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1. Introduction

This booklet presents the main concepts, theorems, and techniques of single-variable
calculus. It differs from a typical undergraduate real analysis text in that (1) it focuses
purely on calculus, not on developing topology and analysis for their own sake; (2) it’s
short.

Notation and terminology. The reader must be comfortable with functions, not just
numbers, as objects of study. I use the notation x 7→ x2 for the function that takes x to
x2; thus (x 7→ x2)(3) = 9. In general f = (t 7→ f(t)) for any function f .

An open ball around cmeans an interval Ball(c, h) = {x : |x− c| < h} for some positive
real number h. The intersection of two open balls around c is another open ball around
c.

If S is a set, and f(x) is defined for all x ∈ S, then f(S) is defined as {f(x) : x ∈ S}.

Part I. Continuity

2. Continuous functions

Definition 2.1. Let f be a function defined at c. Then f is continuous at c if, for
any open ball F around f(c), there is an open ball B around c such that f(B) ⊆ F .

In other words, if f is continuous at c, and F is an open ball around f(c), then there is
some h > 0 such that f(x) ∈ F for all x with |x− c| < h.

Example: The function x 7→ 3x is continuous—i.e., continuous at c for every c. Indeed,
Ball(3c, ε) contains (x 7→ 3x)(Ball(c, ε/3)), because |x− c| < ε/3 implies |3x− 3c| < ε.

Another example: If f(x) = 3 for x < 2 and f(x) = 5 for x ≥ 2, then f is not continuous
at 2. Indeed, consider the open ball F = Ball(5, 1). If B is any open ball around 2, then
B contains numbers smaller than 2, so 3 ∈ f(B); thus f(B) is not contained in F .

Theorem 2.2. Let f and g be functions continuous at c. Assume that f(x) = g(x) for
all x 6= c such that f(x) and g(x) are both defined. Then f(c) = g(c).

Proof. I will show that |f(c)− g(c)| < 2ε for any ε > 0. Write F = Ball(f(c), ε) and
G = Ball(g(c), ε). By continuity of f and g, there are balls A and B around c such that
f(A) ⊆ F and g(B) ⊆ G. Find a point x 6= c contained in both A and B. By construction
f(x) ∈ F and f(x) = g(x) ∈ G, so |f(c)− g(c)| ≤ |f(x)− f(c)| + |f(x)− g(c)| < 2ε as
claimed. �
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3. Continuity of sums, products, and compositions

Theorem 3.1. Let f and g be functions continuous at c. Define h = f + g. Then h is
continuous at c.

Proof. Given a ball H = Ball(h(c), ε), consider the balls F = Ball(f(c), ε/2) and G =
Ball(g(c), ε/2). By continuity of f and g, there are open balls A and B around c such
that f(A) ⊆ F and g(B) ⊆ G. Define D = A ∩B; D is an open ball around c. If x ∈ D
then f(x) ∈ F and g(x) ∈ G so h(x) = f(x) + g(x) ∈ H. Thus h(D) ⊆ H. �

Theorem 3.2. Let f and g be functions continuous at c. Define h = fg. Then h is
continuous at c.

Proof. Define L = f(c) and M = g(c), so that LM = h(c). Given an open ball
H = Ball(LM, ε), I will find an open ball D around c so that h(D) ⊆ H.

If L = M = 0, take the intersection of open balls where |f(x)| < ε and |g(x)| < 1. Then
|h(x)| < ε.

If L = 0 and M 6= 0, take the intersection of open balls where |f(x)| < ε/(2 |M |) and
|g(x)−M | < |M |. Then |g(x)| < 2 |M | so |h(x)| < ε. Similarly if L 6= 0 and M = 0.

If L 6= 0 and M 6= 0, take the intersection of open balls where |f(x)− L| < ε/(4 |M |),
|g(x)−M | < ε/(2 |L|), and |g(x)−M | < |M |. Then |g(x)| < 2 |M | so |h(x)− LM | =
|g(x)(f(x)− L) + L(g(x)−M)| < 2 |M | (ε/(4 |M |)) + |L| (ε/(2 |L|)) = ε. �

Theorem 3.3. Let g be a function continuous at c. Let f be a function continuous at
g(c). Define h = (x 7→ f(g(x))). Then h is continuous at c.

