
PROVING PRIMALITY AFTER AGRAWAL-KAYAL-SAXENA

DANIEL J. BERNSTEIN

1. Introduction

Section 2 presents three theorems concluding, under various assumptions, that
n is a prime power:

• Theorem 2.1 is the original Agrawal-Kayal-Saxena theorem.
• Theorem 2.2 is a special case of Lenstra’s variant.
• Theorem 2.3 is the general case of Lenstra’s variant.

For the reader’s convenience, the theorems are arranged in order of difficulty, and
a separate proof is provided for each theorem.

Section 3 explains why PRIMES is in P. A proof based on Theorem 2.3 is much
simpler than a proof based on Theorem 2.1: thanks to Lenstra, no analytic number
theory is needed. Section 3 also summarizes previous results on the PRIMES-in-P
problem.

The rest of the paper looks much more closely at algorithm speed, and discusses
ways that the Agrawal-Kayal-Saxena computation can be accelerated:

• Section 4 summarizes the state of the art.
• Section 5 discusses the computation of (x+b)n in the ring (Z/n)[x]/(xr−1).
• Sections 6, 7, and 8 discuss several “high-level” improvements.

These sections consider the speed that algorithms are reasonably conjectured to
have, not the speed that we can prove. For example, it is conjectured that any
integer n ≥ 2 is a primitive root modulo r for many primes r in any reasonably
large interval. This means that one can easily find numbers r suitable for Theorem
2.2, so the extra generality of Theorem 2.3 is unnecessary.

Sometimes people combine the handicaps of (1) insisting on proof and (2) looking
at time in detail: they try to minimize the proven upper bound for the run time.
This paper does not currently discuss these efforts.

Pedro Berrizbeitia on 2002.11.22 proposed a variant of the Agrawal-Kayal-Saxena
approach, using high-power-of-2 roots of a non-square rather than rth roots of 1. I
have not yet investigated this variant.
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2. The core theorems

Theorem 2.1 (2002.08.06; Manindra Agrawal, Neeraj Kayal, and Nitin Saxena).
Let n be a positive integer. Let q and r be prime numbers. Let S be a finite
set of integers. Assume that q divides r − 1; that n(r−1)/q mod r /∈ {0, 1}; that

gcd {n, b− b′} = 1 for all distinct b, b′ ∈ S; that
(
#S+q−1

#S

)
≥ n2b√rc; and that

(x+ b)n = xn + b in the ring (Z/n)[x]/(xr − 1) for all b ∈ S. Then n is a power of
a prime.

The theorem actually stated in the Agrawal-Kayal-Saxena paper is that n is
prime if a particular algorithm prints 1. That algorithm constrains q, r, and S
much more heavily than Theorem 2.1 does, as discussed in Section 4 of this paper.
Theorem 2.1 is my 2002.08.10 statement of the properties of q, r, and S used in
the Agrawal-Kayal-Saxena proof. (My main contribution to the statement was the

inequality
(
#S+q−1

#S

)
≥ n2b√rc. Carl Pomerance had pointed out that varying S

was useful, and that q need not be the largest prime divisor of r − 1.)

Proof. Find a prime divisor p of n such that p(r−1)/q mod r /∈ {0, 1}. (If every
prime divisor p of n has p(r−1)/q mod r ∈ {0, 1} then n(r−1)/q mod r ∈ {0, 1}.)

By hypothesis, (x + b)n = xn + b in Fp[x]/(xr − 1) for all b ∈ S. Substitute

xni

for x: (xni

+ b)n = xni+1

+ b in Fp[x]/(xnir − 1), hence in Fp[x]/(xr − 1). By

induction, (x + b)n
i

= xni

+ b in Fp[x]/(xr − 1) for all i ≥ 0. By Fermat’s little

theorem, (x + b)n
ipj

= (xni

+ b)p
j

= xnipj

+ b in Fp[x]/(xr − 1) for all j ≥ 0.
Consider the products nipj with 0 ≤ i ≤ b

√
rc and 0 ≤ j ≤ b

√
rc; note that

1 ≤ nipj ≤ n2b√rc. There are (b
√
rc+1)2 > r pairs (i, j), so there are distinct pairs

(i, j), (k, `) such that nipj ≡ nkp` (mod r). Write t = nipj and u = nkp`. Then
xt = xu in Fp[x]/(xr− 1), so (x+ b)t = xt + b = xu + b = (x+ b)u in Fp[x]/(xr− 1)

for all b ∈ S. Note that |t− u| < n2b√rc.
Find an irreducible polynomial h in Fp[x] dividing (xr − 1)/(x− 1). A standard

fact about cyclotomic polynomials is that deg h is the order of p modulo r; so deg h
is a multiple of q; so deg h ≥ q.

Now (x + b)t = (x + b)u in the finite field Fp[x]/h for all b ∈ S. Note that
x + b ∈ (Fp[x]/h)∗, since deg h ≥ q ≥ 2. Define G as the subgroup of (Fp[x]/h)∗

generated by {x + b : b ∈ S}; then gt = gu for all g ∈ G.

G has at least
(
#S+q−1

#S

)
≥ n2b√rc > |t− u| elements: namely, all products∏

b∈S(x + b)eb with
∑

b eb ≤ q − 1. (The irreducibles x + b are distinct in Fp[x],
because each difference (x + b) − (x + b′) = b − b′ is coprime to n by hypothesis;
so these products

∏
b(x + b)eb are distinct in Fp[x]. These products have degree

smaller than q, hence smaller than deg h, so they remain distinct modulo h.)
Thus t = u. (The equation gt = gu cannot have more than |t− u| nonzero

solutions in a field unless t = u.) In other words, nipj = nkp`. If i = k then pj = p`

so (i, j) = (k, `), contradiction. Consequently n is a power of p. �

This proof has been streamlined in several ways. For example, Agrawal, Kayal,
and Saxena multiplied equations xn + b = (x + b)n to obtain g(xn) = g(x)n, and
then obtained gt = gu by various substitutions; I noticed on 2002.08.10 that it is
easier to substitute first and multiply later. Agrawal, Kayal, and Saxena took a
generator g for the group G, and concluded from gt = gu that t = u; Kiran Kedlaya
pointed out on 2002.11.02 that it is easier to count solutions of gt = gu.
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Theorem 2.2 (2002.08.14; Manindra Agrawal, Neeraj Kayal, Nitin Saxena, and
Hendrik W. Lenstra, Jr.). Let n and r be positive integers. Let S be a finite set of
integers. Assume that n is a primitive root modulo r; that gcd {n, b− b′} = 1 for

all distinct b, b′ ∈ S; that
(
#S+ϕ(r)−1

#S

)
≥ n2b

√
ϕ(r)c; and that (x + b)n = xn + b in

the ring (Z/n)[x]/(xr − 1) for all b ∈ S. Then n is a power of a prime.

Theorem 2.2 is narrower than Theorem 2.1 in one way: it requires that n be a
primitive root modulo r, not merely that n(r−1)/q mod r /∈ {0, 1}. On the other

hand, Theorem 2.2 requires only
(
#S+ϕ(r)−1

#S

)
≥ n2b

√
ϕ(r)c instead of

(
#S+q−1

#S

)
≥

n2b√rc, and it drops the requirement that r be prime.
Theorem 2.2 is the special case v = ϕ(r) of Theorem 2.3.

Proof. If n = 1 then n is a power of a prime, so assume that n ≥ 2. Let p be a
prime divisor of n.

By hypothesis, (x + b)n = xn + b in Fp[x]/(xr − 1) for all b ∈ S. Substitute

xni

for x: (xni

+ b)n = xni+1

+ b in Fp[x]/(xnir − 1), hence in Fp[x]/(xr − 1). By

induction, (x + b)n
i

= xni

+ b in Fp[x]/(xr − 1) for all i ≥ 0. By Fermat’s little

theorem, (x + b)n
ipj

= (xni

+ b)p
j

= xnipj

+ b in Fp[x]/(xr − 1) for all j ≥ 0.
Consider the products nipj with 0 ≤ i ≤ b

√
ϕ(r)c and 0 ≤ j ≤ b

√
ϕ(r)c; note

that 1 ≤ nipj ≤ n2b
√

ϕ(r)c. Each nipj mod r lies in a set (Z/r)∗ of size ϕ(r), and
there are (b

√
ϕ(r)c+ 1)2 > ϕ(r) pairs (i, j), so there are distinct pairs (i, j), (k, `)

such that nipj ≡ nkp` (mod r). Write t = nipj and u = nkp`. Then xt = xu in
Fp[x]/(xr − 1), so (x + b)t = xt + b = xu + b = (x + b)u in Fp[x]/(xr − 1) for all

b ∈ S. Note that |t− u|+ 1 ≤ n2b
√

ϕ(r)c.
Find an irreducible polynomial h in Fp[x] dividing the rth cyclotomic polynomial

Φr. Define G as the subset of Fp[x]/h generated under multiplication by {0} ∪
{x + b : b ∈ S}. Then gt = gu for all g ∈ G.

G has at least 1 +
(
#S+ϕ(r)−1

#S

)
> n2b

√
ϕ(r)c ≥ |t− u| + 1 elements: namely, 0,

and all products
∏

b∈S(x + b)eb with
∑

b eb ≤ ϕ(r)− 1. (The irreducibles x + b are
distinct in Fp[x], because each difference (x + b) − (x + b′) = b − b′ is coprime to
n by hypothesis. Thus these products

∏
b(x + b)eb , along with 0, are distinct in

Fp[x]; it suffices to show that they are distinct in Fp[x]/h. Say e =
∏

b(x + b)eb ;
f =

∏
b(x + b)fb or f = 0; and e = f in Fp[x]/h. Then

en
a

=
∏
b

(x + b)n
aeb =

∏
b

(xna

+ b)eb = e(xna

)

in Fp[x]/h for all a ≥ 0; similarly fna

= f(xna

) in Fp[x]/h for all a ≥ 0; so e(xna

) =

f(xna

) in Fp[x]/h. Write g = e− f . If c ∈ {0, 1, . . . , r − 1} and gcd {r, c} = 1 then

c ≡ na (mod r) for some a, so g(xc) = g(xna

) in Fp[x]/(xr − 1), so g(xc) = 0 in
Fp[x]/h; i.e., yc is a root of g in the field Fp[y]/h(y). The powers yc are distinct in
Fp[y]/h(y), so

∏
c(x− yc) = Φr divides g in (Fp[y]/h(y))[x], hence in Fp[x]. Thus

e = f in Fp[x]/Φr. Both e and f have degree smaller than ϕ(r) = deg Φr, so e = f
in Fp[x].)

Thus t = u. (The equation gt = gu cannot have more than |t− u|+ 1 solutions
in a field unless t = u.) In other words, nipj = nkp`. If i = k then pj = p` so
(i, j) = (k, `), contradiction. Consequently n is a power of p. �



4 DANIEL J. BERNSTEIN

Theorem 2.3 (2002.08.14; Manindra Agrawal, Neeraj Kayal, Nitin Saxena, and
Hendrik W. Lenstra, Jr.). Let n, r, and v be positive integers. Let S be a finite
set of integers. Assume that n and r are coprime; that n has order v modulo r;

that gcd {n, b− b′} = 1 for all distinct b, b′ ∈ S; that
(
#S+ϕ(r)−1

#S

)
≥ n2db

√
ϕ(r)/dc

for every positive integer d dividing ϕ(r)/v; and that (x + b)n = xn + b in the ring
(Z/n)[x]/(xr − 1) for all b ∈ S. Then n is a power of a prime.

Proof. If n = 1 then n is a power of a prime, so assume that n ≥ 2. Let p be a
prime divisor of n.

Define d = #((Z/r)∗/〈n, p〉). Lift (Z/r)∗/〈n, p〉 to positive integers m1, . . . ,md.
Note that v = # 〈n〉 divides # 〈n, p〉 = ϕ(r)/d, so d divides ϕ(r)/v.

By hypothesis, (x + b)n = xn + b in Fp[x]/(xr − 1) for all b ∈ S. Substitute

xni

for x: (xni

+ b)n = xni+1

+ b in Fp[x]/(xnir − 1), hence in Fp[x]/(xr − 1). By

induction, (x + b)n
i

= xni

+ b in Fp[x]/(xr − 1) for all i ≥ 0. By Fermat’s little

theorem, (x + b)n
ipj

= (xni

+ b)p
j

= xnipj

+ b in Fp[x]/(xr − 1) for all j ≥ 0.

Substitute xmw for x: (xmw + b)nip
j

= xnipjmw + b in Fp[x]/(xr − 1).
Consider the products nipj with 0 ≤ i ≤ b

√
ϕ(r)/dc and 0 ≤ j ≤ b

√
ϕ(r)/dc;

note that 1 ≤ nipj ≤ n2b
√

ϕ(r)/dc. Each nipj mod r lies in a set 〈n, p〉 of size
ϕ(r)/d, and there are (b

√
ϕ(r)/dc+ 1)2 > ϕ(r)/d pairs (i, j), so there are distinct

pairs (i, j), (k, `) such that nipj ≡ nkp` (mod r). Write t = nipj and u = nkp`.
Then xt = xu in Fp[x]/(xr−1), so (xmw + b)t = xtmw + b = xumw + b = (xmw + b)u

in Fp[x]/(xr − 1) for all b ∈ S and all w. Note that |t− u|+ 1 ≤ n2b
√

ϕ(r)/dc.
Find an irreducible polynomial h in Fp[x] dividing the rth cyclotomic polynomial

Φr. Define G as the subset of Fp[x]/h generated under multiplication by {0} ∪
{xm1 + b : b ∈ S} ∪ · · · ∪ {xmd + b : b ∈ S}. Then gt = gu for all g ∈ G.

The subset Gd of (Fp[x]/h)d has at least 1 +
(
#S+ϕ(r)−1

#S

)
> n2db

√
ϕ(r)/dc ≥

(|t− u|+1)d elements: namely, all vectors (
∏

b∈S(xm1 + b)eb , . . . ,
∏

b∈S(xmd + b)eb)
with

∑
b eb ≤ ϕ(r) − 1, along with the zero vector. (The irreducibles x + b are

distinct in Fp[x], because each difference (x + b) − (x + b′) = b − b′ is coprime
to n by hypothesis. Thus the products

∏
b(x + b)eb , along with 0, are distinct in

Fp[x]; it suffices to show that they have distinct images in (Fp[x]/h)d under the
map e 7→ (e(xm1), e(xm2), . . . , e(xmd)). Say e =

∏
b(x + b)eb ; f =

∏
b(x + b)fb or

f = 0; and e(xmw) = f(xmw) in Fp[x]/h for all w. Then

e(xmw)n
apv

=
∏
b

(xmw + b)n
apveb =

∏
b

(xnapvmw + b)eb = e(xnapvmw)

in Fp[x]/h for all a, v, w; similarly f(xmw)n
apv

= f(xnapvmw) in Fp[x]/h for all

a, v, w; so e(xnapvmw) = f(xnapvmw) in Fp[x]/h. Write g = e − f . If c ∈
{0, 1, . . . , r − 1} and gcd {r, c} = 1 then c ≡ napvmw (mod r) for some a, v, w, so
g(xc) = g(xnapvmw) in Fp[x]/(xr−1), so g(xc) = 0 in Fp[x]/h; i.e., yc is a root of g
in the field Fp[y]/h(y). The powers yc are distinct in Fp[y]/h(y), so

∏
c(x−yc) = Φr

divides g in (Fp[y]/h(y))[x], hence in Fp[x]. Thus e = f in Fp[x]/Φr. Both e and
f have degree smaller than ϕ(r) = deg Φr, so e = f in Fp[x].)

Thus G has more than |t− u| + 1 elements; so t = u. (The equation gt = gu

cannot have more than |t− u|+ 1 solutions in a field unless t = u.) In other words,
nipj = nkp`. If i = k then pj = p` so (i, j) = (k, `), contradiction. Consequently n
is a power of p. �
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3. PRIMES is in P

What it means. “PRIMES ∈ P” means that there is a deterministic polynomial-
time algorithm A such that A(i) = 1 if and only if i is the decimal expansion of a
prime number. PRIMES is, by definition, the set of those decimal expansions. P
is the set of languages recognizable by deterministic polynomial-time algorithms.

“Deterministic” means that the operations carried out by the algorithm are
determined entirely by (1) the algorithm and (2) the input. In particular, the
algorithm does not make any random choices. “Polynomial time” means that there
is some polynomial p such that, for every string i, the algorithm takes at most
p(length of i) seconds on input i.

It is important to specify the representation of numbers as strings—in this case,
as decimal expansions—because the time needed for a computation depends heavily
on the input representation. For example, one could represent a positive integer in
factored form as a sequence of decimal expansions of primes; addition of integers
would then be horribly difficult, but checking primality would be very easy.

How it is proven. The shortest known proof that PRIMES ∈ P uses Theorem
2.3. Here is a suitable algorithm A, suggested 2002.08.13 by Lenstra:

• Check whether the input is the decimal expansion of a positive integer. If
not, print 0 and stop.
• Check whether that positive integer n is a perfect power: a square, a cube,

etc. If so, print 0 and stop: n is not prime.

• Compute N = 2n(n−1)(n2−1)(n3−1) · · · (n4dlgne2−1). Find the smallest
prime number r that does not divide N . (Proof that r is bounded by
a polynomial: Note that n > 1 so N > 0. There is a positive integer
k ∈ (8 + o(1))(lg n)5 such that N < 2k. Chebyshev showed that the primes
≤ 2k have product at least 2k, so they cannot all divide N . Thus r ≤ 2k.)
• Check whether n is equal to any prime below r. If so, print 1 and stop: n

is prime.
• Check whether n is divisible by any prime below r. If so, print 0 and stop:
n is composite.
• Check whether (x+ b)n = xn + b in the ring (Z/n)[x]/(xr − 1) for all b ∈ S

where S = {1, 2, . . . , r}. If not, print 0 and stop: n is composite.
• Print 1 and stop: n is a prime power by Theorem 2.3, and therefore a prime.

(By construction, r and n are coprime; all differences ±1,±2, . . . ,±(r − 1)
of elements of S are coprime to n; and the order v of n modulo r is larger
than 4dlg ne2. If d is a positive integer dividing ϕ(r)/v then d ≤ ϕ(r)/v <
ϕ(r)/4(lg n)2, so 2d b

√
ϕ(r)/dc ≤ 2d

√
ϕ(r)/d =

√
4dϕ(r) ≤ ϕ(r)/ lg n, so

n2db
√

ϕ(r)/dc ≤ 2ϕ(r). But
(
#S+ϕ(r)−1

#S

)
=
(

2ϕ(r)
ϕ(r)+1

)
≥ 2ϕ(r) since ϕ(r) ≥ 2.)

This takes polynomial time, using standard polynomial-time subroutines for basic
arithmetic, power detection, prime enumeration, and modular exponentiation.

The original 2002.08.06 Agrawal-Kayal-Saxena PRIMES ∈ P proof used a much
more difficult 1985 theorem of Fouvry: there are many primes r such that r−1 has
a prime divisor q exceeding r2/3. (Pomerance pointed out that one could instead
use a 1969 theorem of Goldfeld, with 2/3 replaced by something slightly larger than
1/2.) Consequently one can find reasonably small q, r with q ≥ 4 d

√
re dlg ne and

n(r−1)/q mod r /∈ {0, 1}. The set S = {1, 2, . . . , 2 d
√
re dlg ne} then satisfies the
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inequality
(
#S+q−1

#S

)
≥ n2b√rc in Theorem 2.1. One checks as above whether n is

a perfect power, whether n has a small prime factor, and whether the equations
(x + b)n = xn + b hold in (Z/n)[x]/(xr − 1).

Previous work, part 1: proving compositeness. Every composite integer n
has a very short proof of its compositeness: namely, a nontrivial divisor of n.
In short: “PRIMES ∈ coNP.” For example, the integer 314159265358979323 is
composite, because it is divisible by 317213509. (I should be saying “certificate”
rather than “proof,” but the distinction doesn’t matter here.)

Unfortunately, for many composite integers n, these proofs are difficult to find.
The fastest known algorithm is the number field sieve, which is conjectured to take
time exp(O((lg n)1/3(lg lg n)2/3)); much slower than polynomial time.

Another approach: if n does not divide 2n−2 then n is composite. For almost all
composite integers n, this test quickly proves the compositeness of n. Unfortunately,
a few composite integers n cannot be proven composite in this way.

Artjuhov 1966, et al.: If n ∈ 5 + 8Z divides none of b, b(n−1)/2 + 1, b(n−1)/4 + 1,
b(n−1)/4−1 then n is composite. Similar comments apply for n ∈ 3+4Z, n ∈ 9+16Z,
etc. This test takes polynomial time.

Miller 1976, and Oesterlé 1979: If the generalized Riemann hypothesis is true,
and n is composite, then Artjuhov’s test proves n composite for some positive
integer b ≤ 34(lg n)2. In short: “GRH implies PRIMES ∈ P.” The only problem
here is that we don’t have a proof of GRH.

Rabin 1976, Solovay-Strassen 1977 (variant), Monier 1980, and Atkin-Larson
1982: If n is composite, then Artjuhov’s test proves n composite for at least 75%
of all b’s in {1, 2, . . . , n− 1}. Trying Artjuhov’s test for a bunch of random b’s thus
has an excellent chance of proving n composite. In short: “PRIMES ∈ coRP.” (It
is widely believed that BPP = coRP = RP = P.)

Previous work, part 2: proving primality. Every prime has a short proof of
primality using an 1876 theorem of Lucas: if q1, . . . , qt are prime, n− 1 = q1 · · · qt,
n divides an−1 − 1, and n does not divide a(n−1)/q1 − 1, . . . , a(n−1)/qt − 1, then n
is prime. In short: “PRIMES ∈ NP.” However, these proofs are difficult to find
when n− 1 is difficult to factor.

Pocklington 1914, Morrison 1975, Brillhart-Lehmer-Selfridge 1975, Adleman-
Pomerance-Rumely 1979: Improved “cyclotomic primality-proving algorithms,”
given any integer n, prove the primality of n in time exp(O(lg lg n lg lg lg n)). This
is, unfortunately, a little slower than polynomial time.

Goldwasser-Kilian 1986, using Schoof 1985: The “elliptic-curve primality-proving
algorithm” uses randomness, takes polynomial time, and is conjectured to have a
good chance of finding a proof that n is prime. A variant (Adleman-Huang 1992)
is proven to have a good chance. In short: “PRIMES ∈ RP.”

Given an integer n, we can try both a compositeness-proving algorithm and a
primality-proving algorithm in polynomial time, and repeat until one of the methods
succeeds. The result—just like the result of the Agrawal-Kayal-Saxena algorithm—
is either a proof that n is composite or a proof that n is prime. (“PRIMES ∈ ZPP”;
by definition, ZPP = RP ∩ coRP.) However, this could take a huge number of
repetitions if we are extremely unlucky. In contrast, the Agrawal-Kayal-Saxena
algorithm uses no randomness and always finishes in polynomial time.
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4. Speedups

How do we find, as quickly as possible, a proof that a given integer n is prime?
Here are some of the answers before Agrawal, Kayal, and Saxena:

• First find a proof of the Riemann hypothesis. Then use the Miller-Oesterlé
method, with speedups by Bach. This is not a satisfactory answer: we’re
still having trouble with the first step.
• Use the cyclotomic primality-proving method, with speedups by Cohen,

Lenstra, Bosma, van der Hulst, and Mihailescu. This approach proves the
primality of 2000-digit numbers in roughly 1014 clock cycles.
• Use the elliptic-curve primality-proving method, with speedups by Atkin

and Morain. This approach proves the primality of 2000-digit numbers in
roughly 1015 clock cycles.

Does the Agrawal-Kayal-Saxena idea save any time here?

Speed of the algorithm, with improvements. As discussed in Section 5, the
Agrawal-Kayal-Saxena computation involves ≈ #S lg n squarings of integers having
≈ 2r lg n bits. The computation can be accelerated with “low-level” speedups in
integer squaring and with “high-level” improvements in the size of r and #S. One
way to view the progress of “high-level” improvements is to watch the conjectured
asymptotics for the product r#S:

• r#S/(lg n)4 ∈ 1024 + o(1), with #S/r ∈ 0.25 + o(1): Original algorithm.
(2002.08.06, Agrawal, Kayal, Saxena.)
• r#S/(lg n)4 ∈ 2.2575 . . . + o(1), with #S/r ∈ 8.746 . . . + o(1): Choose r

and #S, subject to the condition
(
#S+q−1

#S

)
≥ n2b√rc in Theorem 2.1, to

minimize the time spent by the algorithm. (2002.08.11, Bernstein.)
• r#S/(lg n)4 ∈ 0.017637 . . . + o(1), with #S/r ∈ 17.492 . . . + o(1): Increase

the degree bound from q to ϕ(r) (2002.08.13, Lenstra); replace p, n with
p, n/p (2002.08.13, Lenstra); and re-optimize parameters with the condition(
#S+ϕ(r)−1

#S

)
≥ nb

√
ϕ(r)c. See Section 7 and Section 8.

• r#S/(lg n)4 ∈ 0.0044093 . . .+ o(1), with #S/r ∈ 17.492 . . .+ o(1): Balance

p and n/p (2002.08.26, Bjorn Poonen), and re-optimize with
(
#S+ϕ(r)−1

#S

)
≥

nd
√

ϕ(r)/2e. See Section 8.
• r#S/(lg n)4 ∈ 0.0022046 . . .+o(1), with #S/r ∈ 8.746 . . .+o(1): Substitute

1/x for x (2002.08.28, Felipe Voloch), and re-optimize with
(
2#S+ϕ(r)−1

2#S

)
≥

nd
√

ϕ(r)/2e. See Section 6.
• r#S/(lg n)4 ∈ 0.0011324 . . . + o(1), with #S/r ∈ 5.0399 . . . + o(1) and
d/r ∈ 0.4993 . . . + o(1): Use negative powers of x + b (2002.09.13, Voloch),

and re-optimize with
(
2#S+d
2#S

)(
2#S+ϕ(r)−2d−1

2#S−d
)
≥ nd

√
ϕ(r)/2e. See Section

7.
• r#S/(lg n)4 ∈ 0.00050329 . . . + o(1), with #S/r ∈ 5.0399 . . . + o(1) and
d/r ∈ 0.4993 . . . + o(1): Use Minkowski’s theorem (2002.12.23, Lenstra),

and re-optimize with
(
2#S+d
2#S

)(
2#S+ϕ(r)−1−2d

2#S−d
)
≥ nd

√
ϕ(r)/3e. See Section

8.
• r#S/(lg n)4 ∈ 0.0005026686484 . . . + o(1), with #S/r ∈ 4.983781039 . . . +
o(1), d/r ∈ 0.5 +o(1), and i/r, j/r ∈ 0.4749814378 . . .+o(1): Use a slightly
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better lower bound (2003.01.24, Jeff Vaaler) for the number of negative-

power combinations, and re-optimize with
(
2#S
i

)(
d
i

)(
2#S−i

j

)(
ϕ(r)−1−d

j

)
≥

nd
√

ϕ(r)/3e.
Thus the algorithm has been sped up by a factor of 2037127.2 . . .+o(1). Presumably
the o(1) here is positive and fairly large for typical input sizes: reducing r has
slightly more than a linear impact on integer-multiplication time. Of course, “two
million times faster” does not mean “fast.”

How the improved algorithm works. The following theorem incorporates all
of the above improvements into Theorem 2.2:

Theorem 4.1. Let n and r be positive integers. Let d, i, and j be nonnegative
integers. Let S be a finite set of integers with 0, 1,−1 /∈ S. Assume that n is a
primitive root modulo r; that ϕ(r) ≥ 2; that gcd {n, bb′ − 1} = 1 for all b, b′ ∈ S;

that gcd {n, b− b′} = 1 for all distinct b, b′ ∈ S; that
(
2#S
i

)(
d
i

)(
2#S−i

j

)(
ϕ(r)−1−d

j

)
≥

nd
√

ϕ(r)/3e; that bn−1 = 1 in the ring Z/n for all b ∈ S; and that (x+ b)n = xn + b
in the ring (Z/n)[x]/(xr − 1) for all b ∈ S. Then n is a power of a prime.

One uses this theorem as follows, given a positive integer n. Check whether n is
a perfect power; if so, n is composite. Select an integer r0 ≥ 3. Find the smallest
prime r ≥ r0 such that n is a primitive root modulo r. Select an integer d between
0 and ϕ(r)− 1. Select an integer i between 0 and d. Select an integer j between 0
and ϕ(r)− 1− d. Select an integer s ≥ 0 such that(

2s

i

)(
d

i

)(
2s− i

j

)(
ϕ(r)− 1− d

j

)
≥ nd

√
ϕ(r)/3e.

Define S = {2, 3, . . . , s + 1}. Check whether gcd {n, b} = 1 for all b ∈ S; if not,
the primality of n is easily determined, since n has a small factor. Check whether
gcd {n, bb′ − 1} = 1 for all b, b′ ∈ S; if not, the primality of n is easily determined.
Check whether gcd {n, b− b′} = 1 for all distinct b, b′ ∈ S; if not, the primality of
n is easily determined. Check whether bn−1 = 1 in Z/n for all b ∈ S; if not, n is
composite. Check whether (x + b)n = xn + b in (Z/n)[x]/(xr − 1) for all b ∈ S; if
not, n is composite. Finally, n is prime by Theorem 4.1.

The best choice of r0 depends on the speed of integer arithmetic. The choice
r0 ≈ 0.01(lg n)2 is close to asymptotically optimal, but somewhat smaller choices
are better for reasonable sizes of n. Having found r, one can select d ≈ 0.5ϕ(r),
select i = j ≈ 0.475ϕ(r), and then find the smallest possible s by binary search;
there is ample time to compute the binomial coefficients.

One can precompute a table of reasonable choices (r, d, i, j, s, n0) such that(
2s

i

)(
d

i

)(
2s− i

j

)(
ϕ(r)− 1− d

j

)
≥ n
d
√

ϕ(r)/3e
0 .

If n is a primitive root modulo r, and n ≤ n0, then one can use (r, d, i, j, s) for n.
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5. Exponentiation

The bottleneck in the Agrawal-Kayal-Saxena computation is calculating (x+b)n

in the ring (Z/n)[x]/(xr − 1) for each b ∈ S. The standard way to do this involves
≈ #S lg n squarings in (Z/n)[x]/(xr − 1) and a very small amount of additional
work.

How, then, do we square an element of (Z/n)[x]/(xr − 1)? One answer: Define
k =

⌈
lg rn2

⌉
. Lift to Z[x]/(xr − 1), obtaining a polynomial whose coefficients are

between 0 and n− 1. Note that the square has coefficients smaller than rn2 ≤ 2k.
(One can decrease k a bit by using coefficients between −n/2 and n/2.) Map to
Z/(2kr−1) by x 7→ 2k. Multiply in Z/(2kr−1). Recover the product in Z[x]/(xr−1).
Reduce each coefficient modulo n to obtain the product in (Z/n)[x]/(xr − 1).

So the computation boils down to ≈ #S lg n squarings of big integers modulo
2kr − 1, and ≈ r#S lg n reductions modulo n of integers below 2k. One can do
each squaring in time O(kr lg kr lg lg kr) = O(r lg n lg(r lg n) lg lg(r lg n)), and one
can do each reduction in time O(lg n lg lg n lg lg lg n), by standard fast-arithmetic
techniques. Total time: O(r#S(lg n)2 lg(r lg n) lg lg(r lg n)).

The widely available GMP library takes roughly 100 clock cycles per output bit
for big-integer squaring. Every improvement in this time produces a corresponding
improvement in the speed of the Agrawal-Kayal-Saxena computation.

Factoring the modulus. If r is even, one can factor xr − 1 into xr/2 − 1 and
xr/2 +1, and perform separate computations modulo xr/2−1 and xr/2 +1. Various
other factorizations are possible, depending on r and n; but most factorizations are
a waste of time.
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6. Substitution

This section identifies a finite coprime set T of monic non-constant polynomials
f ∈ (Z/n)[x] such that fn = f(xn) in (Z/n)[x]/(xr−1). Here coprime means that
any distinct f, g ∈ T satisfy f(Z/n)[x] + g(Z/n)[x] = (Z/n)[x]. The next section
will consider products of elements of T ; coprimality will ensure that these products
are all different.

Select a finite set S of integers; for example, the Agrawal-Kayal-Saxena algorithm
chooses S = {−1,−2, . . . ,−s}. Compute (x+b)n in (Z/n)[x]/(xr−1) for each b ∈ S,
as explained in Section 5. Check that (x + b)n = xn mod r + b in (Z/n)[x]/(xr − 1);
if this fails then n is composite. Now (x + b)n = xn + b.

The Agrawal-Kayal-Saxena algorithm chooses T as {x + b : b ∈ S}. Checking
the coprimality of T means checking that n is coprime to the differences b − b′ of
distinct elements b, b′ ∈ S. If this fails then the primality of n is easily determined,
provided that the elements of S are reasonably small. The same proviso will be
assumed throughout the following discussion.

Substituting 1/x for x. Voloch on 2002.08.28 suggested doubling the size of T
by choosing T as {x + b : b ∈ S} ∪ {x + 1/b : b ∈ S}.

Assume that 0 /∈ S, 1 /∈ S, and −1 /∈ S. Check that bn = b in Z/n for all b ∈ S;
if this fails then n is composite. Check that b (which is nonzero) is coprime to n
for all b ∈ S, that b− b′ (which is nonzero) is coprime to n for all distinct b, b′ ∈ S,
and that bb′ − 1 (which is nonzero) is coprime to n for all b, b′ ∈ S; if any of this
fails then the primality of n is easily determined.

Fix b ∈ S. Check that (x + b)n = xn + b in (Z/n)[x]/(xr − 1). Substitute 1/x
for x, multiply by xn, and divide by bn = b, to see that (x + 1/b)n = xn + 1/b.

The polynomials x + b and x + b′ are coprime for all distinct b, b′ ∈ S: their
difference b− b′ is a unit. The polynomials x+ 1/b and x+ 1/b′ are coprime for all
distinct b, b′ ∈ S: their difference (b′ − b)/bb′ is a unit. The polynomials x + b and
x + 1/b′ are coprime for all b, b′ ∈ S: their difference (bb′ − 1)/b′ is a unit.

Voloch comments that one can often skip the tests of bn = b in Z/n: substituting
x = 1 in (x + b)n = xn + b produces (1 + b)n = 1 + b. But these tests are too fast
to worry about.

Substituting x2 for x. On 2002.08.31, I suggested including x2 + b and x2 + 1/b,
and perhaps x3 + b etc. One has to exclude squares from S, check that b2 − b′

(which is nonzero) is coprime to n for all b, b′ ∈ S, and check that b2b′−1 (which is
nonzero) is coprime to n for all b, b′ ∈ S. Further checks are necessary with x3 + b
etc.

This can be combined with the negative-powers idea discussed in Section 7. It
should save a small percentage in the numbers in Section 4; the importance of
a polynomial in T drops dramatically as its degree grows, but there’s still some
benefit. I haven’t done the necessary calculations yet.

Substituting −x for x. If r is even then (x+b)n = xn+b implies (x−b)n = xn−b,
so one can double the size of T . However, in the usual case that r/2 is odd, it is
simpler and more flexible to chop r in half and multiply #S by 2.

Using x. As several people have observed, one can include x in T even without 0
in S, since (x + 0)n = xn + 0. This is an extremely small speedup.
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7. Combination

Consider the polynomials g ∈ (Z/n)[x] such that gn = g(xn) in (Z/n)[x]/(xr−1).
The goal of this section is to count the number of different possibilities for the

image of g in Fp[x]/h. Here p is a prime divisor of n, and h is an irreducible factor
of Φr in Fp[x], as in the proofs of Theorem 2.1 and Theorem 2.2. What matters,
eventually, is that the number of images is larger than the number |t− u| + 1
constructed in these proofs.

Section 6 explained how to compute a finite coprime set T of monic non-constant
polynomials f ∈ (Z/n)[x] such that fn = f(xn) in (Z/n)[x]/(xr − 1). Agrawal,
Kayal, and Saxena build many polynomials g by multiplying elements of T . Any
function e : T → {0, 1, . . . } with

∑
f∈T e(f) deg f < deg h determines a product

g =
∏

f∈T fe(f) in (Z/n)[x] with deg g < deg h and gn = g(xn) in (Z/n)[x]/(xr−1).

The elements of T are coprime in (Z/n)[x], hence in Fp[x], so different e’s produce
different g’s in Fp[x], hence in Fp[x]/h. Furthermore, all these products are nonzero
in Fp[x], hence in Fp[x]/h; one obtains another polynomial g = 0.

The number of images of g in Fp[x]/h obtained this way is 1 plus the number
of choices of e. This is the same as the sum of coefficients of y0, y1, . . . , ydeg h−1 in
the power series 1 +

∏
f∈T (1 +ydeg f +y2 deg f + · · · ). One can easily compute these

coefficients, and thus compute a lower bound for the number of images of g, given
a lower bound for deg h.

The original Agrawal-Kayal-Saxena paper used an extremely crude lower bound
for the number of images, and compensated by choosing r and #S unnecessarily
large. It is important to use a good lower bound—such as the exact number—so
that r and #S can be reduced.

In the extreme case that deg f = 1 for all f ∈ T , the series is 1 + (1− y)−#T =

1 +
∑

k≥0(−1)k
(−#T

k

)
yk. The coefficient sum is 1 +

(
#T+deg h−1

#T

)
.

If T is the union of T1 and T2 where deg f = 1 for all f ∈ T1 and deg f = 2 for
all f ∈ T2, then the series is

1 + (1− y)−#T1(1− y2)−#T2 = 1 +
∑
k≥0

(−1)k
(
−#T1

k

)
yk
∑
j≥0

(−1)j
(
−#T2

j

)
y2j .

Note that
(−T2

j

)
is relatively small compared to

(−T1

2j

)
, unless T2 is much larger than

T1; degree-2 polynomials are much less valuable than degree-1 polynomials.

Increasing the degree bound to ϕ(r). Lenstra pointed out on 2002.08.13 that,
when n is a primitive root modulo r, these polynomials g are distinct in Fp[x]/h if

they are distinct in Fp[x]/Φr. Thus one can add coefficients of y0, y1, . . . , yϕ(r)−1,
not just y0, y1, . . . , ydeg h−1.

This is the basic difference between Theorem 2.1 and Theorem 2.2. Here’s the
general proof: By hypothesis, gn = g(xn) in (Z/n)[x]/(xr − 1). Substitute xni

for x: g(xni

)n = g(xni+1

) in (Z/n)[x]/(xr − 1). By induction, gn
i

= g(xni

) in
(Z/n)[x]/(xr − 1) for all i ≥ 0. If c ∈ {0, 1, . . . , r − 1} and gcd {r, c} = 1 then
c ≡ na (mod r) for some a, so g(xc) = g(xna

) = gn
a

in (Z/n)[x]/(xr − 1), so
g(xc) = gn

a

in Fp[x]/h. If f is another such polynomial with f = g in Fp[x]/h,

then f(xc) = fna

= gn
a

= g(xc) in Fp[x]/h, so (f − g)(xc) = 0 in Fp[x]/h; this is
true for all c, so f − g is divisible by Φr.
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Using negative powers. Voloch pointed out on 2002.09.13 that one could use
negative powers of the elements of T .

Choose a nonnegative integer d ≤ ϕ(r). Voloch took d = b0.5ϕ(r)c. An obvious
generalization is to allow any d.

Assume for simplicity that deg f ∈ {1, 2} for all f ∈ T , assume as above that n
is a primitive root modulo r, and assume that ϕ(r) ≥ 3. Then n must have a prime
factor p that, modulo r, is neither 1 nor −1. The degree of an irreducible factor
of Φr in Fp[x] is the order of p modulo r, which is at least 3; thus every f ∈ T is
invertible in Fp[x]/Φr.

Consider functions e : T → Z such that
∑

f∈T [e(f) > 0]e(f) deg f < ϕ(r) − d

and
∑

f∈T −[e(f) < 0]e(f) deg f ≤ d. Each function determines a product g =∏
f∈T fd+e(f) in (Z/n)[x].

Say e′ is another such function, determining a product g′. I claim that g and g′

are distinct in Fp[x]/Φr unless e = e′. Indeed, say
∏

f∈T fd+e(f) =
∏

f∈T fd+e′(f)

in Fp[x]/Φr. Divide by
∏

f∈T fd, multiply by
∏

f∈T f−[e(f)<0]e(f), and multiply by∏
f∈T f−[e

′(f)<0]e′(f), to obtain the equation∏
f∈T

f [e(f)>0]e(f)−[e′(f)<0]e′(f) =
∏
f∈T

f [e′(f)>0]e′(f)−[e(f)<0]e(f)

between two polynomials of degree below ϕ(r)−d+d = ϕ(r). The exponents must
match: [e(f) > 0]e(f) − [e′(f) < 0]e′(f) = [e′(f) > 0]e′(f) − [e(f) < 0]e(f), so
e(f) = e′(f).

In the special case deg f = 1, there are at least
(
#T+d
#T

)(
#T+ϕ(r)−1−2d

#T−d
)

functions

e. This lower bound was used for the figures 0.0011324 . . . and 0.00050329 . . . in
Section 4.

Vaaler pointed out a slightly better lower bound (reported to me on 2003.01.24),

namely
(
#T
i

)(
d
i

)(
#T−i

j

)(
ϕ(r)−1−d

j

)
for any i, j: choose i positions where e will be

negative, choose negative values for those i positions adding up to at most d, choose
j remaining positions where e will be positive, and choose positive values for those j
positions adding up to at most ϕ(r)−d−1. The exact number of functions e is the
sum of this quantity over all i between 0 and d and all j between 0 and ϕ(r)−d−1,
so it is reasonably well approximated by the maximum of this quantity.

Increasing the degree bound further with ABC. The strategy used above to
count products in Fp[x]/Φr is to count products in Fp[x] of degree below ϕ(r).
Voloch pointed out another strategy on 2002.08.28, using Mason’s ABC theorem.
I improved Voloch’s result on 2002.08.31, and improved it further on 2003.01.24.

Assume for simplicity that deg f = 1 for all f ∈ T , assume as above that n is
a primitive root modulo r, and assume that ϕ(r) ≥ 2. Then n must have a prime
factor p that is not 1 modulo r. Every f ∈ T is invertible in Fp[x]/Φr. Also assume
that n has no prime divisors ≤ 3ϕ(r); then p > 3ϕ(r).

Consider products
∏

f∈T fe(f) with e(f) ≥ 0. First step: Assume that three

distinct products A,B,C in Fp[x], with gcd {A,B,C} = 1, are all the same modulo
Φr; I claim that max {degA,degB, degC} > 2ϕ(r) − deg radABC. Here radX
means the product of all the irreducibles that divide X.

Assume without loss of generality that degA = max {degA,degB, degC}. Also
assume that degA ≤ 2ϕ(r); otherwise there is nothing to prove.
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Define U = (A−B)/Φr and V = (A− C)/Φr. Then U 6= 0; V 6= 0; V − U 6= 0;
U, V, V − U have degree at most degA − ϕ(r); and V (A − B) = U(A − C), i.e.,
(V − U)A + UC = V B.

Define D = gcd {(V − U)A, V B,UC}. Then (V − U)A/D + UC/D = V B/D;
gcd {(V − U)A/D,UC/D, V B/D} = 1; and (V − U)A/D,UC/D, V B/D all have
degree at most 2 degA − ϕ(r) ≤ 3ϕ(r) < p. Apply the ABC theorem to see that
deg(V − U)A/D < deg rad(((V − U)A/D)(V B/D)(UC/D)).

Fact: D rad(((V −U)A/D)(V B/D)(UC/D)) divides UV (V −U) radABC. Thus
deg(V − U)A < degUV (V − U) radABC.

(In other words: If d = min {w + a, v + b, u + c} and min {a, b, c} = 0 then
d + [u + v + w + a + b + c > 3d] ≤ u + v + w + [a + b + c > 0]. Proof: Without
loss of generality assume a = 0. Then d ≤ w ≤ u + v + w. If d < u + v + w then
d + [· · · ] ≤ d + 1 ≤ u + v + w ≤ u + v + w + [· · · ] as claimed. If a + b + c > 0 then
d+[· · · ] ≤ u+v+w+1 = u+v+w+[· · · ] as claimed. Otherwise u+v+w+a+b+c =
d ≤ 3d so d + [u + v + w + a + b + c > 3d] = d ≤ u + v + w ≤ u + v + w + [· · · ] as
claimed.)

Hence degA < degUV radABC ≤ 2(degA−ϕ(r)) + deg radABC; i.e., degA >
2ϕ(r)− deg radABC as claimed.

(In particular, degA > 2ϕ(r)−#T . If #T ≤ ϕ(r) then this bound improves on
the obvious bound degA ≥ ϕ(r). See below for results when #T > ϕ(r). Voloch’s
result was degA > 1.2ϕ(r) − 0.2#T , using the weaker observation that D divides
gcd {UV (V − U)A,UV (V − U)B,UV (V − U)C} = UV (V − U) gcd {A,B,C} =
UV (V − U).)

Next step: Assume that three distinct products A,B,C in Fp[x] are all the same
modulo Φr. Note that the assumption gcd {A,B,C} = 1 has been dropped. Define
G = gcd {A,B,C}; then G is coprime to Φr, so A/G,B/G,C/G are all the same
modulo Φr, so

max

{
deg

A

G
,deg

B

G
,deg

C

G

}
> 2ϕ(r)− deg rad

ABC

GGG
≥ 2ϕ(r)− deg radABC.

But degG ≥ deg radG = deg radABC − deg radA − deg radB − deg radC +
deg rad gcd {A,B}+deg rad gcd {A,C}+deg rad gcd {B,C} by inclusion-exclusion.
Thus max {degA,degB, degC} > 2ϕ(r) − deg radA − deg radB − deg radC +
deg rad gcd {A,B}+ deg rad gcd {A,C}+ deg rad gcd {B,C}.

Final step: Assume that m ≥ 3 products in Fp[x] are all the same modulo Φr.
Let Z be the set of those products. Define d = max {degA : A ∈ Z}. Then d >
2ϕ(r)−deg radA−deg radB−deg radC+deg rad gcd {A,B}+deg rad gcd {A,C}+
deg rad gcd {B,C} for any distinct A,B,C ∈ Z. Average this inequality over all
choices of A,B,C to see that

d > 2ϕ(r)− 3

m

∑
A

deg radA +
6

m(m− 1)

∑
A6=B

deg rad gcd {A,B}.

On the other hand, #T ≥ deg rad
⋃

A A ≥
∑

A deg radA−
∑

A 6=B deg rad gcd {A,B}
by inclusion-exclusion, so

d +
3

m
#T > 2ϕ(r)−

(
3

m
− 6

m(m− 1)

) ∑
A 6=B

deg rad gcd {A,B}.

Note that 3/m− 6/m(m− 1) ≥ 0. One can bound each term deg rad gcd {A,B} by
the simple observation that A/ gcd {A,B} and B/ gcd {A,B} are distinct congruent
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products of degree at most d− deg gcd {A,B}: thus d− deg gcd {A,B} ≥ ϕ(r), so
deg rad gcd {A,B} ≤ d−ϕ(r). Hence d+(3/m)#T > 2ϕ(r)−(d−ϕ(r))(3m−9)/2;
i.e., d > ((3m− 5)/(3m− 7))ϕ(r)− (6/m(3m− 7))#T .

Summary: Take any integer m ≥ 3. There are
(
#T+d
#T

)
products of degree at most

d, where d = b((3m− 5)/(3m− 7))ϕ(r)− (6/m(3m− 7))#T c. It is impossible for
m of them to be congruent modulo Φr. Thus there are at least

1

m− 1

(
#T + d

#T

)
=

1

m− 1

(⌊3m− 5

3m− 7
ϕ(r) +

(
1− 6

m(3m− 7)

)
#T

⌋
#T

)
different products in Fp[x]/Φr. For example, the number of different products is at

least 1
2

(
2ϕ(r)
#T

)
; at least 1

3

(b1.4ϕ(r)+0.7#Tc
#T

)
; at least 1

4

(b1.25ϕ(r)+0.85#Tc
#T

)
; and so on.

Can this idea be combined with using negative powers to improve the speed of
AKS? The difficulty is that clearing the denominator in (A,B,C) has twice as much
of an impact as clearing the denominator in (A,B).

Can the bound d > ((3m− 5)/(3m− 7))ϕ(r)− (6/m(3m− 7))#T be improved?
Is there a better way to handle m products than to combinatorially merge the
information that ABC provides for sets of 3 products?

Using leading coefficients. All the nonzero polynomials constructed above are
monic. One can also use non-monic polynomials. This is an extremely small
speedup.
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8. Congruence

Section 7 explained how to count images in Fp[x]/h of polynomials g ∈ (Z/n)[x]
such that gn = g(xn) in (Z/n)[x]/(xr − 1). Here p is a prime divisor of n, and h is
an irreducible factor of Φr in Fp[x].

Theorems 2.1 and 2.2 use these images as follows. Repeated substitution implies
that gt = g(xt) in Fp[x]/(xr − 1) for any product t of powers of n and p. If u is
another product with different exponents, and if t ≡ u (mod r), then gt = g(xt) =
g(xu) = gu in Fp[x]/(xr − 1), hence in Fp[x]/h. The number of images is larger
than |t− u| + 1, but the equation gt = gu has at most |t− u| + 1 roots in a field,
so t = u, so n is a power of p.

Why is the number of images larger than |t− u|+ 1? Answer: r, S are chosen so

that the number of images exceeds n2b√rc; there exist t, u with |t− u|+1 ≤ n2b√rc.

Focusing on units. Lenstra pointed out on 2002.08.13 that one could replace
b
√
rc with b

√
ϕ(r)c. This is incorporated into Theorem 2.2. This is an extremely

small improvement if r is prime.

Replacing p, n with p, n/p. Lenstra pointed out on 2002.08.13 that one could
take t and u as products of powers of n/p and p, not just n and p. (Indeed, tpk

and upk are products of powers of n and p for some k, so gtp
k

= gup
k

in Fp[x]/h;
pth powering is invertible in Fp[x]/h, so gt = gu.)

Consider the products (n/p)ipj with 0 ≤ i ≤ b
√

ϕ(r)c and 0 ≤ j ≤ b
√

ϕ(r)c;
note that 1 ≤ (n/p)ipj ≤ nb

√
ϕ(r)c. There are (b

√
ϕ(r)c+1)2 > ϕ(r) pairs (i, j), so

there are distinct pairs (i, j), (k, `) such that (n/p)ipj ≡ (n/p)kp` (mod r). Bottom

line: There exist t, u with |t− u|+ 1 ≤ nb
√

ϕ(r)c.

Balancing p and n/p. Poonen pointed out on 2002.08.26 that there exist t, u with

|t− u|+ 1 ≤ nd
√

ϕ(r)/2e.
Consider the triangle of real numbers (x, y) with 0 ≤ x, 0 ≤ y, and (n/p)xpy ≤

n
√

ϕ(r)/2. Define i = bxc and j = byc; then i, j are integers with 0 ≤ i, 0 ≤ j, and

(n/p)ipj ≤ (n/p)xpy ≤ n
√

ϕ(r)/2. Furthermore, (x, y) is contained in the rectangle
[i, i + 1] × [j, j + 1]. The number of pairs (i, j) is exactly the total area of those
rectangles, which is more than the area of the triangle, which in turn exceeds
2(
√

ϕ(r)/2)2 = ϕ(r).

Using Minkowski’s theorem. Lenstra pointed out to me on 2002.12.23 that

there exist t, u with |t− u|+ 1 ≤ nd
√

ϕ(r)/3e.
Consider the triangle T of real numbers (x, y) with 0 ≤ x, 0 ≤ y, and (n/p)xpy ≤

n
√

ϕ(r)/3. Define C as the set of differences (x, y) − (x′, y′) of points in T . Then
the area of C is 6 times the area of T ; hence the area of C is more than 4ϕ(r).

The lattice of integers (i, j) such that (n/p)ipj ≡ 1 (mod r) has determinant
ϕ(r), so it has a nonzero point (i, j) ∈ C by Minkowski’s theorem. Assume without
loss of generality that i ≥ 0. If j ≥ 0 then (i, j) is in T ; define t = (n/p)ipj and
u = 1. Otherwise (i, 0) and (0,−j) are in T ; define t = (n/p)i and u = p−j .
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