
The security impact
of a new cryptographic library

Daniel J. Bernstein1, Tanja Lange2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600MB Eindhoven, the Netherlands

tanja@hyperelliptic.org
3 Research Center for Information Technology Innovation and

Institute of Information Science
Academia Sinica

No. 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
peter@cryptojedi.org

Abstract. This paper introduces a new cryptographic library, NaCl,
and explains how the design and implementation of the library avoid var-
ious types of cryptographic disasters suffered by previous cryptographic
libraries such as OpenSSL. Specifically, this paper analyzes the security
impact of the following NaCl features: no data flow from secrets to load
addresses; no data flow from secrets to branch conditions; no padding
oracles; centralizing randomness; avoiding unnecessary randomness; ex-
tremely high speed; and cryptographic primitives chosen conservatively
in light of the cryptanalytic literature.

Keywords: confidentiality, integrity, simplicity, speed, security

1 Introduction

For most cryptographic operations there exist widely accepted standards, such
as the Advanced Encryption Standard (AES) for secret-key encryption and 2048-
bit RSA for public-key encryption. These primitives have been extensively stud-
ied, and breaking them is considered computationally infeasible on any existing
computer cluster.

This work was supported by the National Science Foundation under grant 1018836;
by the European Commission through the ICT Programme under Contract ICT-
2007-216499 CACE and Contract ICT-2007-216676 ECRYPT II; and by the National
Science Council, National Taiwan University and Intel Corporation under Grant
NSC99-2911-I-002-001 and 99-2218-E-001-007. Part of this work was carried out
when Peter Schwabe was employed by National Taiwan University; part of this
work was carried out when Peter Schwabe was employed by Technische Universiteit
Eindhoven. Permanent ID of this document: 5f6fc69cc5a319aecba43760c56fab04.
Date: 2012.07.25.

2 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

For each of these cryptographic primitives there exist various implementa-
tions and software libraries, and it has become common best practice in the
development of secure systems to use the implementations in these libraries as
building blocks. One should thus expect that the cryptographic layer of modern
information systems does not expose any vulnerabilities to attackers. Unfortu-
nately this expectation is far from reality, as demonstrated by one embarrassing
cryptographic failure after another.

A new cryptographic library: NaCl. To address the underlying problems
we have designed and implemented a new cryptographic library. The library
name, NaCl, is pronounced “salt” and stands for “Networking and Cryptogra-
phy Library”. This paper discusses only the cryptographic part of NaCl; the
networking part is still in prototype form.

NaCl is in the public domain and is available from http://nacl.cr.yp.to

and http://nacl.cace-project.eu, along with extensive documentation. The
signature component of NaCl is integrated only into the latest development
version, which is not yet online, but the same code is available separately as
part of the SUPERCOP benchmarking package at http://bench.cr.yp.to.
NaCl steers clear of all patents that we have investigated and has not received
any claims of patent infringement.

The first announcement of NaCl was in 2008. We considered changing the
name of the project when Google announced Native Client, but decided that
there was no real risk of confusion. The first release of NaCl was in 2009 but was
missing some of the important features discussed in this paper; the C++ NaCl
API was not released until 2010, for example, and signatures were not released
until 2011.

A research paper on cryptographic software normally focuses on optimizing
the choice and implementation of a single cryptographic primitive at a specified
security level: for example, [11] reports speed records for signatures at a 2128 se-
curity level. This paper is different. Our goal is to analyze the real-world security
benefits of switching from an existing cryptographic library such as OpenSSL
[30] to a completely new cryptographic library. Some of these security benefits
are tied to performance, as discussed later, so we naturally use the results of
papers such as [11]; but what is new in this paper is the security analysis.

Credits. Several of the implementations used in NaCl are partially or entirely
from third parties. The portability of NaCl relies on the ref implementation of
Curve25519 written by Matthew Dempsky (Mochi Media, now Google). From
2009 until 2011 the speed of NaCl on common Intel/AMD CPUs relied on the
donna and donna c64 implementations of Curve25519 written by Adam Lan-
gley (Google) — which, interestingly, also appear in Apple’s acknowledgments
[4] for iOS 4. The newest implementations of Curve25519 and Ed25519 were
joint work with Niels Duif (Technische Universiteit Eindhoven) and Bo-Yin
Yang (Academia Sinica). The core2 implementation of AES was joint work
with Emilia Käsper (Katholieke Universiteit Leuven, now Google).

Prototype Python wrappers around C NaCl have been posted by Langley; by
Jan Mojzis; and by Sean Lynch (Facebook). We will merge these wrappers and

http://nacl.cr.yp.to
http://nacl.cace-project.eu
http://bench.cr.yp.to

The security impact of a new cryptographic library 3

integrate them into the main NaCl release as a single supported Python NaCl,
in the same way that we support C++ NaCl.

2 Background for the security analysis: The NaCl API

The reader is assumed to be familiar with the fact that most Internet commu-
nication today is cryptographically unprotected. The primary goal of NaCl is to
change this: to cryptographically protect every network connection, providing
strong confidentiality, strong integrity, and state-of-the-art availability against
attackers sniffing or modifying network packets.

Confidentiality is limited to packet contents, not packet lengths and timings,
so users still need anti-traffic-analysis tools: route obfuscators such as Tor [38],
timing obfuscators, etc. Of course, users also need vastly better software security
in operating systems, web browsers, document viewers, etc. Cryptography is only
one part of security.

This section introduces the functions provided by NaCl, with an emphasis on
the simplicity of these functions: more precisely, the simplicity that these func-
tions bring to cryptographic applications. There are enough differences between
the NaCl API and previous APIs to justify a discussion of the details. Subse-
quent sections of the paper analyze the security benefits of NaCl, starting from
the background provided in this section.

The crypto_box API. The central job of a cryptographic library is public-
key authenticated encryption. The general setup is that a sender, Alice,
has a packet to send to a receiver, Bob. Alice scrambles the packet using Bob’s
public key and her own secret key. Bob unscrambles the packet using Alice’s
public key and his own secret key. “Encryption” refers to confidentiality: an
attacker monitoring the network is unable to understand the scrambled packet.
“Authenticated” refers to integrity: an attacker modifying network packets is
unable to change the packet produced by Bob’s unscrambling. (Availability, to
the extent that it is not inherently limited by network resources, is provided by
higher-level networking protocols that retransmit lost packets.)

