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Abstract. This paper describes the limits of various “security proofs”,
using 36 lattice-based KEMs as case studies. This description allows the
limits to be systematically compared across these KEMs; shows that
some previous claims are incorrect; and provides an explicit framework
for thorough security reviews of these KEMs.

1 Introduction

It is disastrous if a cryptosystem X is standardized, deployed, and then broken.
Perhaps the break is announced publicly and users move to another cryptosystem
(hopefully a secure one this time), but (1) upgrading cryptosystems incurs many
costs and (2) attackers could have been exploiting X in the meantime, perhaps
long before the public announcement.

“Security proofs” sound like they eliminate the risk of systems being broken.
If X is “provably secure” then how can it possibly be insecure?

A closer look shows that, despite the name, something labeled as a “security
proof” is more limited: it is a claimed proof that an attack of type T against the
cryptosystem X implies an attack against some problem P . There are still ways
to argue that such proofs reduce risks, but these arguments have to account for
potentially devastating gaps between (1) what has been proven and (2) security.
Section 2 classifies these gaps into four categories, illustrated by the following
four examples of breaks of various cryptographic standards:

• 2000 [37]: Successful factorization of the RSA-512 challenge. At the time,
512-bit RSA moduli were used for “95% of today’s E-commerce on the Inter-
net”. The same attack breaks a wide variety of protocols—including “prov-
ably secure” protocols—built upon 512-bit RSA moduli.
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system parameter set ROM ROM2 fail conj dist P

frodo 640 risk risk −138 safe risk risk

frodo 976 risk risk −199 safe risk risk

frodo 1344 risk risk −252 safe risk risk

kyber 512 risk risk −178 safe risk risk

kyber 768 risk risk −164 safe risk risk

kyber 1024 risk risk −174 safe risk risk

lac 128 risk risk −133 risk risk risk

lac 192 risk risk −142 risk risk risk

lac 256 risk risk −138 risk risk risk

newhope 512 risk risk −213 risk? risk risk

newhope 1024 risk risk −216 risk? risk risk

ntru hps2048509 risk safe −∞ safe safe risk

ntru hps2048677 risk safe −∞ safe safe risk

ntru hps4096821 risk safe −∞ safe safe risk

ntru hrss701 risk safe −∞ safe safe risk

ntrulpr 653 risk risk −∞ safe risk risk

ntrulpr 761 risk risk −∞ safe risk risk

ntrulpr 857 risk risk −∞ safe risk risk

round5n1 1 risk risk −146 risk risk risk

round5n1 3 risk risk −144 risk risk risk

round5n1 5 risk risk −144 risk risk risk

round5nd 1.0d risk risk −155 risk risk risk

round5nd 3.0d risk risk −147 risk risk risk

round5nd 5.0d risk risk −143 risk risk risk

round5nd 1.5d risk risk −142 risk risk risk

round5nd 3.5d risk risk −256 risk risk risk

round5nd 5.5d risk risk −227 risk risk risk

saber light risk risk −120 risk? risk risk

saber main risk risk −136 risk? risk risk

saber fire risk risk −165 risk? risk risk

sntrup 653 risk safe −∞ safe safe risk

sntrup 761 risk safe −∞ safe safe risk

sntrup 857 risk safe −∞ safe safe risk

threebears baby risk risk −156 risk risk risk

threebears mama risk risk −206 risk risk risk

threebears papa risk risk −256 risk risk risk

Table 1.1. Security risks that are not eliminated by “security proofs” for the target
KEMs, even assuming that the proofs are correct. “ROM”, “ROM2”, “fail”, “conj”,
“dist”, and “P” are risks; see text for definitions. Red entry (“risk”): Security risk is
not eliminated for this KEM. Black entry (“safe”): Security risk is eliminated for this
KEM.
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• 2016 [31]: A successful break of “provably secure” Triple-DES-CBC. At the
time, Triple-DES-CBC was used for “roughly 1–2% of HTTPS connections
between mainstream browsers and web servers”.

• 2018 [53]: A successful break of “provably secure” AES-OCB2. The AES-
OCB2 “security proof” was published at Asiacrypt 2004, and AES-OCB2
was standardized by ISO, although deployment of AES-OCB2 was limited
by patent issues.

• 2019 [69]: A successful break of various “provably secure” signature systems
using SHA-1.

As these examples illustrate, “security proofs” do not eliminate all risks. This
fact is important for the evaluation of “provably secure” systems that are not
(yet?) known to be broken: the details of the risk analysis depend on, inter
alia, the attack type T considered by the proofs, and the underlying problem P
assumed to be secure. This dependence also means that some pairs (P, T ) could
be more effective than others in reducing risks.

1.2. A plan for security reviews of 36 target KEMs, and a metric
for comparing proofs. The purpose of this paper is to make clear which pairs
(P, T ) are achieved by known proof strategies for a selected list of target KEMs X
defined below. The detailed list of pairs (P, T ) is the centerpiece of the following
three-step plan for thoroughly evaluating risks that the target KEMs do not
reach their claimed security levels:

• Security reviewer #1: Is each X in fact fully proven to reach its claimed
security level against attacks of type T , assuming the hardness of P?

• Security reviewer #2: To what extent have attacks against P been studied?
How confident are we that P is as hard as the proof assumes?

• Security reviewer #3: To what extent have attacks outside T been studied?
How confident are we that these cannot do better than attacks of type T?

These three reviews can be carried out in parallel, although errors discovered in
review #1 can force changes in the scope of the other two reviews.

The total cost of a thorough security review—including all three steps shown
above—is the primary metric used in this paper to compare proofs of security.
The underlying theory here is that security problems are generally more likely to
remain undetected in systems where thorough security reviews are more compli-
cated. More complicated reviews mean more opportunities for error, especially
when constraints on community resources limit the time available for review.
See Appendix B for further comments on this metric, and Appendix C for other
ways to evaluate proofs.

One should not think that this paper constitutes a security review. Describing
full details of the known attacks and of the remaining attack surface would
require a much longer document. I have reviewed the relevant proofs in enough
detail to confidently point out various errors in proofs and in previous claims
regarding the list of pairs (P, T ), but this does not mean that I vouch for the
correctness of the remaining proofs; further review could reveal proof errors that
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force the list to be revised. I could have made mistakes as part of analyzing
the submissions, and further mistakes as part of unifying notation for the list of
pairs (P, T ). I plan to issue online updates of this paper as appropriate.

1.3. The target KEMs, and a table of security risks. I selected target
KEMs by the following procedure. Take the lattice-based KEM families in round
2 of NIST’s Post-Quantum Cryptography Standardization Project: these are, in
alphabetical order, Frodo [6], Kyber [14], LAC [71], NewHope [4], NTRU [39],
NTRU Prime [27], Round5 [15], and Saber [44]. Also include ThreeBears [51],
which is sometimes counted as a lattice proposal. Then list, within each KEM
family, all parameter sets identified in the submissions as aiming for IND-CCA2
security.3 These are, by definition, the target KEMs.

Some of the submissions also provide options that aim merely for IND-CPA
security. However, I have not seen any publicly verifiable examples of applications
where the extra cost of IND-CCA2 security is a significant part of the end user’s
total costs. I am focusing on IND-CCA2 security as the most important goal of
the proofs and the obvious target for comparison.

Even though the KEMs aim for IND-CCA2 security, the proofs advertised for
these KEMs are limited to QROM IND-CCA2 attacks, or further limited to ROM
IND-CCA2 attacks. QROM IND-CCA2 proofs have been rapidly improving over
the past two years, and it seems more productive to expend QROM efforts on
further proof improvements than on analyzing the current status, so I have
decided to focus on the narrower class of ROM IND-CCA2 attacks here.4

Table 1.1 lists security risks that are not eliminated by the known “security
proofs” for these KEMs. The “ROM”, “ROM2”, “fail”, “conj”, “dist”, and “P”
risks are defined in Sections 4, 4, 5, 5, 6, and 8 respectively. Giving a complete
list of the pairs (T, P ) requires defining the underlying problems P ; this is done
in Section 8.

1.4. Previous work. This is a systematization-of-knowledge paper that draws
heavily upon previous work, including hundreds of pages of KEM submission
documents and related papers. I do not claim any novelty for the specific proof
techniques mentioned in this paper.

It is generally difficult for readers of the previous literature to see all the gaps
in what has been proven regarding the target KEMs. Notes regarding the gaps
for any particular KEM are organized haphazardly, often not highlighted, often
buried under other material, and sometimes obscured by errors in the content.
KEMs also vary in notation and terminology for describing proofs, adding further
difficulties in comparing the details across KEMs.

3 Round5 defines KEMs that aim for IND-CCA2 security, but my understanding is
that (for some reason) these are defined only as internal building blocks for PKEs,
not as KEMs provided to users. As far as I can tell, the PKE wrapper is orthogonal
to the question of how solidly proofs guarantee IND-CCA2 security for the KEMs.

4 However, I do have a few preliminary QROM footnotes.



Comparing proofs of security for lattice-based encryption 5

For example, the Frodo submission5 lists a chain of proofs “supporting the
security of FrodoKEM”. This chain begins with [6, Theorem 5.1]. The theorem
statement occupies 8 lines, plus 24 lines via [6, Definition 2.19], which has var-
ious details not shared with other submissions (even though at first glance the
theorem statement sounds much more general than Frodo). Someone trying to
check the proof finds nothing beyond a very short outline. Someone trying to
figure out the underlying problem P—the problem assumed to reach a particular
security level—is told that the problem is to break OW-Passive (“OW-CPA”)
security of a PKE. This sounds clear enough modulo details of the PKE, but, as
far as I can tell, this is not what has actually been proven; there is a hidden risk
of IND-CPA attacks being much faster than OW-Passive attacks. See Section 6.

“Security proofs” indisputably have an impact upon the critical processes
of designing, evaluating, comparing, and selecting cryptosystems. The crypto-
graphic literature frequently claims that these proofs reduce risks for particu-
lar cryptosystems. Design rationales and comparisons frequently refer to these
claims. However, the community generally does not require these claims to meet
basic scientific standards of clarity, falsifiability, justification, reproducibility, etc.
Here are two examples from lattice-based cryptography:

• Peikert claimed in 2017 [86] that Ring-LWE is “at least as hard to break”
as NTRU; see also [85, page 33] (“Ring-LWE is at least as hard as NTRU”).
This claim communicates two levels of incorrect information to the reader:
• “NTRU” normally refers to various cryptosystems. The typical reader

thinks that Peikert is comparing these cryptosystems to an alternative
often called “Ring-LWE cryptosystems”. However, Table 1.1 shows that
every “Ring-LWE” cryptosystem under consideration by NIST actually
carries risks that are eliminated by some NTRU cryptosystems.
• From context one can deduce that Peikert is actually focusing on an

underlying problem sometimes called “the NTRU problem”, and com-
paring this to the “Ring-LWE” problems underlying the “Ring-LWE”
cryptosystems, while ignoring other cryptosystem risks. However, this
focus still does not justify Peikert’s claim: these “Ring-LWE” problems
carry risks that are avoided by the “NTRU” problem. See Section 7.3.

• Stehlé claimed in 2019 that “NTRU LPRime does not enjoy a security proof
that is analogous to that of the LPR scheme”. Peikert [87] claimed that it was
“clear” that Stehlé was referring to “the average-case Ring-LWE problem”
(i.e., the proof is required to start from the assumption that certain “Ring-
LWE” parameters are hard to break). However, Peikert’s interpretation of
Stehlé’s claim categorically excludes all of the pure rounding KEMs (e.g.,
firesaber), contradicting another claim by Stehlé [99] that the exclusion
is “due to” details specific to NTRU LPRime. Stehlé has refused to answer
my clarification questions.

Of course, one can argue about the proper methodology for assigning weights
to various types of proofs (and other cryptosystem features). These arguments

5 I am selecting Frodo as an example here because Frodo seems to place heavier
emphasis upon proofs than any other round-2 lattice-based KEM submission.
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should, however, begin with a clear picture of the objective facts—in particular,
a clear picture of what has been proven and what has not been proven. This
paper systematically collects the facts.

Cryptography is notoriously fragile: the community has seen again and again
how a single isolated error can destroy security. This does not imply that secu-
rity will be destroyed specifically by errors in understanding how much has been
proven—and how much has not been proven—regarding lattice-based cryptog-
raphy; but anecdotal evidence provides many reasons to be concerned. I think
all of the following statements are reasonable extrapolations from the evidence:
(1) These errors are common. (2) These errors are often severe. (3) These errors
are not distributed equally across KEMs. (4) These errors are almost always in
the direction of thinking that the proofs guarantee more than they actually do,
rather than less. (5) These errors tend to reduce the decision-making impact
of security features other than proofs—features that again are not distributed
equally across KEMs. (6) Errors in understanding what has been proven can
easily lead to selection of an unnecessarily risky KEM.

2 Classification of risks in “provably secure”
cryptosystems

Proofs of security give an iron-clad guarantee—relative to the defi-
nition and assumptions—that no attacker will succeed; this is much
better than taking an unprincipled or heuristic approach to the prob-
lem. Without a proof that no adversary with the specified resources
can break some scheme, we are left only with our intuition that this
is the case. Experience has shown that intuition in cryptography and
computer security is disastrous. There are countless examples of un-
proven schemes that were broken, sometimes immediately and some-
times years after being developed. —Katz and Lindell [60]

The standard argument for the value of “security proofs” is the claim that
they “guarantee” the security of various cryptosystems. In this paper, I will
ignore the ill-defined marketing (“iron-clad” vs. “unprincipled” etc.), and focus
on the logical structure of the argument that these cryptosystems are secure.

Write X for the cryptosystem in question, and write 2λ (e.g., 2128) for X’s
target security level. Here is the general argument that X has security level at
least 2λ:

• Any attack A against X must be of type T . (This is not proven—it is the
“definition” of the type of attack under consideration.)

• By the theorem, this attack A implies an attack B against P . (This is the
proven part—the “guarantee”.)

• P reaches security level 2λ; i.e., B costs at least 2λ. (This is also not proven—
it is the “assumption”.)

• Ergo, A costs at least 2λ.
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There are four important ways that this type of argument can fail, corresponding
to the four proof-quality measurements listed in [26, Section 6.1]:

• Risk #1: Security failures in the underlying problem P . The third
step in the argument fails if attacks against P actually cost below 2λ. This
is what happened in the successful break of various “provably secure” pro-
tocols using 512-bit RSA moduli N : the underlying problem of inverting
exponentiation modulo N does not reach the security level that users want.

• Risk #2: Looseness in the proof. A closer look shows that most “secu-
rity proofs” do not say that B is as fast as A: they create B that is (say)
2` times slower than A. The fourth step in the argument then fails: the con-
clusion is only security 2λ−`, which could be much smaller than 2λ. This
is what happened in the successful break of “provably secure” Triple-DES-
CBC: all known Triple-DES attacks are quite expensive, and a known proof
built a Triple-DES attack from any Triple-DES-CBC attack, but the proof
was quantitatively too loose to rule out a fast Triple-DES-CBC attack.