For example, x 7→ cos 2x is continuous, since x 7→ 2x and y 7→ cos y are continuous.

Proof. Let F be an open ball around h(c) = f(g(c)). By continuity of f , there is some
open ball G around g(c) with f(G) ⊆ F . By continuity of g, there is some open ball B
around c with g(B) ⊆ G. Finally h(B) = f(g(B)) ⊆ f(G) ⊆ F . �

4. Continuity of simple functions

Theorem 4.1. x 7→ b is continuous at c, for any b and c.

Proof. Ball(b, h) contains (x 7→ b)(D) for any open ball D. �

Theorem 4.2. x 7→ x is continuous at c, for any c.

Proof. Ball(c, h) contains (x 7→ x)(Ball(c, h)). �

By Theorems 3.2 and 4.2, x 7→ x2 is continuous; x 7→ x3 is continuous; in general
x 7→ xn is continuous for any positive integer n. Thus, by Theorems 3.1, 3.2, and 4.1,
any polynomial function x 7→ c0 + c1x+ · · ·+ cnx

n is continuous.
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The function x 7→ 1/x is continuous at c for c 6= 0. (It’s not even defined at 0, so it
can’t be continuous there.) By Theorem 3.3, x 7→ 1/f(x) is continuous whenever f is
continuous and nonzero. For example, x 7→ xn is continuous except at 0 when n is a
negative integer.

Part II. Derivatives

5. Differentiable functions

Definition 5.1. Let f be a function defined at c. Then f is differentiable at c if there
is a function f1, continuous at c, such that f = (x 7→ f(c) + (x− c)f1(x)).

Definition 5.2. Let f be a function defined at c. Then f has derivative d at c if there
is a function f1, continuous at c, such that f = (x 7→ f(c) + (x− c)f1(x)) and f1(c) = d.

By Theorem 2.2, there is at most one continuous function f1 satisfying f1(x) = (f(x)−
f(c))/(x − c) for all x 6= c, so f has at most one derivative at c, called the derivative
of f at c. The derivative of f at c is written f ′(c). The derivative of f , written f ′, is
the function c 7→ f ′(c).

For example, consider the function f = (x 7→ x2). Here f(x) = f(3) + (x− 3)f1(x) with
f1 = (x 7→ x + 3). The function f1 is continuous at 3, so f is differentiable at 3; its
derivative at 3 is f1(3) = 6. In general f ′(c) = 2c.

Theorem 5.3. Let f be a function. If f is differentiable at c then f is continuous at c.

Proof. By definition of differentiability, there is a function f1, continuous at c, with
f = (x 7→ f(c) + (x− c)f1(x)). Apply Theorems 3.1, 3.2, 4.1, and 4.2. �

6. Derivatives of sums, products, and compositions

Theorem 6.1. Let f and g be functions. Define h = f +g. If f and g are differentiable
at c then h is differentiable at c. Furthermore h′(c) = f ′(c) + g′(c).

In short (f + g)′ = f ′ + g′ if the right side is defined. This is the sum rule.

Proof. Say f(x) = f(c) + (x − c)f1(x) and g(x) = g(c) + (x − c)g1(x) with f1 and
g1 continuous at c. Define h1 = f1 + g1; then h1 is continuous at c by Theorem 3.1,
and h(x) = h(c) + (x − c)h1(x), so h is differentiable at c. Finally h′(c) = h1(c) =
f1(c) + g1(c) = f ′(c) + g′(c). �

Theorem 6.2. Let f and g be functions. Define h = fg. If f and g are differentiable
at c then h is differentiable at c. Furthermore h′(c) = f ′(c)g(c) + f(c)g′(c).

