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Abstract. C/C++ code is often designed to run in constant time so
that secret information is not leaked through timings. This code relies
on a variety of replacements for secret branches, secret comparisons, and
secret bool. However, this protection has been undermined by various
“optimizations” in gcc and clang that sometimes introduce branches
and timing variations into the assembly for C/C++ code where earlier
compiler versions had generated constant-time assembly.

The cryptoint library provides functions such as crypto_int64_max
with implementations designed to defend against such “optimizations”.
Some previous work aims at stopping compilers from introducing
branches for conditional selection; cryptoint aims at stopping compilers
from internally introducing any bool conditions in the first place. The
cryptoint defenses include (1) usage of a global volatile zero variable
for portable code and (2) assembly for various platforms.

The library is an almost-header-only library with automatic decisions
between assembly and portable code, allowing simple inclusion in other
libraries or in applications. C/C++ software for a wide range of
cryptographic primitives has already been adjusted to use cryptoint,
with the resulting binaries passing a variety of correctness tests and
constant-time tests. Each function in cryptoint is subjected not just
to conventional tests but also to equivalence checking via symbolic
execution and SMT solving.

This paper surveys challenges and progress in producing constant-time
code, and then explains the design and implementation of cryptoint.

1 Introduction

This paper introduces cryptoint, a software library providing various
{int,uint}{8,16,32,64} operations to use in C/C++ code. For example,
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including crypto_int64.h and then calling crypto_int64_max(x,y) returns
the maximum of two signed 64-bit integers x and y.

Why not write x>y?x:y or, as a C++ alternative, std::max(x,y)? Answer:
crypto_int64_max(x,y) takes responsibility for avoiding data flow from x and
y into timings, and tries hard to make sure that there is no such data flow,
whereas a C/C++ compiler often produces such data flow and certainly does
not take any responsibility for avoiding it.

The importance of avoiding such data flow is demonstrated by many attacks
in the literature exploiting code that isn’t constant-time: attacks that work
backwards from attacker-visible timings to secrets. For example, [57], [94], and
[79] exploit timing variations stemming from secret branch conditions; [16],
[116], and [129] exploit timing variations stemming from secret array indices;
and [44] exploits timing variations stemming from secret inputs to a division
instruction. See [45] for an introduction to timing attacks and further references.

It is clear from various defense papers such as [108], [58], [9], and [54] how
a compiler can explicitly support constant-time code, producing constant-time
assembly given suitable source code. Why, then, do mainstream compilers such
as gcc and clang not provide any such support? The answer appears to be a
belief that constant-time code would consistently be a performance disaster so
nobody would want to use it.

This belief is incorrect. Two decades ago, I used constant-time software to set
new speed records for secret-key cryptography and public-key cryptography;
see Section 2. Subsequent work has identified many more examples where
constant-time software provides the best performance available—or at least close
enough for all practical purposes.

Within today’s software ecosystem, software that handles secret data is often
designed to run in constant time. Sometimes the code is written in assembly (see
Section 3); sometimes it is written in C or C++; sometimes it is written in other
languages that can be viewed as competing with C and C++. But gcc and clang
still do not explicitly support constant-time code. Even worse, “optimizations”
in recent versions of these compilers sometimes create timing variations in code
that was previously running in constant time; see Section 4.

The point of cryptoint is to provide—and, perhaps more importantly,
centralize—defenses of C/C++ software against these compiler “optimizations”.
Many cryptographic implementations in the SUPERCOP benchmarking package
from [46] have already been adjusted to use cryptoint; quantitatively, the
implementations currently have a total of 7026 lines calling the cryptoint
functions. Each version of cryptoint is released as part of SUPERCOP. The
cryptoint library is also used in lib25519 [39], libmceliece [40], libntruprime
[41], and the sntrup761 component of OpenSSH [110].

Section 6 explains steps that have been taken to avoid timing variations and
bugs in cryptoint. For comparison, Section 7 looks at subroutines in OpenSSL,
BoringSSL, BearSSL, and Botan designed to be constant-time.
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1.1 Recommendations

For any existing C/C++ code designed to run in constant time, I recommend
switching to the cryptoint functions wherever the functions are applicable. For
example, existing code saying x>>31, where x is a signed 32-bit integer, should
be rewritten as crypto_int32_negative_mask(x). Similarly, new C/C++ code
designed to run in constant time should use crypto_int32_negative_mask(x)
rather than x>>31 or -(x<0).

This is not a recommendation to use C and/or C++ and/or gcc and/or clang
in the first place. This is also not a guarantee of safety. On the contrary: C and
C++ have many dangerously sharp edges. The development processes for gcc
and clang are approximately 180 degrees away from what I would recommend
for high assurance. In such an environment, guarantees would be hard to justify.

What I find much more convincing is applying security tests to the resulting
binaries. Many tools are available for testing constant-time behavior of code
(see generally [87] and [71]), and some of the tools take binaries as input. In
particular, SUPERCOP includes TIMECOP 2, which uses valgrind to scan
for timing variations in large volumes of compiled cryptographic software; see
Section 5. Similar tools are built into the test suites for lib25519, libmceliece,
and libntruprime. These tests are not perfect—their path coverage is limited to
whatever appears in dynamic runs; also, valgrind does not prohibit all of the
variable-time instructions discussed in Section 3—but it seems feasible to close
these gaps.

If binaries are subjected to sufficiently comprehensive tests then a compiler
“optimization” that produces a timing variation will be caught before the
variable-time binaries are deployed. This does not remove the value of
cryptoint. Imagine a package maintainer running tests, finding a timing
variation, and then being faced with the problem of fixing the variation, perhaps
with a tight package-release deadline.3 It is reasonable to expect that proactively
using cryptoint will make any necessary patches easier, and will make these
problems less frequent in the first place.

1.2 Keeping up with the compilers

A recent paper by Pornin [122] starts from the same problem: compilers adding
some “optimizations” that turned constant-time code into variable-time code.
That paper then claims that “trying to achieve constant-time processing through
software constructions that hide the true nature of performed operations from
the compiler is a fool’s errand and doomed to fail” since “compilers get better
over time” and “data-dependent shortcuts are a primary source of performance
improvement”.

Here is a data point that appears to support the idea that compilers evolve
over time to produce faster code. In 2022, Kapoulkine [88] reported the following
3 It may be possible to use a previous compiler version without the “optimization”.

However, my experience is that maintaining older compiler versions runs into
difficulties because of instabilities in the surrounding software environment.
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conclusion from running various benchmarks: “LLVM 11 tends to take 2x longer
to compile code with optimizations, and as a result produces code that runs
10–20% faster (with occasional outliers in either direction), compared to LLVM
2.7 which is more than 10 years old.”

Perhaps this somehow implies that compilers will eventually turn cryptoint
into variable-time code—but, again, this won’t be a security problem if binary
testing is sufficiently comprehensive by then. Rolling out cryptoint addresses
the current compiler threat, and simplifies the handling of any problems that
might develop in the future. This is not a fool’s errand: it is common-sense
engineering.

1.3 Incentives for CPU designers

Pornin also appears to claim in [122, page 2] that “industrial secrecy” makes it
unlikely that CPU manufacturers will provide “guarantees on timing-related
characteristics”. However, ARM’s “data-independent timing” [10] (DIT) and
Intel’s “data-operand-independent timing” [85] (DOIT) are examples of such
guarantees, as [122, page 21] admits.

The underlying picture of CPU design drawn in [122] is driven entirely by
speed. In fact, CPU manufacturers also invest some resources in security. For
example, most CPUs provide memory protection, even though this has a cost.
As another example, Intel didn’t ignore the attack demos from [16], [116], and
[129]: it invested in ways to stop those attacks, such as (1) writing RSA software
that carried out table lookups within cache lines (see Section 3.1) and (2) adding
AES instructions to hardware.4 These responses dealt with only a corner of the
problem, but they still show Intel explicitly targeting goals beyond speed.

I commented twenty years ago, in [16], that CPU manufacturers “need to
highlight every variation in their instruction timings, and to guarantee that there
are no other variations. As this paper demonstrates, hidden CPU performance
information is a security threat”. The value of these guarantees becomes clear
when there is an ecosystem of constant-time software—something that was
essentially nonexistent back then but that is much more visible today. So it
is unsurprising that ARM and Intel have started making guarantees. DIT and
DOIT were announced in 2020 and 2022 respectively. The value of these CPU
features is very easy to see from newer timing attacks blocked by DIT, such as
[59] and [90].

Are we done yet? No: we still need better alignment between what CPUs
are providing and what software is relying upon. But the overall shape of the
solution is clear; the necessary software is mostly in place; and supporting the
solution is turning into a competitive advantage for CPU manufacturers.
4 See [77]: “Beyond improving performance, the AES instructions provide important

security benefits. By running in data-independent time and not using tables,
they help in eliminating the major timing and cache-based attacks that threaten
table-based software implementations of AES. In addition, they make AES simple
to implement, with reduced code size, which helps reducing the risk of inadvertent
introduction of security flaws, such as difficult-to-detect side channel leaks.”
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2 Speed

There is nothing new about hyping the tension between constant-time software
and performance: this was already brought up three decades ago as a reason to
not even try building such software. This section reviews what happened.

