
Asymptotically faster quantum algorithms
to solve multivariate quadratic equations

Daniel J. Bernstein1 and Bo-Yin Yang2

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Institute of Information Science

Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan
by@crypto.tw

Abstract. This paper designs and analyzes a quantum algorithm to
solve a system of m quadratic equations in n variables over a finite field
Fq. In the case m = n and q = 2, under standard assumptions, the
algorithm takes time 2(t+o(1))n on a mesh-connected computer of area
2(a+o(1))n, where t ≈ 0.45743 and a ≈ 0.01467. The area-time product
has asymptotic exponent t+ a ≈ 0.47210.

For comparison, the area-time product of Grover’s algorithm has asymp-
totic exponent 0.50000. Parallelizing Grover’s algorithm to reach asymp-
totic time exponent 0.45743 requires asymptotic area exponent 0.08514,
much larger than 0.01467.

Keywords: FXL, Grover, reversibility, Bennett–Tompa, parallelization,
asymptotics

1 Introduction

By definition, a NAND gate reads two bits a, b ∈ F2 as input and produces a
bit c = 1− ab as output. It is well known that any function from `-bit strings to
`′-bit strings, for any ` and any `′, can be viewed as being computed by a circuit
built from NANDs.

For example, one can compute the 2-bit-to-2-bit function (a, b) 7→ (ab, a+ b)
by computing c = 1 − ab, d = 1 − ac, e = 1 − bc, f = 1 − cc, g = 1 − de;

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported by the European
Commission under Contract ICT-645622 PQCRYPTO; by the Netherlands Or-
ganisation for Scientific Research (NWO) under grant 639.073.005; and by the
U.S. National Science Foundation under grant 1314919. This work also was sup-
ported by Taiwan Ministry of Science and Technology (MoST) grant 105-2923-E-
001-003-MY3 and an Academia Sinica Investigator Award. “Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation” (or other funding agencies). Permanent ID of this document:
c77423932ceeda61ddf009049efc0749daadd023. Date: 2017.12.15.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Daniel J. Bernstein and Bo-Yin Yang

note that f = ab and g = a + b. By further composition one can build, e.g.,
an integer-addition circuit producing a 32-bit output from two 32-bit inputs; a
circuit computing a 256-bit SHA-256 output from a fixed-length input; and a
circuit computing a 2048-bit RSA public key as a product of two secret 1024-bit
primes.

Circuits built from NANDs are one of the standard models of computation.
They are also, fundamentally, how computation is carried out today.3 The prob-
lem of inverting one of today’s computations—for example, finding a preimage
for a hash output, or finding a secret key given a public key, or finding a plain-
text given a public key and a ciphertext—can thus be viewed as the problem of
solving a system of multivariate quadratic (“MQ”) equations. Quadratic here
means “degree at most 2”, so quadratic equations include linear equations.

Specifically, each NAND gate can be expressed as a quadratic equation in at
most three variables, such as the equation c = 1 − ab in variables a, b, c, or the
equation f = 1 − cc in two variables c, f . Note that the second equation can
be simplified to the linear equation f = 1 − c, using the fact that c2 = c. Each
known output bit for the computation can be expressed as a linear equation such
as g = 0.

1.1. Random systems of MQ equations. Formally, a quadratic equation∑
j≥k αj,kxjxk = β in n variables x1, x2, . . . , xn over F2 is specified by a sequence

of n(n+1)/2+1 coefficients α1,1, α2,1, α2,2, . . . , αn,n, β. A system of m quadratic
equations in n variables is thus specified by m(n(n+ 1)/2 + 1) coefficients. The
equation-solving problem is to determine, given these coefficients, whether there
exists a solution (x1, x2, . . . , xn) ∈ Fn2 to all m equations, and if so to find some
solution. Note that a reliable method to determine existence of a solution can
be used recursively to find a solution.

There is a vast literature on fast equation-solving techniques that rely on
special structure of the coefficients. For example, systems of linear equations
(αj,k = 0 if j 6= k) are easy to solve. More generally, any nonzero linear equation
can be eliminated, along with one of the variables used in the equation, producing
a system of m − 1 quadratic equations in n − 1 variables. As another example,
some systems have a “triangular” structure that makes them easy to solve: one
can first solve for one variable without regard to the rest, then solve for another
variable, etc. As yet another example, the problem of factoring a 256-bit integer
into two 128-bit factors has a tremendous amount of mathematical structure,
and this structure is exploited by factorization algorithms that run in mere
minutes on a laptop today. But none of these examples have a noticeable chance
of applying to a uniform random system with m = n = 256: a system of 256

3 One can object to the circuit model of computation as being too restrictive: (1) in
the algorithms literature it is common to treat random access to an arbitrarily large
array as a single operation taking a single unit of “time”; (2) the algorithms liter-
ature also allows “branches”. However, (1) for any particular size of array, random
access can be implemented as a series of NANDs—which is essentially how physi-
cal RAM devices work; (2) branches are equivalent to—and physically implemented
as—random access to an array of instructions.

Asymptotically faster quantum algorithms to solve multivariate equations 3

equations in 256 variables in which each coefficient is chosen uniformly and
independently at random from F2.

What is the fastest way to attack a uniform random system with large m
and large n? This question has an important application in post-quantum cryp-
tography: solving such a system, in particular with m slightly smaller than n,
conjecturally breaks a typical MQ signature system such as Patarin’s classic
“HFEv−” [19, Section 4 with modifications from 11.1 and 11.3]. Specifically, in
these systems, the public key is a list of coefficients αi,j,k, conjectured to be
difficult to distinguish from uniform random; the hash of a message is a list of
coefficients βi, which in the “random-oracle model” are uniform random by def-
inition; and a solution to the corresponding system of equations is a signature
on that message.

One of the central reasons for interest in these signature systems is that they
allow very short signatures: it seems that a secure post-quantum MQ signature
can be even shorter than a pre-quantum ECC signature. But the security eval-
uation here relies critically on quantifying the difficulty of solving a uniform
random system of MQ equations.

There are also various proposals for MQ encryption systems where security
analysis relies on a slight variant of the same question: m is taken somewhat
larger than n, and one wants to know the fastest way to attack a uniform random
solvable system. Algorithms designed to solve random systems of MQ equations
have also had some applications beyond MQ cryptography, as illustrated by the
attack in [8] against some small-key code-based encryption systems.

1.2. Performance of various algorithms for random systems. We consider
asymptotic attack cost as m→∞ and n→∞ with an essentially constant ratio
m/n. Specifically, let µ be a real number with µ ≥ 1, and assume that m is a
function of n satisfying m/n ∈ µ+ o(1) as n→∞.

All of the algorithmic issues that we analyze are visible for the frequently used
case µ = 1, and specifically m = n; the reader should feel free to focus on this
case. Standard HFEv− parameters actually take m slightly smaller than n but
still have m/n ∈ 1 + o(1) as n→∞. Beware, however, that FXL and GroverXL
for µ = 1 use XL for µ > 1.

Brute-force search uses at most N1+o(1) operations where N = 2n: there
are N possibilities for (x1, x2, . . . , xn), and checking one possibility uses No(1)

operations. For m < n (the “underdetermined” case) one can reasonably expect
a solution to appear within just 2m possibilities, but the assumption µ ≥ 1
means that 2m does not beat N1+o(1).

Brute-force search is asymptotically beaten by Gröbner-basis techniques. In
particular:

• “Extended linearization” (XL) uses just N0.87280...+o(1) operations in the
case µ = 1, under plausible assumptions that have been checked in various
experiments.

• Even better, combining brute-force search with XL produces “fixing followed
by extended linearization” (FXL), which uses just N0.79106...+o(1) operations
in the case µ = 1 under the same assumptions.