In short (fg)′ = f ′g + fg′ if the right side is defined. This is the product rule.
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Proof. Say f(x) = f(c) + (x − c)f1(x) and g(x) = g(c) + (x − c)g1(x) with f1 and g1
continuous at c. Then h(x) = h(c) + (x− c)h1(x) where h1(x) = f1(x)g(x) + f(c)g1(x).
This function h1 is continuous at c by Theorems 3.1, 3.2, 4.1, and 5.3, so h is differentiable
at c, with derivative h1(c) = f1(c)g(c) + f(c)g1(c) = f ′(c)g(c) + f(c)g′(c). �

Theorem 6.3. Let f and g be functions. Define h = (x 7→ f(g(x))). If g is differentiable
at c, and f is differentiable at g(c), then h is differentiable at c. Furthermore h′(c) =
f ′(g(c))g′(c).

In short (f ◦ g)′ = (f ′ ◦ g)g′ if the right side is defined. This is the chain rule.

Proof. Write b = g(c). Say f(x) = f(b)+(x−b)f1(x) and g(x) = b+(x−c)g1(x) with f1
continuous at b and g1 continuous at c. Now h(x) = f(g(x)) = f(b)+(g(x)−b)f1(g(x)) =
f(b)+(x−c)g1(x)f1(g(x)). Thus h(x) = h(c)+(x−c)h1(x) where h1(x) = g1(x)f1(g(x)).
Finally h1 is continuous at c by Theorems 3.3, 3.2, and 5.3, so h is differentiable at c,
with derivative h1(c) = g1(c)f1(g(c)) = g′(c)f ′(g(c)). �

7. Derivatives of simple functions

A constant function, such as x 7→ 17, has derivative c 7→ 0, since 17 = 17 + (x− c)0.

The identity function x 7→ x has derivative c 7→ 1, since x = c+ (x− c)1.

In general, for any positive integer n, the function x 7→ xn has derivative c 7→ ncn−1,
since xn = cn + (x− c)(xn−1 + cxn−2 + · · ·+ cn−1).

The function x 7→ 1/x, defined for nonzero inputs, has derivative c 7→ −1/c2. Indeed,
1/x = 1/c+ (x− c)(−1/cx), and x 7→ −1/cx is continuous at c with value −1/c2.

Now the chain rule, with f = (x 7→ 1/x), states that 1/g has derivative −g′/g2 at any
point c where g(c) 6= 0. In particular, for any negative integer n, x 7→ xn has derivative
c 7→ ncn−1.

Finally, the product rule implies that h/g has derivative (gh′ − hg′)/g2 at any point c
where g(c) 6= 0; this is the quotient rule.

Part III. Completeness and its consequences

8. Completeness of the real numbers

Definition 8.1. Let S be a set of real numbers. A real number c is an upper bound
for S if x ≤ c for all x ∈ S.

For example, any number c ≥ π is an upper bound for the set {3, 3.1, 3.14, 3.141, . . .}.
The smallest upper bound is π.

The real numbers are complete: if S is a nonempty set, and there is an upper bound
for S, then there is a smallest upper bound for S. The smallest upper bound is unique;
it is called the supremum of S, written supS.
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9. The intermediate-value theorem

Theorem 9.1. Let f be a continuous real-valued function. Let y be a real number. Let
b ≤ c be real numbers with f(b) ≤ y ≤ f(c). Then f(x) = y for some x ∈ [b, c].

Here [b, c] means {x : b ≤ x ≤ c}. For example, if f(3) = −5 and f(4) = 7, and f is
continuous, then f must have a root between 3 and 4.

Proof. Define S = {x ∈ [b, c] : f(x) ≤ y}. S is nonempty, because it contains b, and it
has an upper bound, namely c, so it has a smallest upper bound, say u.

Suppose f(u) > y. By continuity, there is an open ball D around u such that f(x) > y
for x ∈ D. Pick any t ∈ D with t < u. If x ∈ [t, u] then x ∈ D so f(x) > y so x /∈ S.
Thus t is an upper bound for S—but u is the smallest upper bound. Contradiction.

Suppose f(u) < y. Then u 6= c so u < c. By continuity, there is an open ball D around
u such that f(x) < y for x ∈ D. Pick any x ∈ D with u < x < c; then f(x) < y. But
x /∈ S since u is an upper bound for S; so f(x) > y. Contradiction. �

10. The maximum-value theorem

Theorem 10.1. Let f be a continuous real-valued function. Let b ≤ c be real numbers.
Then there is an upper bound for f([b, c]).