One of the attack papers mentioned in Section 1 was an influential 1996
paper [94] by Kocher.5 That paper also considered defenses. As part of this, the
paper listed various obstacles to building constant-time software, and claimed
without quantification that such software is “likely to be slow; many performance
optimizations cannot be used since all operations must take as long as the slowest
operation”.6

I challenged this claim several years later, introducing a new cipher Salsa20
that used constant-time software to set new speed records for encryption on a
variety of CPUs. I explicitly avoided any data flow from secrets to branches,
table lookups, and other instructions that (at least on some CPUs) take variable
time; I paid attention to this instruction-selection constraint as part of algorithm
selection. See [24, Section 2]. The original postings were [16, 2004 version,
Section 5], [17, Section 2], [18], and [20] (“Why not switch to a cipher that
avoids these problems?”).7

I then used constant-time software to set new speed records for elliptic-curve
cryptography. See [19] and [21]. I again avoided “all input-dependent branches,
all input-dependent array indices, and other instructions with input-dependent
timings” (to quote [21]); I again paid attention to this constraint when I selected
higher-level algorithms.

There are, as noted in Section 1, many newer examples of software designed
to run in constant time. For example, Amazon’s s2n-bignum library includes
fast constant-time software for Curve25519 (the elliptic curve introduced in
[21]) on current 64-bit CPUs from AMD, Intel, and ARM. A notable feature of
s2n-bignum’s Curve25519 code is that it is accompanied by a computer-checked
proof [81] of producing the correct output for all inputs, assuming a particular
(plausible) specification for how each CPU instruction behaves.
5 Timing attacks had been previously described in, e.g., [57], but cryptographers

were generally unaware of the threat until the attack examples in [94]. Subsequent
literature often miscredits the entire concept of timing attacks to [94].

6 The same paper also claimed that a “better solution” was to randomly mask (or
“blind”) secrets: for example, storing a secret uint32 s as a random uint32 r along
with r + s. The hope is that timings of computations will then look random, not
revealing the actual secrets. However, the words “better” and “solution” here are
both controversial. Masking has its own software-engineering complications, its own
performance issues, and an unclear level of security; masking has not removed the
interest in constant-time software. On the other hand, masking might help against
other side channels; constant-time software has not removed the interest in masking.
Masking and constant-time software can also be used together. For more information
about masking, see, e.g., [103], [66], and [97].

7 These postings also pointed to earlier ciphers as having the same security feature in
retrospect—but those ciphers were slower, so they did not challenge Kocher’s claim.
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2.1 The importance of reoptimizing algorithms

Algorithm designers and programmers accustomed to using variable array
indices will naturally think that avoiding such indices is a performance disaster.
For example, inside the RC4 stream cipher, there are frequent accesses to
unpredictable positions in a 256-byte array. Rewriting each access as arithmetic
on all 256 array positions would make RC4 much slower.

Similar comments apply to a wide range of algorithms outside cryptography.
Imagine the consequences of rewriting each array access as arithmetic on all
possible array positions inside heap sort, for example, or inside radix sort.

How, then, did I use constant-time code to set new speed records in 2018 [30]
for sorting int32 arrays in cache on Intel CPUs? How does this code remain
competitive with newer sorting libraries?

A typical Intel CPU core can read two int32 inputs from variable array
positions each cycle—but the same core can carry out two 256-bit VPMAXSD
operations per cycle, each of which computes (max {a0, b0}, . . . , max {a7, b7})
where ai and bi are each int32, for a total of 16 max operations on 32 int32
inputs per cycle. What I did in [30] was arrange “sorting networks”, which
are constant-index sorting algorithms, in a way that takes advantage of this
parallel arithmetic. Insisting on constant indices incurs extra comparisons, but
this expense is outweighed by the extra parallelism.

In other words, while sorting networks are much slower than other sorting
algorithms in a naive count of int32 operations, they are competitive with other
sorting algorithms on Intel CPUs. This is an example of a common phenomenon
in the literature on algorithms: the answer to the question “Which of these
algorithms is better?” is often “This depends on the model of computation and
the choice of cost metric”.

Why does Intel invest so much hardware area in parallel max operations? The
critical point here is that reading an array at a variable index has much higher
inherent hardware cost than simple integer arithmetic, especially as the arrays
grow. For example, a single read from a 4KB cache bank is an operation not
just on the address but also on the 32768 bits stored in the cache bank. For
comparison, computing the max of two int32 inputs is an operation on just 64
bits, and computing 8 of those in parallel is an operation on just 512 bits.

One shouldn’t extrapolate from the sorting example to conclude that all
software will gain performance from avoiding variable array indices. But one
also shouldn’t use algorithms optimized for variable array indices as predictors
of the performance of algorithms optimized for constant array indices.

Similarly, conditional branches have low cost in a naive model of computation
but are resource-intensive in hardware. A single hard-to-predict branch can cost
several cycles on average, time that could otherwise have been used to run many
arithmetic instructions. One shouldn’t use algorithms optimized for a naive
model as predictors of the performance of algorithms optimized for constant
instruction flow.
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3 Machine instructions

Fast constant-time software is often written in assembly; this applies, for
example, to [24], [21], and [81]. The fact that this software avoids data flow
from secrets to timings relies on the same fact for the machine instructions used
in the software. But wait: how do we know which machine instructions have
timing variations?

The traditional answer to this question starts with documentation of various
ways that CPUs make software run faster by taking shortcuts for common inputs.
For example:

• A simple CPU might incur the cost of accessing DRAM on each load/store
instruction, but CPUs typically add an SRAM cache (or multiple layers of
such caches). The shortcut here is that, in the common case of x[i] being in
cache, access to x[i] is a fast SRAM access instead of a slow DRAM access.
That’s why [21] forbids “input-dependent array indices”.

• Branch timing is generally not balanced between branches, whether or not
the number of instructions in each branch is balanced. Some specific reasons
for branch conditions to leak into timings are explained in [69, page 13].
More fundamentally, secret instruction pointers are examples of secret array
indices and thus have to be assumed to leak. See, e.g., [7] for an attack
extracting instruction pointers from timings.

So we have a list of instructions to avoid. But what if this list is incomplete,
because of an incomplete understanding of speed features in current CPUs?
What if the list is rendered obsolete by changes in CPUs? (See, e.g., the potential
future changes analyzed in [14].) One can build all computations from just logic
operations and constant-distance shifts (as noted in, e.g., [23, page 30]), but
what happens if this produces speed complaints?

The reader of [122] is led to believe that these are new questions. The rest of
this section illustrates that these questions appeared many years earlier—and
that we are finally seeing constant-time promises from ARM and Intel, the
aforementioned DIT and DOIT.

3.1 Timing variations within cache lines

In May 2005, in response to one of the attack papers [116] mentioned in
Section 1, an OpenSSL patch [131] took the following “consttime” approach to
table lookups x[i] for situations where i is between 0 and 63: (1) align arrays
to 64-byte cache lines; (2) decompose lookups in larger-than-64-byte arrays into
lookups within cache lines, by transposing array contents. Over the next several
years, various Intel personnel recommended this approach:

• [75] (which tweaked the software to look up 2 bytes at a time rather than
1 as in OpenSSL; in context, i was limited to 31) labeled the approach as
“constant run-time”.
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• [78] (which tweaked the software to look up 4 bytes at a time, with i limited
to 15) said that “modular exponentiation code need to be written in a way
that its memory access patterns (at the granularity of a cache line) do not
leak secret information”.

• [55, page 9] recommended avoiding secret-dependent “memory access (at
coarser than cache line granularity)”.

This approach is safe in a simplified model of CPUs where the time for memory
access depends only on which 64-byte cache line is being accessed. However,
I had already warned in [16, 14 April 2005 version, Sections 14 and 15] that
this model is broken by other optimizations such as store-to-load forwarding
in Intel’s Pentium III and multiple cache banks in AMD’s Athlon.8 Schwabe
and I presented a demo in [49] extracting a secret from a small test program.
OpenSSL did not stop using this approach until Yarom, Genkin, and Heninger
in [134] presented a complete attack, CacheBleed, extracting secret RSA keys
from timings of OpenSSL on an Intel Xeon E5-2430.

3.2 Timing variations in multipliers

Cryptographic software often makes heavy use of integer multiplications. This
works well on CPUs that include the fastest circuits for integer multiplication,
since those circuits are naturally constant-time. Those circuits are also easily
justified by many other applications of multiplication. CPUs with constant-time
multiplications are so common that software aiming to be constant-time often
considers solely those CPUs.

However, some CPUs spend less area on multipliers, and it is easy to see
how those CPUs can save time in multiplications by applying input-dependent
shortcuts. See, e.g., [17, page 2] mentioning the documented timing variations in
multiplications on the Motorola PowerPC 7450 (the CPU in the 2001 version of
Apple’s Power Mac G4) and explaining the security impact of these variations.
For newer examples, see [76] (finding undocumented timing variations on the
ARM Cortex-M3) and [120] (surveying CPUs).

Sometimes one can avoid timing variations in integer multiplication by
switching to faster floating-point multipliers. On the other hand, my paper [21,
page 10] warns that there are input-dependent timings for basic floating-point
operations on some CPUs, such as “the IBM PowerPC RS64 IV, which
8 As far as I know, Intel never documented store-to-load forwarding for the Pentium

III microarchitecture. On the other hand, Fog [69, Sections 6.5 and 6.9] observed
timing variations through experiments, and Intel [86, page 2-43, “Aliasing cases in
the Pentium M processor”] documented variations for the subsequent Pentium M
microarchitecture. Similarly, AMD [8, Section 5.8] documented cache-bank conflicts
for the Athlon 64 microarchitecture but, as far as I know, not for the original Athlon.
I pointed out the security impact of cache-bank conflicts in [16, 11 November 2024
version], and pointed out the security impact of store-to-load forwarding in [16, 14
April 2005 version]. A warning about cache banks then appeared without credit in
[113, 14 August 2005 version, Section 3].
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takes an extra cycle to multiply by 0”. Some newer papers such as [95]
categorically recommend against floating-point operations on secrets, although
this recommendation is based primarily on timing variations in, e.g., divisions
and subnormals, neither of which is important for fast cryptography.