4 Daniel J. Bernstein and Bo-Yin Yang

The exponents 0.87280 . . . and 0.79106 . . . here, modulo a calculation error
(0.785 instead of 0.79106), were published by Yang, Chen, and Courtois in 2004
[26]. See Section 2 for further history and an explanation of how XL works.

Brute-force search is also asymptotically beaten by the recent Lokshtanov–
Paturi–Tamaki–Williams–Yu algorithm [15], which uses at most N0.8765+o(1)

operations. This algorithm is randomized but, for each input, is proven to pro-
duce the correct result with negligible chance of error. The exponent 0.8765+o(1)
is above 0.79106 . . .+ o(1), and worst-case provability is outside the scope of our
paper. We do not know whether the ideas in [15] can save time in FXL.

1.3. Quantum algorithms for random systems. Quantum computers beat
brute-force search in a different way: namely, Grover’s algorithm uses N0.5+o(1)

operations. These operations are serial, but simply running A parallel copies of
Grover’s algorithm reduces time by a factor A1/2. For example, parallel Grover
takes time N0.46+o(1) on a quantum computer of total area N0.08+o(1), or time
N0.35+o(1) on a quantum computer of area N0.3+o(1).

The main question considered in this paper is whether Grover’s method can
be usefully combined with XL. We answer this question in the affirmative. Our
main contributions are the design and analysis of an algorithm “GroverXL” that,
under the same assumptions used to analyze FXL, has exponent below 0.5+o(1).

We analyze this algorithm first in a simplified operation-count metric, and
then in realistic area and time metrics for a parallel two-dimensional mesh-
connected architecture. For example, for m = n, GroverXL takes time N t+o(1)

on a mesh-connected quantum computer of area Na+o(1), where the user can
choose either of the following parameter sets (t, a):

(t, a, t+ a, t+ a/2) = (0.45742 . . . , 0.01467 . . . , 0.47210 . . . , 0.46476 . . .) or

(t, a, t+ a, t+ a/2) = (0.44962 . . . , 0.02557 . . . , 0.47519 . . . , 0.46240 . . .).

The area-time product is N t+a+o(1), and parameter set 1 is designed to optimize
this exponent t+a. GroverXL can be further parallelized, taking time N t−p+o(1)

on a mesh-connected quantum computer of area Na+2p+o(1); parameter set 2
is designed to optimize this area-time tradeoff. For example, the time exponent
drops to 0.35 with area exponent 0.22481 . . . , whereas reaching time exponent
0.35 with parallel Grover needs area exponent 0.30000 as noted above.

We state our results more generally for systems of m quadratic equations in
n variables over Fq. The generalization from F2 to Fq appears in many MQ
systems and in further applications. Of course, guessing elements of Fq becomes
slower as q increases; for sufficiently large q, one should simply use XL.

2 XL and FXL

This section reviews the XL and FXL algorithms to solve m equations in n vari-
ables over a finite field Fq. For simplicity we consider solely quadratic equations,
although the ideas can easily be extended to cubic systems and higher.

Asymptotically faster quantum algorithms to solve multivariate equations 5

xyz + xy + xz + x = 0
0 = 0

xyz + xz + yz + z = 0
xy + x+ yz + z = 0

xy + xz = 0
xyz + xy = 0
yz + z = 0

xz + x+ y + 1 = 0
xyz + xy = 0
xyz + y = 0
xz + z = 0

xz + yz + y + z = 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 1 0 1 1 0 1 0

0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 1 1 0 1 0 1

1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 1 1 1 0

xyz
xy
xz
x
yz
y
z
1

= 0

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 0 1 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

xyz
xy
xz
x
yz
y
z
1

= 0

Fig. 2.2. Small example of XL. The goal is to find a solution to the following system of
three equations in three variables x, y, z over F2: xy+x+yz+z = 0; xz+x+y+1 = 0;
xz + yz+ y+ z = 0. Left column (black): Twelve equations obtained as x, y, z, 1 times
each of the original equations; note that x2, y2, z2 are replaced with x, y, z respectively.
Middle column (blue): Same twelve equations expressed in matrix form; the matrix is
a Macaulay matrix. Right column (green): Equations obtained by applying Gaussian
elimination to the Macaulay matrix. Three of the resulting equations are x + y = 0,
y+ 1 = 0, and z+ 1 = 0, implying (x, y, z) = (1, 1, 1). This is a solution, and therefore
the only solution, to the original system.

This section also analyzes the asymptotic performance of XL and FXL, as-
suming that m, the XL degree parameter d, and the FXL fixing parameter f
grow linearly with n. In particular, this section reviews the asymptotic number
of monomials and the asymptotic cost of linear algebra. See Section 3 for quan-
tum speedups, and Section 4 for analysis of the overall costs for random systems
when d/n and f/n are optimized.

2.1. XL: extended linearization. XL was introduced by Lazard [13]. It was
rediscovered and given the name “XL” in [6].

XL begins by computing a degree-d Macaulay matrix as follows. Multiply
each of the original m quadratic equations by each monomial of degree at most
d− 2; each product is called a “relation”. Each relation is a linear combination
of monomials of degree at most d. The Macaulay matrix is, by definition, the
matrix of coefficients in these linear combinations. See Figure 2.2 for a small
example with d = 3.

If the relations have a linear combination of the form 1 = 0 then the original
system of equations has no solution. XL recognizes this situation by linear alge-

6 Daniel J. Bernstein and Bo-Yin Yang

bra on the Macaulay matrix: it checks whether the vector (0, 0, . . . , 1), with 1 at
the position of monomial 1, is a linear combination of the rows of the matrix.

More generally, XL checks whether the relations have a nonzero linear combi-
nation involving only monomials of degree at most 1; i.e., whether the relations
imply a nonzero linear equation among the variables. This linear equation re-
duces the original system to a smaller system that can be solved recursively (and
further independent equations reduce the system even more). Recognizing this
situation is again linear algebra on the Macaulay matrix.4

An alternative is to check whether the relations have a nonzero linear combina-
tion involving only powers of a single variable. The resulting univariate equation
is easily solved by fast root-finding algorithms, and each root produces a smaller
system that can be solved recursively. There can be “fake” roots that do not
correspond to solutions of the original system, but experiments suggest that for
random systems these “fake” roots rapidly produce contradictions in subsequent
levels of recursion.

There is no guarantee that XL will produce any of this information. Increasing
d can produce more information, but increasing d also produces many more
monomials, as discussed below. A common way to use XL is to try d = 2, then
d = 3, and so on, until the system is solved. As d increases, there appears to
be a sharp transition from (1) XL solving very few systems to (2) XL solving
almost all systems; the transition point is quantified in Section 4.

2.3. The number of monomials, and the field equation. A basic com-
binatorics exercise states that the number of monomials of degree ≤d in n
variables v1, v2, . . . , vn is exactly the binomial coefficient

(
n+d
d

)
: the monomial

ve11 v
e2
2 · · · venn with e1 + e2 + · · · + en ≤ d corresponds to the d-element subset

{e1 + 1, (e1 + 1) + (e2 + 1), . . . , (e1 + 1) + · · ·+ (en + 1)} of {1, 2, . . . , n+ d}.
If q is small then one can save time in XL and FXL by using the field equation

vq = v to eliminate monomials with exponents larger than q− 1. For example, if
q = 2 then one uses only squarefree monomials; if v2 appears then one immedi-
ately replaces it with v. There are only

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
squarefree monomials

of degree ≤d. The example in Figure 2.2 uses this speedup.
More generally, define ϕq ∈ Z[z] as the polynomial (1− zq)/(1− z) = 1 + z+

· · · + zq−1. The number of monomials of degree d in n variables with exponent
at most q − 1 is the coefficient of zd in ϕnq , which we abbreviate [zd]ϕnq . The

number of monomials of degree ≤d is
∑
k≤d[z

k]ϕnq , or equivalently [zd]((1 + z +

z2 + · · ·)ϕnq).