Proof. Let S be the set of x ∈ [b, c] such that f([b, x]) is bounded—i.e., has an upper
bound. S is nonempty, because it contains b. Define u = supS.

By continuity, there is an open ball D around u such that f(D) ⊆ Ball(f(u), 1). Select
t ∈ D with t < u; then t is not an upper bound for S, so there is some x ∈ S with
t < x ≤ u. Now f([b, x]) and f([x, u]) ⊆ f(D) are bounded, so f([b, u]) is bounded.

Suppose u < c. Select v ∈ D with u < v < c. Then f([u, v]) is bounded, so v ∈ S.
Contradiction. Hence u = c, and f([b, c]) = f([b, u]) is bounded. �

Theorem 10.2. Let f be a continuous real-valued function. Let b ≤ c be real numbers.
Then there is some u ∈ [b, c] such that, for all z ∈ [b, c], f(u) ≥ f(z).

This is the maximum-value theorem: a continuous function on a closed interval
achieves a maximum. The same is not true for open intervals: consider 1/x for 0 < x < 1.

Proof. By Theorem 10.1, there is an upper bound for f([b, c]). Define M = sup f([b, c]).

Let S be the set of x ∈ [b, c] such that sup f([x, c]) = M . Then b ∈ S. Define u = supS.

Suppose f(u) < M . By continuity there is an open ball D around u such that f(D) ⊆
Ball(f(u), (M − f(u))/2); then sup f(D) < M . Select t ∈ D with t < u; then t is not an
upper bound for S, so there is some x ∈ S with t < x ≤ u. Then sup f([x, c]) = M , but
sup f([x, u]) < M , so u < c. Select v ∈ D with u < v < c. Then sup f([x, v]) < M , so
sup f([v, c]) = M , so v ∈ S. Contradiction. Hence f(u) = M = sup f([b, c]). �
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Theorem 10.3. Let f be a continuous real-valued function. Let b ≤ c be real numbers.
Then there is some u ∈ [b, c] such that, for all x ∈ [b, c], f(u) ≤ f(x).

Proof. Apply Theorem 10.2 to −f . �

Part IV. The mean-value theorem

11. Fermat’s principle

Theorem 11.1. Let f be a real-valued function differentiable at t. Assume that f(t) ≥
f(x) for all x in an open ball B around t. Then f ′(t) = 0.

Proof. By assumption f(x) = f(t) + (x− t)f1(x) where f1 is continuous at t. Suppose
f1(t) > 0. Then f1(x) > 0 for all x in an open ball D around t. Pick x > t in both B
and D; then f(t) ≥ f(x) = f(t) + (x − t)f1(x) > f(t). Contradiction. Thus f1(t) ≤ 0.
Similarly f1(t) ≥ 0. Hence f ′(t) = f1(t) = 0. �

Theorem 11.2. Let f be a real-valued function differentiable at t. Assume that f(t) ≤
f(x) for all x in an open ball B around t. Then f ′(t) = 0.

Proof. Apply Theorem 11.1 to −f . �

12. Rolle’s theorem

Theorem 12.1. Let f be a differentiable real-valued function. Let b < c be real numbers.
If f(b) = f(c) then there is some x with b < x < c such that f ′(x) = 0.

Proof. By Theorem 10.2, there is some t ∈ [b, c] such that f ’s maximum value on [b, c]
is achieved at t. If f(t) > f(b) then t 6= b and t 6= c, so there is an open ball B around t
such that B ⊆ [b, c]. By Theorem 11.1, f ′(t) = 0.

Similarly, by Theorem 10.3, there is some u ∈ [b, c] such that f achieves its minimum at
u. If f(u) < f(b) then f ′(u) = 0 as above.

