Calculus for mathematicians

D. J. Bernstein, University of Illinois at Chicago, djb@pobox.com

19970403, draft 5

1. Introduction

This booklet presents the main concepts, theorems, and techniques of single-variable calculus. It differs from a typical undergraduate real analysis text in that (1) it focuses purely on calculus, not on developing topology and analysis for their own sake; (2) it's short.

Notation and terminology. The reader must be comfortable with functions, not just numbers, as objects of study. I use the notation $x \mapsto x^{2}$ for the function that takes x to x^{2}; thus $\left(x \mapsto x^{2}\right)(3)=9$. In general $f=(t \mapsto f(t))$ for any function f.

An open ball around c means an interval $\operatorname{Ball}(c, h)=\{x:|x-c|<h\}$ for some positive real number h. The intersection of two open balls around c is another open ball around c.

If S is a set, and $f(x)$ is defined for all $x \in S$, then $f(S)$ is defined as $\{f(x): x \in S\}$.

Part I. Continuity

2. Continuous functions

Definition 2.1. Let f be a function defined at c. Then f is continuous at c if, for any open ball F around $f(c)$, there is an open ball B around c such that $f(B) \subseteq F$.

In other words, if f is continuous at c, and F is an open ball around $f(c)$, then there is some $h>0$ such that $f(x) \in F$ for all x with $|x-c|<h$.

Example: The function $x \mapsto 3 x$ is continuous-i.e., continuous at c for every c. Indeed, $\operatorname{Ball}(3 c, \epsilon)$ contains $(x \mapsto 3 x)(\operatorname{Ball}(c, \epsilon / 3))$, because $|x-c|<\epsilon / 3$ implies $|3 x-3 c|<\epsilon$.

Another example: If $f(x)=3$ for $x<2$ and $f(x)=5$ for $x \geq 2$, then f is not continuous at 2 . Indeed, consider the open ball $F=\operatorname{Ball}(5,1)$. If B is any open ball around 2 , then B contains numbers smaller than 2 , so $3 \in f(B)$; thus $f(B)$ is not contained in F.

Theorem 2.2. Let f and g be functions continuous at c. Assume that $f(x)=g(x)$ for all $x \neq c$ such that $f(x)$ and $g(x)$ are both defined. Then $f(c)=g(c)$.

Proof. I will show that $|f(c)-g(c)|<2 \epsilon$ for any $\epsilon>0$. Write $F=\operatorname{Ball}(f(c), \epsilon)$ and $G=\operatorname{Ball}(g(c), \epsilon)$. By continuity of f and g, there are balls A and B around c such that $f(A) \subseteq F$ and $g(B) \subseteq G$. Find a point $x \neq c$ contained in both A and B. By construction $f(x) \in F$ and $f(x)=g(x) \in G$, so $|f(c)-g(c)| \leq|f(x)-f(c)|+|f(x)-g(c)|<2 \epsilon$ as claimed.

3. Continuity of sums, products, and compositions

Theorem 3.1. Let f and g be functions continuous at c. Define $h=f+g$. Then h is continuous at c.

Proof. Given a ball $H=\operatorname{Ball}(h(c), \epsilon)$, consider the balls $F=\operatorname{Ball}(f(c), \epsilon / 2)$ and $G=$ $\operatorname{Ball}(g(c), \epsilon / 2)$. By continuity of f and g, there are open balls A and B around c such that $f(A) \subseteq F$ and $g(B) \subseteq G$. Define $D=A \cap B ; D$ is an open ball around c. If $x \in D$ then $f(x) \in F$ and $g(x) \in G$ so $h(x)=f(x)+g(x) \in H$. Thus $h(D) \subseteq H$.

Theorem 3.2. Let f and g be functions continuous at c. Define $h=f g$. Then h is continuous at c.

Proof. Define $L=f(c)$ and $M=g(c)$, so that $L M=h(c)$. Given an open ball $H=\operatorname{Ball}(L M, \epsilon)$, I will find an open ball D around c so that $h(D) \subseteq H$.

If $L=M=0$, take the intersection of open balls where $|f(x)|<\epsilon$ and $|g(x)|<1$. Then $|h(x)|<\epsilon$.

If $L=0$ and $M \neq 0$, take the intersection of open balls where $|f(x)|<\epsilon /(2|M|)$ and $|g(x)-M|<|M|$. Then $|g(x)|<2|M|$ so $|h(x)|<\epsilon$. Similarly if $L \neq 0$ and $M=0$.
If $L \neq 0$ and $M \neq 0$, take the intersection of open balls where $|f(x)-L|<\epsilon /(4|M|)$, $|g(x)-M|<\epsilon /(2|L|)$, and $|g(x)-M|<|M|$. Then $|g(x)|<2|M|$ so $|h(x)-L M|=$ $|g(x)(f(x)-L)+L(g(x)-M)|<2|M|(\epsilon /(4|M|))+|L|(\epsilon /(2|L|))=\epsilon$.

Theorem 3.3. Let g be a function continuous at c. Let f be a function continuous at $g(c)$. Define $h=(x \mapsto f(g(x)))$. Then h is continuous at c.

For example, $x \mapsto \cos 2 x$ is continuous, since $x \mapsto 2 x$ and $y \mapsto \cos y$ are continuous.
Proof. Let F be an open ball around $h(c)=f(g(c))$. By continuity of f, there is some open ball G around $g(c)$ with $f(G) \subseteq F$. By continuity of g, there is some open ball B around c with $g(B) \subseteq G$. Finally $h(B)=f(g(B)) \subseteq f(G) \subseteq F$.

4. Continuity of simple functions

Theorem 4.1. $x \mapsto b$ is continuous at c, for any b and c.
Proof. Ball (b, h) contains $(x \mapsto b)(D)$ for any open ball D.

Theorem 4.2. $x \mapsto x$ is continuous at c, for any c.
Proof. Ball (c, h) contains $(x \mapsto x)(\operatorname{Ball}(c, h))$.
By Theorems 3.2 and 4.2, $x \mapsto x^{2}$ is continuous; $x \mapsto x^{3}$ is continuous; in general $x \mapsto x^{n}$ is continuous for any positive integer n. Thus, by Theorems 3.1, 3.2, and 4.1, any polynomial function $x \mapsto c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ is continuous.

The function $x \mapsto 1 / x$ is continuous at c for $c \neq 0$. (It's not even defined at 0 , so it can't be continuous there.) By Theorem 3.3, $x \mapsto 1 / f(x)$ is continuous whenever f is continuous and nonzero. For example, $x \mapsto x^{n}$ is continuous except at 0 when n is a negative integer.

Part II. Derivatives

5. Differentiable functions

Definition 5.1. Let f be a function defined at c. Then f is differentiable at c if there is a function f_{1}, continuous at c, such that $f=\left(x \mapsto f(c)+(x-c) f_{1}(x)\right)$.

Definition 5.2. Let f be a function defined at c. Then f has derivative d at c if there is a function f_{1}, continuous at c, such that $f=\left(x \mapsto f(c)+(x-c) f_{1}(x)\right)$ and $f_{1}(c)=d$.

By Theorem 2.2, there is at most one continuous function f_{1} satisfying $f_{1}(x)=(f(x)-$ $f(c)) /(x-c)$ for all $x \neq c$, so f has at most one derivative at c, called the derivative of f at c. The derivative of f at c is written $f^{\prime}(c)$. The derivative of f, written f^{\prime}, is the function $c \mapsto f^{\prime}(c)$.

For example, consider the function $f=\left(x \mapsto x^{2}\right)$. Here $f(x)=f(3)+(x-3) f_{1}(x)$ with $f_{1}=(x \mapsto x+3)$. The function f_{1} is continuous at 3 , so f is differentiable at 3 ; its derivative at 3 is $f_{1}(3)=6$. In general $f^{\prime}(c)=2 c$.

Theorem 5.3. Let f be a function. If f is differentiable at c then f is continuous at c.
Proof. By definition of differentiability, there is a function f_{1}, continuous at c, with $f=\left(x \mapsto f(c)+(x-c) f_{1}(x)\right)$. Apply Theorems 3.1, 3.2, 4.1, and 4.2.

6. Derivatives of sums, products, and compositions

Theorem 6.1. Let f and g be functions. Define $h=f+g$. If f and g are differentiable at c then h is differentiable at c. Furthermore $h^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.

In short $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ if the right side is defined. This is the sum rule.
Proof. Say $f(x)=f(c)+(x-c) f_{1}(x)$ and $g(x)=g(c)+(x-c) g_{1}(x)$ with f_{1} and g_{1} continuous at c. Define $h_{1}=f_{1}+g_{1}$; then h_{1} is continuous at c by Theorem 3.1, and $h(x)=h(c)+(x-c) h_{1}(x)$, so h is differentiable at c. Finally $h^{\prime}(c)=h_{1}(c)=$ $f_{1}(c)+g_{1}(c)=f^{\prime}(c)+g^{\prime}(c)$.

Theorem 6.2. Let f and g be functions. Define $h=f g$. If f and g are differentiable at c then h is differentiable at c. Furthermore $h^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
In short $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ if the right side is defined. This is the product rule.

Proof. Say $f(x)=f(c)+(x-c) f_{1}(x)$ and $g(x)=g(c)+(x-c) g_{1}(x)$ with f_{1} and g_{1} continuous at c. Then $h(x)=h(c)+(x-c) h_{1}(x)$ where $h_{1}(x)=f_{1}(x) g(x)+f(c) g_{1}(x)$. This function h_{1} is continuous at c by Theorems 3.1, 3.2, 4.1, and 5.3, so h is differentiable at c, with derivative $h_{1}(c)=f_{1}(c) g(c)+f(c) g_{1}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.

Theorem 6.3. Let f and g be functions. Define $h=(x \mapsto f(g(x)))$. If g is differentiable at c, and f is differentiable at $g(c)$, then h is differentiable at c. Furthermore $h^{\prime}(c)=$ $f^{\prime}(g(c)) g^{\prime}(c)$.
In short $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ if the right side is defined. This is the chain rule.
Proof. Write $b=g(c)$. Say $f(x)=f(b)+(x-b) f_{1}(x)$ and $g(x)=b+(x-c) g_{1}(x)$ with f_{1} continuous at b and g_{1} continuous at c. Now $h(x)=f(g(x))=f(b)+(g(x)-b) f_{1}(g(x))=$ $f(b)+(x-c) g_{1}(x) f_{1}(g(x))$. Thus $h(x)=h(c)+(x-c) h_{1}(x)$ where $h_{1}(x)=g_{1}(x) f_{1}(g(x))$. Finally h_{1} is continuous at c by Theorems 3.3, 3.2, and 5.3, so h is differentiable at c, with derivative $h_{1}(c)=g_{1}(c) f_{1}(g(c))=g^{\prime}(c) f^{\prime}(g(c))$.

7. Derivatives of simple functions

A constant function, such as $x \mapsto 17$, has derivative $c \mapsto 0$, since $17=17+(x-c) 0$.
The identity function $x \mapsto x$ has derivative $c \mapsto 1$, since $x=c+(x-c) 1$.
In general, for any positive integer n, the function $x \mapsto x^{n}$ has derivative $c \mapsto n c^{n-1}$, since $x^{n}=c^{n}+(x-c)\left(x^{n-1}+c x^{n-2}+\cdots+c^{n-1}\right)$.
The function $x \mapsto 1 / x$, defined for nonzero inputs, has derivative $c \mapsto-1 / c^{2}$. Indeed, $1 / x=1 / c+(x-c)(-1 / c x)$, and $x \mapsto-1 / c x$ is continuous at c with value $-1 / c^{2}$.

Now the chain rule, with $f=(x \mapsto 1 / x)$, states that $1 / g$ has derivative $-g^{\prime} / g^{2}$ at any point c where $g(c) \neq 0$. In particular, for any negative integer $n, x \mapsto x^{n}$ has derivative $c \mapsto n c^{n-1}$.

Finally, the product rule implies that h / g has derivative $\left(g h^{\prime}-h g^{\prime}\right) / g^{2}$ at any point c where $g(c) \neq 0$; this is the quotient rule.

Part III. Completeness and its consequences

8. Completeness of the real numbers

Definition 8.1. Let S be a set of real numbers. A real number c is an upper bound for S if $x \leq c$ for all $x \in S$.

For example, any number $c \geq \pi$ is an upper bound for the set $\{3,3.1,3.14,3.141, \ldots\}$. The smallest upper bound is π.

The real numbers are complete: if S is a nonempty set, and there is an upper bound for S, then there is a smallest upper bound for S. The smallest upper bound is unique; it is called the supremum of S, written $\sup S$.

9. The intermediate-value theorem

Theorem 9.1. Let f be a continuous real-valued function. Let y be a real number. Let $b \leq c$ be real numbers with $f(b) \leq y \leq f(c)$. Then $f(x)=y$ for some $x \in[b, c]$.

Here $[b, c]$ means $\{x: b \leq x \leq c\}$. For example, if $f(3)=-5$ and $f(4)=7$, and f is continuous, then f must have a root between 3 and 4 .

Proof. Define $S=\{x \in[b, c]: f(x) \leq y\}$. S is nonempty, because it contains b, and it has an upper bound, namely c, so it has a smallest upper bound, say u.

Suppose $f(u)>y$. By continuity, there is an open ball D around u such that $f(x)>y$ for $x \in D$. Pick any $t \in D$ with $t<u$. If $x \in[t, u]$ then $x \in D$ so $f(x)>y$ so $x \notin S$. Thus t is an upper bound for S-but u is the smallest upper bound. Contradiction.

Suppose $f(u)<y$. Then $u \neq c$ so $u<c$. By continuity, there is an open ball D around u such that $f(x)<y$ for $x \in D$. Pick any $x \in D$ with $u<x<c$; then $f(x)<y$. But $x \notin S$ since u is an upper bound for S; so $f(x)>y$. Contradiction.

10. The maximum-value theorem

Theorem 10.1. Let f be a continuous real-valued function. Let $b \leq c$ be real numbers. Then there is an upper bound for $f([b, c])$.

Proof. Let S be the set of $x \in[b, c]$ such that $f([b, x])$ is bounded-i.e., has an upper bound. S is nonempty, because it contains b. Define $u=\sup S$.
By continuity, there is an open ball D around u such that $f(D) \subseteq \operatorname{Ball}(f(u), 1)$. Select $t \in D$ with $t<u$; then t is not an upper bound for S, so there is some $x \in S$ with $t<x \leq u$. Now $f([b, x])$ and $f([x, u]) \subseteq f(D)$ are bounded, so $f([b, u])$ is bounded.

Suppose $u<c$. Select $v \in D$ with $u<v<c$. Then $f([u, v])$ is bounded, so $v \in S$. Contradiction. Hence $u=c$, and $f([b, c])=f([b, u])$ is bounded.

Theorem 10.2. Let f be a continuous real-valued function. Let $b \leq c$ be real numbers. Then there is some $u \in[b, c]$ such that, for all $z \in[b, c], f(u) \geq f(z)$.

This is the maximum-value theorem: a continuous function on a closed interval achieves a maximum. The same is not true for open intervals: consider $1 / x$ for $0<x<1$.

Proof. By Theorem 10.1, there is an upper bound for $f([b, c])$. Define $M=\sup f([b, c])$.
Let S be the set of $x \in[b, c]$ such that $\sup f([x, c])=M$. Then $b \in S$. Define $u=\sup S$.
Suppose $f(u)<M$. By continuity there is an open ball D around u such that $f(D) \subseteq$ $\operatorname{Ball}(f(u),(M-f(u)) / 2)$; then $\sup f(D)<M$. Select $t \in D$ with $t<u$; then t is not an upper bound for S, so there is some $x \in S$ with $t<x \leq u$. Then $\sup f([x, c])=M$, but $\sup f([x, u])<M$, so $u<c$. Select $v \in D$ with $u<v<c$. Then $\sup f([x, v])<M$, so $\sup f([v, c])=M$, so $v \in S$. Contradiction. Hence $f(u)=M=\sup f([b, c])$.

Theorem 10.3. Let f be a continuous real-valued function. Let $b \leq c$ be real numbers. Then there is some $u \in[b, c]$ such that, for all $x \in[b, c], f(u) \leq f(x)$.

Proof. Apply Theorem 10.2 to $-f$.

Part IV. The mean-value theorem

11. Fermat's principle

Theorem 11.1. Let f be a real-valued function differentiable at t. Assume that $f(t) \geq$ $f(x)$ for all x in an open ball B around t. Then $f^{\prime}(t)=0$.

Proof. By assumption $f(x)=f(t)+(x-t) f_{1}(x)$ where f_{1} is continuous at t. Suppose $f_{1}(t)>0$. Then $f_{1}(x)>0$ for all x in an open ball D around t. Pick $x>t$ in both B and D; then $f(t) \geq f(x)=f(t)+(x-t) f_{1}(x)>f(t)$. Contradiction. Thus $f_{1}(t) \leq 0$. Similarly $f_{1}(t) \geq 0$. Hence $f^{\prime}(t)=f_{1}(t)=0$.

Theorem 11.2. Let f be a real-valued function differentiable at t. Assume that $f(t) \leq$ $f(x)$ for all x in an open ball B around t. Then $f^{\prime}(t)=0$.

Proof. Apply Theorem 11.1 to $-f$.

12. Rolle's theorem

Theorem 12.1. Let f be a differentiable real-valued function. Let $b<c$ be real numbers. If $f(b)=f(c)$ then there is some x with $b<x<c$ such that $f^{\prime}(x)=0$.

Proof. By Theorem 10.2, there is some $t \in[b, c]$ such that f 's maximum value on $[b, c]$ is achieved at t. If $f(t)>f(b)$ then $t \neq b$ and $t \neq c$, so there is an open ball B around t such that $B \subseteq[b, c]$. By Theorem 11.1, $f^{\prime}(t)=0$.

Similarly, by Theorem 10.3, there is some $u \in[b, c]$ such that f achieves its minimum at u. If $f(u)<f(b)$ then $f^{\prime}(u)=0$ as above.
The only remaining case is that $f(t) \leq f(b)$ and $f(u) \geq f(b)$. Then $f(b)$ is both the maximum and the minimum value of f on $[b, c]$; i.e., f is constant on $[b, c]$. Hence $f^{\prime}(x)=0$ for any x between b and c.

13. The mean-value theorem

Theorem 13.1. Let f be a differentiable real-valued function. Let $b<c$ be real numbers. Then there is some x with $b<x<c$ such that $f(c)-f(b)=f^{\prime}(x)(c-b)$.

This is the mean-value theorem. The terminology "mean value" comes from the fundamental theorem of calculus, which can be interpreted as saying that $(f(c)-f(b)) /(c-b)$ is the average ("mean") value of $f^{\prime}(x)$ for $x \in[b, c]$. See Theorem 16.1.

Proof. Define $g(x)=(c-b) f(x)-(x-b)(f(c)-f(b))$. Then g is differentiable, and $g(b)=(c-b) f(b)=(c-b) f(c)-(c-b)(f(c)-f(b))=g(c)$. By Theorem 12.1, $g^{\prime}(x)=0$ for some x between b and c. But $g^{\prime}(x)=(c-b) f^{\prime}(x)-(f(c)-f(b))$.

Theorem 13.2. Let f be a differentiable real-valued function. If $f^{\prime}(x)=0$ for all x then f is constant.

More generally, two functions with the same derivative must differ by a constant.
Proof. Pick any real numbers $b<c$. By Theorem 13.1, there is some x such that $f(c)-f(b)=f^{\prime}(x)(c-b)=0$, so $f(c)=f(b)$.

Part V. Integration

14. Tagged divisions and gauges

Definition 14.1. Let $b \leq c$ be real numbers. Let $x_{0}, x_{1}, \ldots, x_{n}$ and t_{1}, \ldots, t_{n} be real numbers. Then $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ is a tagged division of $[b, c]$ if $b=x_{0} \leq t_{1} \leq x_{1} \leq$ $t_{2} \leq \cdots \leq x_{n-1} \leq t_{n} \leq x_{n}=c$.

The idea is that $[b, c]$ is divided into the intervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$; in each interval $\left[x_{k-1}, x_{k}\right]$ there is a tag t_{k}. For example, consider the tagged division $0,1,4,5,6,6,7$ of $[0,7]$; here the intervals are $[0,4],[4,6],[6,7]$, with tags $1,5,6$ respectively.

Definition 14.2. Let $b \leq c$ be real numbers. A gauge on $[b, c]$ is a function assigning to each point $t \in[b, c]$ an open interval containing t.

For example, given $\epsilon>0$, the function $t \mapsto \operatorname{Ball}(t, \epsilon)$ is a gauge on any interval.
Definition 14.3. Let $b \leq c$ be real numbers. Let G be a gauge on $[b, c]$. A tagged division $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ of $[b, c]$ is inside G if $\left[x_{k-1}, x_{k}\right] \subset G\left(t_{k}\right)$ for every k.

Theorem 14.4. Let $b \leq c$ be real numbers. Let G be a gauge on $[b, c]$. Then there is a tagged division of $[b, c]$ inside G.

Proof. Let S be the set of $x \in[b, c]$ such that there is a tagged division of $[b, x]$ inside G. S is nonempty: b, b, b is a tagged division of $[b, b]$ inside G, so $b \in S$. Also, c is an upper bound for S. Thus there is a smallest upper bound for S, say y.

Select $v \in G(y)$ such that $v<y$. Then v is not an upper bound for S, so there is some $x>v$ with $x \in S$. Let $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ be a tagged division of $[b, x]$ inside G.

Suppose $y<c$. Pick $z \in G(y)$ with $y<z \leq c$. Then $\left[x_{n}, z\right]=[x, z] \subset[v, z] \subset G(y)$, so $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}, y, z$ is a tagged division of $[b, z]$ inside G. Thus $z \in S$; but $z>y$, and y is an upper bound for S. Contradiction.

Thus $y=c$. Finally $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}, y, y$ is a tagged division of $[b, c]$ inside G.

15. The definite integral

Definition 15.1. Let $b \leq c$ be real numbers. Let $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ be a tagged division of $[b, c]$. Let f be a function defined on $[b, c]$. The Riemann sum for f on $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ is $\left(x_{1}-x_{0}\right) f\left(t_{1}\right)+\cdots+\left(x_{n}-x_{n-1}\right) f\left(t_{n}\right)$.

For example, the Riemann sum for f on $0,1,4,5,6,6,7$ is $(4-0) f(1)+(6-4) f(5)+(7-$ 6) $f(6)$. This may be visualized as the sum of areas of three rectangles: one stretching from 0 to 4 horizontally with height $f(1)$, another from 4 to 6 with height $f(5)$, and another from 6 to 7 with height $f(6)$.

Definition 15.2. Let $b \leq c$ be real numbers. Let f be a function defined on $[b, c]$. Let I be a number. Then f has integral I on $[b, c]$ if, for every open ball E around I, there is a gauge G on $[b, c]$ such that E contains the Riemann sum for f on any tagged division of $[b, c]$ inside G.

Theorem 15.3. Let $b \leq c$ be real numbers. Let f be a function. If f has integral I on $[b, c]$ and f has integral J on $[b, c]$ then $I=J$.
Thus there is at most one number I such that f has integral I on $[b, c]$. If this number exists, it is called the integral of f from b to c, written $\int_{b}^{c} f$.

Proof. I will show that $|I-J|<2 \epsilon$ for any $\epsilon>0$.
By definition of integral, there is a gauge G on $[b, c]$ such that $\operatorname{Ball}(I, \epsilon)$ contains the Riemann sum for f on any tagged division of $[b, c]$ inside G.

Similarly, there is a gauge H on $[b, c]$ such that $\operatorname{Ball}(J, \epsilon)$ contains the Riemann sum for f on any tagged division of $[b, c]$ inside G.

Define $F(t)$ as the intersection of $G(t)$ and $H(t)$. Then F is a gauge on $[b, c]$. By Theorem 14.4, there is a tagged division x_{0}, \ldots, x_{n} of $[b, c]$ inside F.

Let R be the Riemann sum for f on x_{0}, \ldots, x_{n}. Observe that x_{0}, \ldots, x_{n} is inside both G and H, so $R \in \operatorname{Ball}(I, \epsilon)$ and $R \in \operatorname{Ball}(J, \epsilon)$. Hence $|I-J| \leq|I-R|+|R-J|<2 \epsilon$.

16. The fundamental theorem of calculus

Theorem 16.1. Let f be a differentiable function. Let $b \leq c$ be real numbers. Then $f(c)-f(b)=\int_{b}^{c} f^{\prime}$.

Proof. Pick $\epsilon>0$. I will construct a gauge G such that $\operatorname{Ball}(f(c)-f(b), \epsilon(c-b+1))$ contains the Riemann sum for f^{\prime} on any tagged division of $[b, c]$ inside G.
Fix $t \in[b, c]$. Since f is differentiable at t, there is a function f_{1}, continuous at t, such that $f(x)=f(t)+(x-t) f_{1}(x)$. By definition of continuity, $f_{1}(x)$ is within ϵ of $f_{1}(t)=f^{\prime}(t)$ for all x in some open ball around t. Define $G(t)$ as the union of all such balls. Then G is a gauge on $[b, c]$.

Observe that if $x, y \in G(t)$, with $x \leq t \leq y$, then $(y-x) f^{\prime}(t)$ is within $\epsilon(y-x)$ of $f(y)-f(x)$. Indeed, $\left|f_{1}(x)-f^{\prime}(t)\right|<\epsilon$ by definition of G, and $f(x)-f(t)=(x-t) f_{1}(x)$, so

$$
\left|f(x)-f(t)-(x-t) f^{\prime}(t)\right|=\left|(x-t)\left(f_{1}(x)-f^{\prime}(t)\right)\right| \leq \epsilon|x-t|
$$

Similarly $\left|f(y)-f(t)-(y-t) f^{\prime}(t)\right| \leq \epsilon|y-t|$. Thus $\left|f(y)-f(x)-(y-x) f^{\prime}(t)\right| \leq$ $\epsilon(|y-t|+|x-t|)$; and $|y-t|+|x-t|=y-x$.

Finally, say $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ is a tagged division of $[b, c]$ inside G. Then $x_{k-1}, x_{k} \in$ $G\left(t_{k}\right)$, with $x_{k-1} \leq t_{k} \leq x_{k}$, so $\left(x_{k}-x_{k-1}\right) f^{\prime}\left(t_{k}\right)$ is within $\epsilon\left(x_{k}-x_{k-1}\right)$ of $f\left(x_{k}\right)-f\left(x_{k-1}\right)$ as above. Thus the Riemann sum for f^{\prime} on $x_{0}, t_{1}, x_{1}, \ldots, t_{n}, x_{n}$ is within

$$
\sum_{1 \leq k \leq n} \epsilon\left(x_{k}-x_{k-1}\right)=\epsilon\left(x_{n}-x_{0}\right)=\epsilon(c-b)<\epsilon(c-b+1)
$$

of

$$
\sum_{1 \leq k \leq n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)=f\left(x_{n}\right)-f\left(x_{0}\right)=f(c)-f(b)
$$

as claimed.

17. Integration rules

Theorem 17.1. Let f be a function. Let $b \leq c$ be real numbers. If $\int_{b}^{c} f=I$ then $a f$ has integral aI on $[b, c]$ for any real number a.
In short $\int_{b}^{c} a f=a \int_{b}^{c} f$ if the right side is defined.
Proof. Pick $\epsilon>0$. Since $\int_{b}^{c} f=I$, there is a gauge G on $[b, c]$ such that $\operatorname{Ball}(I, \epsilon)$ contains the Riemann sum for f on any tagged division of $[b, c]$ inside G. The Riemann sum for $a f$ is exactly a times the Riemann sum for f, so it is inside $\operatorname{Ball}(a I,|a| \epsilon)$ for $a \neq 0$ or $\operatorname{Ball}(0, \epsilon)$ for $a=0$.

Theorem 17.2. Let f and g be functions. Let $b \leq c$ be real numbers. If $\int_{b}^{c} f=I$ and $\int_{b}^{c} g=J$ then $f+g$ has integral $I+J$ on $[b, c]$.

In short $\int_{b}^{c}(f+g)=\int_{b}^{c} f+\int_{b}^{c} g$ if the right side is defined.
Proof. Pick $\epsilon>0$. There is a gauge F on $[b, c]$ such that $\operatorname{Ball}(I, \epsilon)$ contains the Riemann sum for f on any tagged division of $[b, c]$ inside F; and there is a gauge G on $[b, c]$ such that $\operatorname{Ball}(J, \epsilon)$ contains the Riemann sum for g on any tagged division of $[b, c]$ inside G.

Define $H(t)=F(t) \cap G(t)$. Then H is a gauge on $[b, c]$. If x_{0}, \ldots, x_{n} is a tagged division of $[b, c]$ inside H, then x_{0}, \ldots, x_{n} is also inside both F and G, so the Riemann sums for f and g on x_{0}, \ldots, x_{n} are within ϵ of I and J respectively; thus the Riemann sum for $f+g$ on x_{0}, \ldots, x_{n} is within 2ϵ of $I+J$.

Theorem 17.3. Let f be a function. Let $a \leq b \leq c$ be real numbers. If $\int_{a}^{b} f=I$ and $\int_{b}^{c} f=J$ then f has integral $I+J$ on $[a, c]$.
In short $\int_{a}^{c} f=\int_{a}^{b} f+\int_{b}^{c} f$ if the right side is defined.
Proof. Pick $\epsilon>0$. There is a gauge G on $[a, b]$ such that $\operatorname{Ball}(I, \epsilon)$ contains the Riemann sum for f on any tagged division of $[a, b]$ inside G; there is a gauge H on $[b, c]$ such that $\operatorname{Ball}(J, \epsilon)$ contains the Riemann sum for f on any tagged division of $[b, c]$ inside H.

I define a new gauge as follows. For $t<b$ define $F(t)=\{x \in G(t): x<b\}$. For $t=b$ define $F(t)=G(t) \cap H(t)$. For $t>b$ define $F(t)=\{x \in H(t): x>b\}$.
Say x_{0}, \ldots, x_{n} is a tagged division of $[a, c]$ inside F. Then $b \in\left[x_{k-1}, x_{k}\right] \subset F\left(t_{k}\right)$ for some k; by construction of F, t_{k} must equal b. Now $x_{0}, t_{1}, x_{1}, \ldots, x_{k-1}, t_{k}, b$ is a tagged division of $[a, b]$ inside F, hence inside G. Thus the Riemann sum $\left(x_{1}-x_{0}\right) f\left(t_{0}\right)+$ $\cdots+\left(b-x_{k-1}\right) f\left(t_{k}\right)$ is within ϵ of I. Similarly the Riemann sum $\left(x_{k}-b\right) f\left(t_{k}\right)+\cdots+$ $\left(x_{n}-x_{n-1}\right) f\left(t_{n}\right)$ is within ϵ of J. Add: the Riemann sum $\left(x_{1}-x_{0}\right) f\left(t_{0}\right)+\cdots+\left(x_{k}-\right.$ $x_{k-1} f\left(t_{k}\right)+\cdots+\left(x_{n}-x_{n-1}\right) f\left(t_{n}\right)$ is within 2ϵ of $I+J$.

Theorem 17.4. Let f be a function. Let $b \leq c$ be real numbers. If f is nonnegative on $[b, c]$ and $\int_{b}^{c} f=I$ then I is nonnegative.

Proof. Pick $\epsilon>0$. Select an appropriate gauge G. By Theorem 14.4, there is an appropriate tagged division of $[b, c]$. The corresponding Riemann sum is nonnegative, so $I \geq-\epsilon$.

Part VI. Limits

18. Convergence and limits

Definition 18.1. Let f be a function. Then f converges to L at c if the function

$$
x \mapsto \begin{cases}L & \text { if } x=c \\ f(x) & \text { if } x \neq c\end{cases}
$$

is continuous at c.
Equivalent terminology: $f(x)$ converges to L as x approaches c.
By Theorem 2.2, there is at most one number L such that f converges to L at c. If this number exists, it is called the limit of f at c, or the limit of $f(x)$ as x approaches c, written $\lim _{x \rightarrow c} f(x)$. Note that f is continuous if and only if $\lim _{x \rightarrow c} f(x)=f(c)$.

Example: $\cos (1 / x)$ does not converge to 0 as x approaches 0 .

19. Limits of sums, products, and compositions

Theorem 19.1. Let f and g be functions. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ then $f(x)+g(x)$ converges to $L+M$ as x approaches c.

In short $\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$ if the right side is defined.
Proof. Replace $f(c)$ by L and $g(c)$ by M to obtain new functions a and b. Then a and b are continuous, so $a+b$ is continuous by Theorem 3.1.

Theorem 19.2. Let f and g be functions. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ then $f(x) g(x)$ converges to LM as x approaches c.

Proof. Theorem 3.2.

Theorem 19.3. Let f and g be functions. If $\lim _{x \rightarrow c} g(x)=L$, and f is continuous at L, then $f(g(x))$ converges to $f(L)$ as x approaches c.

In short $\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)$ if the right side is defined, provided that f is continuous.

Proof. Theorem 3.3.

20. L'Hôpital's rule

Theorem 20.1. Let f and g be real-valued functions differentiable at c. If $f(c)=g(c)=$ 0 , and $g^{\prime}(c) \neq 0$, then $f(x) / g(x)$ converges to $f^{\prime}(c) / g^{\prime}(c)$ as x approaches c.

For example, $\lim _{x \rightarrow 0}(x / \sin x)=1 / 1=1$, since $\sin ^{\prime}=\cos$ and $\cos 0=1 \neq 0$.
Proof. By assumption $f(x)=f(c)+(x-c) f_{1}(x)=(x-c) f_{1}(x)$ where f_{1} is continuous at c. Similarly $g(x)=(x-c) g_{1}(x)$ where g_{1} is continuous at c. By assumption $g_{1}(c)=$ $g^{\prime}(c) \neq 0$, so the function $x \mapsto f_{1}(x) / g_{1}(x)$ is continuous at c, with value $f_{1}(c) / g_{1}(c)$. Finally $f(x) / g(x)=f_{1}(x) / g_{1}(x)$ for $x \neq c$.

Theorem 20.2. Let f and g be differentiable real-valued functions. If $f(c)=g(c)=0$, and $\lim _{x \rightarrow c}\left(f^{\prime}(x) / g^{\prime}(x)\right)=L$, then $f(x) / g(x)$ converges to L as x approaches c.

Proof. Fix a ball E around L. There is a ball D around c such that $f^{\prime}(x) / g^{\prime}(x) \in E$ for all $x \in D$ with $x \neq c$. In particular, $g^{\prime}(x)$ is nonzero for $x \in D$. By Theorem 12.1, $g(y)$ is nonzero for $y \in D$.

I will show that $f(y) / g(y) \in E$ for all $y \in D$ with $y \neq c$. Thus $f(y) / g(y)$ converges to L as y approaches c.

Given $y \in D, y \neq c$, consider the function $h=(x \mapsto f(x) g(y)-f(y) g(x))$. Notice that h is differentiable, with $h^{\prime}(x)=f^{\prime}(x) g(y)-f(y) g^{\prime}(x)$.
Now $h(c)=f(c) g(y)-f(y) g(c)=0$, and $h(y)=f(y) g(y)-f(y) g(y)=0$, so there is some x between c and y with $h^{\prime}(x)=0$ by Theorem 12.1. Thus $f^{\prime}(x) g(y)=f(y) g^{\prime}(x)$. Both $g^{\prime}(x)$ and $g(y)$ are nonzero, so $f(y) / g(y)=f^{\prime}(x) / g^{\prime}(x) \in E$.

Theorem 20.2 may be used repeatedly. For example:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2} .
$$

99. Expository notes

Common practice in calculus books is to define continuity using limits. I define limits using continuity; continuity is a simpler concept.
"An open ball around c " is substantially easier to read than "for some $h>0$, the set of x such that $|x-c|<h$."

I use Carathéodory's definition of the derivative of f. The point is to give a name to the function $x \mapsto(f(x)-f(c)) /(x-c)$. I learned about this from an article by Stephen Kuhn in the Monthly. It's also used in the second edition of Apostol's text.

My proof of Theorem 6.2 uses the formula $h_{1}(x)=f_{1}(x) g(x)+f(c) g_{1}(x)$, which is shorter than the (more obvious) formula $h_{1}(x)=f_{1}(x) g(c)+f(c) g_{1}(x)+(x-c) f_{1}(x) g_{1}(x)$. I was reminded of this simplification by a letter in the Monthly from Günter Pickert.

The Heine-Borel theorem follows immediately from Theorem 14.4. See Botsko's 1987 Monthly article for this approach to all the basic completeness theorems. Thanks to Joe Buhler for the reference.

I follow the Kurzweil-Henstock approach to integration. The resulting integral is more general than the Lebesgue integral; it is equivalent to the integrals constructed by Denjoy and Perron. There is no need for any technical conditions in the fundamental theorem of calculus, Theorem 16.1; every derivative is integrable. I learned about this from advertisements by Robert G. Bartle in the Bulletin and the Monthly.