• Risk #3: Attacks outside type T . The first step in the argument fails
if an attacker finds a faster attack against X that is not of type T . This is
what happened in the successful break of various “provably secure” signature
systems using SHA-1: the proofs applied only to ROM attacks, and the
successful break was a non-ROM attack.

• Risk #4: Errors in the proof. The second step in the argument fails
if the proof is incorrect. This is what happened in the successful break of
“provably secure” AES-OCB2.

Accounting for all of these risks produces the following argument that X has
security level at least 2λ:

• Assume that there is an attack A against X that costs below 2λ.
• Assume that A is of type T . (Risk #3 is that this is not true.)
• Assume that the proof is correct. (Risk #4 is that this is not true.)
• Then, by the proof, there is an attack B against P that costs below 2`+λ.
• Assume that P has security level at least 2`+λ. (Risk #1 is that P does not

even reach security level 2λ, and risk #2 is that P does not reach security
level 2`+λ.)

• This is a contradiction, so at least one of the assumptions must be wrong.

For simplicity I have been treating the security level of a cryptosystem as a single
number in the above description: X has target security level 2λ, and P has target
security level 2`+λ. Analogous comments apply to a more sophisticated notion
of security level as a relation between attack cost and attack success probability.
Below I will distinguish cost from probability.

As a concrete example (much simpler than the lattice examples later in this pa-
per), there are “security proofs” for AES-CMAC, AES-EAX, AES-GCM, AES-
OCB, AES-OCB2, AES-OCB3, and many other symmetric cryptosystems built
from AES. These proofs leave the following risks:
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• The proofs begin from an “SPRP” security assumption about AES (or, in
some cases, a generically weaker “PRP” security assumption). Risk #1 is
that AES does not actually reach the target SPRP security level.

• Each proof has some loss in success probability, typically on the scale of
q2/2128 where q is the number of AES invocations. Risk #2 is that q reaches
the scale of 264, making the conclusions content-free.

• Typically these proofs cover all MAC attacks, AEAD attacks, etc. under
standard definitions, so risk #3 does not apply. (On the other hand, some-
times the standard definitions are argued to be too narrow.)

• The proofs usually have not been computer-verified, and sometimes turn out
to be wrong. Risk #4, the risk of proof errors, is illustrated by the break of
AES-OCB2.

One way to see that these proofs are useful, despite the continued risk of attacks,
is as follows. Consider the review-cost metric from Section 1, the time required for
a thorough security review. The SPRP assumption for AES has a simpler attack
surface from a cryptanalyst’s perspective than the AEAD security assumption for
AES-GCM. Even better, the work of studying the SPRP assumption for AES is
reused for AES-CMAC and many other systems, thanks to the proofs. Without
the proofs, cryptanalysts would have to spend much more time searching for
attacks against each system. Some of the cryptanalysis time saved by the proofs
has to be spent verifying the proofs, but overall there still seems to be a savings
of time.

2.1. Chains of lattice proofs, and organization of this paper. The known
proof strategies relevant to the target KEMs generally take short steps down the
following list of problems:

• IND-CCA2 security of the KEM. See Section 3.
• ROM IND-CCA2 security of the KEM. See Section 4.
• IND-CPA security of the underlying PKE. See Section 5.
• OW-Passive (“OW-CPA”) security of the PKE. See Section 6.
• For “Product NTRU” using public seeds to create pseudorandom multipliers:

ROM security of the PKE, followed by security of a simplified PKE where
multipliers are chosen at random. This is included in Section 4.

• Separate problems for keys and ciphertexts. See Section 7.
• Lattice problems. See Section 9.

Each of these steps adds its own risks of proof errors; often a step adds its own
looseness issues; often a step adds its own restrictions upon the type of attacks
under consideration. Furthermore, it is often not clear that one step will plug
into the next step. Sometimes single steps are stated as formal theorems, but this
is not the same as a grand unified end-to-end theorem that states the cumulative
looseness, all of the restrictions upon the attack type, and the exact underlying
problem for each target KEM. Many of the risks identified in this paper are at
the interfaces between steps, and I would not be surprised if doing the work to
state and prove an end-to-end theorem identifies even more risks.



Comparing proofs of security for lattice-based encryption 9

3 A proof that applies to all possible attacks

Each of the target KEMs X has a tight “security proof” that applies to the
entire class T of IND-CCA2 attacks (not just ROM IND-CCA2 attacks). The
proof has been carefully verified. The underlying assumption P is something
quite plausible, namely the IND-CCA2 security of X.

I did not put serious effort into obfuscating the previous paragraph. I expect
the reader to see immediately how content-free this “security proof” is, and to
wonder why I have selected such a useless starting point for my analysis of lattice
“security proofs”. This example is not new; see generally Appendix C.

My objective in this section is to identify a robust method for decision-makers
to systematically reject this type of “security proof”. Later sections will consider
what this means for various proofs advertised by the target KEMs.

One possibility is to reject any proof where P is exactly the T security of X.
However, this is not robust against minor changes to P . There are many easy
ways to replace P with a marginally obfuscated problem P ′, at the expense of
one line in the proof.

Another possibility is to reject any short proof: say, any proof below 10 lines.
But this is again not robust: one can easily obfuscate P heavily enough that
a useless proof occupies more than 10 lines.6 Furthermore, anecdotal evidence
suggests that proofs are more likely to be checked if theorems are factored into
small, separately verifiable pieces; from this perspective, short proofs are good,
and rejecting short proofs creates a bad incentive to avoid factoring theorems.

What I instead recommend is using the review-cost metric from Section 1. As
a baseline, if there are no proofs, then cryptanalysts must study the security of
X. For comparison, if there is a proof where P is exactly the security of X, then
cryptanalysts are still required to study the security of X, so no time has been
saved. As another example, if there is a proof where P is an obfuscated version
of the security of X, then cryptanalysts need more time—first strip away the
obfuscation, then study the security of X—and someone must also take the time
to check the proof.

The situation is different in, e.g., Section 5. In that section, T allows the
attacker to issue decapsulation queries, while P does not. It takes considerably
less time for cryptanalysts to gain confidence in the security of P than it would
take for cryptanalysts without the proof to gain the same level of confidence in
the security of the original problem. This savings could still be outweighed by
other costs—the proofs mentioned in Section 5 are limited to ROM IND-CCA2
attacks (so cryptanalysts need to take time to consider the possibility of non-
ROM attacks) and take effort to review—but the core fact that P takes less time
to review gives Section 5 a chance of being useful in the review-cost metric.

More generally, in planning a review of risks that X does not reach its claimed
security level, one has a choice of which proofs to use and which proofs to ignore.

6 See, e.g., the Frodo proof covered in Section 4.1. Obfuscation is the predictable result
of evolutionary pressure upon “security proofs”; I do not mean to suggest that any
malice is involved.
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Each extra proof requires time to review, but could simplify cryptanalysis enough
to save time overall.

For comparison, Damg̊ard [42] asks for problems to be as “simple” and “nat-
ural” as possible, but does not describe a way to measure this. If some way to
measure simplicity says that P is simpler than X, but cryptanalysts need more
time to analyze P than to analyze X, then the review-cost metric says that the
proof is not useful. Damg̊ard also asks for problems to be as “well studied” as
possible; this is the natural result of reducing the cost of review.

4 Random oracles

The Random Oracle Model has caused more harm than good, because
many people confuse it for the “real thing” . . . At the very minimum,
one should issue a fierce warning that security in the Random Oracle
Model does not provide any indication towards security in the standard
model. —Goldreich [49]

There is no evidence that the need for the random oracle assumption
in a proof indicates the presence of a real-world security weakness
in the corresponding protocol. We give several examples of attempts
to avoid random oracles that have led to protocols that have security
weaknesses that were not present in the original ones whose proofs
required random oracles. —Koblitz and Menezes [63]

Subsequent sections focus on proofs for ROM IND-CCA2 attacks. The proofs
do not eliminate the risk of non-ROM IND-CCA2 attacks; this risk7 is the
“ROM” column in Table 1.1. This column is marked “risk” for each of the
target KEMs. For each of these KEMs, the only known proofs that apply to all
IND-CCA2 attacks are useless proofs (see Section 3).

The premier examples of non-ROM attacks are signature forgeries via chosen-
prefix collisions in MD5 and SHA-1. One can also build artificial public-key
systems that seem safe against all ROM attacks but allow non-ROM attacks
with, e.g., SHA-512. It is not inconceivable that such attacks also exist against
reasonable public-key systems. Presumably these attacks would combine attack
techniques from symmetric cryptology and public-key cryptology; does the lack
of known attacks mean that the attacks do not exist, or does it mean that the
attacks exist and nobody has been looking for them? Note that there are many
cryptanalysts specialized in symmetric cryptology, many others specialized in
public-key cryptology, and very few who are experts in both.

4.1. Random multipliers. All of the target KEMs prove ROM IND-CCA2
security from IND-CPA security of an underlying PKE (Section 5) or, in some
cases, OW-Passive security of an underlying PKE (Section 6). However, some of
the KEMs then further restrict attention to ROM attacks against the underlying

7 This can be divided into (1) the risk of QROM attacks much faster than ROM
attacks, and (2) the risk of attacks much faster than QROM attacks.
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PKE. The risk of a non-ROM attack against the PKE is marked as the “ROM2”
column in Table 1.1. This risk is distinct from the risk of a non-ROM attack
against the KEM: any particular hash function might trigger one type of non-
ROM attack and not the other. Cryptanalysts searching for non-ROM attacks
against the KEM are faced with a different problem from cryptanalysts searching
for non-ROM attacks against the PKE.

The issue with these PKEs is that they generate public multipliers as cipher
output or hash output starting from short public seeds.8 The underlying prob-
lems highlighted by these PKEs instead choose the multipliers at random from a
distribution with a reasonably simple mathematical definition, certainly simpler
than the definition of a cipher or hash function. This mismatch means that, even
if the underlying problem is secure, there is a risk of a much faster attack against
the PKE—an attack that exploits the pseudorandom multipliers.

This risk is often hidden by expository failures or outright proof errors. For
example, the Saber submission uses a PKE of this type, and claims [44, Theo-
rem 6.1] to prove IND-CPA security—not just ROM IND-CPA security—from
a “prf” assumption and two “mod-lwr” assumptions.9 A proof is not given, and
a skeptical reviewer finds somewhat different notation and theorem structure
in [43], but the core point here seems to be [43, Theorem 3, proof, second para-
graph]. The paragraph briefly claims that an attacker can win a PRG game,
distinguishing a pseudorandom matrix from a uniform random matrix, if the at-
tacker can distinguish these matrices in the context of an attack against a more
complicated problem. I see no way that this can be proven for IND-CPA attacks
against the PKE, or other types of attacks that show the seed to the attacker:
the PKE attacker can simply try hashing the seed, while the PRF/PRG attacker
cannot.

The Frodo submission, instead of simply stating that it is limiting attention to
ROM attacks against the PKE, presents a page-long argument [6, Section 5.1.4]
(also [7, Section 5.1.3]) claimed to be a “reduction” between uniform random
multipliers and pseudorandom multipliers. This “reduction” is not encapsulated
as a theorem, and considerable effort is required for the reader to see that this
“reduction” is an obfuscated version of the following content-free statement:

• Assume that there is an attack against Frodo’s pseudorandom multipliers.
• Assume that the attack is just as effective against uniform random multipli-

ers as Frodo’s pseudorandom multipliers.
• Then there is an attack against uniform random multipliers.

This does not eliminate the risk of non-ROM attacks faster than ROM attacks;
it simply hypothesizes that non-ROM attacks do not exist. This “reduction” is a
loss in the review-cost metric: it consumes time for reviewers, without providing
any improvement of the attack surface presented to cryptanalysts.

8 Otherwise the public keys would be bigger.
9 The literal theorem statement is correct but useless: it does not define the reductions

and does not otherwise put any constraints on the cost of the PRF attack, so one can
plug in a very slow high-probability PRF attack. I am presuming that the theorem
statement will be corrected to add reasonable cost limits.
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5 Decryption failures

Each of the target KEMs is built by combining (1) a simpler underlying PKE and
(2) a “CCA conversion” designed to protect against chosen-ciphertext attacks.

A paper by Hofheinz, Hövelmanns, and Kiltz [52] presents several CCA con-
version options in a unified and generalized way, proving ROM IND-CCA2 secu-
rity of each of the resulting KEMs assuming IND-CPA security of the underlying
PKE. All of the target KEMs seem to be covered by the proof strategies in the
paper. Sometimes there are modifications (e.g., minor tweaks to hashing) that
take the KEMs outside the theorems from [52], but the proof strategies seem
robust to these tweaks, modulo small changes in probability formulas.10

The risk of non-ROM IND-CCA2 attacks was covered in Section 4. This sec-
tion covers a different risk that appears when one analyzes the tightness of these
proofs. The IND-CCA2 success probabilities shown in [52, page 21, table, right-
most column] have the following terms:

• The IND-CPA success probability against the KEM, multiplied by 3.
• For the first three options: 3Q/#M, where Q is the number of hash queries,

and #M is the size of the plaintext space allowed by the PKE. Most of the
target PKEs have #M≥ 2256, and then 3Q/#M can safely be ignored.

• For the second and fourth options (“explicit rejection”): Q/2γ when the PKE
is “γ-spread”. It seems clear that whatever is standardized will use implicit
rejection (almost all of the target KEMs use implicit rejection; ThreeBears
uses explicit rejection but appears to be adding support for implicit rejec-
tion), so there is little point in commenting further upon this issue.

• Qδ or (2Q+q)δ (depending on the option), where q is the number of decryp-
tion queries, and δ is the decryption failure probability. This can compromise
tightness, depending on the size of δ.

The rest of this section focuses on the loss of tightness from decryption failures.

5.1. Risk classification. How large can Qδ and (2Q+ q)δ be? The number of
decryption queries q is limited by communication with the legitimate user; NIST
allows11 submissions to assume q ≤ 264. The number of hash calls Q could be
much larger: it is limited only by the attacker’s computational power. This still
allows a tight ROM proof12 if δ is proven to be sufficiently small.

One risk here is that δ is too large. The “fail” column in Table 1.1 shows the
logarithm, base 2, of the upper bounds on δ claimed by the submissions. The
column shows −∞ if δ is claimed to be 0.

10 I am not saying that all of the proofs have been written down and verified. My
paper [30] with Persichetti presents counterexamples to two of the main theorems
from [52], and it is possible that there are further problems. However, at the moment
I don’t see reasons to believe that the target KEMs are affected by any such problems.

11 On the other hand: “NIST is open to considering attacks involving more queries, and
would certainly prefer algorithms that did not fail catastrophically if the attacker
exceeds 2 to the 64 queries.” See [81].

12 For the QROM context, current theorems such as [33, Lemma 6] generally multiply
Qδ by the depth of the attacker’s computation, reflecting the usual Grover speedup.
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Often the KEM claims a pre-quantum security level of (e.g.) 2256 but does
not claim that δ is as small as 2−256. Tightness fails in such cases. Even under
the assumption that the PKE reaches the claimed IND-CPA security level, the
proof does not rule out the risk of a much faster IND-CCA2 attack against the
KEM; the claim of a tight proof is thus incorrect in these cases.13 I have marked
the “fail” column in red in these cases.

Another risk is that the claimed upper bounds on δ turn out to be wrong.
There are two different scenarios here:

• The claimed upper bounds are theorems. This risk is then the general risk
of errors in proofs; Table 1.1 explicitly assumes that the proofs are correct.

• The claimed upper bounds are not theorems: they are merely conjectures
(with varying levels of evidence). This risk is then a different type of risk
that would not be eliminated by verification of all theorems.

The “conj” column in Table 1.1 is “risk” if the claimed upper bounds are con-
jectures, and “safe” if the claimed upper bounds are theorems.

Logically, “conj: risk” means that ROM IND-CCA2 security of the KEM has
not been proven tightly from IND-CPA security of the underlying PKE: there is
a gap in the proof, specifically in the claim that δ is sufficiently small. This gap is
often not clear from submissions: the reader sees an explicit theorem statement
where δ is a variable, and the reader tends to assume—incorrectly—that this
leads to a theorem for the particular KEMs that have been proposed.

5.2. Subtleties in the definition of failure probability. The literature con-
tains at least three different definitions of (upper bounds on) failure probability:

• Encrypt a random message to a random public key. The probability that
decryption fails is (at most) δ.

• Take a message selected by an attacker. Encrypt this message to a random
public key. The probability that decryption fails is (at most) δ.

• Show a random public key and secret key to an attacker. Take a message
selected by the attacker, and encrypt it to this public key. The probability
that decryption fails is (at most) δ.

The third definition is used for the proofs in [52]. The second definition was
stated in a preliminary version of [52]. The first and second definitions do not
seem to be compatible with any known ROM IND-CCA2 proof strategies.

I have marked “conj: risk?” in Table 1.1 if a KEM submission indicates that
it has proven upper bounds on failure probabilities, but does not state that this
proof uses the third definition. The question mark recognizes two ways that the
proof status might turn out to be better than “conj: risk”: (1) The proof authors
might have been using the third definition. (2) The underlying proof strategy
might be able to handle the third definition in any case. (This depends on the
PKE details.) If the authors add clear theorems bounding δ under the third
definition then I will be happy to update the table to say “conj: safe”.

13 Various KEM submissions observe, correctly, that known attacks do not exploit this
looseness. However, in this paper I am focusing on what has been proven.
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The current lack of clarity regarding what has supposedly been proven is a
deterrent to review of the proofs, as the following scenario illustrates:

• A reviewer is evaluating the entire picture of what has been proven and
deciding which proofs are most urgent to review.

• A claimed proof of ROM IND-CCA2 security from IND-CPA security de-
pends on a claimed δ proof.

• The reviewer decides to slog through the details of the δ proof, and eventu-
ally discovers that a step in the proof misses the possibility of an attacker
choosing a failing message based upon the secret key.

• The proof authors respond that they were using the first definition.

This scenario wastes a considerable amount of review time.14 If there had been,
from the outset, a proper theorem statement using the first definition, then the
reviewer could have skipped the proof details and simply pointed to the gap in
definitions as a gap in the claimed ROM IND-CCA2 proof.

5.3. Other sources of IND-CCA2 non-tightness. The theorems from [52]
state that the resulting IND-CPA attack takes “about” the same time as the
given IND-CCA2 attack. This violates the usual mathematical requirement for
each statement in a theorem to have a clear definition.

My impression is that the main cost in the IND-CPA attack, beyond the cost
of the IND-CCA2 attack, is the cost of maintaining a database of queries. This
can be a problem in realistic cost models that ask how quickly an attacker can
carry out a computation using a specified amount of hardware. Perhaps this
problem can be eliminated by the techniques suggested in [20] and [13].

6 One-wayness

What concerns us about the DDH assumption is the fact that this
assumption refers to a setting that is less simple than usual (e.g.,
DDH is less simple than DH), which makes this assumption harder to
evaluate. —Goldreich [49]

Some KEMs have a tight proof of ROM IND-CCA2 security assuming merely
OW-Passive (“OW-CPA”) security of the underlying PKE. The proof strategy
was introduced by Persichetti [89], generalized by Saito–Xagawa–Yamakawa [95],
and modularized for verification in my paper [30] with Persichetti. The resulting
theorem has two requirements:

• The PKE is deterministic: i.e., the entire randomness used to produce a
ciphertext (aside from the public key) is the message recovered by decryption.
This seems essential for the proof strategy.

14 Perhaps the reviewer can still provide useful information to cryptanalysts or to
reviews of other proofs, but this possibility does not noticeably affect the reviewer’s
evaluation of the costs and benefits of reviewing a proof.
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• The PKE has no decryption failures. It seems reasonable to guess that this
requirement can be dropped at the cost of the tightness loss explained in
Section 5, but this does not matter for any of the target KEMs: the target
PKEs that are designed to be deterministic are also designed to have no
decryption failures.

Other aspects of tightness of the proof are even better than in Section 5: for
example, the OW-Passive success probability is not multiplied by 3. I do not
mean to draw excessive attention to security levels changing by 1 or 2 bits; my
main concern in this paper is with larger risks.

In Table 1.1, “dist: risk” means that there is a risk of ROM IND-CCA2 attacks
being much faster than OW-Passive attacks, beyond the decryption-failure risk
from Section 5. This extra risk occurs when the underlying PKE is randomized:
the tight ROM IND-CCA2 proof needs to assume IND-CPA security and does
not rule out IND-CPA attacks much faster than OW-Passive attacks. The central
issue is Fujisaki–Okamoto derandomization,15 which chooses the randomness in
encryption as a hash of the message that will be recovered by decryption. Even
within the limited class of ROM attacks, no known proof strategies eliminate
the risk of this pseudorandomness being exploited by an attacker:

• These KEMs have a loose proof of ROM IND-CCA2 security from OW-
Passive; see [52]. The looseness factor is 2Q, where Q is the number of hash
queries. This does not eliminate the risk of ROM IND-CCA2 attacks being
much faster than OW-Passive attacks.

• There is a construction [52, Section 3.4] that achieves ROM IND-CPA for
the constructed PKE tightly from OW-Passive for the original PKE. None
of the target KEMs use this construction.16

• Known “search-to-decision reductions” are frequently summarized as show-
ing that distinguishing attacks are as difficult as search attacks. However,
checking the details shows that this summary is an overstatement. These
theorems do not eliminate the risk of ROM IND-CCA2 attacks being much
faster than OW-Passive attacks.

Most of the target KEMs use randomized PKEs and thus carry this risk. The
only exceptions (“dist: safe”) are the four KEMs from the NTRU submission
(ntru) and the three Streamlined NTRU Prime KEMs (sntrup).

15 Derandomization seems to be an even larger problem for QROM proofs. For the
deterministic target KEMs, the latest QROM proofs [33] obtain IND-CCA2 tightly
from OW-Passive, modulo the tightness issues from Section 5. For the randomized
target KEMs, I am not aware of any tight QROM IND-CCA2 proofs, even if one
assumes IND-CPA security for the underlying PKEs. But let me emphasize that the
QROM proof situation is rapidly improving, and further QROM proofs could close
this gap.

16 The construction produces much larger ciphertexts, and thus cannot be used by
lattice designers aiming for keys and ciphertexts around a kilobyte. The only target
KEMs that allow much larger ciphertexts are the frodo and round5n1 KEMs, and
these KEMs still do not use this construction.
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Internally, the target KEMs use two different types of public keys, correspond-
ing to two different mechanisms of encryption and decryption. In the NTRU
Prime terminology, the ntru and sntrup KEMs are “Quotient NTRU” KEMs
where the public key is obtained as a quotient of small polynomials; the en-
cryption details make it reasonably easy for the receiver to recover the entire
randomness that was used to produce the ciphertext. The other 29 KEMs—the
ntrulpr KEMs, and the KEMs not named after NTRU—are “Product NTRU”
KEMs following the general approach of [72]; here it seems difficult to recover
the entire randomness. The Product NTRU KEMs all handle this by Fujisaki–
Okamoto derandomization.

6.1. Eliminating risks of distinguishers. The distinction between IND-CPA
and OW-Passive is standard in provable security.17 IND-CPA tightly implies
OW-Passive for any PKE with a large plaintext space.18 In the opposite direc-
tion, OW-Passive is not believed to imply IND-CPA; for example, a deterministic
OW-Passive scheme is not IND-CPA.

Consequently, assuming that the underlying PKE provides IND-CPA involves
risks that are not present in merely assuming that the PKE provides OW-Passive.
This is (modulo an exchange of “first” and “second”) an example of the following
situation described by Katz and Lindell [60]:

If the assumption on which the first scheme is based is weaker than the
assumption on which the second scheme is based (i.e., the second as-
sumption implies the first), then the first scheme is preferable since it
may turn out that the second assumption is false while the first assump-
tion is true.

This does not imply that assuming OW-Passive for one PKE is safer than as-
suming IND-CPA for a different PKE: the differences between the PKEs can
outweigh the gap between OW-Passive and IND-CPA. As Katz and Lindell write:

If the assumptions used by the two schemes are not comparable, then the
general rule is to prefer the scheme that is based on the better-studied
assumption in which there is greater confidence.

Furthermore, the mere fact that one assumption is weaker than another does
not imply that the gap is important. However, there are several ways to see that

17 The standard name for OW-Passive is “OW-CPA”. However, the only plaintext in
the “OW-CPA” definition is chosen randomly, not by the attacker. My paper [30]
with Persichetti renames “OW-CPA” as “OW-Passive”.

18 Given an OW-Passive attack that succeeds with probability p, attack IND-CPA by
checking whether the OW-Passive attack finds a random m0. This IND-CPA attack
correctly outputs 0 with probability p/2. This IND-CPA attack correctly outputs
1 with probability (1 − 1/#M)/2 where #M is the number of possible plaintexts:
whichever plaintext the OW-Passive attack finds has conditional probability 1/#M
of matching m0 given that the ciphertext was obtained by encrypting m1. Overall
the IND-CPA attack has advantage |(p − 1/#M)/2|, so if this advantage is small
then p must be close to 1/#M, and thus close to 0 if #M is large.
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the gap between OW-Passive and IND-CPA is important, as explained in the
rest of this section.

6.2. Are distinguishers well studied? The claim that lattice problems have
been “well studied” consists primarily of pointers to the long literature for algo-
rithms to attack various search problems such as SVP and CVP. For example,
Ajtai [3] credits Dirichlet with formulating “the question of finding a short vec-
tor in a lattice”; points to the LLL and Schnorr algorithms as finding a short
(nonzero) vector; and highlights three related problems, each of which begins
with the word “Find”. Regev [93] highlights “two of the main computational
problems on lattices” and cites the “best known polynomial time algorithms”:
again the LLL and Schnorr algorithms, and a newer algorithm using sieving.
Peikert [85] claims that certain lattice problems—including a decision problem—
have been “intensively studied”, but his list of references for this claim actually
consists of one search algorithm after another.

This pattern matches a broader pattern of mathematical algorithm designers
emphasizing search problems. See, e.g., [62]:

. . . a large proportion of all of the mathematical research in public-key
cryptography is concerned with algorithms for inverting the most im-
portant one-way functions. Hundreds of papers in mathematics as well
as cryptography journals have been devoted to index calculus methods
for factoring integers and for finding the discrete logarithm in the mul-
tiplicative group of a finite field, to improved Pollard-ρ algorithms and
Weil descent methods for finding discrete logarithms on elliptic curves,
and to searches for “weak parameters,” i.e., RSA moduli n that are a
little easier to factor than most, finite fields over which the elliptic curve
discrete logarithm problem is slightly easier to solve, and so on.

The output of a successful search is generally much more informative and much
more applicable than a mere distinguisher. For example, the application that mo-
tivated the LLL paper [67]—“Factoring polynomials with rational coefficients”,
the title of the paper—uses short vectors found by the LLL algorithm.

Of course, applications sometimes lead algorithm designers to consider distin-
guishing problems, as the following examples illustrate:

• The problem of distinguishing prime numbers from composite numbers is a
subroutine in many other number-theoretic computations. At the time that
Gauss highlighted this problem, there were already solutions that were fairly
fast and fairly reliable (such as Fermat’s test: does n divide 2n − 2?). This
prompted real-world usage of those solutions. The real-world usage prompted
searches for improvements in speed and in reliability.

• Pairings were introduced into cryptology as an attack tool against a search
problem. They were then observed to break a distinguishing problem, namely
DDH, much more quickly than breaking a related search problem. Some
subsequent applications, such as pairing-based signatures, can be viewed as
applications of fast distinguishers. The applications of pairings prompted
searches for faster pairings.
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For comparison, “security proofs” in lattice-based cryptography have assumed
the hardness of particular decisional problems, but the occasional study of algo-
rithms for these problems does not seem to have led to broader applications.

6.3. The cost of review. The risk of a devastating attack against a problem
is most obvious when there has been little study of the problem, but the risk
exists in any case. The usual strategies to control this risk are (1) to review
existing cryptanalysis and (2) to carry out and review further cryptanalysis.
The complexity of these processes—and, correspondingly, the likelihood that a
devastating attack will be publicly discovered (say) 5 years later—varies from
one problem to another. As mentioned earlier, I recommend measuring the cost
of a thorough security review.

From the perspective of a cryptanalyst, IND-CPA offers every attack avenue
that OW-Passive offers, plus extra information and extra flexibility: the plaintext
is guaranteed to be one of two messages known to the attacker—even chosen by
the attacker on the basis of the public key. Minor deviations of ciphertexts from
random can easily break IND-CPA without breaking OW-Passive. A reviewer
needs to check not just whether there has been adequate study of algorithms
to invert the (randomized) map from plaintext to ciphertext, but also whether
there has been adequate study of ways to exploit knowing just two possibilities
for the plaintext. As a result, IND-CPA assumptions tend to be worse in this
metric than OW-Passive assumptions.

6.4. Interactions with divergence proofs. Imagine that there has been such
thorough study of an OW-Passive problem that we are confident in security—
but the distribution of messages and keys in the actual cryptosystem is different
from what has been studied:

• The OW-Passive problem for the cryptosystem is finding a message that was
chosen randomly from distribution M , given a public key chosen randomly
from distribution K and an encryption of the message under that key.

• The studied OW-Passive problem is finding a message that was chosen ran-
domly from distribution M ′, given a public key chosen randomly from dis-
tribution K ′ and an encryption of the message under that key.

There could be an arbitrarily large gap between the security levels of these
problems.

Sometimes this gap is addressed by a proof that each message-key pair is
at most twice as likely to be produced by (M,K) as by (M ′,K ′). Whichever
message-key pairs are broken by an attack are then at most twice as likely to
occur for (M,K) as they are for (M ′,K ′). In total, the attack has at most twice
the success probability for (M,K) as it does for (M ′,K ′). Our confidence in the
security of (M ′,K ′) then implies the same confidence in the security of (M,K),
except for changing the security level by 1 bit.
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The previous paragraph is a simple19 example of a tight “divergence proof”.
Note that if OW-Passive were replaced with IND-CPA then this proof would
fail: for example, an IND-CPA attack with zero advantage against (M ′,K ′)
produces the correct answer with probability 1/2 for (M ′,K ′), and multiplying
this by 2 says that the attack produces the correct answer with probability at
most 1 for (M,K), which is content-free. Bai, Langlois, Lepoint, Sakzad, Stehlé,
and Steinfeld [16, Section 4] state more advanced divergence theorems for some
distinguishing problems, but these theorems are not tight.

If (M ′,K ′) is what has been studied, why does the cryptosystem use (M,K)
instead? The usual answer is efficiency. For example, Frodo [6, Section 5.1.3]
claims a divergence proof saying that switching from a discrete Gaussian distri-
bution to another distribution loses at most 1.7 bits of security for frodo640; and
then focuses on the security of a discrete Gaussian distribution. The stated ra-
tionale for the switch of distributions is that (1) a discrete Gaussian distribution
is “key” to part of the security analysis, but (2) sampling from this distribution
is “difficult” on a “finite computer” and “impossible” in “constant time”.

There are two main issues for a reviewer checking a claimed divergence proof.
First, the underlying probability calculations are part of the proof and need to be
checked carefully. For example, the claimed divergence proof for round-1 Frodo
has an apparently unfixable error in the probability calculations, as pointed out
by Phong [91]. This prompted a change in parameters from round-1 Frodo to
round-2 Frodo, according to [6, page 49, fourth bullet item]. Despite this history,
the probability calculations for round-2 Frodo are still not stated as theorems
with detailed proofs.

Second, the applicability of divergence arguments to OW-Passive is straight-
forward and easy to check, but many of the target KEMs do not have tight proofs
of ROM IND-CCA2 security from OW-Passive. As mentioned earlier, Frodo’s
first security theorem [6, Theorem 5.1] claims such a proof, but the claimed proof
is not given, and I see no reason to believe that the claimed proof exists.

Even if [6, Theorem 5.1] is withdrawn, maybe there is another way to apply
divergence arguments to Frodo, for example via intermediate security notions
such as OW-PCVA. But this needs a proper theorem statement and proof, so
that the tightness and cost of verification can be assessed.20

6.5. Updates regarding Frodo. I published my objections to [6, Theorem
5.1] on 24 May 2019. I posted the first version of this paper on 8 June 2019.
My only subsequent modifications to the text in this section were (1) adding the
Goldreich quote, (2) updating reference numbers, and (3) adding this subsection.

Daniel Apon—not speaking for NIST, as far as I know—wrote in [9] that
the Frodo specification “would be more clear” if “OW-CPA” were changed to
“IND-CPA”. I disputed this, writing in [21] that the change “makes a different
(wimpier) statement with exactly the same level of clarity”, and pointing out

19 To be more precise, the portion of the proof that I have displayed here is simple.
The underlying analysis of the probability of achieving any particular message-key
pair could be much more complicated.

20 Of course there is not just a ROM question here but also a QROM question.



20 Daniel J. Bernstein

in [22] that Frodo had changed its theorem from assuming IND-CPA in round 1
(see [5, Theorem 5.1]) to assuming OW-CPA in round 2 (see [6, Theorem 5.1]).

Apon also wrote that “Interpretations that lead to the claimed outcome are
probably the best interpretations to use.” Of course, if the “claimed outcome” is
merely that there is some sort of security proof, then a correct proof from IND-
CPA would achieve this outcome. However, anyone planning a thorough security
review needs to know what the cryptanalytic goals are. A serious evaluation of
security risks cannot simply ignore a change in the goalposts.

I wrote the following in [23] a month later: “I still don’t see how to prove
Frodo’s claimed Theorem 5.1. However, the claimed theorem still hasn’t been
withdrawn.” Apon wrote in [10] that “The outstanding question was whether
the proof could be made tight (or tighter), not whether a proof exists.” I asked
in [24] “Are you claiming that you see how to prove Theorem 5.1 as stated in
the round-2 Frodo submission?”

On 2 July 2019, in [78], the Frodo team withdrew [6, Theorem 5.1], claiming
that “the change in hypothesis from IND-CPA to OW-CPA was a typo that
was inadvertently introduced in the revisions between the round-1 and round-
2 submissions”. In fact, comparing Frodo’s round-1 submission document [5]
to Frodo’s round-2 submission document [6] shows (inter alia) the following
changes:

• The round-1 theorem [5, Theorem 5.1, fifth line] considered a “classical algo-
rithm B against the IND-CPA security of PKE”. The round-2 submission [6,
Theorem 5.1, fifth line] changed this to consider a “classical algorithm B
against the OW-CPA security of PKE”.

• The round-1 theorem [5, Theorem 5.1, display] presented a probability for-
mula involving the “ind-cpa” advantage of B. The round-2 submission [6,
Theorem 5.1, display] changed this to the “ow-cpa” advantage.

• The round-1 theorem title [5, Theorem 5.1, first line] said “Theorem 5.1
(IND-CPA PKE ⇒ . . . )”. The round-2 submission [6, Theorem 5.1, first
line] changed this to say “Theorem 5.1 (OW-CPA PKE ⇒ . . . )”.

• The “summary of the reductions supporting the security of FrodoKEM”
earlier on this page of the round-1 submission summarized this theorem
as assuming “that FrodoPKE is an IND-CPA-secure public-key encryption
scheme”. The round-2 submission changed “IND-CPA” to “OW-CPA”, and
added a footnote saying “OW-CPA is for example defined in [63] and is
implied by IND-CPA”.

I will leave it to the reader to decide whether it is plausible to describe this
consistent collection of changes as a “typo”.

Regarding divergence, Frodo’s updated specification [7] sketches a way to
apply divergence arguments to Frodo via an intermediate security notion, OW-
PCA. The specification continues to omit many details of the claimed divergence
proofs, so it remains difficult to assess the cost of reviewing the proofs.
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7 Splitting key problems from ciphertext problems

Write K for the distribution of public keys in the PKE under consideration, and
write K ′ for another distribution—typically a simplified model of K, perhaps
the uniform distribution over a specified set of public keys. Can an OW-Passive
attack achieve higher success probability against K than against K ′?

If so, then the attacker can distinguish K from K ′. The proof is trivial: given
a public key, choose a random message and see whether the OW-Passive attack
works. This can be phrased as a tight “security proof”:

• Assume that the OW-Passive problem for K ′ is hard.
• Assume that K is indistinguishable from K ′.
• Then the OW-Passive problem for K (i.e., for the PKE) is hard.

Some of the KEMs need to assume IND-CPA for the PKEs, and thus use the
following equally trivial “security proof”:

• Assume that the IND-CPA problem for K ′ is hard.
• Assume that K is indistinguishable from K ′.
• Then the IND-CPA problem for K is hard.

I have chosen notation here to be able to easily highlight how these trivial proofs
differ from the more sophisticated divergence proofs considered in Section 6.4. In
the situation of Section 6.4, K might be distinguishable from K ′, but a provable
divergence limit guarantees a relationship between the OW-Passive problems. In
this section, the actual content of the proof disappears: K is simply assumed to
be indistinguishable from K ′.

7.1. Example 1: Quotient NTRU. As a concrete illustration of this trivial
split, consider Streamlined NTRU Prime 4591761 (sntrup761), an example of a
Quotient NTRU KEM. The underlying problem is to break OW-Passive security
of a PKE called “Streamlined NTRU Prime Core 4591761”.

In this PKE, a public key G is (technically, an encoding of) e/a for a particular
distribution of pairs (a, e). Specifically, e is a uniform random “invertible small”
element of a particular field, and a, independent of e, is a uniform random
“short” element of the field. A ciphertext is obtained by “rounding” Gb/3, where
the plaintext b is a short element of the field; the ciphertext thus has the form
Gb/3 + d where d is a small element of the field.

The trivial proof says that the OW-Passive problem for this PKE is hard
under the following two assumptions:

• Key indistinguishability vs. K ′: A key e/a is indistinguishable from a key
chosen from distribution K ′.

• OW-Passive for K ′: It is hard to recover a uniform random plaintext b given
a key G chosen from distribution K ′ and the ciphertext Gb/3 + d.

This is parameterized by the choice of K ′. The first choice of K ′ that comes to
mind is the uniform distribution over the field. Another choice is the uniform
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distribution over nonzero elements of the field. These two choices are equivalent
in the sense that, since the field is large, they are provably indistinguishable.

7.2. Example 2: Product NTRU. As another concrete illustration, consider
NTRU LPRime 4591761 (ntrulpr761), an example of a Product NTRU KEM.
Here the underlying problem is to break IND-CPA security of a PKE called
“NTRU LPRime Core 4591761”.

In this PKE, a public key has two components (G,A). The first component G
is a uniform random element of the field. The second component A is obtained
by rounding aG to aG+e, where a, independent of G, is a uniform random short
element of the field.

A ciphertext has two components (B, T ). The first component is obtained
by rounding Gb to Gb + d, where b is a uniform random short element of the
field. The second component is various “top bits” of Ab+M , where M is a field
element that encodes a 256-bit plaintext.

The trivial proof says that the IND-CPA problem for this PKE is hard under
the following two assumptions:

• Key indistinguishability vs. K ′: A key (G, aG+ e) is indistinguishable from
a key chosen from distribution K ′.

• IND-CPA for K ′: It is hard to distinguish ciphertext (Gb+ d,Top(Ab+M))
from ciphertext (Gb′+d′,Top(Ab′+M ′)) for chosen plaintexts M,M ′, given
a key (G,A) chosen from distribution K ′.

Given that aG + e is obtained by rounding, the obvious choice of K ′ is pairs
(G,A) where G is a uniform random field element and A is obtained by rounding
a uniform random field element independent of G.

7.3. Obstructions to proving relationships between problems. Beyond
the difference between Quotient NTRU and Product NTRU, the target KEMs
vary in rounding (Rounded NTRU) vs. noise (Noisy NTRU), the choice of ring,
etc. See Section 8.

Sometimes there is a proof that a change in problem does not lose security:
consider, e.g., the OW-Passive vs. IND-CPA example from Section 6. However,
the changes covered by such proofs do not reach all the way from one of the
target KEMs to another, or even from one of the target PKEs to another.

There are some “LWR”-vs.-“LWE” theorems saying, in spirit, that rounding
cannot be much easier to break than noise. The basic idea is simple: given As
plus noise, anyone can round to obtain a rounded As, so anyone can convert an
attack against rounded As to an attack against As plus noise. But these theo-
rems quantitatively degrade as the modulus decreases. Rounding As plus noise
becomes more and more likely to produce a result different from rounding As,
and guessing the differences becomes increasingly expensive; see generally [8].
As far as I know, none of the theorems apply to moduli as small as the moduli
used in the target KEMs.

If a Quotient NTRU PKE is split into a key problem and a ciphertext problem
as in Section 7.1, and a Product NTRU PKE is split into a key problem and
a ciphertext problem as in Section 7.2, then two of these four problems are
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related. Specifically, the Quotient NTRU ciphertext problem is to find b given
G and Gb + d, and the Product NTRU key problem is to distinguish aG + e
from random given G, i.e., to distinguish Gb + d from random given G. If the
underlying distributions match then the search problem cannot be easier than
the distinguishing problem.

On the other hand, the Quotient NTRU key problem is to distinguish e/a
from random. The corresponding search problem is to find a given G and given
aG − e = 0. There is no proof that this search problem is as hard as the Quo-
tient NTRU ciphertext problem: homogeneity changes the input distribution
and could make the problem easier. As far as I know, there is also no proof the
other way: homogeneity could also make the problem harder. For the same rea-
sons, there is no proof relating the Quotient NTRU key problem to the Product
NTRU key problem.

There is, furthermore, no proof that the Product NTRU ciphertext problem
is as hard as the Product NTRU key problem. A proof would have to somehow
handle the fact that the ciphertext problem releases approximations to two mul-
tiples Gb,Ab of a secret b with public multipliers G,A, while the key problem
releases an approximation to just one multiple.

From the perspective of known attacks, homogeneity produces an attack
speedup for Quotient NTRU, but the extra complications of Product NTRU
require lower noise, producing an attack speedup for Product NTRU. These two
effects are roughly balanced: compare “sntrup” to “ntrulpr” in [27, Table 2].
But my focus in this paper is on what has been proven; from this perspective,
either type of problem could be much weaker.

7.4. The cost of review, part 1: cryptanalysis time. How can a trivial
proof that splits a key problem from a ciphertext problem possibly save time for
cryptanalysts? The cryptanalyst has no trouble computing a simplified model of
public keys. The cryptanalyst already knows that taking advantage of the actual
key structure requires finding a way to detect deviations from the model. The
cryptanalyst spends time searching for deviations from the model, and spends
time searching for attacks in the model.

Of course, if a proof assumes that K is indistinguishable from K ′, and a crypt-
analyst finds a fast distinguisher, then one might think that the cryptanalyst can
end the analysis, since one of the proof assumptions has been shown to be false.
But the proof authors then respond as follows:

• Here’s a new (equally trivial) proof using a refined model K ′′ that avoids
the distinguisher.

• The distinguisher for K ′ doesn’t matter, since it doesn’t break the cryp-
tosystem.

The cryptanalyst then searches for deviations from the new model, and searches
for attacks in the new model. This is also what would have happened without
the proof.

7.5. The cost of review, part 2: proof-review time. One might think that
the negligible benefit of this section’s proof strategy for cryptanalysts is balanced
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by the negligible cost of writing down and verifying such a trivial proof. However,
the proof is typically obfuscated enough that the necessary review time is beyond
what the community has spent.

Consider, for example, NewHope’s [4, Theorem 4.4], which deters reviewers
in several ways. The theorem statement occupies 6 lines, plus 6 lines via the
definition of “DRLWE”, 30 lines via the definition of “NewHope-CPA-PKE”,
and many more lines via subsidiary definitions. No proof is given, beyond a
claim that “the proof” is “essentially the same” as two cited proofs. The reader
is not told that stripping away the notation produces a trivial proof that has
nothing to do with the details of NewHope.21

Someone who does the work to read the “DRLWE” definition finds three ex-
plicit parameters m, q, χ and an implicit parameter n. The problem considers
“m samples” from “the uniform distribution” on Rq×Rq, where Rq is “the ring
Z[X]/(Xn + 1)” reduced modulo q; the problem also specifies another distribu-
tion of m samples, and asks whether these two distributions can be distinguished.

The theorem statement involves two “DRLWE” advantages, each with m
being specified as n. In short, the proof of NewHope-CPA-PKE security assumes
the hardness of detecting patterns in n samples, where each sample contains
n integers modulo q. Assumptions in “security proofs” are supposed to draw
the attention of cryptanalysts; cryptanalysts paying attention to this particular
theorem would note that n2 integers are enough to enable the Arora–Ge attack
strategy [12] for some error distributions, and would ask whether the strategy
can be adapted to the error distribution used in NewHope.

However, the submission then continues by analyzing a different “DRLWE”
assumption, in which the attacker is given only 2n integers rather than n2 inte-
gers. There is no comment on the discrepancy between

• the “DRLWE” problem that is analyzed and
• the potentially much more easily broken “DRLWE” problem that the theo-

rem assumes to be difficult.

I am not saying that the theorem is incorrect as stated: I am saying that the
NewHope authors did not realize, and did not analyze, the strength of the hard-
ness assumption made by the theorem that they stated.

My best guess is that the authors intended to state a different theorem. At
various other points the NewHope submission uses “samples” to refer to the
number of integers provided to the attacker; this is not consistent with how
“samples” is used in the NewHope “DRLWE” definition. This inconsistency
would disappear if the “DRLWE” definition were modified to say that m is
required to be a multiple of n, and that the m samples consist of m/n pairs
from Rq ×Rq rather than m pairs. But this modified definition would break the
correctness of the theorem. Product NTRU systems such as NewHope have

• a key that releases an approximation to a multiple of a—this means n
integers—and

21 This also tends to make readers think that there is a limit on the number of KEMs
that enjoy “analogous” proofs.
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• a ciphertext that releases approximations to two multiples of b—this means
2n integers, although compression could produce, e.g., n+ 256 integers.

The numbers n and 2n in the key and ciphertext problems are bounded by n2

and n2 respectively (for the n in question), but they are not even close to being
bounded by n and n, so the theorem would also have to be modified.

Perhaps these changes to the definition and theorem would produce a theorem
that is simultaneously (1) correct and (2) making the same hardness assumption
as the assumption that has (supposedly) been analyzed. But I don’t vouch for
this: this would require checking many details that I haven’t checked. Further-
more, NewHope accounts for just 2 of the 36 target KEMs covered in this paper.
My point here is that one cannot dismiss the proof-review time.

A month after I posted these observations, the NewHope team acknowledged
the “inconsistency”, and modified its theorem statement to replace n and n with
1 and 2. This is now consistent with the “DRLWE” definition of “samples”, but
is inconsistent with how the word “samples” is used in the attack analysis.

8 The core problems

Beyond the general risks of errors in the proofs, attacks not covered by the
proofs, and tightness failures, there is an unavoidable risk of attacks against the
underlying problem P . This risk is indicated by the “P” column in Table 1.1.

The purpose of this section is to describe these problems P for all of the
target KEMs, with a unified notation that allows cryptanalysts to easily see and
compare the details. This description is simpler than a description of the KEMs,
for several reasons:

• CCA conversions are eliminated, leaving simpler PKEs that aim for IND-
CPA or OW-Passive security. (See Section 5.)

• The PKE decryption algorithms are skipped. Decryption does not appear in
the IND-CPA and OW-Passive security definitions.

• Various optimizations are stripped away, as justified by divergence arguments
(see Section 6.4) or simple algebra.

• Product NTRU PKEs that expand short seeds into pseudorandom multipli-
ers are replaced by simpler PKEs with random multipliers. (See Section 4.1.)

• PKEs that release rounded noisy ciphertexts are replaced by simpler PKEs
that release noisy ciphertexts without rounding. (This could allow attacks
that are not allowed by the original system; I have included this simplification
only when it is advertised by the KEM authors as part of the underlying
problem.)

Most of these simplifications are already visible inside KEM submissions, but
variations in notation make it unnecessarily difficult to compare the results across
all the target KEMs.

The Product NTRU PKEs all have “dist: risk” in Table 1.1; in each of these
cases, P is the IND-CPA problem for the PKE described below. The Quotient



26 Daniel J. Bernstein

NTRU PKEs all have “dist: safe” in Table 1.1; in each of these cases, P is the
OW-Passive problem for the PKE described below.

8.1. Key generation. A public key reveals a multiplier G and an approxi-
mation A to aG. Here a is something short chosen randomly during the key-
generation process. The PKEs vary in the set of multipliers, the distribution
of short elements, and how the approximation is obtained. At a high level, the
key-generation procedures fall into three categories:

• The Quotient NTRU PKEs generate a random short a, generate a random
numerator e, compute G = e/a, and output G as the public key. The
homogeneous equation 0 = aG− e says that A = 0 is close to aG.

• The Noisy Product NTRU PKEs generate a random short a, generate a
random multiplier G, generate random noise e, compute A = aG + e, and
output (G,A) as the public key. The inhomogeneous equation A = aG + e
says that A is close to aG.

• The Rounded Product NTRU PKEs generate a random short a, generate
a random multiplier G, compute A by deterministically rounding aG, and
output (G,A) as the public key. There is again an inhomogeneous equation
A = aG+ e saying that A is close to aG.

See Section 8.5 for per-target key-generation details.

8.2. Encryption. A ciphertext reveals an approximation B to Gb, where G is
the multiplier included in the public key, and b is a short input to the encryp-
tion process (either plaintext or randomness). For the Product NTRU PKEs, a
ciphertext also reveals an approximation C to Ab+M , where A is the approxi-
mation included in the public key, and M is an encoded message. At a high
level, the encryption procedures fall into four categories:

• The Noisy Quotient NTRU PKEs take a short b and noise d as plaintext,
compute B = 3Gb+ d, and output B as the ciphertext.

• The Rounded Quotient NTRU PKEs take a short b as plaintext, compute
B by rounding Gb/3, and output B as the ciphertext.

• The Noisy Product NTRU PKEs take an encoded message M as plaintext,
generate a random short b, generate random noise d, generate random noise
c, compute B = Gb+d, compute C = Ab+M + c, and output (B,C) as the
ciphertext.

• The Rounded Product NTRU PKEs take an encoded message M as plain-
text, generate a random short b, compute B by rounding Gb, compute C by
rounding Ab+M , and output (B,C) as the ciphertext.

See Section 8.5 for per-target encryption details.

8.3. The cost of review. There are at least four reasons that a thorough
security review of these PKEs needs a huge amount of time.

First, the state-of-the-art attacks against all of these PKEs use a complicated,
hard-to-analyze attack strategy that involves many stages, many different choices
of subroutines, many tunable knobs, and many recent papers. See [27, Section 6]
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for a survey. Reviewers are forced to evaluate risks of advances at many specific
points within this attack strategy.

Second, even though the differences in data flow described above have little
effect on this attack strategy, security reviewers are forced to consider whether
there could be a larger effect. For example, requiring IND-CPA rather than
merely OW-Passive raises extra questions for security reviewers; see Section 6.
There could be weaknesses specifically for Noisy Quotient NTRU, or for Rounded
Quotient NTRU, or for Noisy Product NTRU, or for Rounded Product NTRU.
There are various obstructions to proving relationships between the attack prob-
lems; see generally Section 7.3.

Third, the PKEs differ in many further details (see Section 8.5), which can
interact in many ways with the state-of-the-art attacks. For example, after [71],
the security estimate for lac192 was downgraded from 2286 to 2278 (see [103]),
which might not sound like a dramatic change but reflects a pervasive failure to
analyze and optimize “hybrid attacks”. Each PKE needs to be analyzed; there
are no theorems stating that one of the PKEs is at least as hard to break as
another.

Fourth, other complicated attack strategies have appeared in state-of-the-
art attacks against other lattice-based cryptosystems. For example, some lattice
problems have been broken for ideal lattices arising from number fields with
small Galois groups, as illustrated by the polynomial-time quantum break [32]
of Gentry’s original STOC 2009 FHE system [46] for cyclotomic fields, the
quasipolynomial-time non-quantum break [18] of analogous FHE systems for
a wide range of multiquadratic fields, and recently a similar break [68] for mul-
ticubic fields. Various claims of lines separating these attacks from the target
PKEs have been disproven by more recent advances in attacks; reviewers are
forced to consider whether further advances could damage the target PKEs.
NTRU Prime tries to simplify this review by avoiding small Galois groups, and
Frodo tries to simplify this review by avoiding number fields entirely, but most
of the target PKEs use cyclotomic fields.

8.4. Misevaluations of the cost of review. There is a common belief that
easy-to-state hardness assumptions are easy-to-review hardness assumptions. For
example, Katz and Lindell [60, page 22] claim that “assumptions that are simpler
to state . . . are easier to study and to (potentially) refute”.22

As pre-quantum examples, the hardness of factoring and the hardness of
multiplicative-group discrete logarithms are simpler to state than the hardness
of, e.g., Curve25519 discrete logarithms.23 The belief then says that the first two
hardness assumptions are easier to study than the third. But extensive cryptanal-
ysis indicates the opposite. The factoring problem and the multiplicative-group
discrete-logarithm problem provide many more tools to the attacker than the

22 After I posted the first version of this paper, Lindell tweeted [70] that the “claims
outlined in Katz–Lindell on this turn out to be overly simplified and naive”.

23 I am assuming here that all details are spelled out. Typically an ECDL definition
is split into (1) a definition of an elliptic-curve group and (2) a statement of a DL
problem for this group; stating the group definition is part of stating the problem.
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Curve25519 discrete-logarithm problem does.24 These tools have been combined
into very complicated attacks25 including several advances this decade (e.g.,
[17]). Further advances would not be surprising.

The literature on lattice-based cryptography has placed tremendous emphasis
on particular hardness assumptions that are claimed to be “simple”. This seems
to mean that the assumptions are simple to state, but I have not seen a side-
by-side comparison of the simplicity of the statements. More to the point, this
emphasis seems to be a distraction from the issues that matter for cryptanalysts
and other security reviewers.

Specifically, starting from the original PKE attack problems, one arrives at
the emphasized problems as follows:

• Split each problem into a ciphertext problem and a key problem. This is
trivial for all of the PKEs; see Section 7. I don’t see how these proofs help
cryptanalysts; see Section 7.4.

• Require Product NTRU rather than Quotient NTRU. I don’t see how anyone
comparing the problems can conclude that the Product NTRU problems are
simpler to state than the Quotient NTRU problems, even if one disregards
the difference between IND-CPA and OW-Passive. More importantly, this
takes away some cryptanalytic concerns but adds others. Product NTRU
could be weaker than Quotient NTRU, or vice versa; see Section 7.3.

• The ciphertext question for the Product NTRU PKEs is whether one can
distinguish an approximation to (Gb,Ab + M) from an approximation to
(Gb′, Ab′+M ′). Compute an M -independent model of these pairs—e.g., the
distribution of approximations to (R,S) for independent uniform random R
and S—and ask whether one can distinguish an approximation to (Gb,Ab+
M) from this model.

• Require the PKEs to have the algebraic feature that approximation com-
mutes with addition of M : the approximation to Ab + M is M plus the
approximation to Ab, so if the model is invariant under addition of M then
the model question is equivalent to the special case M = 0. For example,
Noisy NTRU can add noise independent of the input, and Rounded NTRU
can round to an ideal containing M .

The special case M = 0 eliminates the attacker’s ability to choose M , but
from this perspective the Product NTRU requirement makes no sense: Quotient
NTRU allows OW-Passive problems, eliminating chosen plaintexts and known
plaintexts. Meanwhile the way that the algebraic feature is achieved raises ques-
tions for cryptanalysts: e.g., whether Noisy NTRU allows attacks that would not
apply to Rounded NTRU, and whether the presence of nontrivial ideals could
allow an extension of the attack ideas of [98].

24 The most important tools are efficient ring morphisms. See, e.g., the explanation in
[36, pages 53–54] of the ring morphisms that enable NFS. Pairings extend NFS to
groups E(Fq) of orders dividing q − 1, q + 1, etc. See [76], [57], and [97] for the
mathematical obstacles to handling curves with other group orders.

25 Including, e.g., factoring subroutines that rely on elliptic-curve computations, so the
cryptanalyst has to learn elliptic curves in any case.
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8.5. Per-target problem details. Table 8.6 shows the set of multipliers G
for each PKE. Table 8.7 shows how short elements a are generated. Table 8.8
shows how the difference A − aG is generated; this concludes key generation.
Encryption generates b and B ≈ Gb as in Tables 8.7 and 8.8 respectively, except
that (1) sntrup rounds Gb/3 the same way that ntrulpr rounds Gb, and (2)
ntru adds noise to 3Gb. For Product NTRU, Table 8.9 shows how Ab + M is
converted to C, and Table 8.10 shows the set of encoded messages M .

9 Lattice problems

We reiterate the crucial point: if the reduction proving security is
“loose,” like the one above, the efficiency of the scheme is impacted,
because we must move to a larger security parameter.

—Bellare and Rogaway [19]

When using schemes in practice one needs to know the exact complex-
ity of the reduction (for that will determine the actual security of the
concrete scheme). —Goldreich [48, page 27]

Lyubashevsky, Peikert, and Regev [72] described their work as “proving” that
Ring-LWE “enjoys very strong hardness guarantees”. What they actually proved
was a theorem saying the following: for some Ring-LWE parameters, an attack
implies, up to a polynomial loss of tightness, an attack against a lattice problem,
specifically an approximate Ideal-SVP problem.

Advances in attacks against approximate-Ideal-SVP in the six years since then
have led researchers to question the hardness of approximate-Ideal-SVP. For
example, Pellet-Mary, Hanrot, and Stehlé [88] write that their result “strongly
suggests that approx-SVP for ideals . . . may be weaker than Ring-LWE, for a
vast family of number fields”. But some of the target KEMs continue to advertise
approximate-Ideal-SVP proofs.26 Also, some of the target KEMs advertise lattice
proofs in the non-ideal context, where there have been fewer advances in lattice
attacks.

The rest of this section analyzes the consequences of a more serious problem
with all of these lattice proofs.

9.1. Looseness to the point of disconnection. The original literature on
these proofs did not quantify the polynomial loss of tightness. In other words,
cryptanalysts were not told the target security level for the underlying lattice
problem. This makes it more difficult to publish attacks—of course a dramatic
speedup from exponential time to polynomial time is publishable in any case, but
most cryptanalytic effort is spent on smaller speedups. Deterring cryptanalytic
effort is contrary to the goal of having the hardness assumption be “well studied”.

Even worse, the loss of tightness turns out to be gigantic, so these proofs are
only for irrelevant cryptosystem parameters. As far as I can tell, the primary

26 Peikert [87] claims that “worst-case hardness theorems for Ring-LWE appear to be
of no consequence to the remaining NIST submissions”. The intended meaning of
this claim is not clear to me.
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credit for this observation belongs to a 2016 paper [38] by Chatterjee, Koblitz,
Menezes, and Sarkar.27

Concretely, [38] analyzed Regev’s worst-case-to-average-case reduction for a
cryptosystem that Regev had proposed, took lattice dimension 1024 with secu-
rity target 2128 as a case study, and found an astonishing 2504 tightness gap in
the proof. There appears to be consensus that known attacks break the under-
lying lattice problems with far fewer than 2504+128 operations. Recently Sarkar
and Singha showed [96] that another step in Regev’s proof fails for all lattice
dimensions below 187150.

The obvious research challenge here is to present a complete proof that says
something non-vacuous about dimension D for the minimum possible D. Reach-
ing D = 10000 would be an impressive advance over the current state of the art.
Note that the largest dimension in the target KEMs is just 1344.

For comparison, “fail” in Table 1.1 shows cases where the claimed failure
probability δ is too large for the proofs to say anything at the claimed security
level for the KEM. The proofs still—modulo the other risks that I have listed—
rule out attacks that cost, say, 2100 against these KEMs. Many users of the target
KEMs will find this adequate, even though it is below the claimed security level.

In this section, the situation is different. For each target KEM X, there is no
justification for the claim that these proofs guarantee any security for X, even
under the assumption that there are no further advances in lattice attacks.

9.2. Attempting to use “families” as a substitute for tightness. There
is still an argument that a proof of this type reduces risks. This argument has
the astonishing feature of being blind to the quantitative security level of the
underlying problems: cryptanalytic advances against the underlying problems
are irrelevant to the argument unless the advances produce a polynomial-time
attack. The general structure of this argument is as follows:

• Consider an attack against a KEM: e.g., an attack against frodo1344.
• This KEM is one member of a large “family” of KEMs: e.g., frodo1344 is

one member of a “family” of Frodo KEMs.
• Assume that the attack applies to the entire “family”: e.g., assume that

the frodo1344 attack applies to the entire Frodo “family”. Presumably it is
possible to formally define a Frodo “family” attack.

• This implies an attack against another KEM: e.g., the attack applies to some
huge member of the Frodo “family”, sufficiently large for the next step to
get beyond the looseness of the lattice proof.

• Under further assumptions—e.g., hardness assumptions for the underlying
lattice problems—the proof rules out this attack.

27 Peikert [87] claims, incorrectly, that this observation was already published in [74] in
2009. What [74] says is merely that setting parameters based on the worst-case proofs
is “overly conservative”. Peikert characterizes this as saying that the parameters are
not “practical”; obviously it is possible for parameters to be practical and yet overly
conservative, so Peikert’s characterization is not a correct summary of the statement
from [74]. Chatterjee, Koblitz, Menezes, and Sarkar did the work to quantify a
typical proof; I have not found any evidence that this was done previously.



Comparing proofs of security for lattice-based encryption 31

Obviously this argument leaves risks of non-“family” attacks, the same way that
a ROM proof leaves risks of non-ROM attacks; but isn’t this better than not
having a proof, the same way that having a ROM proof is better than not having
a ROM proof? Shouldn’t I have

• a column in Table 1.1 indicating the risks of non-“family” attacks—this
would be marked everywhere, just like the “ROM” column indicating the
risks of non-ROM attacks—and

• another column in Table 1.1 indicating the additional risk of the submissions
that don’t have proofs regarding “family” attacks, the same way that I would
have an extra column if there were submissions without ROM IND-CCA2
proofs?

As a concrete example, some people seem to believe that kyber1024 “has” a
proof of the type explained above, while firesaber does not “have” this type of
proof. Shouldn’t I add a table column indicating the extra risk of firesaber?

Let’s look more closely at the claim that firesaber doesn’t “have” this type
of proof. To disprove this claim, it isn’t necessary to prove anything about
firesaber per se; it suffices to exhibit a member of the Saber “family” that
has a proof. Why can’t we do this by

• pointing to a proof that breaking Ring-LWE is “as hard as” a lattice problem
(as Kyber does), and

• pointing to a proof that breaking Module-LWE is “as hard as” breaking
Ring-LWE (as Kyber does), and

• pointing to a proof that breaking Module-LWR is “as hard as” breaking
Module-LWE (this would be the extra step for Saber)?

Maybe the total looseness of such proofs prevents the proofs from applying
to any member of the Saber “family”: in particular, getting from LWR to LWE
is loose when moduli are small, and perhaps the Saber “family” doesn’t include
any large enough moduli. But I don’t see anything in the Saber specification
that prevents large enough moduli—and, even if I’ve missed something in the
specification, I don’t see any obstacle to extending the Saber “family” to include
large enough moduli. If frodo1344 can claim a proof by bundling frodo1344

together with a huge KEM that’s declared to be in the same “family”, and
kyber1024 can claim a proof by bundling kyber1024 together with a huge KEM
that’s declared to be in the same “family”, then why can’t firesaber claim a
proof by bundling firesaber together with a huge KEM that’s declared to be
in the same “family”?

Perhaps the state-of-the-art proofs (see [8]) say that LWR is “as hard as”
LWE but don’t quite say that Module-LWR is “as hard as” Module-LWE. But
this issue is easily eliminated. The starting point is that we’re allowed to claim
proofs for a KEM by bundling it into a “family” together with a huge KEM
for which the proofs apply. So let’s define a “family” with three parameters: a
modulus, a module dimension, and an overall lattice dimension. The huge KEM

• takes the modulus large enough for LWR to be “as hard as” LWE;
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• takes the lattice dimension large enough for LWE to be “as hard as” a lattice
problem; and

• takes the module dimension as large as the lattice dimension, so that Module-
LWR is the same as LWR.

Why can’t we conclude that firesaber “has” a lattice proof?
Similarly, since [100] proves that some large Quotient NTRU examples are

“as secure as worst-case problems over ideal lattices”, why can’t we claim that
smaller Quotient NTRU examples also “have” lattice proofs? Even more straight-
forwardly, given the lack of definition of what it means to “have” a proof, why
can’t we simply glue any target KEM X together with GodzillaKEM into a
“family”, and conclude that X “has” a lattice proof?

Previous sections of this paper followed the rule that “proofs of security” for
a cryptosystem X “guarantee—relative to the definition and assumptions—that
no attacker will succeed” against X. Obviously the hardness assumptions in this
rule vary from one X to another, but the security definitions are independent of
X. For example, one can give a complete definition of whether ROM IND-CCA2
attacks against a KEM can cost less than 2128 in a clear cost metric, without
looking at any details of the KEM. Formally, a ROM KEM is different from a
specific-hash KEM, but there is a clearly defined relationship between a ROM
KEM and a KEM obtained by plugging in a particular hash; I am not aware of
any claims that the variations in ROM KEMs allowed by this relationship would
allow additional proofs for any of the target KEMs.

It is completely unclear to me how the proofs considered in this section are
believed to follow this rule. Readers are asked

• to imagine that an attack against X also applies to some huge cryptosystem
H, and

• to then consider proofs regarding H.

Meanwhile readers are, for completely unclear reasons, not allowed to imagine
that an attack against another KEM X ′ also applies to H. Why is the security
definition, the type of attack under consideration, varying between X and X ′?

If this notion of “having” a proof is supposed to be a property of the cryptosys-
tem X, then there needs to be a clear definition of the allowable relationship
between X and H, just like the clear definition of the relationship between a
ROM KEM and a KEM obtained by plugging in a specific hash. Here is another
quote from Katz and Lindell (italics in original):

One of the key contributions of modern cryptography has been the recog-
nition that formal definitions of security are essential for the proper
design, study, evaluation, and usage of cryptographic primitives. Put
bluntly:

If you don’t understand what you want to achieve, how can you
possibly know when (or if) you have achieved it?

Formal definitions provide such understanding by giving a clear descrip-
tion of what threats are in scope and what security guarantees are de-
sired.
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A definition is the starting point for analyzing obvious questions such as

• whether proofs under this definition are available for some of the target
KEMs and not for others;

• whether the availability of proofs under this definition saves any time for
cryptanalysts; and

• whether there are reasons to believe that the availability of proofs under the
definition is better than random guessing as a predictor of security.

As far as I know, none of this analysis—not even the starting definition—has
been published by any of the people claiming that lattice proofs are an advantage
of some of the target KEMs over others. Normally people issuing “provable
security” claims are required to start with clear security definitions.

In the absence of a competing definition, I conclude that “families” can be
defined in any way one wants. Each target KEM “has” a lattice proof under
these nonexistent criteria, so these lattice proofs cannot say anything about the
security of those KEMs. Consequently, the lattice proofs should be ignored by
cryptanalysts, other security reviewers, standardization agencies, and users.
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tices with pre-processing (2019), 685–716 [54]. URL: https://eprint.iacr.org/
2019/215. Citations in this document: §9.

[89] Edoardo Persichetti, Improving the efficiency of code-based cryptography, Ph.D.
thesis, 2012. URL: http://persichetti.webs.com/Thesis%20Final.pdf. Cita-
tions in this document: §6.

[90] Raphael C.-W. Phan, Moti Yung (editors), Paradigms in cryptology—Mycrypt
2016. Malicious and exploratory cryptology—second international conference,
Mycrypt 2016, Kuala Lumpur, Malaysia, December 1–2, 2016, revised selected
papers, Lecture Notes in Computer Science, 10311, Springer, 2017. ISBN 978-3-
319-61272-0. See [38].

[91] Le Trieu Phong, Re: [pqc-forum] OFFICIAL COMMENT: Frodo
(2018). URL: https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/official-comments/

Frodo-official-comment.pdf. Citations in this document: §6.4.
[92] Bart Preneel (editor), Advances in cryptology—EUROCRYPT 2000, interna-

tional conference on the theory and application of cryptographic techniques,
Bruges, Belgium, May 14–18, 2000, Lecture Notes in Computer Science, 1807,
Springer, 2000. ISBN 3-540-67517-5. See [37].

[93] Oded Regev, On lattices, learning with errors, random linear codes, and cryptog-
raphy, Journal of the ACM 56 (2009), article 34. URL: https://cims.nyu.edu/
~regev/. Citations in this document: §6.2.

[94] Peter Y. A. Ryan, David Naccache, Jean-Jacques Quisquater (editors), The new
codebreakers: essays dedicated to David Kahn on the occasion of his 85th birth-
day, Lecture Notes in Computer Science, 9100, Springer, 2015. ISBN 978-3-662-
49300-7. See [29].

[95] Tsunekazu Saito, Keita Xagawa, Takashi Yamakawa, Tightly-secure key-
encapsulation mechanism in the quantum random oracle model, in Eurocrypt
2018 [83] (2018), 520–551. URL: https://eprint.iacr.org/2017/1005. Cita-
tions in this document: §6.

[96] Palash Sarkar, Subhadip Singha, Verifying solutions to LWE with implications
for concrete security (2019). URL: https://eprint.iacr.org/2019/728. Cita-
tions in this document: §9.1.

[97] Joseph H. Silverman, The four faces of lifting for the elliptic curve dis-
crete logarithm problem (2007). URL: https://www.math.brown.edu/~jhs/

Presentations/ECC4FacesOfLifts.pdf. Citations in this document: §24.
[98] Joseph H. Silverman, Nigel P. Smart, Frederik Vercauteren, An algebraic ap-

proach to NTRU (q = 2n) via Witt vectors and overdetermined systems of non-
linear equations, in SCN 2004 [34] (2005), 278–293. URL: https://core.ac.uk/
download/pdf/34291216.pdf. Citations in this document: §8.4.
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A Choice of terminology

Damg̊ard [42] refers to the “provable security” terminology as “somewhat mis-
leading, for (at least) four reasons”. He does not explicitly address the terminol-
ogy “security proof”, but his reasons also apply to this terminology.

Roughly, Damg̊ard’s list of reasons is the following:

• there is (normally) no proof that P is secure,
• sometimes the reduction is loose,
• P might not be “simple” and “natural” and “well studied”, and
• there could be attacks outside T .

This overlaps the classification of risks that I am using. Damg̊ard’s second reason
matches risk #2 from Section 2. Damg̊ard’s fourth reason matches risk #3.
Damg̊ard’s first and third reasons sound like contributing factors to risk #1: the
lack of a proof that P is secure is a prerequisite for the risk that P is not secure,
and it is intuitively clear that this first risk is lower for “well studied” problems.
However, Damg̊ard’s third reason has unclear boundaries—for example, there
are different and incompatible concepts of whether P is “natural”—whereas I
have been careful to clearly define each category of risks.

Details aside, it is clear that there is a mismatch between (1) the way that
cryptographers use the terminology “provable security” and “security proof” and
(2) the literal meaning of this terminology. I have not found examples of cryp-
tographers disputing the idea that this mismatch misleads the broad community
of cryptographic users.

On the other hand, this paper is aimed at cryptographers, and I do not think
that switching to alternatives such as “reductionist security” and “reduction
proof” would add any clarity for this audience.

For comparison, my impression is that the false analogy between “OW-CPA”
and IND-CPA actively misleads cryptographers into an overly narrow view of the
extra obstacles that “OW-CPA” poses for the attacker. Switching from “OW-
CPA” to “OW-Passive” eliminates the incorrect suggestion that the attacker
can choose plaintexts, and eliminates the incorrect suggestion that the attacker
knows plaintexts. I think this increase in clarity outweighs the disadvantages of
changing terminology.
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B Engineering cryptographic standards

The literature on software engineering contains many methods to design and
develop software. These methods have various goals, such as

• correctness of the resulting software,
• fitting the software execution within constraints on CPU time, and
• fitting the software development within constraints on human time.

There are hypotheses and experimental studies and analyses regarding, e.g., the
effectiveness of different software-engineering techniques in eliminating various
types of software failures.

One can similarly treat methods of developing cryptographic standards as an
object of study. Goals include fitting cryptographic software execution within
constraints on CPU time; fitting standards development within constraints on
human time; and, of course, security. Studying the security of the standardization
process is not a new idea: for example, Bernstein, Lange, and Niederhagen in [28]
and [29] describe Dual EC as part of an attack against the process of “designing,
evaluating, standardizing, selecting, implementing, and deploying PRNGs”, and
comment that this process “is a broader attack target than any particular RNG”.

The standardization process, viewed broadly, includes the process of designing
cryptosystems, the process of evaluating the designs, and the process of select-
ing a subset of the designs for standardization. Even when the standardization
process is not under attack, one can ask how reliable it is at producing secure
standards. My main interest in this paper is in one component of the evaluation
process, namely the way that the designs are reviewed for security.

In software engineering, there is overwhelming evidence of variation in how
long bugs take to be discovered. Software-reliability models use the available
data to predict how many bugs remain. In cryptography, there has been far less
study of the time for security problems to be discovered. One might hope that
security problems in cryptographic designs are relatively easy to find, since the
total volume of cryptographic designs is far below the total volume of software;
but there are far fewer cryptanalysts than software reviewers, and a successful
attack on a simple-sounding cryptosystem sometimes requires years of algorithm
development.

It would be useful to refine the concept of a thorough security review, formu-
lating more detailed definitions of review processes and then collecting evidence
regarding the effectiveness of different processes at reducing security risks. Of
course, the risks also depend on the design processes. As extreme examples, if
each design is secure than whichever designs are standardized will be secure, and
if each design has security problems than whichever designs are standardized will
have security problems. Otherwise some designs are secure and others are not,
and security review is critical so that we can tell the difference.
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C Previous work on criteria for evaluating proofs

The significance of our contribution is that it provides a scheme that
is provably secure and practical at the same time. There appears to be
no other encryption scheme in the literature that enjoys both of these
properties simultaneously. —Cramer and Shoup [41]

As long as no one has proved that such an attack does not exist, we
simply dont know whether the extra ingredient is superfluous or essen-
tial to security.
We believe that the only reasonable approach is to construct crypto-
graphic systems with the objective of being able to give security reduc-
tions for them. —Damg̊ard [42]

The two principles described above allow us to achieve our goal of pro-
viding a rigorous proof that a construction satisfies a given definition
under certain specified assumptions. Such proofs are especially impor-
tant in the context of cryptography where there is an attacker who is
actively trying to “break” some scheme. —Katz and Lindell [60]

The cryptographic literature frequently claims that some cryptographic sys-
tems are “provably secure” while others are not. This claim is the starting point
for various assertions that having a “security proof” is an important security
feature of a cryptographic system.

However, this claim is obviously wrong. Every system X has a “security
proof”: a useless proof concluding that X is secure under the assumption that
X is secure, as in Section 3. Here are examples of previous literature pointing
this out:

• In a hypothetical example of a proof for a signature scheme, Naor [79] asks
“whether the assumption Alice uses is really weaker than the assumption
‘this signature scheme is secure’.”

• Damg̊ard [42] notes the risk of “useless statements that are not much better
that saying ‘the system is secure under the assumption that it is secure’.”

• Goldwasser and Kalai [50] note the possibility of “an absurdum, where the
underlying assumption is that the scheme itself is secure, which will eventu-
ally endanger the mere existence of our field”.

One would thus expect the claim to be withdrawn. One would also expect cryp-
tographers to formulate and scientifically evaluate other hypotheses regarding
the relationship between “security proofs” and security.

Two of the papers cited above have proposed criteria that could be used to
reject proofs:

• Naor says that his “main question” is how to “differentiate between the
strengths of assumptions and avoid circularity in our arguments”. He then
proposes to classify hardness assumptions according to their level of “falsifi-
ability”.
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• Goldwasser and Kalai write that “we are in greet need of measures which
will capture which assumptions are ‘safe’,” claim that Naor’s classification
“has proved to be too inclusive”, and propose a “stricter classification”.

At first glance, these two papers seem to be aiming for the same objective as
Section 3, formulating criteria that allow decision-makers to systematically reject
useless proofs. This appendix briefly surveys the criteria, analyzes the impact of
the criteria, and gives a case study of the criteria producing different conclusions
from the review-cost metric.

C.1. “Somewhat falsifiability”: verifying that an attack works. A crypt-
analyst publishes software and claims that the software takes time 232 to achieve
about 10% advantage against the IND-CCA2 security of a specified fast KEM.
Anyone can verify this claim by running the software many times and observing
that its advantage in these experiments is about 10%.

Naor defines “somewhat falsifiable” as an asymptotic formalization of this
scenario. Asymptotic IND-CCA2 security is “somewhat falsifiable” under this
definition. Most28 asymptotic security concepts in the literature are “somewhat
falsifiable”.

C.2. “Falsifiability”: verifying solutions to non-interactive problems.
The 2048-bit exponent-3 RSA problem is to find an integer x modulo a 2048-
bit RSA modulus N , given N and x3 mod N . A cryptanalyst claims to have an
algorithm taking at most a day—on whatever amount of hardware is available to
the cryptanalyst—to break this problem with probability 1%. A verifier publishes
a new 2048-bit exponent-3 RSA problem each day, and sees how many of the
problems are solved by the cryptanalyst within a day. If the claim is correct then
the cryptanalyst will succeed a few times each year.

Seeing these solutions convinces the verifier of a quantitatively weaker version
of the claim. The cryptanalyst could be secretly using much more hardware than
claimed. The cryptanalyst could have an attack that works with considerably
lower success probability, and could be amplifying the success probability by
applying a multi-target attack to many verifiers. But clearly the cryptanalyst
does have a noticeable probability of breaking the RSA problem.

Naor defines “falsifiable” as an asymptotic formalization of this scenario. An
asymptotic RSA problem is “falsifiable”. Asymptotic IND-CCA2 security of
a KEM does not seem to be “falsifiable”: the verifier must not merely issue
challenges, but must also answer decapsulation queries from the cryptanalyst.
Asymptotic PRF security does not seem to be “falsifiable”.

Asymptotic OW-CPA security is “falsifiable”. Asymptotic IND-CPA secu-
rity does not seem to be “falsifiable”: Naor’s definitions require solutions to be
publicly verifiable without further input from the verifier. For the same reason,
asymptotic PRG security does not seem to be “falsifiable”. Naor claims the op-

28 There are occasional exceptions, such as “knowledge of exponent” assumptions. Run-
ning a claimed “knowledge of exponent” attack many times does not provide enough
information to be sure that the attack is successful.
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posite in [79, page 103] but then several lines later notes that this claim is “in
violation” of the definition of “falsifiable”.

C.3. “Efficient falsifiability”: verifying solutions to publicly gener-
ated challenges. Naor also defines a stronger notion, “efficient falsifiability”,
in which the cost of verifying a probability-p attack is asymptotically limited to
(log(1/p))O(1) as p→ 0. Cost (1/p)O(1) is still permitted for the cryptanalyst.

An asymptotic RSA problem does not seem to be “efficiently falsifiable”. An
asymptotic factoring problem is “efficiently falsifiable”: e.g., ask the cryptanalyst
to factor H(r, s) into two same-length primes, where H produces output of the
appropriate length, r is a long string chosen by the verifier, and s is a short
string chosen by the cryptanalyst. “Short” is defined with somewhat more than
log2(1/p) bits, so that there are likely to be some choices of H(r, s) that are
products of two same-length primes and that are factored by the cryptanalyst’s
probability-p attack, whereas there are unlikely to be any such choices for an
attack that actually has much lower success probability. The cryptanalyst must
try factoring H(r, s) for many choices of s, but the verifier’s work is merely
checking one successful factorization into two same-length primes.

C.4. Further definitions. Gentry and Wichs [47] give another definition that
seems to have similar properties to Naor’s definition of “somewhat falsifiable”.
Gentry and Wichs observe that most29 asymptotic security concepts meet their
definition. Beware that there is a clash of terminology: Gentry and Wichs use the
name “falsifiable” for their definition, while many examples of security concepts
meeting this definition do not seem to meet Naor’s definition of “falsifiable”.

Goldwasser and Kalai give a further definition that seems to have similar
properties to Naor’s definition of “falsifiable”, formalizing the notion of non-
interactive problems. Specifically, a “search complexity assumption”

• specifies an efficient algorithm to generate a random challenge x;
• specifies an efficient algorithm to verify a relationship between x and y; and
• assumes that every efficient attack, given x, has asymptotically negligible

chance of finding y related to x.

Goldwasser and Kalai also give several variants of this definition, such as a
“privately-verifiable search complexity assumption” and a “decisional complex-
ity assumption”, so as to be able to include (e.g.) IND-CPA as a “complexity
assumption”.

C.5. Reductions that eliminate interactivity, and a case study. Naor
writes that falsifiability of an assumption “should be a major consideration in
how acceptable the assumption is”. For example, Naor criticizes PRF assump-
tions in general as being merely “somewhat falsifiable” and seemingly not be-
ing “falsifiable”, while Naor praises some specific constructions of PRFs from
“falsifiable” number-theoretic assumptions—even better, “efficiently falsifiable”
number-theoretic assumptions.

29 They show, however, that black-box reductions for succinct non-interactive argu-
ments of knowledge cannot begin from assumptions meeting their definition.



46 Daniel J. Bernstein

Here is a case study of Naor’s classification. The lattice KEMs covered in this
paper are expected to be incorporated into KEM-DEM constructions that use
a PRG to encrypt a user message. Consider the following two options for this
PRG:

• AES-256-CTR.
• The Naor–Reingold cipher. Map (say) a 32-bit block counter c1, c2, . . . , c32

to ga0a
c1
1 ···a

c32
32 mod p, and then extract 128 bits from the output as in [80,

Construction 4.2]. Here g has 256-bit prime order q modulo a 2048-bit prime
p, and a0, . . . , a32 are secret integers between 1 and q − 1.

Regarding the first option, there is a proof of PRG security of AES-256-CTR
assuming the PRP security of AES-256. Naor’s “falsifiability” definition creates
two obstacles to this PRP assumption:

• The definition is asymptotic, involving unspecified “polynomial” costs, so
it is content-free for specific sizes such as 256 bits. This does not seem to
be an intentional obstacle: Naor claims, incorrectly, that his definitions are
“concrete” and not “asymptotic”.

• The PRP assumption for AES-256 seems inherently interactive, while the
“falsifiability” definition does not allow interactivity. This is obviously an
intentional obstacle. This obstacle is shared by the “complexity assumption”
definitions in [50].

Regarding the second option, there is a proof of asymptotic PRF (and thus PRG)
security for the Naor–Reingold cipher, assuming asymptotic DDH hardness for
the multiplicative group (Z/p)∗. It is not clear to me that asymptotic DDH
hardness is “falsifiable”—again, Naor’s definitions require public verifiability—
but asymptotic DDH hardness does qualify as a “complexity assumption” in [50].

To summarize, it is clear that Naor prefers the DDH assumption over the
AES-256 PRP assumption, because the AES-256 PRP assumption is interactive
while the DDH assumption is not (except for a private verification step at the
end). An asymptotic version of this preference does not seem to be formalized by
the definitions in [79] (because of the private verification step) but is formalized
by the definitions in [50].

A surprising feature of this case study is that, by the same reasoning, Naor
should also prefer the AES-256-CTR PRG assumption over the AES-256 PRP
assumption, since the PRG assumption is not interactive (except for a private
verification step). This is directly contrary to the usual idea that it is useful
to prove AES-256-CTR PRG security, AES-256-OFB PRG security, etc. from
AES-256 PRP security.

C.6. Comparison to the review-cost metric for the case study. The
Naor–Reingold cipher described above is much worse than AES-256-CTR in
the review-cost metric. As noted in Section 8, the multiplicative-group discrete-
logarithm problem provides many tools to the attacker, which have been com-
bined into very complicated attacks. Cryptanalysts also have to ask whether
DDH attacks can be even faster than DL attacks, and whether the looseness of
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the Naor–Reingold proof can be exploited. The attack avenues against the PRP
assumption for AES-256 are less numerous and less complicated, and have been
explored much more thoroughly. There is a looseness issue in the AES-256-CTR
proof, but this issue is relatively small.30

I am not saying that non-interactivity has zero value. The AES-256-CTR
reviewer has to ask, among other things, whether attacks against AES-256 have
been correctly analyzed; non-interactive verification of attacks might help weed
out errors in the analysis. What I am saying is that this narrow focus on non-
interactivity loses sight of many important security risks, and in particular is
blind to the long history of security losses in the DL problem. Naor correctly
notes in [79, page 107] that his definitions ignore the “history of computational
attempts”, but does not point out that this can reverse the preference between
two assumptions.

A security reviewer could simply throw away the Naor–Reingold proof31 and
directly review attacks against the Naor–Reingold PRG. The extraction of 128
bits from integers modulo p might make this PRG hard to attack even for an
attacker who can compute discrete logarithms. But how can one claim a thorough
security review of this possibility? Beyond DL and DDH security, the security of
this PRG has attracted a negligible level of attention from cryptanalysts. This
situation seems unlikely to change: there are many other cryptanalytic targets
whose importance is much more obvious.

C.7. Further comparison to the review-cost metric. It is quite unclear
how to convert “falsifiability” into a constraint upon proofs. Naor writes that, for
some “major results” in cryptography, “both the assumption and the outcome
are in the class of falsifiable tasks”; surely Naor does not advocate ignoring
“major results”. It is not even clear how Naor suggests handling his “main
question” of how to “avoid circularity in our arguments”. Similarly, it is not
clear how the definitions in [50] can prevent the “absurdum” described in [50].

For comparison, the review-cost metric provides a straightforward rule for
deciding whether to allow a “security proof”: if the proof does not save time in a
thorough security review then the proof is skipped. This rule implies that circular
proofs are skipped; see Section 3. This rule also applies directly to concrete
cryptosystems such as the 36 target KEMs.

30 The proof allows q-block attacks to succeed with probability approximately q2/2129

plus the AES-256 attack probability. Is q2/2129 an acceptable attack probability?
Switching from AES-256-CTR to Salsa20 or ChaCha20 resolves this issue. For com-
parison, the Naor–Reingold proof allows the DDH attack probability to be multiplied
by log2 q.

31 This is mandatory in post-quantum cryptography, since the assumption in the Naor–
Reingold proof is broken in quantum polynomial time: Shor’s algorithm efficiently
computes discrete logarithms in (Z/p)∗.
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system parameter set type set of multipliers

frodo 640 Product (Z/32768)640×640

frodo 976 Product (Z/65536)976×976

frodo 1344 Product (Z/65536)1344×1344

kyber 512 Product ((Z/3329)[x]/(x256 + 1))2×2

kyber 768 Product ((Z/3329)[x]/(x256 + 1))3×3

kyber 1024 Product ((Z/3329)[x]/(x256 + 1))4×4

lac 128 Product (Z/251)[x]/(x512 + 1)

lac 192 Product (Z/251)[x]/(x1024 + 1)

lac 256 Product (Z/251)[x]/(x1024 + 1)

newhope 512 Product (Z/12289)[x]/(x512 + 1)

newhope 1024 Product (Z/12289)[x]/(x1024 + 1)

ntru hps2048509 Quotient (Z/2048)[x]/(x509 − 1)

ntru hps2048677 Quotient (Z/2048)[x]/(x677 − 1)

ntru hps4096821 Quotient (Z/4096)[x]/(x821 − 1)

ntru hrss701 Quotient (Z/8192)[x]/(x701 − 1)

ntrulpr 653 Product (Z/4621)[x]/(x653 − x− 1)

ntrulpr 761 Product (Z/4591)[x]/(x761 − x− 1)

ntrulpr 857 Product (Z/5167)[x]/(x857 − x− 1)

round5n1 1 Product (Z/4096)636×636

round5n1 3 Product (Z/32768)876×876

round5n1 5 Product (Z/32768)1217×1217

round5nd 1.0d Product (Z/8192)[x]/(x586 + · · ·+ 1)

round5nd 3.0d Product (Z/4096)[x]/(x852 + · · ·+ 1)

round5nd 5.0d Product (Z/8192)[x]/(x1170 + · · ·+ 1)

round5nd 1.5d Product (Z/1024)[x]/(x509 − 1)

round5nd 3.5d Product (Z/4096)[x]/(x757 − 1)

round5nd 5.5d Product (Z/2048)[x]/(x947 − 1)

saber light Product ((Z/8192)[x]/(x256 + 1))2×2

saber main Product ((Z/8192)[x]/(x256 + 1))3×3

saber fire Product ((Z/8192)[x]/(x256 + 1))4×4

sntrup 653 Quotient (Z/4621)[x]/(x653 − x− 1)

sntrup 761 Quotient (Z/4591)[x]/(x761 − x− 1)

sntrup 857 Quotient (Z/5167)[x]/(x857 − x− 1)

threebears baby Product (Z/(23120 − 21560 − 1))2×2

threebears mama Product (Z/(23120 − 21560 − 1))3×3

threebears papa Product (Z/(23120 − 21560 − 1))4×4

Table 8.6. Set of multipliers for each of the target PKEs. Public key reveals multiplier
G and reveals approximation A to aG, where a is short. “Quotient”: Quotient NTRU;
A = 0, so G is generated as a quotient. “Product”: Product NTRU; G is generated
randomly, and then A is generated as an approximation to aG. See Table 8.7 for
distribution of short elements. See Table 8.8 for offsets from aG to A.
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system parameter set short element

frodo 640 Z640×8; {−12, . . . , 12}; Pr 1, 4, 17, . . . (spec page 23)

frodo 976 Z976×8; {−10, . . . , 10}; Pr 1, 6, 29, . . . (spec page 23)

frodo 1344 Z1344×8; {−6, . . . , 6}; Pr 2, 40, 364, . . . (spec page 23)

kyber 512 (Z[x]/(x256 + 1))2;
∑

0≤i<4 {−0.5, 0.5}
kyber 768 (Z[x]/(x256 + 1))3;

∑
0≤i<4 {−0.5, 0.5}

kyber 1024 (Z[x]/(x256 + 1))4;
∑

0≤i<4 {−0.5, 0.5}
lac 128 Z[x]/(x512 + 1); {−1, 0, 1}; Pr 1, 2, 1; weight 128, 128

lac 192 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 6, 1; weight 128, 128

lac 256 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 2, 1; weight 256, 256

newhope 512 Z[x]/(x512 + 1);
∑

0≤i<16 {−0.5, 0.5}
newhope 1024 Z[x]/(x1024 + 1);

∑
0≤i<16 {−0.5, 0.5}

ntru hps2048509 Z[x]/(x509 − 1); {−1, 0, 1}
ntru hps2048677 Z[x]/(x677 − 1); {−1, 0, 1}
ntru hps4096821 Z[x]/(x821 − 1); {−1, 0, 1}
ntru hrss701 Z[x]/(x701 − 1); {−1, 0, 1}; key correlation ≥ 0

ntrulpr 653 Z[x]/(x653 − x− 1); {−1, 0, 1}; weight 252

ntrulpr 761 Z[x]/(x761 − x− 1); {−1, 0, 1}; weight 250

ntrulpr 857 Z[x]/(x857 − x− 1); {−1, 0, 1}; weight 281

round5n1 1 Z636×8; {−1, 0, 1}; weight 57, 57

round5n1 3 Z876×8; {−1, 0, 1}; weight 223, 223

round5n1 5 Z1217×8; {−1, 0, 1}; weight 231, 231

round5nd 1.0d Z[x]/(x586 + · · ·+ 1); {−1, 0, 1}; weight 91, 91

round5nd 3.0d Z[x]/(x852 + · · ·+ 1); {−1, 0, 1}; weight 106, 106

round5nd 5.0d Z[x]/(x1170 + · · ·+ 1); {−1, 0, 1}; weight 111, 111

round5nd 1.5d Z[x]/(x509 − 1); {−1, 0, 1}; weight 68, 68; ending 0

round5nd 3.5d Z[x]/(x757 − 1); {−1, 0, 1}; weight 121, 121; ending 0

round5nd 5.5d Z[x]/(x947 − 1); {−1, 0, 1}; weight 194, 194; ending 0

saber light (Z[x]/(x256 + 1))2;
∑

0≤i<10 {−0.5, 0.5}
saber main (Z[x]/(x256 + 1))3;

∑
0≤i<8 {−0.5, 0.5}

saber fire (Z[x]/(x256 + 1))4;
∑

0≤i<6 {−0.5, 0.5}
sntrup 653 Z[x]/(x653 − x− 1); {−1, 0, 1}; weight 288

sntrup 761 Z[x]/(x761 − x− 1); {−1, 0, 1}; weight 286

sntrup 857 Z[x]/(x857 − x− 1); {−1, 0, 1}; weight 322

threebears baby Z2;
∑

0≤i<312 210i{−2,−1, 0, 1, 2}; Pr 1, 32, 62, 32, 1; *

threebears mama Z3;
∑

0≤i<312 210i{−1, 0, 1}; Pr 13, 38, 13; *

threebears papa Z4;
∑

0≤i<312 210i{−1, 0, 1}; Pr 5, 22, 5; *

Table 8.7. Distribution of short elements for each of the target PKEs. General format:
set of polynomials or vectors or matrices; distribution of each integer coefficient. By
default, element of each “{. . .}” is chosen uniformly at random, but “Pr” indicates
a different distribution; “weight w” indicates that coefficients have Hamming weight
w; “weight w−, w+” indicates that w− coefficients are −1 and w+ coefficients are +1;
“ending 0” indicates that last coefficient is 0; “key correlation ≥ 0” indicates that∑

i aiai+1 ≥ 0 for key generation; “*” for threebears indicates that short elements
generated as shown in table are then multiplied by 21560− 1. For key generation, short
vectors and short matrices generated as shown in table are then transposed.
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system parameter set key offset (numerator or noise or rounding method)

frodo 640 Z640×8; {−12, . . . , 12}; Pr 1, 4, 17, . . . (spec page 23)

frodo 976 Z976×8; {−10, . . . , 10}; Pr 1, 6, 29, . . . (spec page 23)

frodo 1344 Z1344×8; {−6, . . . , 6}; Pr 2, 40, 364, . . . (spec page 23)

kyber 512 (Z[x]/(x256 + 1))2;
∑

0≤i<4 {−0.5, 0.5}
kyber 768 (Z[x]/(x256 + 1))3;

∑
0≤i<4 {−0.5, 0.5}

kyber 1024 (Z[x]/(x256 + 1))4;
∑

0≤i<4 {−0.5, 0.5}
lac 128 Z[x]/(x512 + 1); {−1, 0, 1}; Pr 1, 2, 1; weight 128, 128

lac 192 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 6, 1; weight 128, 128

lac 256 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 2, 1; weight 256, 256

newhope 512 Z[x]/(x512 + 1);
∑

0≤i<16 {−0.5, 0.5}
newhope 1024 Z[x]/(x1024 + 1);

∑
0≤i<16 {−0.5, 0.5}

ntru hps2048509 Z[x]/(x509 − 1); {−1, 0, 1}; weight 127, 127

ntru hps2048677 Z[x]/(x677 − 1); {−1, 0, 1}; weight 127, 127

ntru hps4096821 Z[x]/(x821 − 1); {−1, 0, 1}; weight 255, 255

ntru hrss701 Z[x]/(x701 − 1); {−1, 0, 1}; key correlation ≥ 0; ·(x− 1)

ntrulpr 653 round {−2310, . . . , 2310} to 3Z

ntrulpr 761 round {−2295, . . . , 2295} to 3Z

ntrulpr 857 round {−2583, . . . , 2583} to 3Z

round5n1 1 round Z/4096 to 8Z

round5n1 3 round Z/32768 to 16Z

round5n1 5 round Z/32768 to 8Z

round5nd 1.0d round Z/8192 to 16Z

round5nd 3.0d round Z/4096 to 8Z

round5nd 5.0d round Z/8192 to 16Z

round5nd 1.5d reduce mod x508 + · · ·+ 1; round Z/1024 to 8Z

round5nd 3.5d reduce mod x756 + · · ·+ 1; round Z/4096 to 16Z

round5nd 5.5d reduce mod x946 + · · ·+ 1; round Z/2048 to 8Z

saber light round Z/8192 to 8Z

saber main round Z/8192 to 8Z

saber fire round Z/8192 to 8Z

sntrup 653 Z[x]/(x653 − x− 1); {−1, 0, 1}; invertible mod 3

sntrup 761 Z[x]/(x761 − x− 1); {−1, 0, 1}; invertible mod 3

sntrup 857 Z[x]/(x857 − x− 1); {−1, 0, 1}; invertible mod 3

threebears baby Z2;
∑

0≤i<312 210i{−2,−1, 0, 1, 2}; Pr 1, 32, 62, 32, 1; *

threebears mama Z3;
∑

0≤i<312 210i{−1, 0, 1}; Pr 13, 38, 13; *

threebears papa Z4;
∑

0≤i<312 210i{−1, 0, 1}; Pr 5, 22, 5; *

Table 8.8. How an approximation A ≈ aG is obtained for each of the target PKEs.
For Quotient NTRU (ntru and sntrup), e is generated randomly as shown in the
table; G = e/a; and A = 0. For Noisy Product NTRU (frodo, kyber, lac, newhope,
threebears), e is generated randomly as shown in the table; G is generated randomly;
and A = aG+ e. For Rounded Product NTRU (ntrulpr, round5n1, round5nd, saber),
A is obtained by rounding aG as shown in the table. Random generation is specified as
in Table 8.7, with the following additional modifiers: “·(x−1)” for ntruhrss701 means
that, for key generation, e is then multiplied by x − 1; “invertible mod 3” for sntrup

means that e is required to be invertible in (Z/3)[x]/(xn − x− 1).
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system parameter set ciphertext offset (noise or rounding method)

frodo 640 Z8×8; {−12, . . . , 12}; Pr 1, 4, 17, . . . (spec page 23)

frodo 976 Z8×8; {−10, . . . , 10}; Pr 1, 6, 29, . . . (spec page 23)

frodo 1344 Z8×8; {−6, . . . , 6}; Pr 2, 40, 364, . . . (spec page 23)

kyber 512 Z[x]/(x256 + 1);
∑

0≤i<4 {−0.5, 0.5}
kyber 768 Z[x]/(x256 + 1);

∑
0≤i<4 {−0.5, 0.5}

kyber 1024 Z[x]/(x256 + 1);
∑

0≤i<4 {−0.5, 0.5}
lac 128 Z[x]/(x512 + 1); {−1, 0, 1}; Pr 1, 2, 1

lac 192 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 6, 1

lac 256 Z[x]/(x1024 + 1); {−1, 0, 1}; Pr 1, 2, 1

newhope 512 Z[x]/(x512 + 1);
∑

0≤i<16 {−0.5, 0.5}
newhope 1024 Z[x]/(x1024 + 1);

∑
0≤i<16 {−0.5, 0.5}

ntru hps2048509 not applicable

ntru hps2048677 not applicable

ntru hps4096821 not applicable

ntru hrss701 not applicable

ntrulpr 653 bottom 256 coeffs; z 7→ b(114(z + 2156) + 16384)/32768c
ntrulpr 761 bottom 256 coeffs; z 7→ b(113(z + 2175) + 16384)/32768c
ntrulpr 857 bottom 256 coeffs; z 7→ b(101(z + 2433) + 16384)/32768c
round5n1 1 round Z/4096 to 64Z

round5n1 3 round Z/32768 to 512Z

round5n1 5 round Z/32768 to 64Z

round5nd 1.0d bottom 128 coeffs; round Z/8192 to 512Z

round5nd 3.0d bottom 192 coeffs; round Z/4096 to 128Z

round5nd 5.0d bottom 256 coeffs; round Z/8192 to 256Z

round5nd 1.5d bottom 318 coeffs; round Z/1024 to 64Z

round5nd 3.5d bottom 410 coeffs; round Z/4096 to 512Z

round5nd 5.5d bottom 490 coeffs; round Z/2048 to 64Z

saber light round Z/8192 to 1024Z

saber main round Z/8192 to 512Z

saber fire round Z/8192 to 128Z

sntrup 653 not applicable

sntrup 761 not applicable

sntrup 857 not applicable

threebears baby Z;
∑

0≤i<312 210i{−2,−1, 0, 1, 2}; Pr 1, 32, 62, 32, 1; *

threebears mama Z;
∑

0≤i<312 210i{−1, 0, 1}; Pr 13, 38, 13; *

threebears papa Z;
∑

0≤i<312 210i{−1, 0, 1}; Pr 5, 22, 5; *

Table 8.9. How an approximation C ≈ Ab + M is obtained for each of the tar-
get Product NTRU PKEs. For Noisy Product NTRU (frodo, kyber, lac, newhope,
threebears), c is generated randomly as shown in the table, and C = Ab + M + c,
except that threebears adds M in a more complicated way to Ab + c (see the spec-
ification). For Rounded Product NTRU (ntrulpr, round5n1, round5nd, saber), C is
obtained by rounding Ab+M as shown in the table.
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system parameter set set of encoded messages

frodo 640 8× 8 matrix over {0, 8192, 16384, 24576}
frodo 976 8× 8 matrix over {0, 8192, . . . , 57344}
frodo 1344 8× 8 matrix over {0, 4096, . . . , 61440}
kyber 512

∑
0≤i<256 {0, 1665}xi

kyber 768
∑

0≤i<256 {0, 1665}xi

kyber 1024
∑

0≤i<256 {0, 1665}xi

lac 128 256-dim subcode (see spec) of
∑

0≤i<512 {0, 126}xi

lac 192 256-dim subcode (see spec) of
∑

0≤i<1024 {0, 126}xi

lac 256 256-dim subcode (see spec) of
∑

0≤i<1024 {0, 126}xi

newhope 512
∑

0≤i<256 {0, 6145}xi(1 + x256)

newhope 1024
∑

0≤i<256 {0, 6145}xi(1 + x256 + x512 + x768)

ntru hps2048509 not applicable

ntru hps2048677 not applicable

ntru hps4096821 not applicable

ntru hrss701 not applicable

ntrulpr 653
∑

0≤i<256 {0, 2310}xi

ntrulpr 761
∑

0≤i<256 {0, 2295}xi

ntrulpr 857
∑

0≤i<256 {0, 2583}xi

round5n1 1 8× 8 matrix over {0, 1024, 2048, 3072}
round5n1 3 8× 8 matrix over {0, 4096, . . . , 28672}
round5n1 5 8× 8 matrix over {0, 2048, . . . , 30720}
round5nd 1.0d

∑
0≤i<128 {0, 4096}xi

round5nd 3.0d
∑

0≤i<192 {0, 2048}xi

round5nd 5.0d
∑

0≤i<256 {0, 4096}xi

round5nd 1.5d 128-dim subcode (see spec) of
∑

0≤i<318 {0, 512}xi

round5nd 3.5d 192-dim subcode (see spec) of
∑

0≤i<410 {0, 2048}xi

round5nd 5.5d 256-dim subcode (see spec) of
∑

0≤i<490 {0, 1024}xi

saber light
∑

0≤i<256 {0, 4096}xi

saber main
∑

0≤i<256 {0, 4096}xi

saber fire
∑

0≤i<256 {0, 4096}xi

sntrup 653 not applicable

sntrup 761 not applicable

sntrup 857 not applicable

threebears baby 256-dim subcode (see spec) of
∑

0≤i<274 {0, 512}210i

threebears mama 256-dim subcode (see spec) of
∑

0≤i<274 {0, 512}210i

threebears papa 256-dim subcode (see spec) of
∑

0≤i<274 {0, 512}210i

Table 8.10. Set of encoded messages for each of the target Product NTRU PKEs.
Error-correcting codes are as follows: lac: BCH codes (see specification for details);
newhope: repetition codes (shown above); round5nd.5d: “XE” codes (see specification
for details); threebears: Melas codes (see specification for details).