There are some code-analysis tools, such as my saferewrite tool introduced
in [32], that issue warnings for secret multiplications. It is clearly feasible to
build software that uses multiplications on CPUs that provide constant-time
multipliers, while falling back to non-multiplication code for portability to other
CPUs. On the other hand, this is not common practice today, and the necessary
fallback code usually still needs to be written. Presumably current software using
multiplications has exploitable timing leaks on some CPUs.

The tension that variable-time multipliers create between security and speed
is resolved by cryptosystems where multiplications are unimportant for speed:
see, e.g., [17] and [40].

3.3 Timing variations in shifts

Fast barrel shifters naturally take constant time, and require much less hardware
area than fast multipliers, but still might not be present on a small enough CPU.
For example, on the Intel 8088 CPU in the original IBM PC, the instruction to
shift left by c bits took 8 + 4c cycles; see [84, page 6-50]. Intel CPUs included
barrel shifters starting with the 80386 in 1985, but small CPUs without barrel
shifters such as the AVR continued to appear. I generally don’t bother targeting
those CPUs, but we’ll find shift issues reappearing when we look at compilers;
see Section 4.11.

3.4 Data-dependent caching

Some recent CPUs have added data flow from arbitrary memory contents to
timing, for example with data-dependent prefetching or load-value prediction.
The GoFetch attack from [59] exploits data-dependent prefetching to extract
secrets from a variety of cryptographic computations running on Firestorm cores
on Apple M1 CPUs. The FLOP attack from [90] exploits load-value prediction
on Apple M3, M4, and A17 Pro for “end-to-end attacks that read arbitrary
64-bit addresses, allowing us to recover sensitive data across webpage origins”
in both Safari and Chrome.

Fortunately, one can disable data-dependent prefetching on the M1 by pinning
computations to the Icestorm cores, or (as discovered by Martin [105]) by having
the operating-system kernel set bit 30 of SYS_APL_HID11_EL1. For M3, [59]
reports observing that ARM’s unprivileged DIT option disables data-dependent
prefetching, and [90] reports observing that DIT disables load-value prediction.

A 2023 posting [80] from an Intel engineer indicates that, on CPUs that
support Intel’s DOIT option, setting the option in the operating-system kernel
disables “Data Dependent Prefetchers (DDP)” and “Some Fast Store Forwarding
Predictors (FSFP)”. The word “some” is concerning. It is also concerning that
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there is no mention of store elimination for all-zero cache lines, a data dependency
that Downs [65] observed from benchmarks of Intel Skylake and Ice Lake.

It is claimed in [59, Section 8] that disabling data-dependent prefetching
“will incur heavy performance penalties”, but this claim is neither quantified
nor justified in [59]. Measurements of some cryptographic computations in [68,
Section 5.2] on Apple M1 and M3 found that the DIT slowdown was so small as to
be lost in measurement noise. Measurements of Safari rendering in [90, Section 7]
found DIT producing “an overhead of 4.5% on the Speedometer 3.0 benchmark”.
It would be useful to collect more evidence regarding the performance impact of
DIT and DOIT.

3.5 Lists of safe instructions

The DIT and DOIT options, despite their “data-independent timing” and
“data-operand-independent timing” names, do not guarantee that timing is
independent of all instruction operands. For example, timings still depend on
branch conditions, load/store addresses, and division inputs. The documentation
for ARM’s DIT and Intel’s DOIT includes lists of instructions guaranteed to be
safe when those options are enabled.

Presumably ARM and Intel assembled these lists as lists of instructions
where they do not see noticeable prospects for data-dependent speedups—and
presumably their assessments of this are much less error-prone than typical
public assessments. The aforementioned 2023 posting [80] says that there are
no current timing varations in these instructions on any Intel CPUs, and “no
plans for any processors where this behavior would change”. This does not remove
the importance of enabling DIT and DOIT; see Section 3.4.

4 Compilers

Instead of considering software written in assembly, let’s now consider software
written in C or C++. How do we know that supposedly constant-time C/C++
software doesn’t have timing variations?

This question is more complicated than the question about assembly in
Section 3. Timings of C/C++ software depend not just on the timings of machine
instructions but also on which machine instructions a compiler decides to use
given this software. This has a dangerous dependence on compiler options; see
Section 4.1. After Section 4.1, this section is organized chronologically, tracing
what the literature says about risks and countermeasures.

As noted in Section 1, sufficiently comprehensive binary analysis can catch a
compiler’s variable-time code before the code is deployed, but one is then faced
with the problem of fixing the code. Furthermore, the current situation is that
binaries are often deployed without analysis. So it is useful, both short-term
and longer-term, to understand patterns in source code that lead compilers to
generate variable-time code.
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4.1 The trust trap

A simple compiler will convert a branch in C into a branch in assembly, will
convert a variable index in C into a variable index in assembly, will convert a
division in C into a division in assembly, etc.

However, “optimizing” compilers have learned some of the tricks that an
assembly programmer can use to gain speed, and in particular will sometimes
eliminate branches, variable indices, divisions, etc. Programmers looking at the
resulting assembly might think that a C snippet is safe, not realizing that
the same snippet becomes unsafe when one switches to a different compiler,
a different set of compiler options, or a different target architecture.

Consider the following example of C code with an input-dependent branch
condition:

if (x > y)
result = x;

else
result = y;

Running this through clang-14 -O0 -target amd64 produces assembly with
an input-dependent branch condition:

movl -4(%rbp), %eax
cmpl -8(%rbp), %eax
jle .LBB0_2
movl -4(%rbp), %eax
movl %eax, -12(%rbp)
jmp .LBB0_3

.LBB0_2:
movl -8(%rbp), %eax
movl %eax, -12(%rbp)

.LBB0_3:

Rewriting the above branch using C’s ternary if-then-else operator—

result = x > y ? x : y;

—produces essentially the same assembly. However, switching from clang -O0
to gcc-12 -O0 converts the ternary example above into a conditional move,
removing the timing variation:9

movl -24(%rbp), %edx
movl -20(%rbp), %eax
cmpl %eax, %edx
cmovge %edx, %eax
movl %eax, -4(%rbp)

9 Conditional moves are like multiplications in that one can see how a CPU designer
might sometimes want to introduce timing variations. For many years I was
avoiding conditional-move instructions. However, Intel’s DOITM documentation lists
conditional moves as constant-time.
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Higher optimization levels for clang and gcc also convert the first example into
a conditional move.

Does this mean that one should recommend gcc over clang? Or that
one should recommend higher optimization levels? Perhaps, but these
recommendations would not be enough to eliminate branches in assembly. A
slightly more complicated operation such as

if (x > y)
result = x;

else
result = x*y;

turns into a conditional branch with gcc -O3.

4.2 2011: avoiding variable-time source code

NaCl [48] was written to avoid all “data flow from secrets to load addresses”
and all “data flow from secrets to branch conditions”. NaCl reused assembly
that followed the same rules from [24], [21], etc., but it also added C code for
portability.

NaCl’s coding rules [47] view all C comparisons as branch conditions: “Do not
use secret data to control a branch. . . . Even on architectures that support fast
constant-time conditional-move instructions, always assume that a comparison
in C is compiled into a branch, not a conditional move. Compilers can be
remarkably stupid.” As noted in Section 4.1, an “optimizing” compiler could
eliminate branches, but this rule avoids trusting the compiler to do this.10

This rule prohibits the three C examples from Section 4.1—the two branch
examples and the ternary rewrite. It also prohibits

result = x > y;

since this is a comparison. Today one can find, e.g., clang -O0 -target sparc
turning this comparison into a branch. There are other architectures where the
compiler sometimes converts this comparison into suitable non-branch machine
instructions, but this depends on the context: for example, gcc-14 -O3 converts

result = (x > y) * (b * c - a) + a;

into a branch. The rule from [47] says to avoid the comparison in the first place.
As an expository matter, it seems important to include examples emphasizing

that x>y, !x, etc. are prohibited whether or not there are C branches. The “avoid
branchings controlled by secret data” rule from [11] and [12] does not obviously
prohibit comparisons. Also, for a programmer who knows that in C the result of
a comparison is an int, the rule from [119] saying “Avoid boolean types (e.g. the
C99 type _Bool)” does not prohibit comparisons.
10 Similarly, compilers sometimes convert a division by a constant into multiplication,

but trusting the compiler to do this is dangerous; see [44].



The cryptoint library 13

4.3 2015: a variable-time software multiplier

A 2015 paper [89] from Kaufmann, Pelletier, Vaudenay, and Villegas has
title “When constant-time source yields variable-time binary: exploiting
Curve25519-donna built with MSVC 2015”. A closer look shows that the code
considered in [89] had int64 operations that, when compiled by Microsoft’s
compiler for 32-bit x86, were converted into calls to Microsoft’s 32-bit int64
library, specifically llmul.asm, where Microsoft had used data-dependent
branches.

Should one recognize llmul.asm as source code, and fix it to avoid branches?
Avoid 32-bit x86 as a target? Avoid the Microsoft compiler? Perhaps the most
robust answer is to pick cryptosystems that naturally avoid multiplications, given
that there are other environments where multiplications take variable time; see
Section 3.2.

As a side note, some tools to check code for constant-time behavior will not
check calls to external subroutines. However, valgrind-based binary-analysis
tools, starting with Langley’s ctgrind [98] and continuing through current tools
such as TIMECOP, do check such calls.

4.4 2018: hypothesizing an arms race

A 2018 paper [128] from Simon, Chisnall, and Anderson stated the following:
“A compiler upgrade can suddenly and without warning open a timing channel
in previously secure code.” Later we’ll see some post-2018 examples of this
happening.