The only remaining case is that f(t) ≤ f(b) and f(u) ≥ f(b). Then f(b) is both the
maximum and the minimum value of f on [b, c]; i.e., f is constant on [b, c]. Hence
f ′(x) = 0 for any x between b and c. �

13. The mean-value theorem

Theorem 13.1. Let f be a differentiable real-valued function. Let b < c be real numbers.
Then there is some x with b < x < c such that f(c)− f(b) = f ′(x)(c− b).
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This is the mean-value theorem. The terminology “mean value” comes from the fun-
damental theorem of calculus, which can be interpreted as saying that (f(c)−f(b))/(c−b)
is the average (“mean”) value of f ′(x) for x ∈ [b, c]. See Theorem 16.1.

Proof. Define g(x) = (c − b)f(x) − (x − b)(f(c) − f(b)). Then g is differentiable, and
g(b) = (c− b)f(b) = (c− b)f(c)− (c− b)(f(c)−f(b)) = g(c). By Theorem 12.1, g′(x) = 0
for some x between b and c. But g′(x) = (c− b)f ′(x)− (f(c)− f(b)). �

Theorem 13.2. Let f be a differentiable real-valued function. If f ′(x) = 0 for all x
then f is constant.

More generally, two functions with the same derivative must differ by a constant.

Proof. Pick any real numbers b < c. By Theorem 13.1, there is some x such that
f(c)− f(b) = f ′(x)(c− b) = 0, so f(c) = f(b). �

Part V. Integration

14. Tagged divisions and gauges

Definition 14.1. Let b ≤ c be real numbers. Let x0, x1, . . . , xn and t1, . . . , tn be real
numbers. Then x0, t1, x1, . . . , tn, xn is a tagged division of [b, c] if b = x0 ≤ t1 ≤ x1 ≤
t2 ≤ · · · ≤ xn−1 ≤ tn ≤ xn = c.

The idea is that [b, c] is divided into the intervals [x0, x1], [x1, x2], . . . , [xn−1, xn]; in
each interval [xk−1, xk] there is a tag tk. For example, consider the tagged division
0, 1, 4, 5, 6, 6, 7 of [0, 7]; here the intervals are [0, 4], [4, 6], [6, 7], with tags 1, 5, 6 respec-
tively.

Definition 14.2. Let b ≤ c be real numbers. A gauge on [b, c] is a function assigning
to each point t ∈ [b, c] an open interval containing t.

For example, given ε > 0, the function t 7→ Ball(t, ε) is a gauge on any interval.

Definition 14.3. Let b ≤ c be real numbers. Let G be a gauge on [b, c]. A tagged division
x0, t1, x1, . . . , tn, xn of [b, c] is inside G if [xk−1, xk] ⊂ G(tk) for every k.

Theorem 14.4. Let b ≤ c be real numbers. Let G be a gauge on [b, c]. Then there is a
tagged division of [b, c] inside G.

Proof. Let S be the set of x ∈ [b, c] such that there is a tagged division of [b, x] inside
G. S is nonempty: b, b, b is a tagged division of [b, b] inside G, so b ∈ S. Also, c is an
upper bound for S. Thus there is a smallest upper bound for S, say y.

Select v ∈ G(y) such that v < y. Then v is not an upper bound for S, so there is some
x > v with x ∈ S. Let x0, t1, x1, . . . , tn, xn be a tagged division of [b, x] inside G.
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Suppose y < c. Pick z ∈ G(y) with y < z ≤ c. Then [xn, z] = [x, z] ⊂ [v, z] ⊂ G(y), so
x0, t1, x1, . . . , tn, xn, y, z is a tagged division of [b, z] inside G. Thus z ∈ S; but z > y,
and y is an upper bound for S. Contradiction.

Thus y = c. Finally x0, t1, x1, . . . , tn, xn, y, y is a tagged division of [b, c] inside G. �

15. The definite integral

Definition 15.1. Let b ≤ c be real numbers. Let x0, t1, x1, . . . , tn, xn be a tagged di-
vision of [b, c]. Let f be a function defined on [b, c]. The Riemann sum for f on
x0, t1, x1, . . . , tn, xn is (x1 − x0)f(t1) + · · ·+ (xn − xn−1)f(tn).

For example, the Riemann sum for f on 0, 1, 4, 5, 6, 6, 7 is (4−0)f(1)+(6−4)f(5)+(7−
6)f(6). This may be visualized as the sum of areas of three rectangles: one stretching
from 0 to 4 horizontally with height f(1), another from 4 to 6 with height f(5), and
another from 6 to 7 with height f(6).