4 Part of the literature suggests, incorrectly, that this requires computing echelon form.
In fact, it simply requires solving linear equations. Specifically, finding x such that
Mx is zero outside n+1 positions is the same as finding x such that M ′x = 0, where
M ′ removes those positions from M . To find a uniform random r such that M ′r = 0,
one can take a uniform random v, compute M ′v, use any method to find a solution
x to M ′x = M ′v, and compute r = x−v. Then Mr is sampled uniformly at random
from the space of vectors Mx that are zero outside the specified positions. If the
space has positive dimension then each r has at least a 50% chance of discovering
this.

Asymptotically faster quantum algorithms to solve multivariate equations 7

The asymptotic behavior of the binomial coefficient
(
n
d

)
is singly exponential

in n when d is linear in n. The same is true more generally for [zd]ϕnq .
Specifically, assume that d/n ∈ δ+o(1) as n→∞, where 0 < δ < q−1. Then

the number of monomials of degree d in n variables with exponents at most q−1
is 2(monq(δ)+o(1))n, where monq is defined below. The number of monomials of
degree ≤d in n variables with exponents at most q − 1 is also 2(monq(δ)+o(1))n

if δ ≤ (q − 1)/2, and 2(lg q+o(1))n = (q + o(1))n for all δ ≥ (q − 1)/2, where lg
means log2.

The definition of monq(δ) for 0 < δ < q − 1 is as follows: monq(δ) =
lg(ϕq(ρ)/ρδ), where ρ ∈ R is the unique positive root of the polynomial(

z

1− z
− qzq

1− zq
− δ
)
ϕq = −δ+(1−δ)z+(2−δ)z2+· · ·+(q−1−δ)zq−1 ∈ R[z].

To see that this polynomial has a positive root, observe that the constant coeffi-
cient −δ is negative while the top coefficient q−1− δ is positive. To see that the
root is unique, observe that z/(1− z)− qzq/(1− zq)− δ is an increasing function
of z when z is positive (its derivative is 1/(1− z)2 + q2zq−1/(1− zq)2 > 0) and
that ϕq is positive when z is positive.

It is sometimes convenient to also define monq(0) = 0 and monq(q − 1) = 0.
Then monq is a continuous function on the interval [0, q − 1].

For example, mon2 is exactly the binary entropy function: mon2(δ) = −δ lg δ−
(1− δ) lg(1− δ). As q →∞, the values monq(δ) converge up to what one might
call mon∞(δ), namely (1 + δ) mon2(δ/(1 + δ)) = (1 + δ) lg(1 + δ)− δ lg δ.

As a more complicated example, mon3(δ) = lg(1 + ρ + ρ2) − δ lg ρ, where ρ
is the unique positive root of the polynomial −δ + (1 − δ)z + (2 − δ)z2; i.e.,
ρ = (δ − 1 +

√
1 + 6δ − 3δ2)/(2(2 − δ)). If d/n ∈ δ + o(1) as n → ∞ then the

number of monomials of degree d in n variables with exponents at most 2 is
((1 + ρ+ ρ2)/ρδ + o(1))n.

2.4. Understanding monq: the saddle-point method. The fact that monq
is the asymptotic exponent for the number of monomials follows from a standard
trick in analytic combinatorics called the “saddle-point method”. For monq it
is enough to apply a simple case of this method, making assumptions that we
quote from [9, Section VIII.8.1]:

• B and C are power series with nonnegative coefficients. Our monq application
takes B = ϕq and C = 1.

• The constant coefficient of B is nonzero.
• The nonzero coefficients of B are at indices whose greatest common divisor

is 1.
• B has a positive radius R of convergence in the complex plane. For us R =∞.
• C has radius of convergence ≥R.
• T is the limit of zB′(z)/B(z) as z approaches R from below. For us T = q−1.

The saddle-point method then states the following. Fix δ with 0 < δ < T . If δn is
an integer, then the coefficient [zδn]C(z)B(z)n is (c+ o(1))C(ρ)B(ρ)n/ρδn+1

√
n

8 Daniel J. Bernstein and Bo-Yin Yang

as n → ∞, where ρ is the unique positive root of ρB′(ρ)/B(ρ) = δ, and c is an
explicit nonzero constant. See [9, Proposition VIII.8].

In particular, for any δ strictly between 0 and q− 1, the coefficient [zδn]ϕnq is

(c+ o(1))/ρ
√
n times the nth power of ϕq(ρ)/ρδ, where ρ is the unique positive

root of ρϕ′q(ρ)/ϕ(ρ) = δ, i.e., ρ/(1− ρ)− qρq/(1− ρq) = δ.
This is called the “saddle-point method” as a reference to the name “saddle

points” for roots of the derivative of an analytic function. The connection to
saddle points arises as follows. Cauchy’s integration formula states that

[zm]C(z)B(z)n =
1

2πi

∮
C(z)B(z)n dz

zm+1
=

1

2πi

∮
C(z)F (z)n dz

z
,

where
∮

integrates on any countour circling once (counterclockwise) around the
origin in the complex plane, and where F (z) = B(z)/zm/n. The saddle-point
method chooses a contour that passes through one or more saddle points of
logF (z), i.e., through roots of B′(z)/B(z)−m/nz: in the simple case mentioned
above, this contour is a circle of radius ρ around the origin, passing through
the unique positive root of zB′(z)/B(z) = δ. One can show, under reasonable
assumptions, that the integral is asymptotically dominated by the portion of
the integral around the saddle points. For a full exposition see, e.g., [24] or [9,
Chapter 8].

2.5. Fast linear algebra. Write A for the number of monomials analyzed
above: the number of monomials of degree ≤d in n variables with exponents at
most q − 1. Each of the m equations provided as input to XL produces at most
A relations, namely one relation for each monomial of degree at most d − 2.
The total number of relations is at most mA. In other words, the Macaulay
matrix has A columns and at most mA rows. We focus on the situation that A
is exponential in n while m is linear in n; the matrix then has A1+o(1) rows and
columns.

Each of the original equations is assumed to be quadratic, and therefore has
O(n2) terms. Consequently each relation also has O(n2) terms: i.e., there are
only O(n2) nonzero entries in each row of the Macaulay matrix. The Macaulay
matrix is thus extremely sparse.

Sparsity saves time in linear algebra. The fastest methods known to solve an
A×A dense system of linear equations use Aω+o(1) operations where ω ≈ 2.37,
while sufficient sparsity reduces the number of operations to A2+o(1). The idea of
applying sparse linear-algebra techniques to speed up XL was mentioned by Yang
and Chen in 2004 [25], analyzed in more detail by Yang, Chen, and Courtois later
the same year [26], and demonstrated in various XL implementations starting
in 2006; see, e.g., [4].

We focus exclusively on Wiedemann’s algorithm [23] for sparse linear algebra
over finite fields. The algorithm is described in [23, page 59] as an “O(n0(ω +
n1 log n1) log n0) expected time method of producing a solution to any linear
system [over Fq], providing a solution exists”. Here “ω” is the total number of
nonzero entries in the matrix; “n0” and “n1” are the minimum and maximum of
the number of rows and the number of columns; and “time” counts operations

Asymptotically faster quantum algorithms to solve multivariate equations 9

in a sequential RAM model, with each addition and multiplication in Fq taking
time 1.