[128] claimed that [89] was an existing example, but provided no evidence
that this was the result of a compiler upgrade. [128] also gave a toy example
using a secret bool to select between two values, but presumably a programmer
creating a secret bool from secret byte arrays would also have been violating
[47]’s prohibition of secret comparisons. [128] admitted that “an extra layer of
obfuscation used by cryptographers is to eradicate bool completely in critical
code”; convincing examples of compiler-induced problems should thus start with
source code that does not use bool.

4.5 2018, continued: unofficial compiler patches

[128] continued as follows: “This arms race is pointless and has to stop.” [128]
patched clang to support a new function __builtin_ct_choose, which was
defined as a constant-time ternary if-then-else operator. One could, for example,
write the maximum of x and y as __builtin_ct_choose(x>y,x,y).

[128] concluded that “The developer can use a single function (instead of
juggling between the 37 in OpenSSL); this should also improve code readability
and productivity”. However, recall from Section 4.2 that x>y can already produce
a branch. Constant-time code needs replacements for x>y, for all of the other
comparison operators in C, and, as we’ll see later, further operations. So the
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patch from [128], even if widely adopted, would be missing the point of what
those 37 functions in OpenSSL were trying to address.

Seven years later, the patch from [128] does not seem to have been
maintained. See [83], [51], and [133] for compiler maintainers discussing the
speed impact of this proposal and related proposals. Today developers can
sometimes use a similar construction __builtin_unpredictable(x>y)?x:y,
which will sometimes generate conditional-move instructions but does not
promise to do so, never mind the more fundamental problem of x>y sometimes
already generating a branch.

Perhaps compiler maintainers will eventually be convinced to make promises,
the same way that CPU manufacturers have begun making promises. However,
to the extent that compiler upgrades are already breaking constant-time code,
[128] is not dealing with the immediate security problem. Even when the security
problem is detected by binary analysis, [128] is not helping the developer write
replacement code today.

4.6 2019: value barriers

A 2019 patch [15] by Benjamin to BoringSSL added some usage of “value
barriers”, subsequently copied into OpenSSL. These value barriers, credited in
[15] to Carruth, have the form

__asm__("" : "+r"(a) : /* no inputs */);

telling the compiler to emit empty inline assembly, and telling the compiler that
this assembly reads and modifies the variable a—which the assembly doesn’t
actually do, but the gcc documentation says “GCC does not parse the assembler
instructions themselves and does not know what they mean or even whether they
are valid assembler input”. See [72].

It is not clear whether this comment from the documentation is meant as a
long-term commitment. The comment is followed by “However, it does count the
statements”. Even without the effort of serious assembly parsing, nothing stops
gcc from recognizing and discarding empty inline assembly. On the other hand,
as far as I know, no version of gcc or clang does that.

The value barriers were, in particular, applied in [15] to BoringSSL’s
constant_time_select_w function, with the following explanation: “Clang
recognizes this pattern as a select. While it usually transforms it to a cmov,
it sometimes further transforms it into a branch, which we do not want.” It is
not clear whether this was an observed problem for cryptographic software at
that point, or simply a hypothetical problem; I have not found any security
warnings accompanying [15].

For developers using gcc or clang, this usage of an existing compiler
feature resolved the deployment problem of __builtin_ct_choose. However,
[15] had the same target as __builtin_ct_choose, namely replacing C’s ternary
if-then-else operator. Recall from Sections 4.2 and 4.5 that this target is too
narrow.
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The constant_time_select_w function uses a mask, an integer that is either
-1 or 0, to select one of two values. For the compiler to recognize this as a
selection, the compiler has to recognize that this is a two-valued input in the
first place—and at that point the compiler can already generate branches, so
trying to protect the selection is too late.

4.7 2020: hypothesizing that binary analysis is required

A 2020 paper [62] by Daniel, Bardin, and Rezk stated the following: “we
discovered that gcc -O0 and backend passes of clang introduce violations of
CT in implementations that were previously deemed secure by a state-of-the-art
CT verification tool operating at LLVM level”. The main point of [62] is another
tool to check whether binaries are constant-time.

The examples named in [62] are functions called ct_sort and ct_sort_mult.
The corresponding source code appears to be [61] (see also [63, Appendix
C] for partial confirmation), specifically the functions sort2_negative and
sort2_multiplex. Each function has a comparison such as in2[0] < in2[1],
violating the prohibition from [47].

4.8 2024-04: public warnings about shifts

I issued an alert in April 2024 [35] about an “optimization” that had been
added to gcc in 2021 that turns (-x)>>31, pure arithmetic operations applied
to a signed 32-bit integer x, into -(x>0). As in Section 4.1, the comparison here
sometimes ends up as a branch in assembly. Recall from Section 4.6 that [15] was
already trying to protect against compilers introducing branches into arithmetic,
but was protecting only if-then-else selections, which (-x)>>31 is not.

I had found this by tracking down the source of some timing leaks in
cryptographic software submitted to the KpqC [96] competition. The leaks had
been caught by TIMECOP—but, again, the goal here is not merely to detect
the problem; one wants to understand and proactively avoid the problem.

For an assembly programmer, replacing two arithmetic operations in
(-x)>>31 with a branch sounds like a speed loss. Even on an architecture
that can compare and branch in one instruction, even in a context where the
negation of x>0 can be skipped, branch-misprediction penalties seem very likely
to outweigh any savings. Why, then, did gcc add this “optimization”?

Checking the history of this gcc patch [60] shows that the justification
provided for the patch consisted of one code snippet compiled for 64-bit ARM
with one set of compiler options before and after the patch:

• The code snippet replaced each entry x[i] in an array with (-x[i])>>31.
• Before the patch, the code snippet was compiled to a loop of vector load,

vector negation, vector right shift, and vector store.
• After the patch, the code snippet was compiled to a loop of vector load,

vector cmgt, and vector store.
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The “optimization” did not produce a branch in this example: the transformation
of (-x[i])>>31 into -(x[i]>0) was composed with another transformation of
-(x[i]>0) into cmgt. The same “optimization” is bad for performance in various
other examples, but [60] did not cover any other examples.

The simplest way to try to justify the patch, starting from the example in
[60], would be the following extrapolation: this branch has been eliminated, so
it will always be eliminated. But this is not a valid extrapolation: it falls into
the trap explained in Section 4.1.

The patch could still be a performance win overall if the branch is eliminated
often enough for the patch to save more CPU time than it loses. On the
other hand, given that this patch can add branches that damage performance,
presumably it would have been better for performance to instead add a
transformation of (-x[i])>>31 directly into cmgt, without ever crossing the
line into introducing a comparison.

In any event, [60] did not investigate these broader issues. What one sees in
[60], and in random samples of further “optimizations” added to gcc and clang,
is that maintainers of these compilers measure an “optimization” as successful
if they can find any example where the “optimization” saves time.

Note that (-x)>>31 and -(x>0), when compiled in the obvious way for
typical CPUs, produce different results if x is −231. The compiler’s excuse for
an “optimization” that changes outputs is that, according to the C standard,
-x is undefined in this case, and the compiler is free to do whatever it wants in
cases of undefined behavior. Fortunately, both gcc and clang support an option
-fwrapv that defines integer behavior as twos-complement,11 which, among other
benefits, blocks this particular “optimization”. However, even when developers
are already using -fwrapv or are satisfied to add it, we’ll see below that this
does not address the broader problem of compilers introducing branches.

4.9 2024-04, continued: splitting shifts

A few days later I released version 20240425 of SUPERCOP, including a
shift-defense mechanism as a tweak to my inttypes library, the predecessor
of cryptoint. I commented in the release announcement [36] on the magnitude
of the problem:

There are, presumably, many crypto implementations whose
constant-time behavior is broken by this “optimization”.
I recommend replacing >>31 in C code with a call to
crypto_int32_negative_mask() from crypto_int32.h, and similarly
using the other crypto_{int,uint}*_*_mask() functions whenever

11 Other similarly useful options include -fno-delete-null-pointer-checks,
-fno-strict-aliasing, and -fno-strict-overflow. See also [117], which provides
patches that try to remove all “optimizations” from clang that rely on undefined
behavior, and which provides benchmarks that seem to amply justify eliminating
these “optimizations”, given the evidence from, e.g., [132] of damage caused by
these “optimizations”.
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possible, so any necessary future defense against the dark optimizers
can be handled centrally inside the *_mask() implementations rather
than requiring widespread code changes.
I expect we’ll see more of these “optimizations”: it’s becoming more
and more common for programmers to convert branches into shifts
etc. (often for improved vectorization, sometimes to remove timing
variations), and this makes it more and more likely that the compiler
writers looking around for examples of code to “optimize” will see
these shifts and have the bad idea of reintroducing bool. The compiler
writer’s mindset says that this is “strength reduction” and that any
useful optimizations such as vectorization are something the compiler
will figure out.

The overall message here is similar to [94, Section 9] saying that “compiler
optimizations” can “introduce unexpected timing variations”, and more
specifically [128] hypothesizing an arms race. But the recommended actions are
different. My recommendation is to change the >>31 code so that the compiler
no longer sees that there are only two possibilities for the result.

Originally inttypes was simply a wrapper declaring types such as
crypto_int32, for portability to platforms without stdint.h. I started adding
some centralized constant-time functions to inttypes in 2021, for example
defining crypto_int32_negative_mask(x) as x>>31. What I did in the release
announced in [36] was redefine crypto_int32_negative_mask to call two
separately compiled functions, one of which shifted right by 5 bits, and the
other of which shifted right by 26 bits.

I was dissatisfied with this given that compilers have -flto options that break
the traditional concept of separate compilation. A few weeks later, I released a
new version of inttypes in [37] with a different defense, which is also used in
cryptoint and is described in Section 6.2.

