soft-
ware and hardware implementation approaches. Everything here has a polynomial
analogue, as outlined in section 8.

Remainder arithmetic is commonly called modular arithmetic. See [3, section
4.3.2] for an introduction. See also [3, exercise 4.5.2–15] for a method of computing
the inverse of v modulo mi, or more generally the ratio of u and v modulo mi, when
v and mi are coprime.

2. The Explicit Chinese Remainder Theorem

Before stating this theorem we establish two pieces of notation. First, we write
u ≡ v (mod P) if u mod P = v mod P ; in other words, if u − v is divisible by P .
Second, we write round z for the unique integer i with |i− z| < 1/2, when such an
integer exists.

The Explicit Chinese Remainder Theorem. Fix coprime positive integers
m1,m2, . . . ,ms with product P = m1m2 · · ·ms. Let k1, k2, . . . , ks be integers with
kiP/mi ≡ 1 (mod mi). Let u be an integer with |u| < P/2. If xi ≡ kiu (mod mi)
and z =

∑
i xi/mi then u = Pz − P round z.

Observe that u is a linear combination of round z and the modified remainders xi,
with coefficients that do not depend on u. We will take advantage of this linearity
in section 5.

Proof. We work modulo mj :

Pz =
∑
i

xi
P

mi
≡ xj

P

mj
≡ kju

P

mj
≡ u (mod mj).

The mj ’s are pairwise coprime so Pz ≡ u (mod P). Write r = z − u/P ; then
Pr = Pz−u is a multiple of P , so r is an integer. But |z − r| = |u/P | < 1/2. Thus
r = round z, and u = Pz − Pr = Pz − P round z. �

MULTIDIGIT MODULAR MULTIPLICATION 3

3. Computing the nearest integer to a sum of rationals

We retain the notation of the Explicit Chinese Remainder Theorem. Write
r = round z. Assume that |u| < P/4, so that |z − r| = |u/P | < 1/4.

Montgomery and Silverman [6] observed that to find r, the nearest integer to z,
it suffices to have a low-precision approximation to z. They suggested computing
z in floating-point arithmetic. We suggest computing z in fixed-point arithmetic:

Lemma 3.1. Let t1, . . . , ts be real numbers. Let r be an integer with |
∑

i ti − r| <
1/4. If 2a ≥ 2s and qi = b2atic then r = b3/4 + 2−a

∑
i qic.

For us ti = xi/mi and z =
∑

i ti. We may compute qi by repeatedly doubling xi

modulo mi and checking for overflows.

Proof. By construction 0 ≤ 2ati − qi < 1. Add: 0 ≤ 2a
∑

i ti −
∑

i qi < s ≤
2a−1, so |

∑
i ti − 1/4− 2−a

∑
i qi| ≤ 1/4, so |r − 1/4− 2−a

∑
i qi| < 1/2. Thus

3/4 + 2−a
∑

i qi differs from r + 1/2 by less than 1/2. �

4. Converting from the remainder representation

To illustrate the practical use of the Explicit Chinese Remainder Theorem we
consider the following problem. Again fix coprime positive integers m1,m2, . . . ,ms

with product P = m1m2 · · ·ms. Let u be an integer with |u| < P/4; say we know
u’s remainder representation (u mod m1, u mod m2, . . . , u mod ms). How do we
reconstruct the usual representation of u as a binary expansion?

Precomputation: Find P/mi mod mi =
∏

j 6=i mj mod mi by successive multi-
plications. The result is coprime to mi; invert it modulo mi to obtain ki. Do this
for each i. (See section 6 for another method.)

Next: For each i find an integer xi ≡ kiu (mod mi). There are at least three
plausible ways to do this: (1) set xi = kiu; (2) set xi = kiu mod mi; (3) let xi

be the least remainder—either kiu mod mi or (kiu mod mi)−mi, whichever has
smaller absolute value. We will use method (2).