In the XL situation mentioned above (m linear in n, and A exponential in n),
“n0” and “n1” and “ω” are all bounded by A1+o(1), so the number of operations
in Wiedemann’s algorithm is A2+o(1). A closer look shows that the algorithm is
bottlenecked by a series of A1+o(1) matrix-vector multiplications, using vector
length A1+o(1). The matrix and all other intermediate quantities also fit into
A1+o(1) field elements.

2.6. Communication costs and parallelization. Each of the sparse matrix-
vector multiplications described above consists of A1+o(1) random accesses to an
array of A1+o(1) field elements.5 A simplified operation-count metric states that
each random access has cost 1, independent of A.

This operation-count metric is a poor predictor of the time spent on computa-
tion, for two basic reasons. First, if one is spending A1+o(1) dollars on computer
hardware, then one can afford as many as A1+o(1) small processing cores that
operate in parallel; this could reduce the time by a factor as large as A1+o(1)

if there is enough work to do in parallel. Second, the distance between array
elements is forced to grow as a positive power of A, correspondingly increasing
the time necessary for communication.

There are many previous papers designing algorithms for a two-dimensional
A0.5+o(1) × A0.5+o(1) mesh of small parallel processing cores, with each core
connected locally to its neighbors. For example, Brent and Kung showed in [3]
how to multiply A-bit integers in time A0.5+o(1), and there are several papers
showing how to sort A small items in time A0.5+o(1).

Sorting can in turn be used to implement a batch of random accesses, and in
particular to parallelize Wiedemann’s algorithm in this model, as Bernstein [2]
pointed out in the context of integer factorization. This reduces the time for
Wiedemann’s algorithm, and the time for XL, to A1.5+o(1).

2.7. FXL: fixing followed by extended linearization. FXL was proposed
by Courtois, Klimov, Patarin, and Shamir in 2000 [6].

FXL solves a system of m quadratic equations in n variables v1, v2, . . . , vn over
Fq as follows. There are qf possibilities for the last f variables vn−f+1, . . . , vn.
For each possibility, use XL to solve the resulting system of m quadratic equa-
tions in n − f variables. In other words, guess (fix) f variables before running
XL.

Increasing f by 1 costs a factor q in the number of guesses. However, it also
increases the ratio m/(n−f), and this often has a benefit of decreasing the degree
d needed for XL to succeed. Optimized FXL exponents for random systems are
presented in Section 4.

Note that FXL can be trivially parallelized, reducing the time by any desired
factor up through qf at the expense of increasing area by a similar factor.

5 As q grows, one has to account for the growing cost of reading, writing, and arith-
metic on field elements. For simplicity we focus on asymptotic statements as n→∞
with q fixed.

10 Daniel J. Bernstein and Bo-Yin Yang

3 ReversibleXL and GroverXL

It is conceptually straightforward to replace the brute-force search in FXL with
Grover’s quantum search method, reducing the number of search iterations to
its square root. However, Grover’s method requires the underlying function—the
function that is evaluated on an input to see whether the input is a solution to
the search—to be computed reversibly, with no data ever erased.

The XL computation described in the previous section does not fit this model.
The computation is constantly erasing data: it repeatedly overwrites a vector
with a matrix-vector product. This section analyzes the costs of fitting XL into
Grover’s method.

3.1. Reversible computation. There would be no difficulty if our goal were
merely to count operations: simply keep a journal of all intermediate results, and
then run the computation again in reverse order, as in [1, Lemma 1].

Formally, any sequence of NANDs is converted into a reversible computation
as follows. Say there are input bits b1, b2, . . . , bi, followed by NANDs bi+1 =
1−bf(i+1)bg(i+1), bi+2 = 1−bf(i+2)bg(i+2), and so on through bT = 1−bf(T)bg(T),
where f(j) < j and g(j) < j. Some of the bits are specified to be output bits; for
simplicity assume that these are not the input bits and are not used for further
computations inside this sequence of NANDs.

Consider the following reversible circuit applied to T bits b1, b2, . . . , bT . First
apply the following “NOT-Toffoli” gates: bi+1 ← bi+1+1−bf(i+1)bg(i+1); bi+2 ←
bi+2 +1−bf(i+2)bg(i+2); and so on through bT ← bT +1−bf(T)bg(T). Then apply
the same gates again in reverse order to the ancilla bits, i.e., the bits that are
not output bits.

If bits bi+1, . . . , bT all start as 0 then the reversible circuit first computes
exactly what the original NANDs did, and then it sets the ancilla bits back to
0. More generally, if the ancilla bits all start as 0 then the reversible circuit adds
the output of the original function into the output bits, while leaving the input
bits untouched and setting the ancilla bits back to 0.

In short, this reversible computation produces (x, 0, F (x) + y) if the input is
(x, 0, y). This is what it means to compute a function F reversibly.

3.2. Saving space: the Bennett–Tompa conversion. The circuit described
above uses T bits of storage (or T qubits in the context of Grover’s method).
This amount of hardware is usually vastly larger than the amount of hardware
needed for the original computation: in particular, the storage for XL expands
quadratically. This begs the question of whether one can afford this amount of
hardware, and the question of whether the same amount of hardware can be
more productively used in other ways.

Bennett proved in [1, Theorem 1] that any computation using time T and
space S can be converted into a reversible computation using time O(T log2 3)
and space O(S log T). Bennett also proved, with credit to Tompa, that log2 3
can be replaced by 1 + ε for any ε > 0. Bennett’s theorem is stated for multitape
Turing machines; we return below to issues of parallelization and communication
costs.

Asymptotically faster quantum algorithms to solve multivariate equations 11

Bennett’s log2 3 conversion works as follows. Decompose a computation into
two halves: specifically, say the output is C2(C1(x)), where x is the input. Start-
ing from (x, 0, y), reversibly compute C1 by the same construction recursively,
obtaining (x,C1(x), y); reversibly compute C2 by the same construction recur-
sively, obtaining (x,C1(x), C2(C1(x))+y); and then reversibly compute C1 again,
obtaining (x, 0, C2(C1(x)) + y) as desired. This takes three half-size computa-
tions. The required space is proportional to the number of levels of recursion;
the point here is that ancillas used for C1 are reused for C2.

More generally, the Bennett–Tompa conversion splits a computation into k
parts, each taking time (approximately) T/k. Starting from (x, 0, . . . , 0, y), com-
pute C1, then C2, and so on through Ck, obtaining

(x,C1(x), C2(C1(x)), . . . , Ck−1(· · ·C1(x) · · ·), Ck(· · ·C1(x) · · ·) + y).

Then compute Ck−1, then Ck−2, and so on through C1, obtaining

(x, 0, . . . , 0, Ck(· · · (x) · · ·) + y).

This is the same strategy used above for the extreme case that each Ci is a single
NAND. Allowing larger computations Ci produces time exponent logk(2k − 1),
while increasing the space by a factor that depends on k.

Taking k ∈ 2Θ(
√
log T) produces time and space within factors 2O(

√
log T) of

the original computation, as pointed out by Knill in [12, Theorem 2.12]. In the
context of our XL analyses, these factors are 2o(n) and therefore do not affect our
asymptotic exponents. Knill also pointed out some smaller optimizations that
are not visible in our exponents.

3.3. Parallelizing the Bennett–Tompa conversion. We point out that the
idea of the Bennett–Tompa conversion is compatible with massively parallel com-
putation and local communication, in particular communication on a realistic
two-dimensional mesh architecture.