Definition 15.2. Let b ≤ c be real numbers. Let f be a function defined on [b, c]. Let I
be a number. Then f has integral I on [b, c] if, for every open ball E around I, there is
a gauge G on [b, c] such that E contains the Riemann sum for f on any tagged division
of [b, c] inside G.

Theorem 15.3. Let b ≤ c be real numbers. Let f be a function. If f has integral I on
[b, c] and f has integral J on [b, c] then I = J .

Thus there is at most one number I such that f has integral I on [b, c]. If this number
exists, it is called the integral of f from b to c, written

∫ c

b
f .

Proof. I will show that |I − J | < 2ε for any ε > 0.

By definition of integral, there is a gauge G on [b, c] such that Ball(I, ε) contains the
Riemann sum for f on any tagged division of [b, c] inside G.

Similarly, there is a gauge H on [b, c] such that Ball(J, ε) contains the Riemann sum for
f on any tagged division of [b, c] inside G.

Define F (t) as the intersection of G(t) and H(t). Then F is a gauge on [b, c]. By Theorem
14.4, there is a tagged division x0, . . . , xn of [b, c] inside F .

Let R be the Riemann sum for f on x0, . . . , xn. Observe that x0, . . . , xn is inside both G
and H, so R ∈ Ball(I, ε) and R ∈ Ball(J, ε). Hence |I − J | ≤ |I −R|+ |R− J | < 2ε. �

16. The fundamental theorem of calculus

Theorem 16.1. Let f be a differentiable function. Let b ≤ c be real numbers. Then
f(c)− f(b) =

∫ c

b
f ′.
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Proof. Pick ε > 0. I will construct a gauge G such that Ball(f(c) − f(b), ε(c − b + 1))
contains the Riemann sum for f ′ on any tagged division of [b, c] inside G.

Fix t ∈ [b, c]. Since f is differentiable at t, there is a function f1, continuous at t,
such that f(x) = f(t) + (x − t)f1(x). By definition of continuity, f1(x) is within ε of
f1(t) = f ′(t) for all x in some open ball around t. Define G(t) as the union of all such
balls. Then G is a gauge on [b, c].

Observe that if x, y ∈ G(t), with x ≤ t ≤ y, then (y − x)f ′(t) is within ε(y − x) of
f(y)−f(x). Indeed, |f1(x)− f ′(t)| < ε by definition of G, and f(x)−f(t) = (x−t)f1(x),
so

|f(x)− f(t)− (x− t)f ′(t)| = |(x− t)(f1(x)− f ′(t))| ≤ ε |x− t| .

Similarly |f(y)− f(t)− (y − t)f ′(t)| ≤ ε |y − t|. Thus |f(y)− f(x)− (y − x)f ′(t)| ≤
ε(|y − t|+ |x− t|); and |y − t|+ |x− t| = y − x.

Finally, say x0, t1, x1, . . . , tn, xn is a tagged division of [b, c] inside G. Then xk−1, xk ∈
G(tk), with xk−1 ≤ tk ≤ xk, so (xk−xk−1)f ′(tk) is within ε(xk−xk−1) of f(xk)−f(xk−1)
as above. Thus the Riemann sum for f ′ on x0, t1, x1, . . . , tn, xn is within∑

1≤k≤n

ε(xk − xk−1) = ε(xn − x0) = ε(c− b) < ε(c− b+ 1)

of ∑
1≤k≤n

(f(xk)− f(xk−1)) = f(xn)− f(x0) = f(c)− f(b)

as claimed. �

17. Integration rules

Theorem 17.1. Let f be a function. Let b ≤ c be real numbers. If
∫ c

b
f = I then af

has integral aI on [b, c] for any real number a.

In short
∫ c

b
af = a

∫ c

b
f if the right side is defined.