A typical cryptographic library uses several steps to authenticate and encrypt
a packet. Consider, for example, the following typical combination of RSA, AES,
etc.:

– Alice generates a random AES key.
– Alice uses the AES key to encrypt the packet.
– Alice hashes the encrypted packet using SHA-256.
– Alice reads her RSA secret key from “wire format.”
– Alice uses her RSA secret key to sign the hash.
– Alice reads Bob’s RSA public key from wire format.
– Alice uses Bob’s public key to encrypt the AES key, hash, and signature.
– Alice converts the encrypted key, hash, and signature to wire format.
– Alice concatenates with the encrypted packet.

4 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

Often even more steps are required for storage allocation, error handling, etc.
NaCl gives Alice a simple high-level crypto_box function that does everything

in one step, putting a packet into a box that is protected against espionage and
sabotage:

c = crypto_box(m,n,pk,sk)

The function takes the sender’s secret key sk (32 bytes), the recipient’s public
key pk (also 32 bytes), a packet m, and a nonce n (24 bytes), and produces an
authenticated ciphertext c (16 bytes longer than m). All of these objects are C++
std::string variables, represented in wire format as sequences of bytes suitable
for transmission; the crypto_box function automatically handles all necessary
conversions, initializations, etc. Bob’s operation is just as easy, with the keys and
packets reversed, using his secret key, Alice’s public key, and the same nonce:

m = crypto_box_open(c,n,pk,sk)

Each side begins with

pk = crypto_box_keypair(&sk)

to generate a secret key and a public key in the first place.
These C++ functions are wrappers around C functions; the C functions can

also be used directly by C applications. The C NaCl API has the same func-
tion names but more arguments: for example, std::string m is replaced by
unsigned char *m and unsigned long long mlen, and std::string c is re-
placed by unsigned char *c. The formats of m and c in the C NaCl API are
padded so that clen matches mlen, removing the need to pass clen explicitly
and allowing ciphertexts to be stored on top of plaintexts. Failures are indicated
by exceptions in C++ NaCl and a -1 return value in C NaCl.

Validation of the API. The API described above might seem too simple
to support the needs of real-world applications. We emphasize that NaCl has
already been integrated into high-security applications that are running on the
Internet today.

DNSCurve [9], designed by the first author, provides high-security authen-
ticated encryption for Domain Name System (DNS) queries between a DNS
resolver and a DNS server. (The server’s public key is provided by its parent
DNS server, which of course also needs to be secured; the client’s public key is
provided as part of the protocol.) NaCl has been used successfully for several
independent DNSCurve implementations, including an implementation used [19]
by the OpenDNS resolvers, which handle billions of DNS queries a day from mil-
lions of computers and automatically use DNSCurve for any DNSCurve server.
OpenDNS has also designed and deployed DNSCrypt, a variant of DNSCurve
that uses NaCl to authenticate and encrypt DNS queries from a DNS client to a
DNS resolver; two months after the introduction of DNSCrypt, [40] stated that
DNSCrypt was already in use by tens of thousands of clients. Other applications
of NaCl so far include the QuickTun VPN software [33]; the Ethos operating

The security impact of a new cryptographic library 5

system [35]; and the first author’s prototype implementation of CurveCP [10], a
high-security cryptographic version of TCP.

C NaCl allows crypto_box to be split into two steps, crypto_box_beforenm
followed by crypto_box_afternm, slightly compromising simplicity but gaining
extra speed as discussed in Section 4. The beforenm step preprocesses pk and
sk, preparing to handle any number of messages; the afternm step handles n

and m. Most applications actually use this two-step procedure.

Nonces. The crypto_box API leaves nonce generation to the caller. This is not
meant to suggest that nonce generation is not part of the cryptographer’s job;
on the contrary, we believe that cryptographers should take responsibility not
just for nonces but also for other security aspects of high-level network protocols.
The exposure of nonces simply reflects the fact that nonces are integrated into
high-level protocols in different ways.

It might seem simplest to always generate a random 24-byte nonce n, and
to transmit this nonce as part of the authenticated ciphertext; 24-byte random
strings have negligible chance of colliding. If ciphertexts are long then one can
tolerate the costs of generating this randomness and of expanding each ciphertext
by 24 bytes. However, random nonces do nothing to stop the simplest type of
forgery, namely a replay. One standard strategy to prevent replays is to include
an increasing number in each packet and to reject any packet whose number is not
larger than the number in the last verified packet; using these sequence numbers
as nonces is simpler than giving each packet a number and a random nonce. On
the other hand, choosing public nonces as sequence numbers means giving away
traffic information that would otherwise be somewhat more expensive for an
attacker to collect. Several different solutions appear in the literature; constraints
on nonce generation are often tied directly to questions of the security and
privacy that users expect.

Current applications of NaCl, such as DNSCurve and CurveCP, have different
requirements regarding nonces, replays, forward secrecy, and many other security
issues at a higher level than the crypto_box API. A nonceless API would require
higher-level complications in all of these applications, and would not simplify
their security analysis.

The crypto_sign API. Sometimes confidentiality is irrelevant: Alice is sending
a public message to many people. In this situation it is helpful for a cryptographic
library to provide public-key signatures: Alice scrambles the message using
her own secret key, and Bob unscrambles the message using Alice’s public key.
Alice’s operations are independent of Bob, allowing the scrambled message to be
broadcast to any number of receivers. Signatures also provide non-repudiation,
while authenticators are always repudiable.

NaCl provides simple high-level functions for signatures: Alice uses

pk = crypto_sign_keypair(&sk)

to generate a key pair (again 32 bytes for the public key but 64 bytes for the
secret key), and

6 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

sm = crypto_sign(m,sk)

to create a signed message (64 bytes longer than the original message). Bob uses

m = crypto_sign_open(sm,pk)

to unscramble the signed message, recovering the original message.