Assume that the original computation is a sequence of T time steps, where
each step is carried out in parallel by A small processing cores. The cores are
arranged in a

√
A×
√
A mesh, with edges between adjacent cores. Formally, core

(i, j) has state s[i, j, t] at time t consisting of a small number of bits; s[i, j, t+ 1]
is the output of a small computation applied to s[i, j, t], s[i− 1, j, t], s[i, j− 1, t],
s[i+ 1, j, t], s[i, j + 1, t], with states past the edge defined to be empty. For our
XL application, “small” can be defined as subexponential in n, while T and A
grow exponentially with n.

We convert this into a reversible computation on a
√
A ×

√
A mesh of small

cores as follows. Divide the original computation into k parts C1, C2, . . . , Ck, each
taking time approximately T/k. Core (i, j) starts with (s[i, j, 0], 0, . . . , yi,j). Re-
cursively apply C1 reversibly, recursively apply C2 reversibly, and so on through
Ck, obtaining

(s[i, j, 0], s[i, j, t1], . . . , s[i, j, tk] + yi,j).

Then apply Ck−1 reversibly, apply Ck−2 reversibly, and so on through C1, ob-
taining

(s[i, j, 0], 0, . . . , s[i, j, tk] + yi,j)

12 Daniel J. Bernstein and Bo-Yin Yang

as desired. The base case of the recursion is a time-1 parallel computation con-
sisting of small local computations, each of which is applied reversibly with small
overhead.

This conversion visibly expands the state in each core. The final state is
accompanied by a journal of k earlier states; and each level of recursion needs its
own journal, overall multiplying the state size by k(log T)/ log k. Each level of
recursion also multiplies the time by (2k−1)/k. As in [12], we take k ∈ 2Θ(

√
n), so

that the overall area and time overheads are subexponential in n. The expanded
area also implies a slowdown in communication, but this is again subexponential
in n.

3.4. ReversibleXL and GroverXL. ReversibleXL is, by definition, the result
of applying the above parallel conversion to the XL computation of whether a
system has a solution. As noted in Section 2, XL can fail to determine whether
a system has a solution, but we assume that d is chosen large enough that XL
works for all systems provided to ReversibleXL; see Section 4.

GroverXL solves a system of quadratic equations in n variables as follows. Use
Grover’s method to search through the qf possibilities for the last f variables,
applying ReversibleXL to each possibility. If the system has a solution then
Grover’s method returns a random choice of solution; otherwise it returns a
uniform random choice of the last f variables. Either way, substitute this choice
into the system, and use XL to see whether there is a solution for the remaining
variables.

GroverXL takes the time for qf/2+o(1) quantum computations of ReversibleXL,
plus a final computation of XL. Like other applications of Grover’s method,
GroverXL can be parallelized across many separate computations, increasing
the area by a corresponding factor while dividing the time by the square root
of the same factor. The limit of “many” is qf , at which point one should simply
use FXL.

4 Analysis for random systems

This section presents asymptotic cost exponents for solving random systems
of (µ + o(1))n quadratic equations in n variables over Fq, assuming µ ≥ 1.
Exponents are shown for various small choices of q and for various choices of µ
ranging from 1.0 up through 2.0.

Exponent e means that the cost is 2(e+o(1))n as n → ∞, or equivalently
(2e+o(1))n. Simple brute-force search has exponent lg q, and Grover’s algorithm
has exponent 0.5 lg q, where as before lg = log2. In all cases GroverXL has better
exponents.

4.1. A script for computing cost exponents. To simplify verification, and to
let the reader easily compute cost exponents for further pairs (q, µ), we include
a script to compute exponents. See Figures 4.2 and 4.3. This script uses the free
Sage computer-algebra system, version 8.0.

The script covers both GroverXL and FXL. In each case it covers two different
metrics: (1) the exponent of a simplified operation count, and (2) the exponent

Asymptotically faster quantum algorithms to solve multivariate equations 13

import collections

generic caching mechanism
class memoized(object):

def __init__(self,func):
self.func = func
self.cache = {}
self.__name__ = ’memoized:’ + func.__name__

def __call__(self,*args):
if not isinstance(args,collections.Hashable):

return self.func(*args)
if not args in self.cache:

self.cache[args] = self.func(*args)
return self.cache[args]

@memoized
def lg(x):

return log(x*1.0)/log(2.0)

Zx.<x> = ZZ[]
Ry.<y> = RR[]
Zxz.<z> = Zx[]
Zxza.<a> = Zxz[]

@memoized
def phi(q): # see Section 2.3

return Zx((1-x^q)/(1-x))

@memoized
def monpoly(q): # see Section 2.3

h = x/(1-x) - q*x^q/(1-x^q)
return Zx(phi(q)*h)

@memoized
def mon(q,delta): # see Section 2.3

if not q in ZZ: raise Exception(’q must be integer’)
if q < 2: raise Exception(’q must be at least 2’)
if delta < 0: return -Infinity
if delta == 0: return 0
if delta == q-1: return 0
if delta > q-1: return -Infinity
g = Ry(monpoly(q)) - delta*Ry(phi(q))
roots = g.roots(RR)
rho = max(r for r,e in roots)
return lg(phi(q)(rho)/rho^delta)

Fig. 4.2. Script for computing cost exponents, part 1: caching and mon computation.

of the area-time product AT on a two-dimensional mesh-connected computer.
In the context of parallelizing Grover’s method, another metric of interest is the
exponent of the

√
AT product; but for parallelized GroverXL this turns out to

be identical to the first metric.
The script tries five values of q, namely 2, 3, 4, 5, 16; this is specified by doit(2)

through doit(16) at the end of the script. The script takes a few hours to run,
almost entirely for q = 16.

There are three nested loops for each q: search is either 0.5 for GroverXL
or 1 for FXL; linalg is either 2 for a simplified operation-count metric or 2.5
for area-time product on a two-dimensional mesh; and k tries each µ between 1
and 2 in steps of 0.01. For each choice of (q, search, linalg, µ), the script prints

14 Daniel J. Bernstein and Bo-Yin Yang

@memoized
def deltapoly(q): # see Section 4.5

h = (-x/z - q*z^(q-1)/(1-z^q) + 1/(1-z)
- 2*a*z/(1-z^2) + 2*a*q*z^(2*q-1)/(1-z^(2*q)))

h *= z*(1-z^(2*q))/(1-z)
return Zxza(h)

@memoized
def delta(q,mu): # see Section 4.5

hmu = deltapoly(q)(QQ(mu)).discriminant()
roots = hmu.roots(RR)
if not roots: return -1
return min(r for r,e in roots if r>0)

@memoized
def alpha(q,mu): # see Section 4.4

return mon(q,delta(q,mu))

def doit(q):
for search in [0.5,1]:

searchlgq = search * lg(q)
for linalg in [2,2.5]:

def f(x): return (linalg*alpha(q,x) - searchlgq)/x
bestvalue,mu0 = find_local_minimum(f,1,10)
mu0 = RR(mu0)
for k in range(100,201):

mu = k*0.01
x = max(mu,mu0) # lambda in Section 4.6
context = ’%d %.1f %.1f’ % (q,search,linalg)
cost = mu*f(x) + searchlgq
alphax = alpha(q,x)
print context,’%.3f’%mu,cost,x,alphax,alphax*mu/x
sys.stdout.flush()

doit(2)
doit(3)
doit(4)
doit(5)
doit(16)

Fig. 4.3. Script for computing cost exponents, part 2: δ optimization and µ0 optimiza-
tion.

one line showing the exponent for solving m = (µ + o(1))n random quadratic
equations in n variables over Fq.

4.4. Understanding the XL exponent. Guessing variables does not save time
if the system is sufficiently overdetermined: i.e., if µ is larger than a particular
cutoff µ0 then FXL and GroverXL both boil down to XL. The script computes
the cost exponent for XL in three steps:

• Compute δ as explained in Section 4.5. The XL degree d is (δ + o(1))n.
• Compute α = monq(δ). The number of monomials in XL is 2(α+o(1))n.
• The exponent is linalg · α.

