
Non-uniform cracks in the concrete:
the power of free precomputation

Daniel J. Bernstein1 and Tanja Lange2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
tanja@hyperelliptic.org

Abstract. There is a flaw in the standard security definitions used in the literature on provable
concrete security. The definitions are frequently conjectured to assign a security level of 2128 to
AES, the NIST P-256 elliptic curve, DSA-3072, RSA-3072, and various higher-level protocols, but
they actually assign a far lower security level to each of these primitives and protocols. This flaw
undermines security evaluations and comparisons throughout the literature. This paper analyzes
the magnitude of the flaw in detail and discusses several strategies for fixing the definitions.

Keywords: provable security, concrete security, non-uniform algorithms, algorithm cost metrics

1 Introduction

The conventional wisdom is that the “RSA-PSS” signature system is safer than the “RSA-
FDH” signature system against generic-hash attacks (attacks in the “random-oracle model”).
This wisdom is backed by the following argument:

– The security of RSA-PSS against these attacks is provably very close to the security of
RSA per se, i.e., the difficulty of inverting the RSA permutation.

– The security of RSA-FDH against these attacks is provably not much worse than the
security of RSA, but it could be somewhat worse without contradicting any theorems,
and it is certainly not better.

RSA-PSS has essentially the same efficiency as RSA-FDH, making it the obvious choice of
signature system for RSA users. This argument was introduced by Bellare and Rogaway in
[6, Section 1]; the underlying theorems are the main content of [6].

This is a typical example of a popular research topic called “concrete security”. Older
security definitions were much less precise, considering only the question of what can be
asymptotically broken in polynomial time. “Concrete security” pays attention to polynomially
bounded factors, giving it a way to describe and analyze the differences in provable security
between RSA-PSS and RSA-FDH, the differences in conjectured security between RSA and
ECC, etc.

The study of provable concrete security was initiated by Bellare, Kilian, and Rogaway in [3]
for secret-key cryptography (showing that AES-CBC-MAC has similar security to AES), by
Bellare and Rogaway in [5] for public-key encryption (showing that RSA-OAEP has similar
security to RSA), and by Bellare and Rogaway in [6] for public-key signatures. Modern

This work was supported by the National Science Foundation under grant 1018836, and by the Eu-
ropean Commission under Contract ICT-2007-216676 ECRYPT II. Permanent ID of this document:
7e044f2408c599254414615c72b3adbf. Date: 2012.06.04.

2 Daniel J. Bernstein and Tanja Lange

security theorems are likely, although not guaranteed, to be stated in the language of concrete
security.

1.1. The standard insecurity metric. Of course, one cannot meaningfully state a theorem
regarding security without having a definition of security. It is standard in the concrete-
security literature to define the insecurity of X — where X is a primitive such as a cipher,
or a higher-level protocol such as a signature scheme — as the maximum, over all algorithms
A (“attacks”) that cost at most C, of the probability that A succeeds in breaking X. This
insecurity is a function of the cost limit C. Normally the cost limit is separated into (1) a
time limit t and (2) a limit q on the number of oracle queries; the standard argument for this
separation is that oracle queries are typically more expensive than computation and can often
be structurally limited by the system designer (e.g., “stop signing after 232 messages”).

For example, Bellare, Kilian, and Rogaway in [4, Section 1.3] defined the PRP-insecurity
of AES (“Advprp

AES(q, t)”) as the maximum, over all algorithms A that cost at most C, of the
chance that A PRP-breaks AES. This chance is, in turn, defined as the distance between

– the probability that A prints 1 given an oracle for AES using a secret key and
– the probability that A prints 1 given an oracle for a uniform random permutation of the

set of 128-bit strings.

They gave a similar definition of the PRF-insecurity of m-block AES-CBC-MAC (denoted

“Advprf
CBCm-AES(q, t)”), using a uniform random function rather than a uniform random per-

mutation. Here is the main theorem of [4]: “for any integers q, t,m ≥ 1,

Advprf
CBCm-F (q, t) ≤ Advprp

F (q′, t′) +
q2m2

2l−1

where q′ = mq and t′ = t+O(mql).”
NIST’s call for AES submissions [1, Section 4] identified “the extent to which the algo-

rithm output is indistinguishable from [the output of] a [uniform] random permutation” as
one of the “most important” factors in evaluating candidates. It seems obvious that this
indistinguishability is exactly what is measured by the PRP-insecurity definition: better dis-
tinguishing attacks on AES would produce better lower bounds on the PRP-insecurity of AES;
the conjecture that we will never break AES, that our best attacks will always be brute-force
attacks, seems to be precisely captured by a conjecture regarding the PRP-insecurity of AES.
For example, Bellare and Rogaway in [7, Section 3.6] wrote the following:

“For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

. . . In other words, we are conjecturing that the best attacks are either exhaustive key
search or linear cryptanalysis. We might be bolder with regard to AES and conjecture
something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.”

One can quibble that the TDES and TAES factors do not properly account for inner-loop
speedups in exhaustive key search (see, e.g., [15]), that q/240 is a rather crude model of the
success probability of linear cryptanalysis, etc., but aside from such minor algorithm-analysis
details the conjectures seem quite reasonable.

Non-uniform cracks in the concrete: the power of free precomputation 3

The same pattern can be found throughout the literature on provable concrete security. A
typical theorem states that the insecurity of a complicated object is bounded in terms of the
insecurity of a simpler object. The insecurity of a well-studied primitive such as AES or RSA-
1024 is typically conjectured to match the success probability of the best attack known. For
example, Bellare and Rogaway in [6, Section 1.4], evaluating the concrete-security of RSA-

FDH and RSA-PSS, hypothesized that “it takes time Ce1.923(logN)1/3(log logN)2/3 to invert
RSA”; Bellare in [2, Section 3.2], evaluating the concrete security of NMAC-h and HMAC-h,
hypothesized that “the best attack against h as a PRF is exhaustive key search”.

1.2. Cracks in the standard metric. The main goal of this paper is to highlight a quan-
titative error built into the standard definition of insecurity. Specifically, we conjecture that
the most popular cryptographic primitives and protocols are much less secure according to
the standard definition than they are in reality.

Sections 3, 4, 5, and 6 show — assuming standard, amply tested heuristics — that there
exist high-probability attacks against AES, the NIST P-256 elliptic curve, DSA-3072, and
RSA-3072 taking considerably less than 2128 time. In other words, the insecurity of AES,
NIST P-256, DSA-3072, and RSA-3072, according to the standard concrete-security defini-
tions, reaches essentially 100% for a time bound considerably below 2128. This contradicts
the conjectures in [6, Section 1.4], [7, Section 3.6], [2, Section 3.2], etc., and undermines the
conclusions regarding concrete security of various protocols.

We nevertheless conjecture that any fast construction of such an attack has negligible
probability of success. This means that there is a very large gap between the actual insecurity
of these primitives and their insecurity according to the standard metrics. The standard
metrics count only the cost of running the attack, not the cost of finding the attack in the
first place.

We do not claim that this gap is consistent across primitives. On the contrary: we identify
different gaps for different primitives, and we expect that analyzing more primitives and
protocols in the same way will show even more diversity. It is of course also possible that the
gaps for the primitives we discuss will have to be reevaluated in light of even better attacks.
The standard definition of insecurity appears to be blind to many attacks that are important
for actual insecurity, and as far as we can tell does not have much value in predicting actual
insecurity.

The error in the standard insecurity metric has a troubling consequence: almost all of the
“protocol P1 is safer than protocol P2” conclusions in the concrete-security literature could be
backwards. The underlying theorems state that standard-definition insecurity of P1 is smaller
than standard-definition insecurity of P2, but the difference is almost always quantitatively
smaller than the scale of gaps that we discuss between standard-definition insecurity of Pi
and actual insecurity of Pi. It is therefore entirely possible that the actual insecurity of P1 is
larger than the actual insecurity of P2.

All of the gaps that we discuss are polynomially bounded, so this trouble does not occur for
the most extreme comparisons, theorems showing that P1 is superpolynomially safer than P2.
However, those comparisons never required the precision of “concrete security”: they could
have been carried out using simpler analyses of polynomially bounded reductions. One can
justify studying security with precision ε in a model that is arguably within ε of reality, but
this argument is no longer plausible for most of the literature on provable concrete security.

In Appendix B we discuss several approaches to addressing these difficulties. Some of these
approaches rely on switching from “time” to another cost metric for algorithms, although this

4 Daniel J. Bernstein and Tanja Lange

creates other problems discussed in Appendix B. We already introduce three different cost
metrics in Section 2, and we analyze the impact of the cost metrics upon various attacks in
Sections 3, 4, 5, and 6.

1.3. Previous work. For the problem of finding hash-function collisions it is very well known
that “the best algorithm that exists” is not a reasonable model of “the best algorithm that
can be found”. For example, there is a fast algorithm that outputs collisions in SHA-512, but
actually finding such an algorithm seems hopeless.

However, hash-function collisions seem to be viewed as an exceptional case. The same
model is widely viewed as reasonable for AES security, RSA security, etc.; consider again the
conjectures from [6, Section 1.4], [7, Section 3.6], [2, Section 3.2], etc.

The attacks on AES, ECC, DSA, and RSA presented here use standard cryptanalytic
techniques published decades ago. Optimizing the asymptotic exponents of these techniques
to take advantage of free precomputation is reasonably easy and in some cases has been
done before. See Sections 3, 4, 5, and 6 for further references. However, it does not seem to
have been pointed out before that these attacks create foundational difficulties for concrete
security, undermining the standard insecurity metrics used in hundreds, perhaps thousands,
of papers.

This paper was triggered by a recent paper [29], in which Koblitz and Menezes objected to
the non-constructive nature of Bellare’s security proof [2] for NMAC. The security theorem
states a quantitative relationship between the standard-definition-insecurity of NMAC-h and
the standard-definition-insecurity of h: the existence of a fast attack on NMAC-h implies
the existence of a fast attack on h. The objection is that the proof does not reveal a fast
method to compute the second attack from the first: the proof left open the possibility that
the fastest algorithm that can be found to attack NMAC-h is much faster than the fastest
algorithm that can be found to attack h. Subsequent updates of [29] added weight to this
objection by pointing out the (heuristic) existence of a never-to-be-found fast algorithm to
attack any 128-bit function h with a success probability far above 2−128, and commented on
“how difficult it is to appreciate all the security implications of assuming that a function has
prf-security even against unconstructible adversaries”.

Compared to [29], we analyze a much wider range of attacks, including higher-probability
PRF attacks and attacks against various public-key systems, showing that the difficulties
here go far beyond PRF security. We also show quantitative variations of the difficulties
between one algorithm cost metric and another, and we raise the possibility of eliminating
the difficulties by carefully selecting a cost metric.

2 Cost metrics for algorithms

Recall from Section 1 that the insecurity of X is a function mapping a cost limit C to the
maximum, over all algorithms A costing at most C, of the probability that A breaks X.

This function depends implicitly on how the “cost” of an algorithm is defined. This section
reviews three cost metrics: the RAM metric used in [4]; the NAND metric, an “alternative”
mentioned in [4]; and the AT metric defined in [16].

2.1. The RAM metric. Bellare, Kilian, and Rogaway in [4, Section 2.2] fix “some particular
Random Access Machine (RAM)” as a model of computation. They define the running time
of an algorithm A as “A’s actual execution time plus the length of A’s description”.

Non-uniform cracks in the concrete: the power of free precomputation 5

There are well-known difficulties in giving a reasonable definition of “execution time” for
RAM programs. However, standard workarounds (see, e.g., [14]) limit these difficulties to a
much smaller scale than the gaps considered in this paper, so we suppress discussion of the
details. We make an exception in Section 6, where the gap is relatively small.

Bellare, Kilian, and Rogaway say that adding the length of the algorithm “eliminates
pathologies caused if one can embed arbitrarily large lookup tables in A’s description”. The
obvious example is an algorithm that includes a giant sorted table of pairs (AESk(0), k) for
all 2128 AES keys k, and simply looks up AESk(0) in the table to find k; the RAM metric
forces this algorithm to pay for the length of the table, not merely the time taken for the
table lookup.

The more advanced attacks discussed later in this paper can be viewed as similar “patholo-
gies” that, contrary to the claim in [4], are not eliminated by merely adding the length of the
algorithm. This view raises the question of whether further changes to the cost metric could
stop those attacks.

2.2. The NAND metric. Bellare, Kilian, and Rogaway also consider an “alternative” defi-
nition of an algorithm as a circuit “over some fixed basis of gates, like 2-input NAND gates”.
The cost of an algorithm then “simply means the circuit size”.

Counting NAND gates is refreshingly precise and easy to define. Readers might wonder
why this NAND metric is an “alternative” rather than the standard definition of algorithm
cost. The only answer given in [4] is that the NAND metric is “rather less intuitive” than the
RAM metric.

We emphasize that the NAND metric often assigns far larger costs to algorithms than the
RAM metric does. In some cases an algorithm taking time T in the RAM metric costs more
than T 2 NAND gates. The most important difference is in the cost of random access to a
large table, a very fast operation in the RAM metric but a very slow operation in the NAND
metric. A batch of n independent random accesses to the same table of size n has similar cost
in both metrics (since it can be simulated by sorting), but many algorithms require serial
random accesses.

This difference can cause trouble: there are many theorems regarding “time” that are true
for the RAM metric but unproven, and presumably false, for the NAND metric. This trouble
is discussed further in Appendix B.2. However, for the same reason, one can hope that any
“pathologies” in the RAM metric are fixed by the NAND metric. This hope is analyzed in
Sections 3, 4, 5, and 6.

2.3. The AT metric. In hardware design it is common to model computation in a completely
different way. Computation is performed by a chip, i.e., a rectangular mesh of transistors
connected by wires, with at most a few layers of wires at each point in the mesh. Transistors
and wires all operate in parallel. It is not difficult to give a formal definition of this model of
computation; see, e.g., [16]. This definition has the virtue of being obviously quite close to
physical reality.

Our third cost metric for algorithms is the price-performance ratio of a chip: i.e., the product
AT of the area A of the chip and the time T taken by the chip. Hardware designers often
consider more general functions of (A, T), but the classic product AT remains the default
choice of cost metric because it preserves the following two forms of linearity: performing
n time-T computations in serial on one area-A chip costs n times as much as performing 1
computation; performing n time-T computations in parallel on n area-A chips (formally, one
area-nA chip) also costs n times as much as performing 1 computation.

6 Daniel J. Bernstein and Tanja Lange

Brent and Kung showed in [16] that n-bit multiplication costs n1.5+o(1) in the AT metric;
for comparison, n-bit multiplication costs only n1+o(1) in the RAM metric and in the NAND
metric. Similar comments apply to sorting and to various other high-communication computa-
tions. We consider the AT metric in subsequent sections for the same reason that we consider
the NAND metric: it is a source of trouble but also a possible solution to “pathologies”.

3 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks readily
generalize to other block ciphers; none of the attacks exploit any particular weakness of AES.

All of the (single-target) attacks here are “PRP” attacks: i.e., attacks that distinguish the
cipher outputs for a uniform random key (on attacker-selected inputs) from outputs of a
uniform random permutation. Some of the attacks go further, recovering the cipher key, but
this is not a requirement for a distinguishing attack.

3.1. Breaking AES with MD5. Let P be a uniform random permutation of the set {0, 1}128.
The pair (P (0), P (1)) is nearly a uniform random 256-bit string: it avoids 2128 strings of the
form (x, x) but is uniformly distributed among the remaining 2256 − 2128 strings.

If k is a uniform random 128-bit string then the pair (AESk(0),AESk(1)) is a highly nonuni-
form random 256-bit string. One can reasonably guess that an easy way to distinguish this
from (P (0), P (1)) is to feed it through MD5 and inspect the first bit of the result. The success
probability of this attack is far below 1, but it is almost certainly above 2−80, and therefore
many orders of magnitude above 2−128.

To understand why this works, imagine replacing the first bit of MD5 with a uniform ran-
dom function from {0, 1}256 to {0, 1}, and assume for simplicity that the 2128 keys k produce
2128 distinct strings (AESk(0),AESk(1)). Each key k then has a 50% chance of choosing 0
and a 50% chance of choosing 1, and these choices are independent, so the probability that

2127 + δ keys k choose 1 is exactly
(

2128

2127+δ

)
/22

128
; the probability that at least 2127 + δ keys

k choose 1 is exactly
∑

i≥δ
(

2128

2127+i

)
/22

128
; the probability that at most 2127 − δ keys k choose

1 is the same. The other 2256 − 2129 possibilities for (P (0), P (1)) are practically guaranteed
to have far smaller bias. This attack thus demonstrates insecurity ≈δ/2128 with probability
approximately

2
∑
i≥δ

(
2128

2127 + i

)
/22

128 ≈ 1− erf(δ/
√

2127) ≈ exp(−δ2/2127),

where erf is the standard error function. For example, the attack demonstrates insecurity
≈2−65 with probability above 30%, and demonstrates insecurity ≈2−80 with probability above
99.997%.

Of course, MD5 is not actually a uniform random function, but it would be astonishing for
MD5 to interact with AES in such a way as to spoil this attack. More likely is that there are
some collisions in k 7→ (AESk(0),AESk(1)); but any such collisions will tend to push δ away
from 0, helping the attack.

3.2. Precomputing larger success probabilities. The same analysis applies to a modified
attack Ds that appends a short string s to the AES outputs before hashing them: Ds demon-
strates insecurity ≈δ/2128 with probability ≈ exp(−δ2/2127). If s is long enough to push the

Non-uniform cracks in the concrete: the power of free precomputation 7

hash inputs beyond one block of MD5 input then the iterated structure of MD5 seems likely
to spoil the attack, so we define Ds using “capacity-1024 Keccak” rather than MD5.

Consider, for example, δ = 267: this attack Ds demonstrates insecurity ≈2−61 with proba-
bility ≈ 1−erf(23.5) ≈ 2−189. There are 2192 choices of 192-bit strings s, so presumably at least
one of them will have Ds demonstrating insecurity ≈2−61. Of course, actually finding such an
s would require inconceivable amounts of computation by the best methods known (searching
2189 choices of s, and computing 2128 hashes for each choice); but this is not relevant to the
definition of insecurity, which considers only the time taken by Ds.

More generally, for any n ∈ {0, 1, 2, . . . , 64}, Ds demonstrates insecurity ≈2n−64 with prob-
ability ≈ 1− erf(2n+0.5) ≈ exp(−22n+1). There are 23·2

2n
choices of (3 · 22n)-bit strings s, and

23·2
2n

is considerably larger than exp(22n+1), so presumably at least one of these values of s
will have Ds demonstrating insecurity ≈2n−64.

Similar comments apply to essentially any short-key cipher. There almost certainly exists a
(3 · 22n)-bit string s such that the following simple attack achieves insecurity ≈2n−K/2, where
K is the number of bits in the cipher key: query 2K bits of ciphertext, append s, and hash
the result to 1 bit.

As n increases, the cost of hashing 3 · 22n + 2K bits grows almost linearly with 22n in the
RAM metric and the NAND metric. It grows more quickly in the AT metric: storing the 3·22n
bits of s uses area at least 3 · 22n, and even a heavily parallelizable hash function will take
time Θ(2n) simply to communicate across this area, for a total cost proportional to 23n. In
each metric there are also lower-order terms reflecting the cost of hashing per bit; we suppress
these lower-order terms since our concern is with much larger gaps.

3.3. Iteration. High levels of insecurity are more efficiently achieved by a different type of
attack that iterates, e.g., the function f7 : {0, 1}128 → {0, 1}128 defined by f7(k) = AESk(0)+
7.

Choose an attack parameter n. Starting from f7(k), compute the sequence of iterates
f7(k), f27 (k), f37 (k), . . . , f2

n

7 (k). Look up each of these iterates in a table containing the precom-

puted quantities f2
n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1). If f j7 (k) matches f2
n

7 (i), recompute f2
n−j

7 (i)
as a guess for k, and verify this guess by checking AESk(1).

This computation finds k if k matches any of the following keys: 0, f7(0), . . . , f2
n−1

7 (0);
1, f7(1), . . . , f2

n−1
7 (1); etc. If n is not too large (see the next paragraph) then there are close

to 22n different keys here. The computation involves ≤ 2n initial iterations; 2n table lookups;
and, in case of a match, ≤ 2n iterations to recompute f2

n−j
7 (i). The precomputation performs

many more iterations, but this precomputation is only the cost of finding the algorithm, not
the cost of running the algorithm.

This heuristic analysis begins to break down as 3n approaches the key size K. The central
problem is that a chain f7(i), f

2
7 (i), . . . could collide with one of the other 2n − 1 chains; this

occurs with probability ≈23n/2K , since there are 2n keys in this chain and almost 22n keys in
the other chains. The colliding chains will then merge, reducing the coverage of keys and at
the same time requiring extra iterations to check more than one value of i. This phenomenon
loses a small constant factor in the algorithm performance for n ≈ K/3 and much more for
larger n.

Assume from now on that n is chosen to be close to K/3. The algorithm then has success
chance ≈2−K/3. The algorithm cost is on the scale of 2K/3 in both the RAM metric and
the NAND metric; for the NAND metric one computes the 2n independent table lookups by
sorting and merging.

8 Daniel J. Bernstein and Tanja Lange

This attack might not sound better than the earlier attack Ds, which achieves success
chance ≈2−K/3 for some string s with ≈2K/3 bits. The critical advantage of this attack is
that it recognizes its successes. If the attack fails to find k then one can change 7 to another
number and try again, almost doubling the success chance of the algorithm at the expense of
doubling its cost; for comparison, doubling the success chance of Ds requires quadrupling its
cost. Repeating this attack 2K/3 times reaches success chance ≈1 at cost 22K/3.

In the AT metric this attack is much more expensive. The table of precomputed quantities
f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1) uses area on the scale of 2n, and computing f2
n

7 (k) takes time
on the scale of 2n, for a total cost on the scale of 22n for an attack that finds ≈ 22n keys. One
can compute f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1) in parallel within essentially the same bounds on
time and area, replacing each precomputed key with a small circuit that computes the key
from scratch; precomputation does not change the exponent of the attack. One can, more
straightforwardly, compute any reasonable sequence of 22n guesses for k within essentially the
same cost bound. Achieving success probability p costs essentially 2Kp.

3.4. Multiple targets. Iteration becomes more efficient when there are multiple targets:
U ciphertexts AESk1(0),AESk2(0), . . . ,AESkU (0) for U independent uniform random keys
k1, k2, . . . , kU . Assume for simplicity that U is much smaller than 2K ; the hypothesis U ≤ 2K/4

suffices for all heuristics used below.
Compute the iterates f7(k1), f

2
7 (k1), . . . , f

2n
7 (k1), and similarly for each of k2, . . . , kU ; this

takes 2nU iterations. Look up each iterate in a table of 2nU precomputed keys. Handle any
match as above.

In the RAM metric or the NAND metric this attack has cost on the scale of 2nU , just like
applying the previous attack to the U keys separately. The advantage of this attack is that it
uses a larger table, producing a larger success probability for each key: the precomputation
covers 22nU keys instead of just 22n keys. To avoid excessive chain collisions one must limit
2n to 2K/3U−1/3; the attack then finds each key with probability 2−K/3U1/3, with a cost of
2K/3U−1/3 per key, a factor of U2/3 better than handling each key separately. Finding each
key with high probability costs 22K/3U−2/3 per key.

As before, the AT metric assigns a much larger cost than the RAM and NAND metrics.
The computation of f2

n

7 (k1), f
2n
7 (k2), . . . , f

2n
7 (kU) is trivially parallelized, taking time on the

scale of 2n, but the 2nU precomputed keys occupy area 2nU , for a total cost on the scale of
22nU , i.e., 22n per key. Precomputation again has only a small benefit. There is still a benefit
in success probability from handling U keys together: achieving success probability p costs
essentially (2K/U)p.

3.5. Comparison. We summarize the insecurity established by the best attacks discussed
above. Achieving success probability p against U keys costs

– RAM metric: ≈2Kp2 for p ≤ 2−K/3U−2/3; ≈(22K/3/U2/3)p for larger p.
– NAND metric: same.
– AT metric: ≈23K/2p3 for p ≤ 2−K/4U−1/2; ≈2KU−1p for larger p.

Figure A.1 graphs these approximations for U = 1, along with the cost of exhaustive search.

3.6. Previous work. All of the attacks described here have appeared before. In fact, when the
conjectures in [7, Section 3.6] and [2, Section 3.2] were made, they were already inconsistent
with known attacks.

The iteration idea was introduced by Hellman in [27] for the special case U = 1. Many
subsequent papers have explored variants and refinements of Hellman’s attack, including the

Non-uniform cracks in the concrete: the power of free precomputation 9

easy generalization to larger U . Hellman’s goal was to attack many keys for a lower cost
than attacking each key separately; Hellman advertised a “cost per solution” of 22K/3 using
a precomputed table of size 22K/3. The generalization to larger U achieves the same goal at
lower cost, but the special case U = 1 remains of interest as a non-uniform single-key attack.

Koblitz and Menezes in [29] recently considered the family of attacks Ds. They explained
that there should be a short string s demonstrating insecurity ≈ 2−K/2, and analyzed the
consequences for provable concrete secret-key security. However, they did not analyze higher
levels of insecurity.

Replacing Ds with a more structured family of attacks, namely linear cryptanalysis, can be
proven to achieve insecurity 2−K/2 at low cost. (See, for example, [24, Section 7], which says
that this is “well known in complexity theory”.) De, Trevisan, and Tulsiani in [21] proved cost
≈2Kp2, for both the RAM metric and the NAND metric, for any insecurity level p. A lucid
discussion of the gap between these attacks and exhaustive search appears in [21, Section
1], but without any discussion of the resulting trouble for the literature on provable concrete
secret-key security, and without any discussion of possible fixes.

Biham, Goren, and Ishai in [13, Section 1.1] pointed out that Hellman’s attack causes
problems for defining strong one-way functions. The only solution that they proposed was
adding uniformity. Note that this solution abandons the goal of giving a definition for, e.g.,
the strength of AES as a one-way function, or the strength of protocols built on top of AES.
We analyze this solution in detail in Appendix B.5.

Our AT analysis appears to be new. In particular, we are not aware of previous liter-
ature concluding that switching to the AT metric removes essentially all of the benefit of
precomputation for large p, specifically p > 2−K/4U−1/2.

4 Breaking the NIST P-256 elliptic curve

This section analyzes the cost of an attack against NIST P-256 [35], an elliptic curve of 256-
bit prime order ` over a 256-bit prime field Fp. The attack computes discrete logarithms on
this curve, recovering the secret key from the public key and thus completely breaking typical
protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching from NIST
P-256 to another group of the same size (another curve over the same field, a curve over
another field, a hyperelliptic curve, a torus, etc.) does not stop the attack.

4.1. The standard attack without precomputation. Let P be the specified base point on
the NIST P-256 curve. The discrete-logarithm problem on this curve is to find, given another
point Q on this curve, the unique integer k modulo ` such that Q = kP . The standard attack
against the discrete-logarithm problem is the parallelization by van Oorschot and Wiener [37]
of Pollard’s rho method [38], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the (i+ 1)-st point
Pi+1, apply a hash function h : Fp → I to the x-coordinate of Pi, select a step Sh(x(Pi)) from
a sequence of precomputed steps Sj = rjP (with random scalars rj for j ∈ I), and compute
Pi+1 = Pi+Sh(x(Pi)). The size of I is chosen large enough to have the walk simulate a uniform
random walk; a common choice, recommended in [42], is |I| = 20. The walk continues until
it hits a distinguished point: a point Pi where the last t bits of x(Pi) are equal to zero. Here
t is an attack parameter.

The starting point of the bth walk is of the form aP +bQ where a is chosen randomly. Each
step increases the multiple of P , so the distinguished point has the form a′P + bQ for known

10 Daniel J. Bernstein and Tanja Lange

a′, b. The triple (a′P + bQ, a′, b) is stored and a new walk is started from a different starting
point. If two walks hit the same distinguished point then a′P + bQ = c′P + dQ which gives
(a′ − c′)P = (d− b)Q; by construction d 6≡ b mod `, revealing k ≡ (a′ − c′)/(d− b) mod `.

After
√
` ≈ 2128 additions (in approximately 2128−t walks, using storage 2128−t), there is a

high chance that the same point has been obtained in two different walks. This collision is
recognized from a repeated distinguished point within approximately 2t additional steps.

4.2. Precomputed distinguished points. To use precomputations in this attack, build a
database of triples of the form (a′P, a′, 0), i.e., starting each walk at a multiple of P . The
attack algorithm takes this database and starts a new walk at aP + bQ for random a and b. If
this walk ends in a distinguished point present in the database, the DLP is solved. If the walk
continues for more than 2t+1 steps (perhaps because it is in a cycle) or reaches a distinguished
point not present in the database, the attack starts again from a new pair (a, b).

The parameter t is critical for RAM cost here, whereas it did not significantly affect RAM
cost in Section 4.1. Choose t as d(log2 `)/3e. One can see from the following analysis that
significantly smaller values of t are much less effective, and that significantly larger values of
t are much more expensive without being much more effective.

Construct the database to have exactly 2t distinct triples, each obtained from a walk of
length at least 2t, representing a total of at least 22t (and almost certainly O(22t)) points.
Achieving this requires searching for starting points in the precomputation (and optionally
also varying the steps Sj and the hash function) as follows. A point that enters a cycle
without reaching a distinguished point is discarded. A point that reaches a distinguished point
in fewer than 2t steps is discarded; each point survives this with probability approximately
(1 − 1/2t)2

t ≈ 1/e. A point that produces a distinguished point already in the database
is discarded; to see that a point survives this with constant probability, observe that each
new step has chance 2−t of reaching a distinguished point, and chance O(22t/`) = O(2−t) of
reaching one of the previous O(22t) points represented by the database.

Now consider a walk starting from aP + bQ. This walk has chance approximately 1/e of
continuing for at least 2t steps. If this occurs then those 2t steps have chance approximately
1−(1−22t/`)2

t ≈ 1−exp(−23t/`) ≥ 1−1/e of reaching one of the 22t points in the precomputed
walks that were within 2t of the distinguished points in the database. If this occurs then the
walk is guaranteed to reach a distinguished point in the database within a total of 2t+1 steps.
The algorithm thus succeeds (in this way) with probability at least (1− 1/e)/e ≈ 0.23. This
is actually an underestimate, since the algorithm can also succeed with an early distinguished
point or a late collision.

To summarize, the attack uses a database of approximately 3
√
` distinguished points; one

run of the attack uses approximately 2 3
√
` curve additions and succeeds with rather high

probability. The overall attack cost in the RAM metric is a small constant times 3
√
`. The

security of NIST P-256 in this metric has thus dropped to approximately 286. Note that
the precomputation here is on the scale of 2170, much larger than the precomputation in
Section 3.3 but much smaller than the precomputation in Section 3.2.

In the NAND metric it is simplest to run each walk for exactly 2t+1 steps, keeping track of
the first distinguished point found by that walk and then comparing that distinguished point
to the 2t points in the database. The overall attack cost is still on the scale of 3

√
`.

In the AT metric the attack cost is proportional to 3
√
`
2
, larger than the standard

√
`. In

this metric one does better by running many walks in parallel: if C points are precomputed,
one should run approximately C walks in parallel with inputs depending on Q. The precom-

Non-uniform cracks in the concrete: the power of free precomputation 11

putation then covers 2tC points, and the computations involving Q cover approximately 2tC
points, leading to a high probability of success when 2tC reaches

√
`. The AT cost is also 2tC.

This attack has the same cost as the standard Pollard rho method, except for small constants;
there is no advantage in the precomputations.

4.3. Previous work. Kuhn and Struik in [30] considered the problem of solving multiple
DLPs at once. They obtain a speedup of

√
U per DLP for solving U DLPs at once. Their

algorithm reuses the distinguished points found in the attack on Q1 to attack Q2, reuses the
distinguished points found for Q1 and Q2 to attack Q3, etc. However, their results do not seem
to imply our 3

√
` result: they do not change the average walk length and distinguished-point

probabilities, and they explicitly limit U to c 4
√
` with c < 1.

5 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signature system.
The attack computes discrete logarithms in the DSA-3072 group, completely breaking the
signature system.

DSA uses the unique order-q subgroup of the multiplicative group F∗p, where p and q are
primes with q (and not q2) dividing p−1. DSA-3072 uses a 3072-bit prime p and is claimed to
achieve 2128 security. The standard parameter choices for DSA-3072 specify a 256-bit prime
q, allowing the 286 attack explained in Section 4, but this section assumes that the user has
stopped this attack by increasing q to 384 bits (at a performance penalty).

5.1. The attack. Take y = 2110, and precompute logg x
(p−1)/q for every prime number x ≤ y,

where g is the specified subgroup generator. There are almost exactly y/ log y ≈ 2103.75 such
primes, and each logg x

(p−1)/q fits into 48 bytes, for a total of 2109.33 bytes.
To compute logg h, first try to write h as a quotient h1/h2 in F∗p with h2 ∈

{
1, 2, 3, . . . , 21535

}
,

h1 ∈
{
−21535, . . . , 0, 1, . . . , 21535

}
, and gcd{h1, h2} = 1; and then try to factor h1, h2 into

primes ≤ y. If this succeeds then logg h
(p−1)/q is a known combination of known quantities

logg x
(p−1)/q, revealing logg h. If this fails, try again with hg, hg2, etc.

One can write h as h1/h2 with high probability, approximately (6/π2)23071/p, since there are
approximately (6/π2)23071 pairs (h1, h2) and two distinct such pairs have distinct quotients.
Finding the decomposition of h as h1/h2 is a very fast extended-Euclid computation.

The probability that h1 is y-smooth (i.e., has no prime divisors larger than y) is very close
to u−u ≈ 2−53.06 where u = 1535/110. The same is true for h2; overall the attack requires
between 2107.85 and 2108.85 iterations, depending on 23071/p. Batch trial division, discussed in
detail in Section 6, finds the y-smooth values among many choices of h1 at very low cost in
both the RAM metric and the NAND metric. This attack is much slower in the AT metric.

5.2. Previous work. Standard attacks against DSA-3072 do not rely on precomputation
and cost more than 2128 in the RAM metric. These attacks have two stages: the first stage
computes discrete logarithms of all primes ≤ y, and the second stage computes logg h. Nor-
mally y is chosen to minimize the cost of the first stage, whereas we replace the first stage by
precomputation and choose y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for the second
stage; see, e.g., the “special-q descent” algorithms in [28] and [19]. The gap between known
algorithms and existing algorithms is thus even larger than indicated in this section. We
emphasize that none of the algorithms perform well in the AT metric.

12 Daniel J. Bernstein and Tanja Lange

6 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack completely breaks
RSA-3072, factoring any given 3072-bit public key into its prime factors, so it also breaks
protocols such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key size, and
analyzing the asymptotic cost exponents of the generalized attack. It then analyzes the cost
more precisely for 3072-bit keys.

6.1. NFS with precomputation. This attack is a variant of NFS, the standard attack
against RSA. For simplicity this description omits several NFS optimizations. See [17] for an
introduction to NFS.

The attack is determined by four parameters: a “polynomial degree” d; a “radix” m; a
“height bound” H; and a “smoothness bound” y. Each of these parameters is a positive
integer. The attack also includes a precomputed “factory”

F =

{
(a, b) ∈ Z× Z :

−H ≤ a ≤ H; 0 < b ≤ H;
gcd{a, b} = 1; and a− bm is y-smooth

}
.

The standard estimate is that F has (12/π2)H2/uu elements where u = (logHm)/ log y. This
estimate combines three approximations: first, there are about 12H2/π2 pairs (a, b) ∈ Z× Z
such that −H ≤ a ≤ H, 0 < b ≤ H, and gcd{a, b} = 1; second, a − bm has approximately
the same smoothness chance as a uniform random integer in [1, Hm]; third, the latter chance
is approximately 1/uu.

The integers N factored by the attack will be between md and md+1. For example, with
parameters m = 2256, d = 7, H = 255, and y = 250, the attack factors integers between
21792 and 22048. Parameter selection is discussed later in more detail. The following three
paragraphs explain how the attack handles N .

Write N in radix m: i.e., find n0, n1, . . . , nd ∈ {0, 1, . . . ,m− 1} such that N = ndm
d +

nd−1m
d−1 + · · ·+ n0. Compute the “set of relations”

R =
{

(a, b) ∈ F : nda
d + nd−1a

d−1b+ · · ·+ n0b
d is y-smooth

}
using Bernstein’s batch trial-division algorithm [10]. The standard estimate is that R has
(12/π2)H2/(uuvv) elements where v = (log((d+ 1)Hdm))/ log y.

We pause the attack description to emphasize two important ways that this attack differs
from conventional NFS: first, conventional NFS chooses m as a function of N , while this
attack does not; second, conventional NFS computes R by sieving all pairs (a, b) to detect
smoothness of a− bm and nda

d + · · ·+ n0b
d simultaneously, while this attack computes R by

batch trial division of nda
d + · · ·+ n0b

d for the limited set of pairs (a, b) ∈ F .
The rest of the attack proceeds in the same way as conventional NFS. There is a standard

construction of a sparse vector modulo 2 for each (a, b) ∈ R, and there is a standard way to
convert several linear dependencies between the vectors into several congruences of squares
modulo N , producing the complete prime factorization of N ; see [17] for details. The number
of components of each vector is approximately 2y/ log y, and standard sparse-matrix tech-
niques find linear dependencies using about 4y/ log y simple operations on dense vectors of
length 2y/ log y. If the number of elements of R is larger than the number of components of
each vector then linear dependencies are guaranteed to exist.

Non-uniform cracks in the concrete: the power of free precomputation 13

6.2. Asymptotic exponents. Write L = exp((logN)1/3(log logN)2/3). For the RAM metric
it is best to choose

d ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

logm ∈ (0.9051 . . .+ o(1))(logN)2/3(log logN)1/3,

log y ∈ (0.8192 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL,

logH ∈ (1.0034 . . .+ o(1))(logN)1/3(log logN)2/3 = (1.0034 . . .+ o(1)) logL.

so that

u ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

u log u ∈ (0.3682 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.3682 . . .+ o(1)) logL,

d logH ∈ (1.1085 . . .+ o(1))(logN)2/3(log logN)1/3,

v ∈ (2.4578 . . .+ o(1))(logN)1/3(log logN)−1/3,

v log v ∈ (0.8192 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8192 . . .+ o(1)) logL.

Out of the L2.0068...+o(1) pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H, there are L1.6385...+o(1)

pairs in the factory F , and L0.8192...+o(1) relations in R, just enough to produce linear depen-
dencies if the o(1) terms are chosen appropriately. Linear algebra uses y2+o(1) = L1.6385...+o(1)

bit operations.
The total RAM cost of this factorization algorithm is thus L1.6385...+o(1). For comparison,

factorization is normally claimed to cost L1.9018...+o(1) (in the RAM metric) with state-of-the-
art variants of NFS. Similar comments apply to the NAND metric.

This algorithm runs into trouble in the AT metric. The algorithm needs space to store all
the elements of F , and can compute R in time Lo(1) using a chip of that size (applying ECM
to each input in parallel rather than using batch trial division), but even the most heavily
parallelized sparse-matrix techniques need much more than Lo(1) time, raising the AT cost of
the algorithm far above the size of F . A quantitative analysis shows that one obtains a better
cost exponent by skipping the precomputation of F and instead computing the elements of
F one by one on a smaller circuit, for AT cost L1.9760...+o(1).

6.3. RAM cost for RSA-3072. This attack breaks RSA-3072 with RAM cost considerably
below the 2128 security level usually claimed for RSA-3072. Of course, justifying this estimate
requires replacing the above o(1) terms with more precise cost analyses.

For concreteness, assume that the RAM supports 128-bit pointers, unit-cost 256-bit vec-
tor operations, and unit-cost 256-bit floating-point multiplications. As justification for these
assumptions, observe that real computers ten years ago supported 32-bit pointers, unit-cost
64-bit vector operations, and unit-cost 64-bit floating-point multiplications; that the RAM
model requires operations to scale logarithmically with the machine size; and that previous
NFS cost analyses implicitly make similar assumptions.

Take m = 2384, d = 7, H = 262 + 261 + 257, and y = 266 + 265. There are about 12H2/π2 ≈
2125.51 pairs (a, b) with −H ≤ a ≤ H, 0 < b ≤ H, and gcd{a, b} = 1, and the integers a− bm
have smoothness chance approximately u−u ≈ 2−18.42 where u = (logHm)/ log y ≈ 6.707, so
there are about 2107.09 pairs in the factory F . Each pair in F is small, easily encoded as just
16 bytes.

The quantities nda
d + nd−1a

d−1b + · · · + n0b
d are bounded by (d + 1)mHd ≈ 2825.3. If

they were uniformly distributed up to this bound then they would have smoothness chance

14 Daniel J. Bernstein and Tanja Lange

approximately v−v ≈ 2−45.01 where v = (log((d + 1)mHd))/ log y ≈ 12.395, so there would
be approximately (12H2/π2)u−uv−v ≈ 262.08 relations, safely above 2y/ log y ≈ 262.06. The
quantities nda

d + nd−1a
d−1b+ · · ·+ n0b

d are actually biased towards smaller values and thus
have larger smoothness chance, but this refinement is unnecessary here.

Batch trial division checks smoothness of 258 of these quantities simultaneously; here 258 is
chosen so that the product of those quantities is larger (about 267.69 bits) than the product
of all the primes ≤ y (about 267.11 bits). The main steps in batch trial division are computing
a product tree of these quantities and then computing a scaled remainder tree. Bernstein’s
cost analysis in [11, Section 3] shows that the overall cost of these two steps, for T inputs
having a B-bit product, is approximately (5/6) log2 T times the cost of a single multiplication
of two (B/2)-bit integers. For us B ≈ 267.69, and the total cost of smoothness detection for
all (a, b) ∈ F is approximately 251.38 times the cost of multiplying two (B/2)-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing each (B/2)-
bit input into B/(2w) words for some word size w ∈ Ω(log2B) and then performing three real
floating-point FFTs of length B/w. Each FFT uses approximately (17/9)(B/w) log2(B/w)
arithmetic operations (additions, subtractions, and multiplications) on words of slightly more
than 2w bits, for a total of (17/3)(B/w) log2(B/w) arithmetic operations. A classic observa-
tion of Schönhage is that the RAM metric allows constant-time multiplication of Θ(log2B)-
bit integers in this context even if the machine model is not assumed to be equipped with
a multiplier, since one can afford to build large multiplication tables; but it is simpler to
take advantage of the hypothesized 256-bit multiplier, which comfortably allows w = 69 and
B/w < 261 + 260, for a total multiplication cost of 270.03. Computing R then costs approxi-
mately 2121.41.

Linear algebra involves 263.06 simple operations on vectors of length 262.06. Each operation
produces each output bit by xoring together a small number of input bits, on average fewer
than 32 bits. A standard block-Wiedemann computation merges 256 xors of bits into a single
256-bit xor with negligible overhead, for a total linear-algebra cost of 2122.12. All other steps
in the algorithm have negligible cost, so the final factorization cost is 2122.8.

6.4. Previous work. There are two frequently quoted cost exponents for NFS without
precomputation. Buhler, Lenstra, and Pomerance in [17] obtained RAM cost L1.9229...+o(1).
Coppersmith in [20] introduced a “multiple number fields” tweak and obtained RAM cost
L1.9018...+o(1).

Coppersmith also introduced NFS with precomputation in [20], using ECM for smoothness
detection. Coppersmith called his algorithm a “factorization factory”, emphasizing the dis-
tinction between precomputation time (building the factory) and computation time (running
the factory). Coppersmith computed the same RAM exponent 1.6385 . . . shown above for the
cost of one factorization using the factory.

We save a subexponential factor in the RAM cost of Coppersmith’s algorithm by switching
from ECM to batch trial division. This is not visible in the asymptotic exponent 1.6385 . . .
but is important for RSA-3072. Our concrete analysis of RSA-3072 security is new, and as
far as we know is the first concrete analysis of Coppersmith’s algorithm.

Bernstein in [9] obtained AT exponent 1.9760 . . . for NFS without precomputation, and
emphasized the gap between this exponent and the RAM exponent 1.9018 Our AT anal-
ysis of NFS with precomputation, and in particular our conclusion that this precomputation
increases the AT cost of NFS, appears to be new.

Non-uniform cracks in the concrete: the power of free precomputation 15

References

[1] — (no editor), Announcing request for candidate algorithm nominations for the Advanced Encryption
Standard (AES) (1997). URL: http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf. Ci-
tations in this document: §1.1.

[2] Mihir Bellare, New proofs for NMAC and HMAC: security without collision-resistance, in Crypto 2006
[25] (2006), 602–619. URL: http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html. Citations in this
document: §1.1, §1.2, §1.3, §1.3, §3.6, §B.1.

[3] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of cipher block chaining, in Crypto 1994 [23]
(1994), 341–358; see also newer version [4]. Citations in this document: §1.

[4] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block chaining message authen-
tication code, Journal of Computer and System Sciences 61 (2000), 362–399; see also older version [3].
ISSN 0022–0000. URL: http://www-cse.ucsd.edu/~mihir/papers/cbc.html. Citations in this docu-
ment: §1.1, §1.1, §2, §2, §2.1, §2.1, §2.2, §B.2, §B.5, §B.6.

[5] Mihir Bellare, Phillip Rogaway, Optimal asymmetric encryption — how to encrypt with RSA, in Eurocrypt
1994 [22] (1995), 92–111. URL: http://cseweb.ucsd.edu/~mihir/papers/oaep.html. Citations in this
document: §1.

[6] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with RSA and Rabin,
in Eurocrypt 1996 [34] (1996), 399–416. URL: http://www-cse.ucsd.edu/~mihir/papers/exactsigs.
html. Citations in this document: §1, §1, §1, §1.1, §1.2, §1.3, §B.1.

[7] Mihir Bellare, Phillip Rogaway, Introduction to modern cryptography, 2005. URL: http://cseweb.ucsd.
edu/~mihir/cse207/classnotes.html. Citations in this document: §1.1, §1.2, §1.3, §3.6, §B.1.

[8] Daniel J. Bernstein, How to stretch random functions: the security of protected counter sums, Journal of
Cryptology 12 (1999), 185–192. URL: http://cr.yp.to/papers.html#stretch. Citations in this docu-
ment: §B.6.

[9] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). URL: http://cr.yp.to/papers.
html#nfscircuit. Citations in this document: §6.4.

[10] Daniel J. Bernstein, How to find smooth parts of integers (2004). URL: http://cr.yp.to/papers.

html#smoothparts. Citations in this document: §6.1.
[11] Daniel J. Bernstein, Scaled remainder trees (2004). URL: http://cr.yp.to/papers.html#scaledmod.

Citations in this document: §6.3.
[12] Daniel J. Bernstein, Proving tight security for Rabin–Williams signatures, in Eurocrypt 2008 [40] (2008),

70–87. URL: http://cr.yp.to/papers.html#rwtight. Citations in this document: §B.6.
[13] Eli Biham, Yaron J. Goren, Yuval Ishai, Basing weak public-key cryptography on strong one-way functions,

in TCC 2008 [18] (2008), 55–72. Citations in this document: §3.6.
[14] Peter van Emde Boas, Machine models and simulation, in [32] (1990), 1–66. Citations in this document:

§2.1.
[15] Andrey Bogdanov, Dmitry Khovratovich, Christian Rechberger, Biclique cryptanalysis of the full AES,

in Asiacrypt 2011 [31] (2011), 344–371. URL: http://eprint.iacr.org/2011/449. Citations in this
document: §1.1.

[16] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication, Journal of the ACM 28,
521–534. URL: http://wwwmaths.anu.edu.au/~brent/pub/pub055.html. Citations in this document: §2,
§2.3, §2.3.

[17] Joe P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the number field sieve,
in [33] (1993), 50–94. Citations in this document: §6.1, §6.1, §6.4.

[18] Ran Canetti (editor), Theory of cryptography, fifth theory of cryptography conference, TCC 2008, New
York, USA, March 19–21, 2008, Lecture Notes in Computer Science, 4948, Springer, 2008. ISBN 978-3-
540-78523-1. See [13].

[19] An Commeine, Igor Semaev, An algorithm to solve the discrete logarithm problem with the number field
sieve, in PKC 2006 [44] (2006), 174–190. Citations in this document: §5.2.

[20] Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993), 169–180.
Citations in this document: §6.4, §6.4.

[21] Anindya De, Luca Trevisan, Madhur Tulsiani, Non-uniform attacks against one-way functions and PRGs,
Electronic Colloquium on Computational Complexity 113 (2009). Citations in this document: §3.6, §3.6.

[22] Alfredo De Santis (editor), Advances in cryptology — EUROCRYPT ’94, workshop on the theory and
application of cryptographic techniques, Perugia, Italy, May 9–12, 1994, proceedings, Lecture Notes in
Computer Science, 950, Springer, 1995. ISBN 3-540-60176-7. MR 98h:94001. See [5].

http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://cseweb.ucsd.edu/~mihir/papers/oaep.html
http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html
http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cr.yp.to/papers.html#stretch
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#scaledmod
http://cr.yp.to/papers.html#rwtight
http://eprint.iacr.org/2011/449
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html

16 Daniel J. Bernstein and Tanja Lange

[23] Yvo Desmedt (editor), Advances in cryptology — CRYPTO ’94, 14th annual international cryptology
conference, Santa Barbara, California, USA, August 21–25, 1994, proceedings, Lecture Notes in Computer
Science, 839, Springer, 1994. ISBN 3-540-58333-5. See [3].

[24] Yevgeniy Dodis, John Steinberger, Message authentication codes from unpredictable block ciphers, in
Crypto 2009 [26] (2009), 267–285. URL: http://cs.nyu.edu/~dodis/ps/tight-mac.pdf. Citations in
this document: §3.6.

[25] Cynthia Dwork (editor), Advances in cryptology — CRYPTO 2006, 26th annual international cryptology
conference, Santa Barbara, California, USA, August 20–24, 2006, proceedings, Lecture Notes in Computer
Science, 4117, Springer, 2006. ISBN 3-540-37432-9. See [2].

[26] Shai Halevi (editor), Advances in cryptology — CRYPTO 2009, 29th annual international cryptology con-
ference, Santa Barbara, CA, USA, August 16–20, 2009, proceedings, Lecture Notes in Computer Science,
5677, Springer, 2009. See [24].

[27] Martin E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on Information Theory
26 (1980), 401–406. Citations in this document: §3.6.

[28] Antoine Joux, Reynald Lercier, Improvements to the general number field sieve for discrete logarithms in
prime fields. A comparison with the Gaussian integer method, Mathematics of Computation 72 (2003),
953–967. Citations in this document: §5.2.

[29] Neal Koblitz, Alfred Menezes, Another look at HMAC (2012). URL: http://eprint.iacr.org/2012/

074. Citations in this document: §1.3, §1.3, §1.3, §3.6, §B.5.
[30] Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard’s rho algorithm for computing

multiple discrete logarithms, in SAC 2001 [43] (2001), 212–229. URL: http://www.distcomp.ethz.ch/
publications.html. Citations in this document: §4.3.

[31] Dong Hoon Lee, Xiaoyun Wang (editors), Advances in cryptology — ASIACRYPT 2011, 17th interna-
tional conference on the theory and application of cryptology and information security, Seoul, South
Korea, December 4–8, 2011, proceedings, Lecture Notes in Computer Science, 7073, Springer, 2011. ISBN
978-3-642-25384-3. See [15].

[32] Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A: algorithms and complexity,
MIT Press, 1990. ISBN 0-262-22038-5. See [14].

[33] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture
Notes in Mathematics, 1554, Springer-Verlag, 1993. ISBN 3-540-57013-6. MR 96m:11116. See [17].

[34] Ueli M. Maurer (editor), Advances in cryptology — EUROCRYPT ’96: proceedings of the fifteenth interna-
tional conference on the theory and application of cryptographic techniques held in Saragossa, May 12–16,
1996, Lecture Notes in Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002. See
[6].

[35] National Instititue for Standards and Technology, Digital signature standard, Federal Information Pro-
cessing Standards Publication 186-2 (2000). URL: http://csrc.nist.gov. Citations in this document:
§4.

[36] Phong Q. Nguyen (editor), Progress in cryptology — VIETCRYPT 2006, first international conference on
cryptology in Vietnam, Hanoi, Vietnam, September 25–28, 2006, revised selected papers, Lecture Notes
in Computer Science, 4341, Springer, 2006. ISBN 3-540-68799-8. See [39].

[37] Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic applications, Journal of
Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL: http://members.rogers.com/paulv/papers/pubs.
html. Citations in this document: §4.1.

[38] John M. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computa-
tion 32 (1978), 918–924. ISSN 0025–5718. MR 58:10684. URL: http://www.ams.org/journals/mcom/
1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf. Citations in this docu-
ment: §4.1.

[39] Phillip Rogaway, Formalizing human ignorance, in VIETCRYPT 2006 [36] (2006), 211–228. URL:
http://www.cs.ucdavis.edu/~rogaway/papers/. Citations in this document: §B.6.

[40] Nigel P. Smart (editor), Advances in cryptology — EUROCRYPT 2008, 27th annual international con-
ference on the theory and applications of cryptographic techniques, Istanbul, Turkey, April 13–17, 2008,
proceedings, Lecture Notes in Computer Science, 4965, Springer, 2008. ISBN 978-3-540-78966-6. See [12].

[41] Douglas R. Stinson, Some observations on the theory of cryptographic hash functions (2001). URL:
http://eprint.iacr.org/2001/020. Citations in this document: §B.6.

[42] Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of Computation 70
(2001), 809–825. URL: http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/

S0025-5718-00-01213-8.pdf. Citations in this document: §4.1.

http://cs.nyu.edu/~dodis/ps/tight-mac.pdf
http://eprint.iacr.org/2012/074
http://eprint.iacr.org/2012/074
http://www.distcomp.ethz.ch/publications.html
http://www.distcomp.ethz.ch/publications.html
http://csrc.nist.gov
http://members.rogers.com/paulv/papers/pubs.html
http://members.rogers.com/paulv/papers/pubs.html
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/
http://eprint.iacr.org/2001/020
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf

Non-uniform cracks in the concrete: the power of free precomputation 17

[43] Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th annual international
workshop, SAC 2001, Toronto, Ontario, Canada, August 16–17, 2001, revised papers, Lecture Notes in
Computer Science, 2259, Springer, 2001. ISBN 3–540–43066–0. MR 2004k:94066. See [30].

[44] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th international conference on theory
and practice in public-key cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture
Notes in Computer Science, 3958, Springer, 2006. ISBN 978–3–540–33851–2. See [19].

A Appendix: Graphs

1

2K

Cost

1/2K
1Success probability

����������������������������������

���������

������������

�������������������

���������

Fig.A.1. Cost summary of PRP attacks against one K-bit key. Horizontal axis: Attack success probability p,
from 1/2K to 1, on a logarithmic scale. Vertical axis: Attack cost, from 1 to 2K , again on a logarithmic scale.
Top curve (green): Cost 2Kp, approximating cost of simple exhaustive search. Bottom curve (red): Cost 2Kp2

for p ≤ 2−K/3 and 22K/3p for larger p, approximating RAM/NAND cost of best attack known. Middle curve
(blue, merging with green): Cost 23K/2p3 for p ≤ 2−K/4 and 2Kp for larger p, approximating AT cost of best
attack known.

1

√
`

Cost

1/` 1Success probability

jjjjjjjjjjjjjjjj

oooooooooooooooo

Fig.A.2. Cost summary of discrete-logarithm attacks for a group of size `. Horizontal axis: Attack success
probability p, from 1/` to 1, on a logarithmic scale. Vertical axis: Attack cost, from 1 to

√
`, again on a

logarithmic scale. Bottom curve (red): Cost (p`)1/3, approximating RAM/NAND cost of best attack known.
Top curve (blue): Cost (p`)1/2, approximating AT cost of best attack known.

B Appendix: Trying to salvage the insecurity metric

This appendix analyzes the merits of five possible responses to the gap between standard-
definition insecurity and actual insecurity. None of the responses are completely satisfactory,
but some of them are arguably better than others.

18 Daniel J. Bernstein and Tanja Lange

B.1. Response 1: circle the wagons. One possible response is to defend the metric,
arguing that the attacks described in Sections 3, 4, 5, and 6 actually should be viewed as
assigning security levels far below 2128 to AES, NIST P-256, DSA-3072, and RSA-3072. In
other words, this response is that standard-definition insecurity is actual insecurity, and that
taking precomputation into account would be understating actual insecurity.

This response has the virtue of minimizing the number of changes required to the litera-
ture. The other responses considered below require revisiting every proof to see whether the
theorem can still be proven in a new metric; this response preserves the metric. Of course,
the conjectures made in [6, Section 1.4], [7, Section 3.6], [2, Section 3.2], etc. would still have
to be withdrawn.

The problem with this response is that it seems divorced from common sense. Why should
cryptographers be more concerned about a time-260 attack that takes time 2300 to find than
about a time-270 attack requiring no effort to find? Users aiming for the best possible security,
subject to performance constraints, should prefer a system where the best attack is of the first
type over a system where the best attack is of the second type; underestimating attack cost
by ignoring precomputation will lead those users to select the wrong system, hurting their
own security.

One might argue that precomputation should be ignored because it can be amortized across
many targets. However, this argument confuses two different concepts. Non-uniform attacks
and multiple-target attacks (and non-uniform multiple-target attacks) are often quantitatively
and qualitatively different: non-uniform attacks often benefit from vastly larger precompu-
tation (as illustrated by the doubly exponential cost exp(22n+1) to find the attack Ds in
Section 3.2), while multiple-target attacks often benefit from batching (as illustrated by Sec-
tion 3.4).

B.2. Response 2: switch to the NAND metric. Another possible response is to change
the algorithm cost model from the RAM metric to the NAND metric.

This response would cause trouble for the literature on provable concrete security. (All of the
responses below would also cause various levels of trouble.) Proofs would have to be reviewed
for RAM-dependent cost analyses, and many theorems would have to change, because many
reductions would become much more expensive. For example, eliminating repeated queries to
an oracle is a very common step in security proofs; it is practically free in the RAM metric
(add each query into a fast associative array) but much slower in the NAND metric. In other
words, even though the NAND metric was mentioned as an “alternative” in [4], the literature
did not develop in a way consistent with this alternative.

The motivation for this response, as mentioned in Section 2, is the hope that this response
would fix the “pathologies” in the RAM metric: i.e., that the gap between actual security and
the standard definition of insecurity is an artifact of the low-cost random access provided by
the RAM metric. However, the analyses in Sections 3, 4, 5, and 6 do not provide any support
for this idea. All necessary random accesses appear in large batches, allowing reasonably
efficient NAND computations.

B.3. Response 3: switch to the AT metric. Another possible response, analogous to the
previous response but different in one critical detail, is to change algorithm cost model from
the RAM metric to the AT metric.

Our cost analyses provide reason to hope that this response does fix essentially all of the
pathologies in the RAM metric. There is an exception in one corner case — precomputation
appears to help PRP attacks for probabilities below 2−K/4U−1/2, where K is the key length

Non-uniform cracks in the concrete: the power of free precomputation 19

and U is the number of targets — but one can argue that such low-probability attacks are of
no concern for cryptographic users.

This response causes trouble for the literature on provable concrete security, similar to the
previous response but even more pervasive: even more theorems would have to change. Like
the NAND metric, the AT metric makes serial random access much more expensive than the
RAM metric; unlike the NAND metric, the AT metric makes a large batch of table accesses
much more expensive than the RAM metric.

B.4. Response 4: add effectivity. In provable security (and in complexity theory more
broadly) it is standard to formalize “one can find a cost-C algorithm A that breaks X” as
“there exists a cost-C algorithm A that breaks X”. This formalization ignores the question of
how difficult it is to find A. Another possible response is to switch to another formalization
that explicitly quantifies this difficulty.

The obvious way to quantify the findability of A is as the minimum cost required by all
algorithms B that print A. The obvious objection is that there is always a cost-approximately-
C algorithm to print A: namely, an algorithm that simply includes, and prints, a copy of A.
However, one can easily exclude this trivial algorithm by allowing only small algorithms B.

Consider, for example, a large chip containing billions of standard AES key-search units.
This chip breaks AES with AT cost roughly 2128. The chip has a regular structure and area
far below 2128, so it is printed at moderate cost by an even smaller chip B. Similar comments
apply to the standard chips to attack NIST P-256, DSA-3072, and RSA-3072 at cost roughly
2128: all of them are printed at moderate cost by small chips B.

Consider, as another example, the hard-to-find attack A of Section 3.3, which finds an AES
key with high probability using 243 tables, each of size 243, for a total RAM cost on the scale
of 286. The description of A in Section 3.3 is a small algorithm B that prints A, but B has
RAM cost on the scale of 2128. One can trade some space for time by embedding part of A
into B, but as far as we know every algorithm B significantly smaller than A has negligible
chance of printing A with RAM cost significantly below 2128.

Consider, as a third example, the hard-to-find chip A of Section 3.2, with AT cost about
23n: area about 22n and time about 2n. As far as we know, every significantly smaller chip B
has negligible chance of printing A in any tolerable amount of time. This example suggests
that it is possible to eliminate some corner pathologies that were not eliminated by merely
switching to the AT metric.

Note that it is important to limit the cost of B in some reasonable cost metric, not merely
the size of B. All of the precomputations considered in this paper can be carried out by rather
small RAM algorithms; in other words, the outputs have low Kolmogorov complexity. For the
same reason, the NAND metric is useless for measuring the cost of B.

In general, it seems reasonable to redefine the insecurity of X as the maximum, over all
size-limited cost-limited algorithms B that print cost-limited algorithms A, of the probability
that A succeeds in breaking X. (We emphasize that probability here considers not just the
randomness in X and in A, but also the randomness in B; otherwise the best choice of B
is a tiny algorithm that prints out random bits.) This definition is explicitly parametrized
by three numerical limits, and implicitly parametrized by the metrics used to specify those
limits.

This response stops all of the precomputations considered in this paper, although it still
allows the attack considered in Section 3.1. Presumably this response will not exclude any
attacks that humans have a reasonable chance to find: except for minor implementation

20 Daniel J. Bernstein and Tanja Lange

details, humans are simply chips, and rather small chips by cryptanalytic standards. Of course,
one can imagine humans building larger chips that in turn find algorithms that the humans
would not have found directly, and to model this one can consider longer chains such as
algorithms that print larger algorithms that in turn print larger algorithms; but it seems
reasonable to insist that the chain start with a small algorithm (small enough for humans to
find) and to put a time limit on each algorithm.

This response, like the previous two responses, causes trouble for the literature on provable
concrete security. Each theorem must be restated to track not only the cost of A but also the
size and cost of B.

B.5. Response 5: add uniformity. The final response we consider is to eliminate non-
uniform security definitions: to prevent precomputation by requiring a single attack algorithm
to work against many different cryptographic systems.

The classic form of uniformity considered in the computational-complexity literature is
size-uniformity. One considers, for example, an attack against the entire RSA family (a single
algorithm that takes as input an RSA key of any length), not just RSA-3072. One defines the
insecurity of RSA as the maximum success probability ε of any attack taking time at most t;
here both ε and t are functions of the length of the RSA modulus.

Observe that this approach abandons the goal of defining, e.g., the insecurity of RSA-3072.
Substituting 3072 into ε and t does not work: it allows exactly the same precomputations as
in Section 6.

An alternative, already used in common definitions of collision resistance, is to consider
uniformity across wider families of functions. There is no longer a definition of the security
of AES; instead there is a definition of the security of a family of 2128 variants of AES. This
security depends on the choice of family. One might try to define a family of functions “similar”
to AES, hoping that the uniform security of this family reflects the actual security of AES; but
cryptanalysts have little motivation to study the family, so building confidence is difficult. For
RSA-3072 the situation is even worse: any reasonable family of 3072-bit functions arguably
sharing the security of RSA-3072 seems to be vulnerable to the same precomputations as
RSA-3072. For elliptic-curve cryptography the situation is somewhat better, since one can
reasonably ask questions about the security of (e.g.) a random curve meeting the IEEE P1363
criteria over a randomly chosen 256-bit prime field; however, this is of no help in understanding
the security of the NIST P-256 curve.

It is clear that insisting on enough uniformity, taking enough steps away from specific cryp-
tographic primitives towards sufficiently diverse families of cryptographic primitives, would
eliminate the gap analyzed in this paper. The gap relies on non-uniformity, and we have
chosen to highlight non-uniformity in the title of this paper.

The fundamental problem with this response is that it disconnects provable security from
cryptographic reality. For almost twenty years the literature on provable concrete security has
promised to formally define and study the security of specific cryptographic systems of interest
to cryptographic users and cryptanalysts, such as AES and AES-CBC-MAC and RSA-3072.
Adding uniformity would abandon this promise. Without these definitions it is unclear how to
make meaningful statements comparing the security of two different ciphers, or two different
curves, or any two cryptographic protocols that are specific enough to actually be used in
practice.

A second problem with this response is that it forces syntactic changes to most theorems.
For example, instead of proving a theorem comparing the security of a block cipher F to the

Non-uniform cracks in the concrete: the power of free precomputation 21

security of CBCm-F as in [4], one would have to prove a theorem comparing the security of a
family of block ciphers to the security of the corresponding CBC family. This change requires
abandoning some of the proofs in the literature, as pointed out by Koblitz and Menezes in
[29], and might even require abandoning some theorems.

B.6. Recommendations. We believe that accurately modeling reality is more important
than minimizing the number of changes required to the literature. We recommend switching to
the AT metric (response 3), capturing real limitations on communication cost that are ignored
by the RAM metric and the NAND metric. We also recommend adding effectivity (response
4), capturing the fact that attackers are limited in precomputation cost. We recommend
against adding uniformity (response 5); users are in fact using AES and NIST P-256 and
RSA-3072, not large families of variants of AES and NIST P-256 and RSA-3072.

We recommend stating provable-security theorems in a way that minimizes the hassle
of switching to a new cost metric. For example, consider again the main theorem of [4],
comparing the security of a block cipher F to the security of CBCm-F . To prove this theorem
one compares R(A) to A in cost and in success probability, where A is any attack against
CBCm-F andR is a particular reduction producing an attack R(A) against F . The comparison
of success probability is independent of the cost metric, and we recommend stating it as a
separate theorem that can be reused for different cost metrics. The following theorem from
[12] illustrates how simple such statements can be:

“Theorem 3.1. PrFactor(RandSquare(A)) ≥ (1/2) PrInvBlind(A).”

The reduction RandSquare is defined before the theorem, and PrFactor and PrInvBlind are
two types of success probabilities. This theorem is independent of cost metric, and is easy to
reuse in various higher-level theorems that compare the insecurity of the objects attacked by
A and RandSquare(A) in various cost metrics: the proof of a higher-level theorem analyzes
the relative costs of A and RandSquare(A) and appeals to this theorem for the relative success
probabilities.

This type of modularization of provable-security theorems can be traced back to at least
1999 (see [8, Theorem 4.1]), if not earlier, but at that point was not claimed to have any
particular advantages. In 2001, Stinson proposed studying explicit hash-function reductions as
a workaround for the separation between non-uniform collision resistance (which is negligible)
and uniform collision resistance (which often appears to be very high); but Stinson’s collision-
resistance theorems (e.g., [41, Theorem 3.1]) do not actually make these reductions explicit
and are trivialities as stated. Rogaway in [39] analyzed the same proposal much more carefully,
and gave examples of nontrivial theorems about black-box and non-black-box reductions; but
these theorems were still monolithic, handling probability together with a particular cost
metric and encapsulating the reductions inside the proofs, so changing the cost metric is
unnecessarily difficult.

Our analyses suggest that effectivity and the AT metric provide two levels of defense against
the unrealistic attacks considered in this paper. However, we would not be surprised if further
cost-model changes turn out to be desirable for other reasons, and we think that a modular
style for provable-security theorems will reduce the effort required to make such changes in
the future.