Comparison to previous work. NaCl is certainly not the first cryptographic
library to promise a simple high-level API. For example, Gutmann’s cryptlib
library [22] advertises a “high-level interface” that “provides anyone with the
ability to add strong security capabilities to an application in as little as half
an hour, without needing to know any of the low-level details that make the
encryption or authentication work.” See [23, page 1].

There are, however, many differences between high-level APIs, as illustrated
by the following example. The first code segment in the cryptlib manual [23, page
13] (“the best way to illustrate what cryptlib can do”) contains the following six
function calls, together with various comments:

cryptCreateEnvelope(&cryptEnvelope, cryptUser,

CRYPT_FORMAT_SMIME);

cryptSetAttributeString(cryptEnvelope,

CRYPT_ENVINFO_RECIPIENT,

recipientName, recipientNameLength);

cryptPushData(cryptEnvelope, message, messageSize,

&bytesIn);

cryptFlushData(cryptEnvelope);

cryptPopData(cryptEnvelope, encryptedMessage, encryptedSize,

&bytesOut);

cryptDestroyEnvelope(cryptEnvelope);

This sequence has a similar effect to NaCl’s

c = crypto_box(m,n,pk,sk)

where message is the plaintext m and encryptedMessage is the ciphertext c.
The most obvious difference between these examples is in conciseness: cryptlib

has separate functions

– cryptCreateEnvelope to allocate storage,
– cryptSetAttributeString to specify the recipient,
– cryptPushData to start the plaintext input,
– cryptFlushData to finish the plaintext input,
– cryptPopData to extract the ciphertext, and
– cryptDestroyEnvelope to free storage,

while NaCl handles everything in one function. The cryptlib program must also
call cryptInit at some point before this sequence.

A much less obvious difference is in reliability. For example, if the program
runs out of memory, NaCl will raise an exception, while the above cryptlib code

The security impact of a new cryptographic library 7

will fail in unspecified ways, perhaps silently corrupting or leaking data. The
cryptlib manual [23, page 35] states that the programmer is required to check
that each function returns CRYPT_OK, and that the wrong code shown above is
included in the manual “for clarity”. Furthermore, [23, page 53] says that if mes-
sages are large then “only some of the data may be copied in” by cryptPushData;
the programmer is required to check bytesIn and loop appropriately. Trouble
can occur even if messages are short and memory is ample: for example, [23, page
14] indicates that recipient public keys are retrieved from an on-disk database,
but does not discuss what happens if the disk fails or if an attacker consumes
all available file descriptors.

Some of the differences between these code snippets are really differences
between C and C++: specifically, NaCl benefits from C++ exceptions and C++
strings, while cryptlib does not use these C++ features. For applications written
in C, rather than C++, the cryptlib API should instead be compared to the C
NaCl API:

crypto_box(c,m,mlen,n,pk,sk)

This C NaCl function cannot raise C++ exceptions, but it also does not need to:
its only possible return value is 0, indicating successful authenticated encryption.
C NaCl is intended to be usable in operating-system kernels, critical servers, and
other environments that cannot guarantee the availability of large amounts of
heap storage but that nevertheless rely on their cryptographic computations to
continue working. In particular, C NaCl functions do not call malloc, sbrk,
etc. They do use small amounts of stack space; these amounts will eventually
be measured by separate benchmarks, so that stack space can be allocated in
advance and guaranteed to be adequate.

Perhaps the most important difference between these NaCl and cryptlib ex-
amples is that the crypto_box output is authenticated and encrypted using
keys from Alice and Bob, while the cryptlib output is merely encrypted to Bob
without any authentication; cryptlib supports signatures but does not add them
without extra programming work. There is a long history of programs omitting
cryptographic authentication, incorrectly treating all successfully decrypted data
as authentic, and being exploited as a result; with cryptlib, writing such pro-
grams is easier than writing programs that include proper authentication. With
NaCl, high-security authenticated encryption is the easiest operation.

3 Core security features and their impact

This section presents various case studies of cryptographic disasters, and explains
the features of NaCl that eliminate these types of disasters.

Two specific types of disasters are addressed in subsequent sections: Section 4
discusses users deliberately weakening or disabling cryptography to address cryp-
tographic performance problems; Section 5 discusses cryptographic primitives
being broken.

8 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

No data flow from secrets to load addresses. In 2005, Osvik, Shamir, and
Tromer described a timing attack that discovered the AES key of the dm-crypt

hard-disk encryption in Linux in just 65 milliseconds. See [31] and [39]. The
attack process runs on the same machine but does not need any privileges (for
example, it can run inside a virtual machine) and does not exploit any kernel
software security holes.

This attack is possible because almost all implementations of AES, including
the Linux kernel implementation, use fast lookup tables as recommended in the
initial AES proposal; see [18, Section 5.2]. The secret AES key inside the kernel
influences the table-load addresses, which in turn influence the state of the CPU
cache, which in turn influences measurable timings of the attack process; the
attack process computes the AES key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all loads from
addresses that depend on secret data. All of the implementations are thus in-
herently protected against cache-timing attacks. This puts constraints on the
implementation strategies used throughout NaCl, and also influences the choice
of cryptographic algorithms in NaCl, as discussed in Section 5.

For comparison, Gutmann’s cryptlib manual [23, pages 63–64] claims that
cache-timing attacks (specifically “observing memory access latencies for cached
vs. un-cached data”) and branch-timing attacks (see below) provide almost the
same “level of access” as “an in-circuit emulator (ICE)” and that there are
therefore “no truly effective defences against this level of threat”. We disagree.
Software side channels on common CPUs include memory addresses and branch
conditions but do not include, e.g., the inputs and outputs to a XOR operation;
it is well known that the safe operations are adequate in theory to perform
cryptographic computations, and NaCl demonstrates that the operations are
also adequate in practice. Typical cryptographic code uses unsafe operations, and
cache-timing attacks have been repeatedly demonstrated to be effective against
such code, but NaCl’s approach makes these attacks completely ineffective.