Proof. Pick ε > 0. Since
∫ c

b
f = I, there is a gauge G on [b, c] such that Ball(I, ε)

contains the Riemann sum for f on any tagged division of [b, c] inside G. The Riemann
sum for af is exactly a times the Riemann sum for f , so it is inside Ball(aI, |a| ε) for
a 6= 0 or Ball(0, ε) for a = 0. �

Theorem 17.2. Let f and g be functions. Let b ≤ c be real numbers. If
∫ c

b
f = I and∫ c

b
g = J then f + g has integral I + J on [b, c].

In short
∫ c

b
(f + g) =

∫ c

b
f +

∫ c

b
g if the right side is defined.

Proof. Pick ε > 0. There is a gauge F on [b, c] such that Ball(I, ε) contains the Riemann
sum for f on any tagged division of [b, c] inside F ; and there is a gauge G on [b, c] such
that Ball(J, ε) contains the Riemann sum for g on any tagged division of [b, c] inside G.
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Define H(t) = F (t)∩G(t). Then H is a gauge on [b, c]. If x0, . . . , xn is a tagged division
of [b, c] inside H, then x0, . . . , xn is also inside both F and G, so the Riemann sums for
f and g on x0, . . . , xn are within ε of I and J respectively; thus the Riemann sum for
f + g on x0, . . . , xn is within 2ε of I + J . �

Theorem 17.3. Let f be a function. Let a ≤ b ≤ c be real numbers. If
∫ b

a
f = I and∫ c

b
f = J then f has integral I + J on [a, c].

In short
∫ c

a
f =

∫ b

a
f +

∫ c

b
f if the right side is defined.

Proof. Pick ε > 0. There is a gauge G on [a, b] such that Ball(I, ε) contains the Riemann
sum for f on any tagged division of [a, b] inside G; there is a gauge H on [b, c] such that
Ball(J, ε) contains the Riemann sum for f on any tagged division of [b, c] inside H.

I define a new gauge as follows. For t < b define F (t) = {x ∈ G(t) : x < b}. For t = b
define F (t) = G(t) ∩H(t). For t > b define F (t) = {x ∈ H(t) : x > b}.

Say x0, . . . , xn is a tagged division of [a, c] inside F . Then b ∈ [xk−1, xk] ⊂ F (tk) for
some k; by construction of F , tk must equal b. Now x0, t1, x1, . . . , xk−1, tk, b is a tagged
division of [a, b] inside F , hence inside G. Thus the Riemann sum (x1 − x0)f(t0) +
· · ·+ (b− xk−1)f(tk) is within ε of I. Similarly the Riemann sum (xk − b)f(tk) + · · ·+
(xn − xn−1)f(tn) is within ε of J . Add: the Riemann sum (x1 − x0)f(t0) + · · ·+ (xk −
xk−1f(tk) + · · ·+ (xn − xn−1)f(tn) is within 2ε of I + J . �

Theorem 17.4. Let f be a function. Let b ≤ c be real numbers. If f is nonnegative on
[b, c] and

∫ c

b
f = I then I is nonnegative.

Proof. Pick ε > 0. Select an appropriate gauge G. By Theorem 14.4, there is an
appropriate tagged division of [b, c]. The corresponding Riemann sum is nonnegative, so
I ≥ −ε. �

Part VI. Limits

18. Convergence and limits

Definition 18.1. Let f be a function. Then f converges to L at c if the function

x 7→
{
L if x = c
f(x) if x 6= c

is continuous at c.

Equivalent terminology: f(x) converges to L as x approaches c.

By Theorem 2.2, there is at most one number L such that f converges to L at c. If this
number exists, it is called the limit of f at c, or the limit of f(x) as x approaches
c, written limx→c f(x). Note that f is continuous if and only if limx→c f(x) = f(c).
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Example: cos(1/x) does not converge to 0 as x approaches 0.

19. Limits of sums, products, and compositions

Theorem 19.1. Let f and g be functions. If limx→c f(x) = L and limx→c g(x) = M
then f(x) + g(x) converges to L+M as x approaches c.

In short limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x) if the right side is defined.

Proof. Replace f(c) by L and g(c) by M to obtain new functions a and b. Then a and
b are continuous, so a+ b is continuous by Theorem 3.1. �

Theorem 19.2. Let f and g be functions. If limx→c f(x) = L and limx→c g(x) = M
then f(x)g(x) converges to LM as x approaches c.

Proof. Theorem 3.2. �

Theorem 19.3. Let f and g be functions. If limx→c g(x) = L, and f is continuous at
L, then f(g(x)) converges to f(L) as x approaches c.

In short limx→c f(g(x)) = f(limx→c g(x)) if the right side is defined, provided that f is
continuous.

Proof. Theorem 3.3. �

20. L’Hôpital’s rule

Theorem 20.1. Let f and g be real-valued functions differentiable at c. If f(c) = g(c) =
0, and g′(c) 6= 0, then f(x)/g(x) converges to f ′(c)/g′(c) as x approaches c.

For example, limx→0(x/ sinx) = 1/1 = 1, since sin′ = cos and cos 0 = 1 6= 0.

Proof. By assumption f(x) = f(c) + (x− c)f1(x) = (x− c)f1(x) where f1 is continuous
at c. Similarly g(x) = (x− c)g1(x) where g1 is continuous at c. By assumption g1(c) =
g′(c) 6= 0, so the function x 7→ f1(x)/g1(x) is continuous at c, with value f1(c)/g1(c).
Finally f(x)/g(x) = f1(x)/g1(x) for x 6= c. �

Theorem 20.2. Let f and g be differentiable real-valued functions. If f(c) = g(c) = 0,
and limx→c(f

′(x)/g′(x)) = L, then f(x)/g(x) converges to L as x approaches c.

Proof. Fix a ball E around L. There is a ball D around c such that f ′(x)/g′(x) ∈ E
for all x ∈ D with x 6= c. In particular, g′(x) is nonzero for x ∈ D. By Theorem 12.1,
g(y) is nonzero for y ∈ D.

I will show that f(y)/g(y) ∈ E for all y ∈ D with y 6= c. Thus f(y)/g(y) converges to L
as y approaches c.
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Given y ∈ D, y 6= c, consider the function h = (x 7→ f(x)g(y) − f(y)g(x)). Notice that
h is differentiable, with h′(x) = f ′(x)g(y)− f(y)g′(x).

Now h(c) = f(c)g(y) − f(y)g(c) = 0, and h(y) = f(y)g(y) − f(y)g(y) = 0, so there is
some x between c and y with h′(x) = 0 by Theorem 12.1. Thus f ′(x)g(y) = f(y)g′(x).
Both g′(x) and g(y) are nonzero, so f(y)/g(y) = f ′(x)/g′(x) ∈ E. �

Theorem 20.2 may be used repeatedly. For example:

lim
x→0

1− cosx

x2
= lim

x→0

sinx

2x
= lim

x→0

cosx

2
=

1

2
.

99. Expository notes

Common practice in calculus books is to define continuity using limits. I define limits
using continuity; continuity is a simpler concept.

“An open ball around c” is substantially easier to read than “for some h > 0, the set of
x such that |x− c| < h.”

I use Carathéodory’s definition of the derivative of f . The point is to give a name to
the function x 7→ (f(x)− f(c))/(x− c). I learned about this from an article by Stephen
Kuhn in the Monthly. It’s also used in the second edition of Apostol’s text.

My proof of Theorem 6.2 uses the formula h1(x) = f1(x)g(x)+f(c)g1(x), which is shorter
than the (more obvious) formula h1(x) = f1(x)g(c) + f(c)g1(x) + (x − c)f1(x)g1(x). I
was reminded of this simplification by a letter in the Monthly from Günter Pickert.

The Heine-Borel theorem follows immediately from Theorem 14.4. See Botsko’s 1987
Monthly article for this approach to all the basic completeness theorems. Thanks to Joe
Buhler for the reference.

I follow the Kurzweil-Henstock approach to integration. The resulting integral is more
general than the Lebesgue integral; it is equivalent to the integrals constructed by Denjoy
and Perron. There is no need for any technical conditions in the fundamental theorem
of calculus, Theorem 16.1; every derivative is integrable. I learned about this from
advertisements by Robert G. Bartle in the Bulletin and the Monthly.
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