Specifically, XL takes time T = 2(1.5α+o(1))n on a mesh of area A = 2(α+o(1))n,
so AT is 2(2.5α+o(1))n. In a simplified operation-count metric the exponent is
only 2α. Note that the

√
AT exponent is also 2α; as mentioned above, the√

AT exponent is identical to the simplified operation-count exponent for these
algorithms.

Asymptotically faster quantum algorithms to solve multivariate equations 15

4.5. Understanding δ. The script uses XL degree d ∈ (δ + o(1))n, where δ is
computed as follows. Define h as the polynomial

z
1− z2q

1− z

(
−x
z
− qzq−1

1− zq
+

1

1− z
− 2µz

1− z2
+

2µqz2q−1

1− z2q

)
in the polynomial ring R[x, z]. Define ∆ ∈ R[x] as the discriminant of h with
respect to z. Then ∆ has a unique positive real root, namely δ.

This is a concise statement of a calculation explained in the previous XL
literature. For example, for q = 2 and m = n, the XL exponent 0.87280 . . .
and the FXL exponent 0.79106 . . . were calculated this way in [26]. The rest of
this subsection reviews the main steps in the argument that this is the correct
asymptotic degree for XL.

Recall that A, the number of monomials in XL, is the coefficient of zd in
ϕq(z)

n/(1 − z), where ϕq(z) = (1 − zq)/(1 − z); in short, [zd](ϕq(z)
n/(1 − z)).

The number of relations is at most m[zd−2](ϕq(z)
n/(1 − z)). A more careful

analysis shows that the linear span of the relations has codimension (i.e., A
minus the dimension) at least [zd](ϕq(z)

n/(1−z)ϕq(z2)m). See [25, Theorem 2];
see also [7].

As d increases, there is a sharp transition in the behavior of the coefficient
[zd](ϕq(z)

n/(1−z)ϕq(z2)m), and in the experimentally observed behavior of XL
for random systems. If d is noticeably below a cutoff analyzed below, then the
coefficient is a huge positive integer, and XL almost always fails for random sys-
tems (although it does succeed for some special systems of interest): there are
not enough relations to provide interesting information about any small subset
of the monomials. As d grows past the cutoff, the coefficient crosses below 0
and rapidly becomes quite negative, and XL almost always succeeds for random
systems. If the coefficient happens to be extremely close to 0 then XL will of-
ten succeed and often fail (there are often some accidental extra dependencies
between relations), but adding o(n) to d eliminates this vacillation.

We analyze the asymptotics of this coefficient as in Section 2.4. First use
Cauchy’s integration formula

[zd]

(
ϕq(z)

n

(1− z)ϕq(z2)m

)
=

1

2πi

∮
ϕq(z)

n dz

zd+1(1− z)ϕq(z2)m
=

1

2πi

∮
F (z)n dz

z(1− z)

where F (z) = ϕq(z)/z
d/nϕq(z

2)m/n. Then substitute d = δn and m = µn,
and apply the saddle-point method to compute an asymptotic formula for the
integral as n→∞. This asymptotic formula involves powers of the form F (ρ)n,
where ρ runs through the complex roots of the logarithmic derivative

F ′(z)

F (z)
=
−δ
z
− qzq−1

1− zq
+

1

1− z
− 2µz

1− z2
+

2µqz2q−1

1− z2q
.

Multiplying this logarithmic derivative by z(1− z2q)/(1− z) produces the poly-
nomial h defined earlier, with δ substituted for x. The roots of h are essentially
the roots of F ′/F ; a closer look shows that h has an extra root −1 if q is odd,
but this does not affect the calculation of the cutoff.

16 Daniel J. Bernstein and Bo-Yin Yang

Finally, with some work one can see that the phase transition from positive
coefficients to negative coefficients occurs exactly when h has a double root,
i.e., exactly when the discriminant ∆ is zero. See generally [5] for the theory of
double saddle points, and [26] for applications to XL.

4.6. Understanding the FXL and GroverXL exponents. More generally,
for any µ ≥ 1, the script computes the cost exponents for FXL and GroverXL
as follows:

• Choose λ ≥ µ as explained below. Assume that (1−µ/λ+o(1))n variables are
fixed, i.e., that XL is given (µ+ o(1))n equations in (µ/λ+ o(1))n variables.

• Compute α as in Section 4.4, starting from λ rather than µ. Then XL
and ReversibleXL take time T = 2(1.5α+o(1))(µ/λ+o(1))n using area T =
2(α+o(1))(µ/λ+o(1))n; i.e., in base 2n, they have time exponent 1.5αµ/λ and
area exponent αµ/λ (and operation-count exponent 2αµ/λ).

• For FXL, add (1− µ/λ) lg q to the time exponent (and the operation-count
exponent) to account for the cost of brute-force search. For GroverXL, add
0.5(1− µ/λ) lg q. In other words, add search(1− µ/λ) lg q.

To summarize, the exponent is linalg ·αµ/λ+ search(1−µ/λ) lg q, where α is
implicitly a function of λ. This formula shows that λ is best chosen to minimize
linalg · α/λ − search(lg q)/λ. The script uses Sage’s find_local_minimum to
find the minimum of this function on [1, 10]; larger inputs did not help for the
range of linalg etc. that we use. The position of this maximum is mu0, exactly
the cutoff µ0 mentioned above. The script then defines λ = max{µ, µ0}.

4.7. Example: GroverXL for q = 2. The polynomial h defined earlier is
(1−2µ− δ)z3 +(−2µ− δ)z2 +(1− δ)z− δ. The discriminant ∆ of h with respect
to z is a quartic polynomial in δ, so the equation ∆ = 0 can be solved explicitly
by radicals, and it is easy to see the unique positive root:

δ = F (µ) = −µ+
1

2
+

1

2

√
2µ2 − 10µ− 1 + 2

√
µ4 + 6µ3 + 12µ2 + 8µ (1)

For example, if (q, µ) = (2, 1), then δ = 0.0899798 . . .; and α = mon2(δ) =
−δ lg δ − (1 − δ) lg(1 − δ) = 0.436402 This means that XL uses degree
2(0.08997...+o(1))n, and 2(0.43640...+o(1))n monomials. The operation-count expo-
nent is 2 · 0.43640 . . . = 0.87280

As another example, µ0 = 1.81626 . . . maximizes (1−2 mon2(F (µ0)))/µ0. For
µ = µ0, XL has δ = F (µ0) = 0.05573 . . . and α = mon2(δ) = 0.31026 . . ., for
operation-count exponent 0.62052

FXL, when optimized for operation count, fixes enough variables to reach
m/µ0 remaining variables. For example, again for (q, µ) = (2, 1), FXL runs XL
with m = (1 + o(1))n equations and (1/µ0 + o(1))n = (0.55058 . . .+ o(1))n vari-
ables. XL’s operation-count exponent in base 2n is then 0.55058 . . .·0.62052 . . . =
0.34164 The remaining (1− 1/µ0 + o(1))n = (0.44941 . . . + o(1))n variables
are found by brute-force search, so the final exponent for FXL is 0.79106

We emphasize that this calculation so far is not new: FXL was analyzed this
way in [26]. Our main contributions are the design and analysis of GroverXL.