OpenSSL has responded to cache-timing attacks in a different way, not pro-
hibiting secret load addresses but instead using complicated countermeasures
intended to obscure the influence of load addresses upon the cache state. This
obviously cannot provide the same level of confidence as the NaCl approach: a
straightforward code review can convincingly verify the predictability of all load
addresses in NaCl, while there is no similarly systematic way to verify the efficacy
of other countermeasures. The review of load addresses and branch conditions
(see below) can be automated, as explained in [28] and [27], and in fact has
already been formalized and automated for large parts of NaCl; see [3] (which
comments that “NaCl code follows strict coding policies that make it formal
verification-friendly” and explains how parts of the code were verified).

No data flow from secrets to branch conditions. Brumley and Tuveri an-
nounced in 2011 that they had used a remote timing attack to find the ECDSA
private key used for server authentication in a TLS handshake. See [15]. The im-
plementation targeted in this attack is the ECDSA implementation in OpenSSL.

The security impact of a new cryptographic library 9

The underlying problem is that most scalar-multiplication (and exponentia-
tion) algorithms involve data flow from secret data into branch conditions: i.e.,
certain operations are carried out if and only if the key has certain properties.
In particular, the OpenSSL implementation of ECDSA uses one of these algo-
rithms. Secret data inside OpenSSL influences the state of the CPU branch unit,
which in turn influences the amount of time used by OpenSSL, which in turn
influences measurable timings of network packets; the attacker computes the
ECDSA key from this leaked information.

NaCl avoids this type of disaster by systematically avoiding all branch condi-
tions that depend on secret data. This is analogous to the prohibition on secret
load addresses discussed above; it has pervasive effects on NaCl’s implementation
strategies and interacts with the cryptographic choices discussed in Section 5.

No padding oracles. In 1998 Bleichenbacher successfully decrypted an RSA-
encrypted SSL ciphertext by sending roughly one million variants of the cipher-
text to the server and observing the server’s responses. The server would apply
RSA decryption to each variant and publicly reject the (many) variants not
having “PKCS #1” format. Subsequent integrity checks in SSL would defend
against forgeries and reject the remaining variants, but the pattern of initial
rejections already leaked so much information that Bleichenbacher was able to
compute the plaintext. See [14].

NaCl has several layers of defense against this type of disaster:

– NaCl’s authenticated-encryption mechanism is designed as a secure unit,
always wrapping encryption inside authentication. Nothing is decrypted un-
less it first survives authentication, and the authenticator’s entire job is to
prevent the attacker from forging messages that survive authentication.

– Forged messages always follow the same path through authenticator verifi-
cation, using constant time (depending only on the message length, which is
public) and then rejecting the message, with no output other than the fact
that the message is forged.

– Even if the attacker forges a variant of a message by sheer luck, the forgery
will be visible only through the receiver accepting the message, and standard
nonce-handling mechanisms in higher-level protocols will instantly reject any
further messages under the same nonce. NaCl derives new authentication and
encryption keys for each nonce, so the attacker will have no opportunity to
study the effect of those keys on any further messages.

Note that the third defense imposes a key-agility requirement on the underlying
cryptographic algorithms.

Most cryptographic libraries responded to Bleichenbacher’s attack by trying
to hide different types of message rejection, along the lines of the second defense;
for example, [24] shows that this approach was adopted by the GnuTLS library
in 2006. However, typical libraries continue to show small timing variations, so
this defense by itself is not as confidence-inspiring as using strong authentica-
tion to shield decryption. Conceptually similar attacks have continued to plague
cryptographic software, as illustrated by the SSH attack in [1] in 2009 and the
very recent DTLS attack in [2].

10 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

Centralizing randomness. In 2006 a Debian developer removed one critical
line of randomness-generation code from the OpenSSL package shipped with
Debian GNU/Linux. Code-verification tools had complained that the line was
producing unpredictable results, and the developer did not see why the line
was necessary. Until this bug was discovered in 2008 (see [34]), OpenSSL keys
generated under Debian and Ubuntu were chosen from a set of size only 32768.
Breaking the encryption or authentication of any communication secured with
such a key was a matter of seconds.

NaCl avoids this type of disaster by simply reading bytes from the operating-
system kernel’s cryptographic random-number generator. Of course, the relevant
code in the kernel needs to be carefully written, but reviewing that code is a
much more tractable task than reviewing all of the separate lines of randomness-
generation code in libraries that decide to do the job themselves. The benefits
of code minimization are well understood in other areas of security; we are
constantly surprised by the amount of unnecessary complexity in cryptographic
software.

A structural deficiency in the /dev/urandom API provided by Linux, BSD,
etc. is that using it can fail, for example because the system has no available
file descriptors. In this case NaCl waits and tries again. We recommend that
operating systems add a reliable urandom(x,xlen) system call.

Avoiding unnecessary randomness. Badly generated random numbers were
also involved in the recent collapse of the security system of Sony’s PlayStation
3 gaming console. Sony used the standard elliptic-curve digital-signature algo-
rithm, ECDSA, but ignored the ECDSA requirement of a new random secret
for each message: Sony simply used a constant value for all messages. Attackers
exploited this mistake to compute Sony’s root signing key, as explained in [16,
slides 122–130], breaking the security system of the PlayStation 3 beyond repair.

NaCl avoids this type of disaster by using deterministic cryptographic opera-
tions to the extent possible. The keypair operations use new randomness, but
all of the other operations listed above produce outputs determined entirely by
their inputs. Of course, this imposes a constraint upon the underlying crypto-
graphic primitives: primitives that use randomness, such as ECDSA, are rejected
in favor of primitives that make appropriate use of pseudorandomness.

Determinism also simplifies testing. NaCl includes a battery of automated
tests shared with eBACS (ECRYPT Benchmarking of Cryptographic Systems),
an online cryptographic speed-measurement site [12] designed by the first two
authors; this site has received, and systematically measured, 1099 implementa-
tions of various cryptographic primitives from more than 100 people. The test
battery found, for example, that software for a cipher named Dragon was some-
times reading outside its authorized input arrays; the same software had passed
previous cryptographic test batteries. All of the core NaCl functions have also
been tested against pure Python implementations, some written ourselves and
some contributed by Matthew Dempsky.

The security impact of a new cryptographic library 11

4 Speed and its security impact

Cryptographic performance problems have frequently caused users to reduce
their cryptographic security levels or to turn off cryptography entirely. Consider
the role of performance in the following examples:

– https://sourceforge.net/account is protected by SSL, but https://

sourceforge.net/develop redirects the user’s web browser to http://

sourceforge.net/develop, actively turning off SSL and exposing the web
pages to silent modification by sniffing attackers. Cryptography that is not
actually used can be viewed as the ultimate disaster, providing no more se-
curity than any of the other cryptographic disasters discussed in this paper.

– OpenSSL’s AES implementations continue to use table lookups on most
CPUs, rather than obviously safe bitsliced computations that would be
slower on those CPUs. The table lookups have been augmented with several
complicated countermeasures that are hoped to protect against the cache-
timing attacks discussed in Section 3.

– Google has begun to allow SSL for more and more services, but only with a
1024-bit RSA key, despite
• recommendations from the RSA company to move up to at least 2048-bit

RSA by the end of 2010;
• the same recommendations from the U.S. government; and
• analyses from 2003 concluding that 1024-bit RSA was already breakable

in under a year using hardware that governments and large companies
could already afford.

See, e.g., [32] for an analysis by Shamir (the S in RSA) and Tromer; [25]
for an end-of-2010 recommendation from the RSA company; and [5] for an
end-of-2010 recommendation from the U.S. government.

– DNSSEC recommends, and uses, 1024-bit RSA for practically all signa-
tures rather than 2048-bit RSA, DSA, etc.: “In terms of performance, both
RSA and DSA have comparable signature generation speeds, but DSA is
much slower for signature verification. Hence, RSA is the recommended al-
gorithm. . . . The choice of key size is a tradeoff between the risk of key
compromise and performance. . . . RSA-SHA1 (RSA-SHA-256) until 2015,
1024 bits.” See [17].

– The Tor anonymity network [38] also uses 1024-bit RSA.

Speed of NaCl. We do not provide any low-security options in NaCl. For
example, we do not allow encryption without authentication; we do not allow
any data flow from secrets to load addresses or branch conditions; and we do
not allow cryptographic primitives breakable in substantially fewer than 2128

operations, such as RSA-2048.
The remaining risk is that users find NaCl too slow and turn it off, replacing it

with low-security cryptographic software or no cryptography at all. NaCl avoids
this type of disaster by providing exceptionally high speeds. NaCl is generally
much faster than previous cryptographic libraries, even if those libraries are

https://sourceforge.net/account
https://sourceforge.net/develop
https://sourceforge.net/develop
http://sourceforge.net/develop
http://sourceforge.net/develop

12 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

asked for lower security levels. More to the point, NaCl is fast enough to handle
packet rates beyond the worst-case packet rates of a typical Internet connection.

For example, using a single AMD Phenom II X6 1100T CPU (6 cores, 3.3GHz,
purchased for $190 a year ago), NaCl performs

– more than 80000 crypto_box operations (public-key authenticated encryp-
tion) per second;

– more than 80000 crypto_box_open operations (public-key authenticator
verification and decryption) per second;

– more than 70000 crypto_sign_open operations (signature verification) per
second; and

– more than 180000 crypto_sign operations (signature generation) per second

for any common packet size. To put these numbers in perspective, imagine a
connection flooded with 50-byte packets, each requiring a crypto_box_open;
80000 such packets per second would consume 32 megabits per second even
without packet overhead. A lower volume of network traffic means that the
CPU needs only a fraction of its time to handle the cryptography.

NaCl provides even better speeds than this, for four reasons:

– NaCl uses a single public-key operation for a packet of any size, allowing
large packets to be handled with very fast secret-key cryptography; 80000
1500-byte packets per second would fill up a gigabit-per-second link.

– A single public-key operation is shared by many packets from the same
public key, allowing all the packets to be handled with very fast secret-key
cryptography, if the caller splits crypto_box into crypto_box_beforenm and
crypto_box_afternm.

– NaCl uses “encrypt-then-MAC”, so forged packets are rejected without being
decrypted; a flood of forgeries thus has even more trouble consuming CPU
time.

– The signature system in NaCl supports fast batch verification, effectively
doubling the speed of verifying a stream of valid signatures.

Most of these speedups do not reduce the cost of handling forgeries under new
public keys, but a flooded server can continue providing very fast service to
public keys that are already known.

Comparison to previous work. See [7], [11], and [12] for detailed surveys of
previous speeds. We give an example here of widely used cryptographic software
running much more slowly than NaCl; this type of slowness plays an obvious
role in the examples at the beginning of the section.

We ran openssl speed on the same AMD Phenom II X6 1100T CPU men-
tioned above. The OpenSSL version shipped with the operating system (64-bit
Ubuntu 11.10) was 1.0.0e, released September 2011. OpenSSL reports speeds
on just 1 out of the 6 CPU cores, so we multiplied its operation counts by 6,
optimistically assuming that separate operations on separate CPU cores would
not interfere with each other.

The security impact of a new cryptographic library 13

For public-key authenticated encryption at a security level we would accept,
the fastest option in OpenSSL was nistp256 ECDH (plus secret-key cryptogra-
phy), running at 9300 operations/second for small packets. (The lowest-security
option in OpenSSL was secp160r1 ECDH, running at 29800 operations/second.)
For signing at the same security level, the fastest option was nistp256 ECDSA,
running at 37700 operations/second, but with verification running at only 7800
operations/second. RSA-2048 is much faster for encryption and signature veri-
fication, running at 102500 operations/second, but much slower for decryption
and signing, running at 2800 operations/second.

Embedded systems. The optimized implementations in the current version of
NaCl are aimed at large CPUs, but all of the cryptographic primitives in NaCl
can fit onto much smaller CPUs: there are no requirements for large tables or
complicated code. NaCl also makes quite efficient use of bandwidth: as mentioned
earlier, public keys are only 32 bytes, signed messages are only 64 bytes longer
than unsigned messages, and authenticated ciphertexts are only 16 bytes longer
than plaintexts.

The first and third authors of this paper reported in [13] new implementations
of the NaCl public-key primitives running at more than 1000 operations/second
on an ARM Cortex A8 core (e.g., the Apple A4 CPU in the iPad 1 and iPhone
4). We are integrating this software into NaCl.

5 Cryptographic primitives in NaCl

Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, and de Weger announced
in 2008 (see [36] and [37]) that, by exploiting various weaknesses that had been
discovered in the MD5 hash function, they had created a rogue CA certificate.
They could, if they wanted, have impersonated any SSL site on the Internet.

This type of disaster, cryptographic primitives being broken, is sometimes
claimed to be prevented by cryptographic standardization. However, there are
many examples of standards that have been publicly broken, including DES,
512-bit RSA, and these MD5-based certificates. More to the point, there are
some existing standards that can reach NaCl’s speeds, but those standards fall
far short of NaCl’s security requirements.

Our main strategy for avoiding dangerous primitives in NaCl has been to
pay attention to cryptanalysis. There is an extensive cryptanalytic literature ex-
ploring the limits of attacks on various types of cryptographic primitives; some
cryptographic structures are comfortably beyond these limits, while others in-
spire far less confidence. This type of security evaluation is only loosely related
to standardization, as illustrated by the following example: Dobbertin, Bosse-
laers, and Preneel wrote “It is anticipated that these techniques can be used to
produce collisions for MD5 and perhaps also for RIPEMD” in 1996 [20], eight
years before collisions in MD5 (and RIPEMD) were published and a decade be-
fore most MD5-based standards were withdrawn. They recommended switching
to RIPEMD-160, which fifteen years later has still not been publicly broken.

14 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

This strategy, choosing cryptographic algorithms in light of the cryptanalytic
literature, has given us higher confidence in NaCl’s cryptographic primitives than
in most standards. At the same time this strategy has given us the flexibility
needed to push NaCl to extremely high speeds, avoiding the types of disasters
discussed in Section 4.

The rest of this section discusses the cryptographic primitives used in NaCl,
and explains why we expect these choices to reduce the risk of cryptographic
disasters. Specifically, NaCl uses elliptic-curve cryptography, not RSA; it uses
an elliptic curve, Curve25519, that has several advanced security features; it uses
Salsa20, not AES (although it does include an AES implementation on the side);
it uses Poly1305, not HMAC; and for an elliptic-curve signature system it uses
EdDSA, not ECDSA.

We are aware that many existing protocols require AES and RSA, and that
taking advantage of NaCl as described in this paper requires those protocols to be
upgraded. We have prioritized security over compatibility, and as a consequence
have also prioritized speed over compatibility. There are other projects that
have explored the extent to which speed and security can be improved without
sacrificing compatibility, but NaCl is aiming at a different point in the design
space, and at applications that are not well served by the existing protocols.
DNSCrypt (see Section 2) illustrates the feasibility of our deployment approach.

Cryptographic choices in NaCl. RSA is somewhat older than elliptic-curve
cryptography: RSA was introduced in 1977, while elliptic-curve cryptography
was introduced in 1985. However, RSA has shown many more weaknesses than
elliptic-curve cryptography. RSA’s effective security level was dramatically re-
duced by the linear sieve in the late 1970s, by the quadratic sieve and ECM in
the 1980s, and by the number-field sieve in the 1990s. For comparison, a few
attacks have been developed against some rare elliptic curves having special al-
gebraic structures, and the amount of computer power available to attackers has
predictably increased, but typical elliptic curves require just as much computer
power to break today as they required twenty years ago.

IEEE P1363 standardized elliptic-curve cryptography in the late 1990s, in-
cluding a stringent list of security criteria for elliptic curves. NIST used the
IEEE P1363 criteria to select fifteen specific elliptic curves at five different se-
curity levels. In 2005, NSA issued a new “Suite B” standard, recommending the
NIST elliptic curves (at two specific security levels) for all public-key cryptog-
raphy and withdrawing previous recommendations of RSA.

Curve25519, the particular elliptic curve used in NaCl, was introduced in [7] in
2006. It follows all of the standard IEEE P1363 security criteria; it also satisfies
new recommendations for “twist security” and “Montgomery representation”
and “Edwards representation”. What this means is that secure implementations
of Curve25519 are considerably simpler and faster than secure implementations
of (e.g.) NIST P-256; there are fewer opportunities for implementors to make
mistakes that compromise security, and mistakes are more easily caught by re-
viewers.

The security impact of a new cryptographic library 15

Montgomery representation allows fast single-scalar multiplication using a
Montgomery ladder [29]; this is the bottleneck in Diffie–Hellman key exchange
inside crypto_box. It was proven in [7] that this scalar-multiplication strategy
removes all need to check for special cases inside elliptic-curve additions. NaCl
uses a ladder of fixed length to eliminate higher-level branches. Edwards repre-
sentation allows fast multi-scalar multiplication and general addition with the
same advantage of not having to check for special cases. The fixed-base-point
scalar multiplication involved in crypto_sign uses Edwards representation for
additions, and eliminates higher-level branches by using a fixed sequence of 63
point additions as described in [11, Section 4].

Salsa20 [8] is a 20-round 256-bit cipher that was submitted to eSTREAM,
the ECRYPT Stream Cipher Project [21], in 2005. The same project collected
dozens of submissions from 97 cryptographers in 19 countries, and then hun-
dreds of papers analyzing the submissions. Four refereed papers from 14 cryp-
tographers studied Salsa20, culminating in a 2151-operation “attack” against 7
rounds and a 2249-operation “attack” against 8 rounds. After 3 years of review
the eSTREAM committee selected a portfolio of 4 software ciphers, including
Salsa20; they recommended 12 rounds of Salsa20 as having a “comfortable mar-
gin for security”.

For comparison, AES is a 14-round 256-bit cipher that was standardized ten
years ago. Cryptanalysis at the time culminated in a 2140-operation “attack”
against 7 rounds and a 2204-operation “attack” against 8 rounds. New research
in 2011 reported a 2254-operation “attack” against all 14 rounds, marginally
exploiting the slow key expansion of AES, an issue that was avoided in newer
designs such as Salsa20. (Salsa20 also has no penalty for switching keys.) Overall
each round of Salsa20 appears to have similar security to each round of AES,
and 20 rounds of Salsa20 provide a very solid security margin, despite being
faster than 14 rounds of AES on most CPUs.

A further difficulty with AES is that it relies on lookup tables for high-speed
implementations; avoiding lookup tables compromises the speed of AES on most
CPUs. Recall that, as discussed in Section 3, NaCl prohibits loading data from
secret addresses. We do not mean to say that AES cannot be implemented
securely: the NaCl implementation of AES is the bitsliced assembly-language
implementation described in [26], together with a portable C implementation
following the same approach. However, we are concerned about the extent to
which security for AES requires compromising speed. Salsa20 avoids these issues:
it avoids all use of lookup tables.

Poly1305 is an information-theoretically secure message-authentication code
introduced in [6]. Using Poly1305 with Salsa20 is guaranteed to be as secure as
using Salsa20 alone, with a security gap of at most 2−106 per byte: an attacker
who can break the Poly1305 authentication can also break Salsa20. HMAC does
not offer a comparable guarantee.

EdDSA was introduced quite recently in [11]. It is much newer than other
primitives in NaCl but is within a well-known cloud of signature systems that
includes ElGamal, Schnorr, ECDSA, etc.; it combines the safest choices available

16 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

within that cloud. EdDSA is like Schnorr and unlike ECDSA in that it diversifies
the hash input, adding resilience against hash collisions, and in that it avoids
inversions, simplifying and accelerating implementations. EdDSA differs from
Schnorr in using a double-size hash function, further reducing the risk of any
hash-function problems; in requiring Edwards curves, again simplifying and ac-
celerating implementations; and in including the public key as a further input to
the hash function, alleviating concerns regarding attacks targeting many keys at
once. EdDSA also avoids a minor compression mechanism, as discussed in [11];
the compression mechanism is public, so it cannot improve security, and skip-
ping it is essential for EdDSA’s fast batch verification. Finally, EdDSA generates
per-message secret nonces by hashing each message together with a long-term
secret, rather than requiring new randomness for each message.

NaCl’s implementation of crypto_sign does use lookup tables but never-
theless avoids secret indices: each lookup from the table loads all table entries
and uses arithmetic to obtain the right value. For details see [11, Section 4].
NaCl’s signature verification uses signed-sliding-window scalar multiplication,
which takes different amounts of time depending on the scalars, but this does
not create security problems and does not violate NaCl’s prohibition on secret
branches: the scalars are not secret.

To summarize, all of these cryptographic choices are quite conservative. We
do not expect any of them to be broken until someone succeeds in building a
large quantum computer; before that happens we will extend NaCl to support
post-quantum cryptography.

References

1. Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recov-
ery attacks against SSH. In David Evans and Andrew Myers, editors, 2009 IEEE
Symposium on Security and Privacy, Proceedings, pages 16–26. IEEE Computer
Society, 2009. http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf. 3

2. Nadhem J. Alfardan and Kenneth G. Paterson. Plaintext-recovery attacks against
datagram TLS. http://www.isg.rhul.ac.uk/~kp/dtls.pdf; NDSS 2012, to ap-
pear. 3

3. J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Formal
verification of side channel countermeasures using self-composition. Science of
Computer Programming. http://dx.doi.org/10.1016/j.scico.2011.10.008; to
appear. 3

4. Apple. iPhone end user licence agreement. Copy distributed inside
each iPhone 4; transcribed at http://rxt3ch.wordpress.com/2011/09/27/

iphone-end-user-liscence-agreement-quick-refrence/. 1
5. Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Rec-

ommendation for key management—part 1: General (revised). NIST Special Pub-
lication 800-57, 2007. http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1_3-8-07.pdf. 4
6. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri

Gilbert and Helena Handschuh, editors, Fast Software Encryption, volume 3557 of
LNCS, pages 32–49. Springer, 2005. http://cr.yp.to/papers.html#poly1305. 5

http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf
http://www.isg.rhul.ac.uk/~kp/dtls.pdf
http://dx.doi.org/10.1016/j.scico.2011.10.008
http://rxt3ch.wordpress.com/2011/09/27/iphone-end-user-liscence-agreement-quick-refrence/
http://rxt3ch.wordpress.com/2011/09/27/iphone-end-user-liscence-agreement-quick-refrence/
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://cr.yp.to/papers.html#poly1305

The security impact of a new cryptographic library 17

7. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography—PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, 2006.
http://cr.yp.to/papers.html#curve25519. 4, 5

8. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew Robshaw
and Olivier Billet, editors, New stream cipher designs: the eSTREAM finalists,
volume 4986 of LNCS, pages 84–97. Springer, 2008. http://cr.yp.to/papers.

html#salsafamily. 5
9. Daniel J. Bernstein. DNSCurve: Usable security for DNS, 2009. http://dnscurve.

org/. 2
10. Daniel J. Bernstein. CurveCP: Usable security for the Internet, 2011. http:

//curvecp.org/. 2
11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
CHES 2011, volume 6917 of LNCS, pages 124–142. Springer, 2011. http://eprint.
iacr.org/2011/368. 1, 4, 5

12. Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT benchmarking
of cryptographic systems. http://bench.cr.yp.to. 3, 4

13. Daniel J. Bernstein and Peter Schwabe. NEON crypto. http://cr.yp.to/papers.
html#neoncrypto; CHES 2012, to appear. 4

14. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS#1. In Hugo Krawczyk, editor, Advances
in Cryptology—CRYPTO ’98, volume 1462 of LNCS, pages 1–12. Springer, 1998.
http://www.bell-labs.com/user/bleichen/papers/pkcs.ps. 3

15. Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
In Vijay Atluri and Claudia Diaz, editors, Computer Security—ESORICS 2011,
volume 6879 of LNCS, pages 355–371. Springer, 2011. http://eprint.iacr.org/

2011/232/. 3
16. “Bushing”, Hector Martin “marcan” Cantero, Segher Boessenkool, and Sven

Peter. PS3 epic fail, 2010. http://events.ccc.de/congress/2010/Fahrplan/

attachments/1780_27c3_console_hacking_2010.pdf. 3
17. Ramaswamy Chandramouli and Scott Rose. Secure domain name system (DNS)

deployment guide. NIST Special Publication 800-81r1, 2010. http://csrc.nist.

gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf. 4
18. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, version 2, 1999. http:

//csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. 3
19. Matthew Dempsky. OpenDNS adopts DNSCurve. http://blog.opendns.com/

2010/02/23/opendns-dnscurve/. 2
20. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strength-

ened version of RIPEMD. In Dieter Gollmann, editor, Fast Software Encryption,
volume 1039 of LNCS, pages 71–82. Springer, 1996. 5

21. ECRYPT. The eSTREAM project. http://www.ecrypt.eu.org/stream/. 5
22. Peter Gutmann. cryptlib security toolkit. http://www.cs.auckland.ac.nz/

~pgut001/cryptlib/. 2
23. Peter Gutmann. cryptlib security toolkit: version 3.4.1: user’s guide and manual.

ftp://ftp.franken.de/pub/crypt/cryptlib/manual.pdf. 2, 3
24. Simon Josefsson. Don’t return different errors depending on con-

tent of decrypted PKCS#1. Commit to the GnuTLS library, 2006.
http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=commit;h=

fc43c0d05ac450513b6dcb91949ab03eba49626a. 3

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily
http://dnscurve.org/
http://dnscurve.org/
http://curvecp.org/
http://curvecp.org/
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2011/368
http://bench.cr.yp.to
http://cr.yp.to/papers.html#neoncrypto
http://cr.yp.to/papers.html#neoncrypto
http://www.bell-labs.com/user/bleichen/papers/pkcs.ps
http://eprint.iacr.org/2011/232/
http://eprint.iacr.org/2011/232/
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://csrc.nist.gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf
http://csrc.nist.gov/publications/nistpubs/800-81r1/sp-800-81r1.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://blog.opendns.com/2010/02/23/opendns-dnscurve/
http://blog.opendns.com/2010/02/23/opendns-dnscurve/
http://www.ecrypt.eu.org/stream/
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
ftp://ftp.franken.de/pub/crypt/cryptlib/manual.pdf
http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=commit;h=fc43c0d05ac450513b6dcb91949ab03eba49626a
http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=commit;h=fc43c0d05ac450513b6dcb91949ab03eba49626a

18 Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

25. Burt Kaliski. TWIRL and RSA key size. http://web.archive.org/web/

20030618141458/http://rsasecurity.com/rsalabs/technotes/twirl.html. 4
26. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.

In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Em-
bedded Systems—CHES 2009, volume 5747 of LNCS, pages 1–17. Springer, 2009.
http://cryptojedi.org/papers/#aesbs. 5

27. Adam Langley. ctgrind—checking that functions are constant time with Valgrind,
2010. https://github.com/agl/ctgrind. 3

28. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side chan-
nel attacks. In Dongho Won and Seungjoo Kim, editors, Information Security and
Cryptology: ICISC 2005, volume 3935 of LNCS, pages 156–168. Springer, 2005. 3

29. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987. http:

//www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

S0025-5718-1987-0866113-7.pdf. 5
30. OpenSSL. OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.

org/. 1
31. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-

sures: the case of AES. In David Pointcheval, editor, Topics in Cryptology—CT-
RSA 2006, volume 3860 of LNCS, pages 1–20. Springer, 2006. 3

32. Adi Shamir and Eran Tromer. Factoring large numbers with the TWIRL device.
In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of
LNCS, pages 1–26. Springer, 2003. http://tau.ac.il/~tromer/papers/twirl.

pdf. 4
33. Ivo Smits. QuickTun. http://wiki.ucis.nl/QuickTun. 2
34. Software in the Public Interest, Inc. Debian security advisory, DSA-1571-1

openssl—predictable random number generator, 2008. http://www.debian.org/

security/2008/dsa-1571. 3
35. Jon A. Solworth. Ethos: an operating system which creates a culture of security.

http://rites.uic.edu/~solworth/ethos.html. 2
36. Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar,

Dag Arne Osvik, and Benne de Weger. MD5 considered harmful today, 2008.
http://www.win.tue.nl/hashclash/rogue-ca/. 5

37. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collision for MD5
and the creation of a rogue CA certificate. In Shai Halevi, editor, Advances in
Cryptology—CRYPTO 2009, volume 5677 of LNCS, pages 55–69. Springer, 2009.
http://eprint.iacr.org/2009/111/. 5

38. Tor project: Anonymity online. https://www.torproject.org/. 2, 4
39. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,

and countermeasures. Journal of Cryptology, 23(1):37–71, 2010. 3
40. David Ulevitch. Want to do something that matters? Then read on. http://blog.

opendns.com/2012/02/06/dnscrypt-hackers-wanted/. 2

http://web.archive.org/web/20030618141458/http://rsasecurity.com/rsalabs/technotes/twirl.html
http://web.archive.org/web/20030618141458/http://rsasecurity.com/rsalabs/technotes/twirl.html
http://cryptojedi.org/papers/#aesbs
https://github.com/agl/ctgrind
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.openssl.org/
http://www.openssl.org/
http://tau.ac.il/~tromer/papers/twirl.pdf
http://tau.ac.il/~tromer/papers/twirl.pdf
http://wiki.ucis.nl/QuickTun
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://rites.uic.edu/~solworth/ethos.html
http://www.win.tue.nl/hashclash/rogue-ca/
http://eprint.iacr.org/2009/111/
https://www.torproject.org/
http://blog.opendns.com/2012/02/06/dnscrypt-hackers-wanted/
http://blog.opendns.com/2012/02/06/dnscrypt-hackers-wanted/

	The security impact of a new cryptographic library