Next: Compute Pz =
∑

i xi(P/mi). We could compute P on the fly, divide by
mi and multiply by xi, and sum the results. We could precompute P , or a table
of P/mi, in a variety of ways. Several further ideas are discussed in [3, section
4.3.2]. A reasonable approach in practice is to add up z = x1/m1 + · · · + xs/ms

as a multiprecision rational number, either with binary splitting or term by term,
and then multiply by P . The term-by-term version amounts to keeping track of the
integers m1 · · ·mi and (x1/m1 + · · · + xi/mi)m1 · · ·mi as i increases. The binary
splitting version is useful for large s in conjunction with fast multiplication. It is
also useful in hardware.

Finally: Compute round z by the method of section 3. Multiply round z by P .
Subtract P round z from Pz to obtain u.

5. Reducing remainder representations modulo n

Again let u be an integer with |u| < P/4. Given the remainder representation of u
we will, without multiprecision arithmetic, construct the remainder representation
of an integer v congruent to u modulo n. Although |v| is not in general smaller
than n, it is not too much bigger—it is less than n

∑
i mi. Our method is expressed

in the following corollary of the Explicit Chinese Remainder Theorem:

4 DANIEL J. BERNSTEIN

Lemma 5.1. Fix coprime positive integers m1,m2, . . . ,ms with product P . Let
k1, k2, . . . , ks be integers such that kiP/mi ≡ 1 (mod mi). Let u be an integer with
|u| < P/2. Write xi = kiu mod mi and r = round

∑
i xi/mi. Then u ≡ v (mod n),

where

v =
∑
i

xi

(
P

mi
mod n

)
− (P mod n)r.

Furthermore

v ≡
∑
i

xi

(
P

mi
mod n mod mj

)
− (P mod n mod mj)r (mod mj)

and |v| < n
∑

i mi.

Here we see the advantage of focusing on u and v, which are linear combinations
of x1, . . . , xs, r, rather than on u mod n = v mod n as in [6], [5], and [2].

Proof. u =
∑

i xiP/mi − Pr ≡ v (mod n) by the Explicit Chinese Remainder
Theorem.

The formula for v modulo mj follows from the definition of v.
Finally, v is the difference of two nonnegative terms. The first is less than∑
i min, since xi < mi. The second is less than ns since r = round

∑
i xi/mi ≤

round
∑

i 1 = round s = s. �

It is easy to use these formulas in practice. Given n and the various mi we
precompute tables of ki, P/mi mod n mod mj , and P mod n mod mj , as explained
in the next section. Then, given the remainder representation of u, we compute xi

directly as in section 4, and we compute r as in section 3. Finally, for each j, we
compute v mod mj as an appropriate dot product modulo mj .

In [6] and [2], xi was chosen as kiu. Like [5] we set xi = kiu mod mi; this greatly
improves our v bound for very little effort. We could reduce |v| down to at most
(n/4)

∑
i mi by using least remainders for xi and for various numbers modulo n.

If it is worth that much hassle to save two bits, then perhaps we should go even
further, manipulating all the xi to make v small.

6. Precomputing everything

To use the method of section 5 we must precompute the s2 + s quantities
P/mi mod n mod mj and P mod n mod mj , as well as the inverse of P/mj modulo
mj . We can do all this without too much trouble, if P ≥ 4nmj for each j:

Lemma 6.1. Fix coprime positive integers m1,m2, . . . ,ms with product P . Let n
be a positive integer. Assume that P/mj ≥ 4n. For i 6= j let cij be the inverse of mi

modulo mj. Set kj =
∏

i6=j cij mod mj, nj = n mod mj, pj = P mod n mod mj,

qj = bP/nc mod mj, and eij = qinj+pj mod mj. For i 6= j set dij = cijeij mod mj

and xij = kjeij mod mj. Set rj = round
∑

i6=j xji/mi and let djj be the ratio

modulo mj of
∑

i 6=j cijxji−rj and kj. Then kjP/mj ≡ 1 (mod mj) and qjnj+pj ≡
0 (mod mj) for every j; and dij = P/mi mod n mod mj for every i and j. Also
|
∑

i 6=j xji/mi − rj | < 1/4.

Proof. First kjP/mj ≡
∏

i6=j cijmi ≡ 1 (mod mj).

Abbreviate q = bP/nc, so that P = qn + (P mod n). Then q ≡ qj (mod mj) so
qjnj + pj ≡ qn + (P mod n) = P ≡ 0 (mod mj).

MULTIDIGIT MODULAR MULTIPLICATION 5

Next qn ≡ qin (mod min) so P ≡ qin + (P mod n) (mod min). But 0 ≤ qin +
(P mod n) ≤ (mi − 1)n + (n − 1) < min. Hence P mod min = qin + (P mod n).
Reduce modulo mj :

mi

(
P

mi
mod n

)
= P mod nmi = qin + (P mod n) ≡ qinj + pj ≡ eij (mod mj).

To prove that dij = P/mi mod n mod mj we consider separately i 6= j and i = j.
For i 6= j we have midij ≡ micijeij ≡ eij ≡ mi(P/mi mod n) (mod mj). Since mi

is coprime to mj we have dij ≡ P/mi mod n (mod mj).
To handle P/mj mod n mod mj we will apply the Explicit Chinese Remainder

Theorem to all mi except mj . The product of this restricted set is P/mj , and we
have (kimj)(P/mj)/mi ≡ 1 (mod mi) for i 6= j. Define u = P/mj mod n; observe
that |u| < n ≤ P/4mj . Furthermore

xji ≡ kieji ≡ kimj(P/mj mod n) = (kimj)u (mod mi).

Hence u = (P/mj)z − (P/mj) round z with z =
∑

i6=j xji/mi. By construction

rj = round z, so |z − rj | = |umj/P | < 1/4. Finally

kju = kj
P

mj

∑
i 6=j

xji

mi
− kj

P

mj
rj = kj

∑
i6=j

xji
P

mimj
− kj

P

mj
rj

≡ kj
∑
i 6=j

xji
P

mimj
micij − kj

P

mj
rj = kj

∑
i 6=j

cijxji
P

mj
− kj

P

mj
rj

≡
∑
i 6=j

cijxji − rj ≡ kjdjj (mod mj).

Hence djj ≡ u = P/mj mod n (mod mj) as desired. �

We may compute all the quantities in Lemma 6.1 exactly as they are defined. It
is convenient to store xij on top of eij . To find rj we use the method of section 3.

We use multiprecision arithmetic in computing bP/nc and P mod n, and in
reducing n, bP/nc , P mod n modulo each mj . We can save some time and effort
by computing pj as −qjnj mod mj . Alternatively, when nj is coprime to mj , we
can compute qj as the ratio of −pj and nj modulo mj , as suggested in [2]. (The
situation of [2] was that P had far more digits than n, so it was impractical to
compute bP/nc. Fortunately, n was coprime to P , so nj was coprime to mj .)

7. Implementation ideas

We return to the practical problem of computing xk mod n.
Select moduli m1,m2, . . . ,ms with product P ≥ 4(n

∑
i mi)

2. Precompute the
quantities described in section 6. Now, given the remainder representations of in-
tegers t, t′ smaller than n

∑
i mi in absolute value, we may (1) form the remainder

representation of tt′, which is an integer of magnitude less than P/4; and (2) reduce
tt′ modulo n by the method of section 5. We end up with the remainder representa-
tion of a new integer v ≡ tt′ (mod n). Since v is smaller than n

∑
i mi in absolute

value, it can participate in further multiplications.

6 DANIEL J. BERNSTEIN

So we start from the remainder representation of x mod n, which is smaller than
n
∑

i mi. We repeatedly multiply and reduce in the remainder representation, keep-
ing all intermediate results below n

∑
i mi, until we have reached v ≡ xk (mod n).

We convert back to the usual representation of v by the method of section 4. Finally
we compute v mod n = xk mod n.

The same strategy works for arbitrary sequences of ring operations modulo n.
For example, we can compute multiples of points on an elliptic curve modulo n,
compute convolutions modulo n as in [6] or [5], and so on. We simply have to make
sure that P is large enough for the intermediate results.

Software. In practice we spend almost our entire time computing

v mod mj =

(∑
i

xi

(
P

mi
mod n mod mj

)
− (P mod n mod mj)r

)
mod mj

as per Lemma 5.1. This is a matrix-vector product: we multiply our precomputed
matrix, with entries of the form P/mi mod n mod mj and −(P mod n) mod mj ,
by the vector x1, x2, . . . , xs, r. We could reduce the jth component of the output
modulo mj in each step, to keep the numbers small, or in one sweep at the end.

Existing computers perform many operations more efficiently than multiplication
and addition modulo mj . In light of the restricted range of inputs we could easily
replace all arithmetic with memory lookups.

Extreme example: We could precompute the outputs xi(P/mi mod n) mod mj

for each possible xi. Then, given x1, x2, . . . , xs, we can simply look up and add up
the corresponding outputs. If n is fixed for a long time this might be worthwhile.
Less extreme would be, e.g., to break each xi into a sum of terms of the form
(2b)(1, 3, 5, or 7) and to precompute corresponding tables. This may be worthwhile
on computers with slow multiplication.

Another helpful technique is to insert the matrix entries into carefully written
machine code. On some computers it will be possible to keep most or all of the xi

in registers at once. On computers with very fast arithmetic it would be worthwhile
to eliminate housekeeping by expanding all loops out of the machine code.

Optimal modulus sizes will depend heavily on such choices and on further details
of the computer’s arithmetic facilities.

Note that we could store xi = kiu mod mi rather than u mod mi, and we could
modify our precomputed matrix to produce kjv mod mj rather than v mod mj .

Our moduli are not engraved in stone. Given n we could perhaps look for moduli
permitting an unusually fast matrix-vector product: for example, where our matrix
has many zeros or many repeated entries. Does a “fast matrix” exist for any n? If
so, how could we find it? In some situations n itself is not fixed. How quickly can
we find a good (n,m1,m2, . . . ,ms)?

Hardware. Our reduction method is so dramatically parallel that it cries out for a
hardware implementation. The author imagines several levels of chips, of increasing
complexity and increasing effectiveness:
1. A straightforward integer matrix-vector multiplication chip.
2. A chip that multiplies a matrix by a vector and reduces the jth component of

the output modulo mj . It would be reasonable for the selection of mj to be
hardwired into the chip.

MULTIDIGIT MODULAR MULTIPLICATION 7

3. A chip that understands the entire procedure of section 5: given the remainder
representation of u, it computes xi, r, and the remainder representation of v.

4. Like level 3, but the chip stores several remainder representations in named
“registers,” and can add, subtract, multiply, or reduce registers upon command.

5. Level 4 plus high-level operations such as modular exponentiation.
6. Level 5 plus conversion to and from the remainder representation.
7. Level 6 plus the precomputation procedure of section 6.

8. The polynomial analogue

There is an analogue of the Explicit Chinese Remainder Theorem for polynomials
over a field:

The Explicit Chinese Remainder Theorem for Polynomials. Fix coprime
polynomials m1,m2, . . . ,ms with product P = m1m2 · · ·ms. Let k1, k2, . . . , ks be
polynomials such that kiP/mi ≡ 1 (mod mi). Let u be a polynomial with deg u <
degP . Set xi = kiu mod mi. Then u =

∑
i xiP/mi.

Note that “round z” for integers has been replaced by 0 for polynomials. Our
integer algorithms, mutatis mutandis, work for polynomials.

Proof. Work modulo mj :
∑

i xiP/mi ≡ xjP/mj ≡ kjuP/mj ≡ u (mod mj). The
mj ’s are pairwise coprime so

∑
i xiP/mi ≡ u (mod P). By construction deg xi <

degmi. Then both
∑

i xiP/mi and u have degree smaller than degP , so they must
be equal. �

When all mi are monic and linear, the Explicit Chinese Remainder Theorem for
Polynomials reduces to the familiar fact that a polynomial is a linear combination
of its values at a sufficiently large set of points. See [3, pages 484–486].

References

1. Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin,

1993.
2. Jean-Marc Couveignes, Computing a square root for the number field sieve, in [4], 95–102.

3. Donald E. Knuth, The Art of Computer Programming, volume 2: Seminumerical Algorithms,

2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.
4. Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field

sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.
5. Peter L. Montgomery, An FFT Extension of the Elliptic Curve Method of Factorization,

Dissertation, University of California at Los Angeles, 1992.

6. Peter L. Montgomery, Robert D. Silverman, An FFT Extension to the P − 1 Factoring Algo-
rithm, Mathematics of Computation 54 (1990), 839–854.

5 Brewster Lane, Bellport, NY 11713