4.10 2024-06: public warnings about bit tests

A posting in June 2024 [123] by Purnal reported successful extraction of
secret keys from timings of the reference Kyber-512 software compiled with
various optimization levels of clang-15 (released September 2022) and newer,
specifically because clang had turned the lines

mask = -(int16_t)((msg[i] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);

(inside loops over i and j) into a branch.
A bachelor’s thesis [64] by Dankbaar had already been posted on 25 April

2024 (according to server metadata) with examples of TIMECOP failures from
clang-15 and newer, in particular with some &1 examples. I did not hear about
[64] at the time, but I did hear about [123]. I skimmed the clang code for
“optimizations” that convert masks into comparisons, and easily found examples.
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I originally blamed this Kyber disaster on combineShiftAnd1ToBitTest in
llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp. The first version of this
function was added in a 2019 clang patch from [114]. I now think—after tracing
the compilation of this code snippet with

clang -O1 -S snippet.c -mllvm -print-changed -mllvm -debug

using a version of clang patched for extra debugging information and compiled
with -DCMAKE_BUILD_TYPE=Debug—that this disaster was actually triggered by
a July 2022 clang patch from [115], which converts “(-(X & 1)) & Y” into
“(X & 1) == 0 ? 0 : Y”. But I haven’t bisected commits to be sure about this.

Version 20240625 of SUPERCOP included a new inttypes release with
functions such as crypto_int32_bottombit(x) meant as substitutes for x&1.
Section 6 explains how the implementations of these functions defend against
compiler “optimizations”. This version of SUPERCOP also added continual scans
for timing variations in compiled code; see Section 5.

4.11 2024-08: public warnings about double-length shifts

In August 2024 [38], I posted the results of an experiment where I patched the
“optimizer” in clang to detect any intermediate occurrences of &1, >>31, etc.,
and then ran SUPERCOP. The patch produces remarks such as the following:

x.c:3:5: remark: clang-vs-clang: clang sees signed>>(bits-1);
please take this away before clang does something bad
[-Rpass-analysis=clang-vs-clang]

3 | x >>= 31;
| ^

A patched compiler can catch problematic source-code constructions before
the constructions turn into branches visible to binary-analysis tools such as
TIMECOP. On the other hand, this particular patch does not understand the
distinction between secret values and public values. The results of the experiment
turned out to have many false positives from clang internally generating &1 for
public branch conditions, and most of the true positives were easy enough to see
from source code (as in Sections 4.8 and 4.10), so the patch in its current form
is probably not a time-saver for cryptographic developers.

This does not mean that the experiment was useless. I pointed out in [38]
that right shifts of int128_t values by 64 bits were triggering the >> warning:

Sure, makes sense that the implementation of int128 is internally using
a 63-bit right shift of the top 64-bit word to figure out the sign; but
what happens if Clang adds GCC-like support for converting 63-bit
right shifts into bool and then into conditional branches? Suddenly all
sorts of int128 code will be variable-time, much like what the 2015
paper was claiming but this time really with no bool in the source. I
think the easiest way to protect against this at the source level is to
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avoid the compiler’s existing implementation of int128 in favor of some
crypto_int128 functions. A side advantage of writing those functions
is that crypto_int128, unlike the int128 in GCC and Clang, will work
on small 32-bit platforms.

Implementing int128 is beyond the current scope of cryptoint, but I had
already included shlmod and shrmod functions in inttypes, and have taken
further steps in cryptoint to address the risk of compilers turning int64 shifts
into branches on 32-bit platforms. See Section 6.3.

4.12 2024-10: more shift examples and bit-test examples

An October 2024 paper [126] by Schneider, Lain, Puddu, Dutly, and Čapkun
reported the results of a one-time test (using another binary-analysis tool) for
timing variations in various compiled libraries. All of the specific variable-time
code samples linked from [126, Appendix] are following patterns already pointed
out in earlier announcements, and some of the examples are even violating the
2011 rules from [47]:

• cmovznz4 from HACL*: This uses a right shift of an integer down to 1 bit,
as in Section 4.8.

• point_mul from HACL*: Same.
• bn_mul_comba8 from BoringSSL: This has a conditional branch, violating

[47].
• bn_sqr_comba4 from BoringSSL: Same.
• fiat_p256_point_add from BoringSSL (imported from Fiat): This has

comparisons (for example, !arg1), violating [47].
• hex_decode from Botan: This uses a right shift of an integer down to 1 bit

(in expand_top_bit), as in Section 4.8.
• donna128 from Botan: This has a comparison l<x.l, violating [47].
• key_schedule from Botan: This has an &1, as in Section 4.10.
• modpow_opt from BearSSL: This uses a right shift of an integer down to 1

bit (in EQ), as in Section 4.8.
• br_i31_muladd_small from BearSSL: Same.
• check_scalar from BearSSL: Same.

[126, Table II] says that the tests in [126] detected timing variations in 15268
function-target-compiler combinations for these libraries, plus 2 combinations
for libsodium. I did not find details of the libsodium issue in [126].

[126] portrayed its results as showing failures of “state-of-the-art defensive
programming techniques employed for side-channel resistance”. There was no
reference in [126] to the extensive test results that were already online from
SUPERCOP, or to the defenses that were already integrated into lib25519,
libmceliece, and libntruprime: by the time [126] appeared, these libraries already
made systematic use of cryptoint, and already included valgrind-based tests
of the compiled binaries. A more reasonable conclusion from [126] is that existing
defense mechanisms need to be more widely deployed.
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5 SUPERCOP and TIMECOP

The aforementioned SUPERCOP is a benchmarking framework that has been
operating for many years, with results continually updated on centralized
web pages [46] for new software, new computers, and new tests. Currently
SUPERCOP includes 4601 implementations of 1430 different cryptographic
primitives in hundreds of different families. For example, kyber768 and
kyber1024 are two primitives in the same family; there are three12 compatible
implementations of kyber768 in SUPERCOP.

All 4601 implementations support SUPERCOP’s crypto_* API. Lange and
I had introduced this API in 2008 to unify the interfaces for a broad range of
cryptosystems and to carry out a wide range of tests, going beyond previous
efforts such as NESSIE, eSTREAM, our BATMAN, and various library APIs.
Our main emphasis at the beginning was speed tests (see, e.g., [22], [25], [26],
[27], [28], [29], and [33, Section 2.10]), but SUPERCOP also included various
functionality tests, and over the years has gradually added further tests, such
as various mutation tests. SUPERCOP’s tests are often far ahead of what one
finds in library test suites and in papers.13

Most importantly for this paper, SUPERCOP’s tests include TIMECOP
scanning for timing variations, as mentioned in Section 1.1. TIMECOP is applied
to implementations that are marked as having a goal of being constant-time;
currently this means 1451 of the 4601 implementations. Each implementation is
tested with various compiler options. One computer (rome0 with SUPERCOP
20250415) currently has

• 9192 implementation-compiler pairs passing TIMECOP,
• 117 implementation-compiler pairs failing TIMECOP, and
• 139 implementation-compiler pairs triggering TIMECOP errors that stop

TIMECOP from issuing pass/fail results.

Another computer, saber214, has an AMD Bulldozer CPU and currently
has 4828 TIMECOP errors, mainly because compilers often generate XOP
instructions for that CPU while valgrind doesn’t support XOP instructions.
Most computers have fewer TIMECOP errors.

The online results from TIMECOP include pages designed to help
implementors improve their software. For example, [5] focuses on
newhope1024cca implementations and lists “failed TIMECOP” for many
12 The Kyber team provided ref and avx2 implementations to SUPERCOP. I modified

ref as described in [34] to obtain a further implementation named compact.
13 For example, in 2024, [67] reported tests discovering “a bug breaking output

consistency of the reference implementation of the KNOT-384 hash function
submitted to the first round of the NIST Lightweight Cryptography Standardization
standardization process (independently fixed by the authors, albeit not explicitly
disclosed), that would allow influencing output digests by modifying bytes
neighboring (but not belonging to) the input buffer”. I had already pointed this
out in [31] in 2019, as one of many bugs found by SUPERCOP’s tests.
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computers. Per-machine links show valgrind logs for the failures, such as the
following from a SUPERCOP run on a virtual machine named speed2supercop:

Conditional jump or move depends on uninitialised value(s)
at 0x...: poly_frommsg (poly.c:170)

This virtual machine uses clang-19. The code triggering this failure, on line 170
of newhope1024cca/ref/poly.c, is the ancestor of the Kyber code highlighted
in Section 4.10.

This continual scanning began with the appearance of TIMECOP 2 in
SUPERCOP 20240625, although various components had appeared earlier:

• In 2010, SUPERCOP added support for automatic dependency tracking (so
that each computer would skip testing what it had already tested) and for
parallel tests on multiple cores.

• In 2017, building upon a fastbuild prototype from John Schanck,
SUPERCOP added a do-part feature for developers to quickly test new
software separately from SUPERCOP’s normal database of benchmarks.

• In 2019, the original TIMECOP from Neikes [109] patched do-part to use
valgrind to scan for timing variations.

• Starting in 2020, SUPERCOP incorporated various extensions of the original
TIMECOP, culminating in 2024 with the release of TIMECOP 2.

TIMECOP 2 has the following advantages over the original TIMECOP:

• TIMECOP 2 automatically marks RNG output as secret.
• TIMECOP 2 reports source line numbers for valgrind failures.
• TIMECOP 2 supports crypto_declassify(&var,sizeof var) so that code

can designate intermediate variables as public. Consider, for example, an
RSA prime-generation loop that generates a new random integer p, tests p
for primality, and starts over if p is not prime; it is safe to declassify the
output of the “p is not prime” test.

• TIMECOP 2 lets callers designate public inputs to subroutines, allowing
the subroutines to use variable-time code. For example, the “90s” version of
Kyber applies AES to public inputs, and can safely call variable-time AES
code, which is faster than constant-time AES code on many small CPUs.

• As a contribution from [44], TIMECOP 2 supports SUPERCOP’s multi-core
dependency-tracking database-collection tool, so the TIMECOP 2 results
end up continually updated and online from many computers. The original
TIMECOP had supported only do-part, which can be used at large scale,
but TIMECOP 2 is more obviously sustainable.

Results from large-scale runs of the original TIMECOP and of TIMECOP 2 were
reported in [109] and [44] respectively; but those are just one-time snapshots,
while SUPERCOP’s runs of TIMECOP 2 are continually updated. Developers
can use do-part to test new code on their own machines, and can submit code
to SUPERCOP for testing on many more machines.
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6 The cryptoint API and implementation

SUPERCOP 20240807 included the first cryptoint release, and included
thousands of lines that had already been converted into calls to cryptoint
inside implementations of various cryptographic functions. The current version
of cryptoint is version 20250414, distributed in SUPERCOP 20250415. This
version is described in this section.

Section 6.1 explains the functions provided by the cryptoint API.
Sections 6.2 and 6.3 explain how the implementations of these functions address
the risks of timing variations—while at the same time addressing the risk of
deployment being hampered by speed complaints. Section 6.4 explains how the
implementations have been tested.

6.1 The API

To simplify integration, cryptoint is designed as an almost-header-only library;
the reason for “almost” is the optblocker mechanism explained in Section 6.2.
For example, a package using crypto_int64 includes copies of crypto_int64.h
and int64_optblocker.c from cryptoint. The same comments apply to
uint64, int32, uint32, int16, uint16, int8, and uint8. The sizes are
independent. Compilation recommendations:

• Use gcc or clang. (Porting to other compilers should be a simple matter of
compiling with -D__attribute__(x)=; however, tests have been carried out
only with gcc and clang.)

• Compile all code with -fwrapv. (As noted earlier, this disables some compiler
“optimizations” that often trigger bugs in integer arithmetic.)

• Compile *optblocker.c separately: i.e., don’t manually merge *optblocker
into other files, and don’t use the -flto option in compiling *optblocker.c.

The functions supported by cryptoint for int64 and uint64 are listed in
Table 6.1.1. I’m sure more functions will turn out to be useful, but I plan to
continue supporting all of the functions listed in Table 6.1.1 with their current
semantics. There are also functions that are not listed in Table 6.1.1 and that
may change later; these functions are used internally by cryptoint.

The cryptoint API functions named *_01 are aligned with C’s convention
of representing true as 1 and false as 0. For example, x<y in C, like
x<y?1:0, means 1 if x is smaller than y, else 0; this can be replaced with
crypto_int64_smaller_01(x,y) if x and y are int64 variables, i.e., signed
64-bit integers.

The cryptoint API functions named *_mask are aligned with a different
convention of representing true as -1 and false as 0. This convention is common
in constant-time code (see, e.g., the comments on constant_time_select_w
in Section 4.6), is supported by ARM’s csetm instructions, and interacts well
with logic instructions: for example, the variable-time code x<y?u:v can be
rewritten as v^((u^v)&crypto_int64_smaller_mask(x,y)). The alternative
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usage meaning
z = crypto_{int,uint}64_load(ptr) little-endian load
crypto_{int,uint}64_store(ptr,z) little-endian store
z = crypto_{int,uint}64_load_bigendian(ptr) big-endian load
crypto_{int,uint}64_store_bigendian(ptr,z) big-endian store
z = crypto_int64_positive_mask(x) z = -(x > 0)
z = crypto_int64_positive_01(x) z = (x > 0)
z = crypto_int64_negative_mask(x) z = -(x < 0)
z = crypto_int64_negative_01(x) z = (x < 0)
z = crypto_int64_topbit_mask(x) z = -(x < 0)
z = crypto_int64_topbit_01(x) z = (x < 0)
z = crypto_uint64_topbit_mask(x) z = -(x >> 63)
z = crypto_uint64_topbit_01(x) z = (x >> 63)
z = crypto_{int,uint}64_nonzero_mask(x) z = -(x != 0)
z = crypto_{int,uint}64_nonzero_01(x) z = (x != 0)
z = crypto_{int,uint}64_zero_mask(x) z = -(x == 0)
z = crypto_{int,uint}64_zero_01(x) z = (x == 0)
z = crypto_{int,uint}64_unequal_mask(x,y) z = -(x != y)
z = crypto_{int,uint}64_unequal_01(x,y) z = (x != y)
z = crypto_{int,uint}64_equal_mask(x,y) z = -(x == y)
z = crypto_{int,uint}64_equal_01(x,y) z = (x == y)
z = crypto_{int,uint}64_smaller_mask(x,y) z = -(x < y)
z = crypto_{int,uint}64_smaller_01(x,y) z = (x < y)
z = crypto_{int,uint}64_leq_mask(x,y) z = -(x <= y)
z = crypto_{int,uint}64_leq_01(x,y) z = (x <= y)
z = crypto_{int,uint}64_min(x,y) z = (x < y) ? x : y
z = crypto_{int,uint}64_max(x,y) z = (x > y) ? x : y
crypto_{int,uint}64_minmax(&x,&y) in-place (x,y) = (min,max)
z = crypto_{int,uint}64_bottombit_mask(x) z = -(x & 1)
z = crypto_{int,uint}64_bottombit_01(x) z = (x & 1)
z = crypto_{int,uint}64_shlmod(x,j) z = x << (j&63)
z = crypto_{int,uint}64_shrmod(x,j) z = x >> (j&63)
z = crypto_{int,uint}64_bitmod_mask(x,j) z = -((x >> (j&63)) & 1)
z = crypto_{int,uint}64_bitmod_01(x,j) z = ((x >> (j&63)) & 1)
z = crypto_{int,uint}64_ones_num(x) z = bits set in x
z = crypto_{int,uint}64_bottomzeros_num(x) z = low-order 0 bits in x

Table 6.1.1. Functions provided by crypto_int64.h and crypto_uint64.h from
cryptoint. The ones_num and bottomzeros_num functions return, respectively, the
number of bits set in x (“Hamming weight” or “population count” or “popcount”) and
the number of low-order 0 bits in x (“count trailing zeros”). Unlike __builtin_ctz,
bottomzeros_num is guaranteed to return the number of bits in the type, here 64, if
the input is 0.
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v+(u-v)*crypto_int64_smaller_01(x,y) would rely on multiplication taking
constant time, would be slower in many environments, and is not faster in any
environment that I am aware of.

I plan to add support for this type of multiplexing operation, but have not
finished evaluating interface options. What would be most modular is, e.g.,

crypto_int32_mask_then_else(crypto_int64_smaller_mask(x,y),u,v)

but it is tempting to support crypto_int64_smaller_then_else(x,y,u,v) for
the common case of matching types. Either way, I think then_else is a better
name than select or mux since then_else indicates the order of those two
inputs.

Beware that the mask convention, like any other use of negative integers,
is incompatible with unsigned integer extension. For example, conversion from
uint8 to uint64 will convert -1 to 255 rather than to -1. This is an argument
for using signed integers rather than unsigned integers. On the other hand, the
C standard allows compilers to damage the correctness of int code in various
ways that aren’t allowed for uint. Compiling with -fwrapv, as recommended
above (and recommended by some other projects), has been observed to rectify
this damage in various cases.

6.2 Defense 1: using a global volatile zero variable

The optblocker mechanism works as follows. First, all int64_optblocker.c
does is define a global volatile crypto_int64_optblocker variable initialized
to 0:

#include "crypto_int64.h"
volatile crypto_int64 crypto_int64_optblocker = 0;

The crypto_int64.h file declares

extern volatile crypto_int64 crypto_int64_optblocker;

and defines all of the crypto_int64 functions as static inline, so those
functions are compiled in calling files separately from int64_optblocker.c.

Second, any operations inside the crypto_int64 functions that produce just
two possible results—i.e., few enough results to fit into a bool, as in Sections 4.8
and 4.10—are tweaked to insert optblocker in a way that would make the
outputs hard to predict if optblocker were changed. For example:

• crypto_int64_negative_mask shifts right by 58 bits, then adds
crypto_int64_optblocker, then shifts right by 5 more bits.

• crypto_int64_bottombit_01 masks its input not with 1 but rather with
1+crypto_int64_optblocker.

• An internal function crypto_int64_bitinrangepublicpos_mask, used to
build crypto_int64_shlmod and crypto_int64_shrmod, xors its public
shift input with crypto_int64_optblocker before carrying out the shift.
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The choices between addition and xor are designed to eliminate any easy
algebraic relationships with the surrounding operations.

Third, cryptoint has no code that changes the optblocker variable; and
optblocker isn’t part of the API, so correct applications won’t change it. The
correctness of cryptoint assumes that the value does not in fact change. But,
crucially, the compiler has no way to know that the value does not change.

The gcc documentation says “Writing volatile with the type in a variable
or field declaration says that the value may be examined or changed for reasons
outside the control of the program at any moment”—the compiler is supposed
to respect changes that the operating system makes to the variable, for example.
A draft of the C23 standard [106], reportedly very close to the final (for-pay)
standard, says the following: “Volatile accesses to objects are evaluated strictly
according to the rules of the abstract machine.”

I wouldn’t rely solely on volatile—for example, I worry about code that
copies data to and from a local volatile variable (see Section 7), in much the
same way that I worry about empty inline assembly (see Section 4.6)—but the
fact that optblocker is a global variable should disable many “optimizations”
that attempt to reason about values of variables.

What happens if the application developer ignores the recommendation to
separately compile int64_optblocker.c? For example, what if the application
is compiled with -flto? The compiler can then see at “optimization” time that
this variable is initialized to 0, but the compiler still has no idea whether the
variable continues to be 0. There could be code anywhere in the program that
changes the variable. Even if the compiler sees the entire program at once, it has
no idea whether dynamically loaded code will change the variable.

To be clear, nothing that can be done in C code is a substitute for binary
analysis. Checking the gcc and clang repositories shows that these compilers
are adding new bugs all the time; maybe a compiler will somehow manage to
convince itself that optblocker is always 0. Or perhaps compiler maintainers
will start searching for ways to “optimize” 2-bit results into 2 bool values, forcing
optblocker to be used in more contexts. But I expect that the way cryptoint
currently uses optblocker will make failures much less frequent.

6.3 Defense 2: assembly

I’ve been adding assembly for more and more function-target pairs in cryptoint.
Currently, out of the 272 functions (144 int, 128 uint) defined in the .h files (not
just the API functions), there are 200 that directly invoke assembly on 64-bit
Intel/AMD CPUs. There are also 200 out of 272 that directly invoke assembly
for 64-bit ARM CPUs; 80 out of 272 for 32-bit ARM CPUs; and 104 out of
272 for 32-bit SPARC CPUs, which are still used in radiation-hardened space
applications.

6.3.1 Reasons for assembly. I have two main motivations for using
assembly. First, I see reasons to believe that assembly further reduces the risk of
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triggering timing variations. Second, I think developers considering a switch to
cryptoint will often try microbenchmarks (whether or not speed really matters
for the application); assembly means that this will often produce speedups,
encouraging deployment, whereas without assembly there are more likely to be
slowdowns, discouraging deployment.

Consider, for example, crypto_int64_shrmod(x,j), which means the same
thing as x>>(j&63). In case the CPU or compiler introduces timing variations
depending on j, the portable implementation of crypto_int64_shrmod converts
the variable-distance shift into a series of constant-distance shifts (as in typical
barrel-shifter hardware), using the bottom bit of j to control a conditional shift
by 1 bit, the next bit of j to control a conditional shift by 2 bits, the next bit
after that to control a conditional shift by 4 bits, etc., with optblocker hopefully
stopping the compiler from introducing any branches. But what happens if a
shift of int64 by 32 bits on a 32-bit CPU triggers branches by the mechanism
described in Section 4.11?

The assembly implementations of crypto_int64_shrmod(x,j) are just 1
instruction on 64-bit CPUs, 7 instructions on 32-bit ARM, and 13 instructions on
32-bit SPARC: certainly faster than the portable implementation, and no need
to worry about how the compiler will handle 64-bit shifts on these 32-bit CPUs,
or about what might happen if an application is compiled without -fwrapv.

As another example, the portable implementation of crypto_int64_max
carries out 7 arithmetic operations on top of crypto_int64_negative_mask.
The assembly implementations of crypto_int64_max for 64-bit CPUs use just
2 instructions. I don’t mean to suggest that switching to cryptoint will
always be a speedup—for example, maybe a compiler figures out how to use
the parallel-max instructions mentioned in Section 2.1—but assembly makes
speedups more likely.

I’m using inline assembly rather than separate .s files. This avoids
function-call overhead, and in any case is forced by the requirement of being
an almost-header-only library. For applications that don’t mind more files per
size and don’t notice the overhead, it would be easy to compile cryptoint into
separate .s files.

6.3.2 Readable inline assembly. The obvious disadvantage of assembly,
beyond the extra development time for each targeted CPU, is the extra risk of
bugs. There are more lines of code; reviewing a typical line is more difficult,
because assembly is generally harder to read than C; and the inline-assembly
interface is more complicated than a simple function call, in particular in how
inputs and outputs are annotated.

To improve auditability and reduce the risk of bugs, I wrote a new readasm
tool that generates inline assembly, including annotations, from an easier-to-read
format. What follows are some examples of the outputs and inputs of readasm.

Figure 6.3.3 displays an excerpt from cryptoint/crypto_int64.h, namely
the C code with inline assembly for crypto_int64_negative_mask; recall that
this function is a 63-bit right shift of an int64. Figure 6.3.4 displays the readasm
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__attribute__((unused))
static inline
crypto_int64 crypto_int64_negative_mask(crypto_int64 crypto_int64_x) {
#if defined(__GNUC__) && defined(__x86_64__)
  __asm__ ("sarq $63,%0"
    : "+r"(crypto_int64_x) : : "cc");
  return crypto_int64_x;
#elif defined(__GNUC__) && defined(__aarch64__)
  crypto_int64 crypto_int64_y;
  __asm__ ("asr %0,%1,63"
    : "=r"(crypto_int64_y) : "r"(crypto_int64_x) : );
  return crypto_int64_y;
#elif defined(__GNUC__) && defined(__arm__) && defined(__ARM_ARCH)
    && (__ARM_ARCH >= 6) && !defined(__thumb__)
  crypto_int64 crypto_int64_y;
  __asm__ ("asr %Q0,%R1,#31\n mov %R0,%Q0"
    : "=r"(crypto_int64_y) : "r"(crypto_int64_x) : );
  return crypto_int64_y;
#elif defined(__GNUC__) && defined(__sparc_v8__)
  crypto_int64 crypto_int64_y;
  __asm__ ("sra %H1,31,%L0\n mov %L0,%H0"
    : "=r"(crypto_int64_y) : "r"(crypto_int64_x) : );
  return crypto_int64_y;
#else
  crypto_int64_x >>= 64-6;
  crypto_int64_x += crypto_int64_optblocker;
  crypto_int64_x >>= 5;
  return crypto_int64_x;
#endif
}

Fig. 6.3.3. crypto_int64_negative_mask excerpt from cryptoint/crypto_int64.h,
except that lines indented by 4 spaces were, in the original, joined with the previous
lines. See Figure 6.3.4 for source code in readasm.

source code in cryptoint/functions for SIGNED_negative_mask, which is used
to automatically generate the C code for crypto_int*_negative_mask.

The instruction

__asm__ ("sarq $63,%0" : "+r"(crypto_int64_x) : : "cc")

in Figure 6.3.3 includes annotations telling the compiler that the assembly
sarq $63,%0 reads and writes x and modifies the CPU flags (condition codes).
This instruction is automatically generated from the easier-to-read instruction

readasm("amd64; int64 X; X signed>>= 63")

in Figure 6.3.4.
Internally, the readasm tool has a domain-specific language to describe each

CPU using a series of concise lines with colon-separated fields, similar to CPU
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SIGNED SIGNED_negative_mask(SIGNED X) {
#if amd64
 8: readasm("amd64; int8 X; X signed>>= 7");
16: readasm("amd64; int16 X; X signed>>= 15");
32: readasm("amd64; int32 X; X signed>>= 31");
64: readasm("amd64; int64 X; X signed>>= 63");
  return X;
#elif arm64
  SIGNED Y;
 8: readasm("arm64; int8 X Y; Y = -(1 & (X unsigned>> 7))");
16: readasm("arm64; int16 X Y; Y = -(1 & (X unsigned>> 15))");
32: readasm("arm64; int32 X Y; Y = X signed>> 31");
64: readasm("arm64; int64 X Y; Y = X signed>> 63");
  return Y;
#elif arm32
  SIGNED Y;
 8: readasm("arm32; int8 X Y; Y = (int8) X; Y = Y signed>> 31");
16: readasm("arm32; int16 X Y; Y = (int16) X; Y = Y signed>> 31");
32: readasm("arm32; int32 X Y; Y = X signed>> 31");
64: readasm("arm32; int64 X Y; Y.lo = X.hi signed>> 31; Y.hi = Y.lo");
  return Y;
#elif sparc32
  SIGNED Y;
 8: readasm("sparc32; int8 X Y; Y = X << 24; Y = Y signed>> 31");
16: readasm("sparc32; int16 X Y; Y = X << 16; Y = Y signed>> 31");
32: readasm("sparc32; int32 X Y; Y = X signed>> 31");
64: readasm("sparc32; int64 X Y; Y.lo = X.hi signed>> 31; Y.hi = Y.lo");
  return Y;
#else
  X >>= N-6;
  X += SIGNED_optblocker;
  X >>= 5;
  return X;
#endif
}

Fig. 6.3.4. SIGNED_negative_mask excerpt from cryptoint/functions. See
Figure 6.3.3 for automatically generated C code.

descriptions in my existing qhasm tool for generating .s files. For example, the
line

r signed>>= n:+r=int64:#n:asm/sarq $#n,+r:>?cc:

for amd64 creates syntax r signed>>= n for an instruction that modifies r, an
int64 register, in place; reads a constant n; is written as sarq $n,r in assembly;
and modifies the CPU flags.

This might look like simply a rephrasing of the sarq line quoted above from
Figure 6.3.3. The advantage is that the CPU-description lines are reused. For
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example, currently there are five uses of sarq in cryptoint; two are generated
from the CPU-description line above, and three are generated from

r signed>>= s:+r=int64:<s=int64#4:asm/sarq %%cl,+r:>?cc:

for variable-distance shifts. This factorization means that, instead of five
opportunities to forget cc for sarq (one in each inline-assembly snippet using
sarq), there are just two (one in each of the CPU-description lines using sarq).

This does not mean that the risk of bugs has disappeared. On the contrary,
there could be bugs in the CPU descriptions, or in other aspects of the readasm
tool. Perhaps it would be better for readasm to always generate cc, for example;
the tricky question here is whether the risk of an omitted cc outweighs the
microbenchmark-based deployment risk described above. The risk of bugs in
CPU descriptions can be addressed via automatic cross-checks against other
sources of CPU information (or via auto-generation of CPU descriptions), but
this has not been done yet.

6.4 Tests

The fact that there are 272 different functions in cryptoint poses a clear risk
of bugs. The use of assembly amplifies this risk. The steps that I have taken
to address this risk, beyond trying to get the code right in the first place,
include conventional tests (see Section 6.4.1), equivalence checking via symbolic
execution (see Section 6.4.2), and caller tests (see Section 6.4.3).

Recall from Section 1.1 that I recommend using cryptoint. This isn’t saying
that the risks have been eliminated; it means that I see higher risks in code
that isn’t using cryptoint. Common practice (see, e.g., [125] or the examples
in Section 7) involves less comprehensive testing of such code snippets, and of
analogous assembly generated by compilers.

6.4.1 Conventional unit tests. Each SUPERCOP run includes a battery of
conventional unit tests for cryptoint, as specified by cryptoint/test.c, which
is compiled and run with command-line arguments 1 0. The inputs x and y for
these tests are generated in three ways:

• All pairs of small integers. Small means between −100 and 100 for int, or
between 0 and 200 for uint.

• All pairs of integers of the form k ± 2i, where −3 ≤ k ≤ 3 and 0 ≤ i < N .
Here N is the number of bits in the type.

• A pseudorandom sequence of 10000 pairs of x and y. This sequence is
deterministic for reproducibility.

For shift functions such as shlmod, all shift distances between −10N and 10N
are tested.

Overall the tests try 239962288 calls to the cryptoint functions, not counting
calls to load, store, and minmax. These calls have 219612398 unique inputs.
Most of the collisions are for int8 and uint8.
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6.4.2 Equivalence checking via symbolic execution. I’ve used symbolic
execution and SMT solving to check that cryptoint, compiled using various
compilers for amd64, arm64, arm32, mips64, sparc32, and x86, produces, for
all possible inputs, the same results as reference implementations of the same
functions. This addresses the risk of bugs appearing for inputs that aren’t tested
by test.c.

This equivalence checking uses the current version (available from [43])
of saferewrite. Most of the underlying work is handled by the angr tool
introduced in [127], available from [6]. That tool doesn’t support sparc32; I
worked around this by symbolically executing a SPARC emulator. See [42] for
details.

6.4.3 Caller tests. Each SUPERCOP run includes unit tests for a wide range
of cryptographic implementations. Many of those cryptographic implementations
are now using cryptoint, so these tests include tests for a variety of cryptoint
calls in context.

Testing a variety of callers could catch, e.g., an assembly-annotation error that
shows up only for some types of callers and that isn’t triggered by the direct
unit tests for cryptoint. I scanned SUPERCOP results on various machines
before and after switching code to using cryptoint (and, earlier, inttypes),
and didn’t detect any changes of outputs.

I also periodically investigate SUPERCOP test failures, and if a new compiler
triggers cryptoint bugs then I would expect to see this as a variation
across machines—although there is continual background noise here from, e.g.,
implementations that haven’t been ported to big-endian platforms or that don’t
even compile with a new compiler. It might be useful to add a tool that, for each
test failure, automatically checks whether substituting different implementations
of the cryptoint functions resolves the failure.

7 Other libraries

Code designed to be constant-time often factors out subroutines similar to,
e.g., crypto_int64_nonzero_mask from cryptoint. As concrete examples,
Sections 7.1, 7.2, 7.3, and 7.4 look at subroutines provided in OpenSSL,
BoringSSL, BearSSL, and Botan respectively. There have been many changes
in these subroutines over the years; this section focuses on the current versions
at the time of this writing, the April 2025 development versions.

Natural questions in each case include which subroutines are supported; how
broadly the subroutines are used; how well tested the subroutines are; how well
optimized the subroutines are; and what protections the subroutines have against
compilers introducing timing variations.

There are large overlaps in the APIs. It would be easy to replace
various existing subroutine implementations with calls to cryptoint, generally
improving the levels of testing, optimization, and protection against timing
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attacks. Furthermore, supporting the uniform cryptoint interface should help
encourage broader usage of constant-time subroutines.

7.1 OpenSSL

OpenSSL’s include/internal/constant_time.h provides constant_time_*
functions: msb, lt, and is_zero for unsigned int, uint32_t, uint64_t,
size_t, and BN_ULONG inputs, along with eq and ge functions for a narrower
range of types, in each case returning a mask; select and cond_swap functions
using masks; and a higher-level lookup function for array lookups. See [111].

There are 277 lines in OpenSSL mentioning constant_time_, including 91 in
constant_time.h and 50 in the test directory. The tests try, e.g.,

static uint64_t test_values_64[] = {
0, 1, 1024, 12345, 32000, 32000000, 32000000001,
UINT64_MAX / 2, UINT64_MAX / 2 + 1,
UINT64_MAX - 1, UINT64_MAX

};

as inputs to the 64-bit functions.
Internally, select passes its input masks through a value_barrier function

designed to avoid optimizations, based on the BoringSSL patch covered in
Section 4.6. The value_barrier details are slightly different from [15]: the
empty inline assembly uses two C variables, and there is a fallback to a volatile
store and load for compilers not supporting inline assembly.

As in [128] and [15], the OpenSSL barriers focus on protecting selection rather
than protecting comparisons. The mask computations and cond_swap in [111]
are not defended against compilers recognizing that there are only two possible
mask values.

As an example of potentially dangerous code in OpenSSL not using any of
these functions, consider the line

copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));

in [112], OpenSSL’s crypto/ec/ecp_nistz256.c. The copy_conditional
function is a static function defined in the same file, with no optimization
barriers.

7.2 BoringSSL

BoringSSL’s crypto/internal.h provides the same basic constant_time_*
functions (msb, lt, ge, is_zero, and eq) on crypto_word_t inputs; select;
and higher-level conditional_memcpy and conditional_memxor. See [52].

There are 269 lines in BoringSSL mentioning constant_time_, including 49
in internal.h and 20 in crypto/constant_time_test.cc. The tests are similar
to OpenSSL, plus random inputs to conditional_memcpy etc. There are also
comments for lt and is_zero showing manual verification via an SMT solver.



32 Daniel J. Bernstein

Internally, BoringSSL uses barriers in select, essentially as in [15]. As for
speed, BoringSSL has some vectorized code in conditional_memxor.

There is a BoringSSL option to run some tests under valgrind. These tests
are triggered by CONSTTIME_SECRET, which is used in BoringSSL for Curve25519
and a few other cryptographic computations.

As an example of potentially dangerous code in BoringSSL avoiding
these functions, BoringSSL’s crypto/fipsmodule/ec/p256-nistz.cc.inc [53]
includes a copy_conditional line similar to the OpenSSL example above.

7.3 BearSSL

BearSSL’s src/inner.h [121] provides NOT, MUX, EQ, NEQ, GT, LT, GE, LE,
EQ0, GT0, GE0, LT0, LE0, MIN, MAX, and CMP on 32-bit integers, using the
0-1 convention for false-true values and a three-value convention for CMP. It
also provides BIT_LENGTH as a variant of counting leading zeros; br_ccopy
for a conditional memcpy; br_divrem for constant-time divisions; and some
multiplication functions that work around sources of timing variations in
multiplications on some CPUs.

Because these names are so short, easy ways to count callers produce
many false positives (e.g., MAX is overridden by a variable-time MAX macro in
src/rsa/rsa_i15_keygen.c), but I think there are more than 200 calls to these
functions in BearSSL.

Tests in BearSSL seem to focus on higher-level functions, meaning that the
inner.h functions are tested only via caller tests. I did not find any support in
BearSSL for barriers or for binary analysis.

As an example of potentially dangerous code in BearSSL not using these
functions, src/hash/ghash_ctmul.c [118] has 31-bit right shifts of uint32
values.

7.4 Botan

Botan’s src/lib/utils/bit_ops.h [99] includes various ct_ functions, such
as ct_is_zero<T> converting values of unsigned14 type T into masks, and
higher-level functions such as ct_reverse_bits<T> and ct_popcount<T>. Botan
has other files providing further ct_ functions, such as ct_divide. There
are also various further subroutines that are not ct_* but seem intended
to be constant-time, such as ctz<T> for counting trailing zeros (there is a
separate var_ctz32 function documented as potentially variable time) and
expand_top_bit<T>.

Botan’s src/lib/utils/ct_utils.h [101] provides various CT:: functions
supporting is_zero, is_equal, is_lt, is_gt, expand_top_bit, expand_bit
for a bit at any position, conditional_swap, is_any_of with a list of inputs,
select_n handling input arrays, all_zeros, and more.
14 This function enforces only is_integral, but seems to be called only for uint types.

For signed types, the implementation would not match the documentation.
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There are 759 lines in Botan mentioning CT::, including 45 and 28
in src/tests/test_ct_utils.cpp and src/ct_selftest/ct_selftest.cpp
respectively. There are also some further uses of the ct_ functions.

The test_ct_utils tests include 20 inputs for is_zero and is_lt, a wider
range of inputs for an array operation CT::copy_output that indirectly tests
other functions, and miscellaneous checks on other CT features.

Botan has an option for binary analysis with valgrind, triggered by
CT::poison calls; there are 101 of these calls. The ct_selftest tests check
whether CT::poison works correctly.

Internally, barriers seem to be used on more data paths in these Botan
subroutines than in corresponding subroutines in OpenSSL or BoringSSL,15 but
there still seem to be many paths around the barriers. For example, ct_is_zero
does not have barriers.

As an example of potentially dangerous code in Botan not using these
functions, math/mp/mp_asmi.h [100] includes a word_add function that uses
carry & 1 rather than using expand_bit.
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