Asymptotically faster quantum algorithms to solve multivariate equations 17

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.46240 0.45864 0.45488 0.45112 0.44737 0.44361 0.43985 0.43609 0.42481
q = 3 0.70425 0.69542 0.68660 0.67778 0.66895 0.66013 0.65131 0.64248 0.61601
q = 4 0.85848 0.84433 0.83018 0.81602 0.80187 0.78772 0.77357 0.75942 0.71696
q = 5 0.96843 0.94918 0.92993 0.91068 0.89142 0.87217 0.85292 0.83367 0.77591
q = 16 1.42604 1.36865 1.31125 1.25386 1.19646 1.13907 1.08167 1.02428 0.86575

Table 4.10. GroverXL operation-count exponent for q ∈ {2, 3, 4, 5, 16} and various
µ. Operation count ignores communication costs. Each exponent is rounded down to
multiple of 0.00001. For comparison, Grover’s algorithm without XL has exponents
0.50000, 0.79248, 1.00000, 1.16096, 2.00000, independently of µ.

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.47210 0.46931 0.46652 0.46373 0.46094 0.45815 0.45536 0.45257 0.44420
q = 3 0.72468 0.71790 0.71112 0.70434 0.69756 0.69078 0.68400 0.67722 0.65688
q = 4 0.88987 0.87886 0.86785 0.85683 0.84582 0.83481 0.82380 0.81278 0.77975
q = 5 1.01016 0.99508 0.98000 0.96492 0.94984 0.93476 0.91968 0.90460 0.85937
q = 16 1.53753 1.49128 1.44503 1.39879 1.35254 1.30629 1.26005 1.21380 1.07506

Table 4.11. GroverXL cost exponent for q ∈ {2, 3, 4, 5, 16} and various µ. Cost is
area-time product on two-dimensional mesh-connected computer. Each exponent is
rounded down to multiple of 0.00001. For comparison, Grover’s algorithm without XL
has exponents 0.50000, 0.79248, 1.00000, 1.16096, 2.00000, independently of µ.

Our script is also new (and possibly the first public software to automate these
analyses), as are the area-time analyses.

For GroverXL, we find minimum exponent 0.47210 . . . for the area-time prod-
uct by taking µ0 = 7.74234 . . . to maximize (0.5−2.5 mon2(F (µ0)))/µ0. We also
find minimum operation-count exponent 0.46240 . . . by taking µ0 = 5.63489 . . .
to maximize (0.5− 2 mon2(F (µ0)))/µ0.

4.8. Example: GroverXL for q = 3. The polynomial h is now (−δ + 2 −
4µ)z4 − z3 + (−δ + 1 − 2µ)z2 + z − δ = 0. The discriminant ∆ is a degree-6
polynomial, and the equation ∆ = 0 is again solvable in radicals for δ as a
function of µ. This solution is quite complex, presumably less efficient than the
more general root-finding techniques used by our script.

Numerical computations proceed as in Section 4.7. For example, for (q, µ) =
(3, 1) we find minimum area-time exponent 0.72468 . . . (compared to 1.27507 . . .
for FXL) by taking µ0 = 5.36509 . . ., and minimum operation-count exponent
0.70425 . . . (compared to 1.17521 . . . for FXL) by taking µ0 = 4.11429

4.9. Tables of results. Tables 4.10 and 4.11 show the GroverXL operation-
count exponent and cost exponent respectively, as computed by the script from
Section 4.1. Tables 4.12 and 4.13 show the exponents for the amount of hardware.

For example, the top-left entries in these tables are for q = 2 and µ = 1.0. The
entries are, respectively, 0.46240, 0.47210, 0.02557, and 0.01467. The first and

18 Daniel J. Bernstein and Bo-Yin Yang

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.02557 0.02812 0.03068 0.03324 0.03579 0.03835 0.04091 0.04346 0.05114
q = 3 0.05219 0.05741 0.06263 0.06785 0.07306 0.07828 0.08350 0.08872 0.10438
q = 4 0.07882 0.08670 0.09458 0.10247 0.11035 0.11823 0.12611 0.13400 0.15764
q = 5 0.10377 0.11415 0.12453 0.13490 0.14528 0.15566 0.16604 0.17641 0.20755
q = 16 0.26759 0.29434 0.32110 0.34786 0.37462 0.40138 0.42814 0.45490 0.43287

Table 4.12. GroverXL space exponent when parameters are optimized for operation
count, for q ∈ {2, 3, 4, 5, 16} and various µ. Operation count ignores communication
costs. Each exponent is rounded down to multiple of 0.00001.

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.01467 0.01614 0.01760 0.01907 0.02054 0.02200 0.02347 0.02494 0.02934
q = 3 0.03196 0.03516 0.03835 0.04155 0.04475 0.04794 0.05114 0.05434 0.06393
q = 4 0.04992 0.05491 0.05990 0.06489 0.06988 0.07488 0.07987 0.08486 0.09984
q = 5 0.06696 0.07365 0.08035 0.08704 0.09374 0.10044 0.10713 0.11383 0.13392
q = 16 0.18512 0.20363 0.22215 0.24066 0.25917 0.27768 0.29620 0.31471 0.37025

Table 4.13. GroverXL area exponent when parameters are optimized for cost, for
q ∈ {2, 3, 4, 5, 16} and various µ. Cost is area-time product on two-dimensional mesh-
connected computer. Each exponent is rounded down to multiple of 0.00001.

third numbers indicate that GroverXL uses 2(0.46240...+o(1))n operations in space
2(0.02557...+o(1))n, when GroverXL parameters are optimized for operation count.
The second and fourth numbers indicate that GroverXL has area-time product
2(0.47210...+o(1))n using area 2(0.01467...+o(1))n, when GroverXL parameters are
optimized for area-time product.

For comparison, Tables 4.14 and 4.15 show the FXL operation-count exponent
and cost exponent. Note that the case q = 16 and µ = 2.0 has the same operation-
count exponent for FXL as for GroverXL; in this case µ is above µ0 ≈ 1.80, and
guessing is not helpful (although it does help in area-time product, since then
µ0 ≈ 2.16). For smaller values of q and µ, GroverXL has better exponents than
FXL, which in turn has better exponents than XL.

References

[1] Charles H. Bennett, Time/space trade-offs for reversible computation, SIAM Jour-
nal on Computing 18 (1989), 766–776. Citations in this document: §3.1, §3.2.

[2] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). URL:
https://cr.yp.to/papers.html#nfscircuit. Citations in this document: §2.6.

[3] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication,
Journal of the ACM 28 (1981), 521–534. URL: http://wwwmaths.anu.edu.au/
~brent/pub/pub055.html. Citations in this document: §2.6.

[4] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Bo-Yin Yang, Solving
quadratic equations with XL on parallel architectures, in CHES 2012 [21] (2012),

https://cr.yp.to/papers.html#nfscircuit
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html

Asymptotically faster quantum algorithms to solve multivariate equations 19

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.79106 0.77017 0.74928 0.72838 0.70749 0.68660 0.66570 0.64481 0.58466
q = 3 1.17521 1.13423 1.09325 1.05228 1.01130 0.97033 0.92935 0.88839 0.78134
q = 4 1.39851 1.33836 1.27821 1.21807 1.15792 1.09777 1.03763 0.98102 0.84342
q = 5 1.54347 1.46563 1.38778 1.30993 1.23209 1.15424 1.07963 1.01421 0.86056
q = 16 2.00814 1.80896 1.60977 1.42959 1.29463 1.18842 1.10168 1.02899 0.86575

Table 4.14. FXL operation-count exponent for q ∈ {2, 3, 4, 5, 16} and various µ.
Operation count ignores communication costs. Each exponent is rounded down to
multiple of 0.00001. For comparison, brute-force search without XL has exponents
1.00000, 1.58496, 2.00000, 2.32192, 4.00000, independently of µ.

µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4 µ = 1.5 µ = 1.6 µ = 1.7 µ = 2.0

q = 2 0.85284 0.83813 0.82341 0.80870 0.79398 0.77926 0.76455 0.74983 0.70569
q = 3 1.27507 1.24409 1.21310 1.18211 1.15112 1.12013 1.08914 1.05816 0.96519
q = 4 1.52698 1.47968 1.43237 1.38507 1.33777 1.29047 1.24317 1.19587 1.05396
q = 5 1.69553 1.63289 1.57025 1.50761 1.44497 1.38233 1.31969 1.25705 1.07570
q = 16 2.29409 2.12350 1.95291 1.78232 1.61828 1.48552 1.37710 1.28624 1.08219

Table 4.15. FXL cost exponent for q ∈ {2, 3, 4, 5, 16} and various µ. Cost is area-time
product on two-dimensional mesh-connected computer. Each exponent is rounded down
to multiple of 0.00001. For comparison, brute-force search without XL has exponents
1.00000, 1.58496, 2.00000, 2.32192, 4.00000, independently of µ.

356–373. URL: https://eprint.iacr.org/2016/412. Citations in this document:
§2.5.

[5] Clive R. Chester, Bernard Friedman, Fritz Ursell, An extension of the method of
steepest descents, Proceedings of the Cambridge Philosophical Society 53 (1957),
599–611. Citations in this document: §4.5.

[6] Nicolas Courtois, Alexander Klimov, Jacques Patarin, Adi Shamir, Efficient al-
gorithms for solving overdefined systems of multivariate polynomial equations, in
Eurocrypt 2000 [20] (2000), 392–407. URL: http://minrank.org/xlfull.pdf.
Citations in this document: §2.1, §2.7.

[7] Claus Diem, The XL-algorithm and a conjecture from commutative algebra, in
Asiacrypt 2004 [14] (2004), 323–337. Citations in this document: §4.5.

[8] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich, Alge-
braic cryptanalysis of McEliece variants with compact keys, in Eurocrypt 2010
[10] (2010), 279–298. URL: https://www.iacr.org/archive/eurocrypt2010/

66320290/66320290.pdf. Citations in this document: §1.1.
[9] Philippe Flajolet, Robert Sedgewick, Analytic combinatorics, Cambridge Univer-

sity Press, 2009. ISBN 978-0-521-89806-5. URL: http://ac.cs.princeton.edu/
home/. Citations in this document: §2.4, §2.4, §2.4.

[10] Henri Gilbert (editor), Advances in cryptology—EUROCRYPT 2010, 29th an-
nual international conference on the theory and applications of cryptographic
techniques, French Riviera, May 30–June 3, 2010, proceedings, Lecture Notes
in Computer Science, 6110, Springer, 2010. ISBN 978-3-642-13189-9. See [8].

https://eprint.iacr.org/2016/412
http://minrank.org/xlfull.pdf
https://www.iacr.org/archive/eurocrypt2010/66320290/66320290.pdf
https://www.iacr.org/archive/eurocrypt2010/66320290/66320290.pdf
http://ac.cs.princeton.edu/home/
http://ac.cs.princeton.edu/home/

20 Daniel J. Bernstein and Bo-Yin Yang

[11] Philip N. Klein (editor), Proceedings of the twenty-eighth annual ACM-SIAM
symposium on discrete algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16–19, SIAM, 2017. See [15].

[12] Emanuel Knill, An analysis of Bennett’s pebble game (1995). URL: http://

arxiv.org/abs/math/9508218. Citations in this document: §3.2, §3.3.
[13] Daniel Lazard, Résolution des systèmes d’équations algébriques, Theoretical

Computer Science 15 (1981), 77–110. URL: https://www.sciencedirect.com/
science/article/pii/0304397581900645. Citations in this document: §2.1.

[14] Pil Joong Lee (editor), Advances in cryptology—ASIACRYPT 2004, 10th inter-
national conference on the theory and application of cryptology and information
security, Jeju Island, Korea, December 5–9, 2004, proceedings, Lecture Notes in
Computer Science, 3329, Springer, 2004. See [7].

[15] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams,
Huacheng Yu, Beating brute force for systems of polynomial equations over finite
fields, in SODA 2017 [11] (2017), 2190–2202. URL: http://theory.stanford.
edu/~yuhch123/files/polyEq.pdf. Citations in this document: §1.2, §1.2.

[16] Javier Lopez, Sihan Qing, Eiji Okamoto (editors), Information and communica-
tions security, 6th international conference, ICICS 2004, Malaga, Spain, October
27–29, 2004, proceedings, Lecture Notes in Computer Science, 3269, Springer,
2004. ISBN 3-540-23563-9. See [26].

[17] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96: proceed-
ings of the fifteenth international conference on the theory and application of
cryptographic techniques held in Saragossa, May 12–16, 1996, Lecture Notes in
Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002. See
[18].

[18] Jacques Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms, in Eurocrypt ’96 [17] (1996),
33–48; see also newer version [19].

[19] Jacques Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms, extended version (1998); see
also older version [18]. URL: http://minrank.org/hfe.pdf. Citations in this
document: §1.1.

[20] Bart Preneel (editor), Advances in cryptology—EUROCRYPT 2000, interna-
tional conference on the theory and application of cryptographic techniques,
Bruges, Belgium, May 14–18, 2000, proceeding, Lecture Notes in Computer Sci-
ence, 1807, Springer, 2000. See [6].

[21] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and em-
bedded systems—CHES 2012—14th international workshop, Leuven, Belgium,
September 9–12, 2012, proceedings, Lecture Notes in Computer Science, 7428,
Springer, 2012. ISBN 978-3-642-33026-1. See [4].

[22] Huaxiong Wang, Josef Pieprzyk, Vijay Varadharajan (editors), Information se-
curity and privacy: 9th Australasian conference, ACISP 2004, Sydney, Australia,
July 13–15, 2004, proceedings, Lecture Notes in Computer Science, 3108, Springer,
2004. ISBN 3-540-22379-7. See [25].

[23] Douglas H. Wiedemann, Solving sparse linear equations over finite fields, IEEE
Transactions on Information Theory 32 (1986), 54–62. MR 87g:11166. Citations
in this document: §2.5, §2.5.

[24] Roderick Wong, Asymptotic approximations of integrals, Academic Press, 1989.
ISBN 0-12-762535-6. Citations in this document: §2.4.

http://arxiv.org/abs/math/9508218
http://arxiv.org/abs/math/9508218
https://www.sciencedirect.com/science/article/pii/0304397581900645
https://www.sciencedirect.com/science/article/pii/0304397581900645
http://theory.stanford.edu/~yuhch123/files/polyEq.pdf
http://theory.stanford.edu/~yuhch123/files/polyEq.pdf
http://minrank.org/hfe.pdf

Asymptotically faster quantum algorithms to solve multivariate equations 21

[25] Bo-Yin Yang, Jiun-Ming Chen, Theoretical analysis of XL over small fields,
in ACISP 2004 [22] (2004), 277–288. URL: http://precision.moscito.org/

by-publ/recent/xxl2-update.pdf. Citations in this document: §2.5, §4.5.
[26] Bo-Yin Yang, Jiun-Ming Chen, Nicolas Courtois, On asymptotic security esti-

mates in XL and Gröbner bases-related algebraic cryptanalysis, in ICICS 2004
[16] (2004), 401–413. URL: http://www.iis.sinica.edu.tw/papers/byyang/

2384-F.pdf. Citations in this document: §1.2, §2.5, §4.5, §4.5, §4.7.

http://precision.moscito.org/by-publ/recent/xxl2-update.pdf
http://precision.moscito.org/by-publ/recent/xxl2-update.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf

