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Note: Commuting a stable letter a(i,t) ‘causes’ a real addition in the
sense that a(i,t) · x(i,s) · a

−1
(i,t) = x(i,s+t). Furthermore:

a(i,t) · w̄(r1,...,ri,...,rD) · a
−1
(i,t) = w̄(r1,...,ri+t,...,rD).

Similarly with generators m(i,t) for multiplication.

Now obtain efficiently benignness of Uγ from that of all the Lσ’s along
Lemma 1.

Finally, combine all the path groups Uγ by a similar technique to obtain
the Main Theorem.

Reference. K. Meer, M. Ziegler: Real Computational Universality:
The Word Problem for a class of groups with infinite presentation.
Preprint 2006.

If interested send email to: meer@imada.sdu.dk
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To prove Theorem 5 one assigns to each operation σ along path γ a
suitable group Lσ. The latter is a subgroup of a HNN extension C of
G. The definition of C below guarantees Lσ to be e.b. in G.

Definition 6. Let C denote the infinite HNN extension〈
G ;

a(i,t) ∀t ∈ R ∀i ∈ N
m(i,t) ∀0 6= t ∈ R ∀i ∈ N

∣∣∣∣
a(i,t) · g = φ(i,t)(g) · a(i,t) ∀g ∈ G ∀(i, t)

m(i,t) · g = ψ(i,t)(g) ·m(i,t) ∀g ∈ G ∀(i, t)

〉
Here, φ(i,t), ψ(i,t) : G→ G denote the isomorphisms

φ(i,t) : x(i,s) 7→ x(i,s+t), x(j,s) 7→ x(j,s), y 7→ y

ψ(i,t) : x(i,s) 7→ x(i,s·t), x(j,s) 7→ x(j,s), y 7→ y
∀s ∈ R .
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c) If A is e.b. in G and φ : G → H an effective embedding, then φ(A)
is e.b. in φ(G).
d) Let (Ai)i∈I be uniformly e.b. in G, then 〈

⋃
i∈I Ai〉 admits a presen-

tation e.b. in G.
Path sets and e.b. groups

Consider H ⊆ R∞ real halting problem, M BSS machine semi-deciding
H, γ computation path with path set Aγ ⊆ Rd, Bγ ⊆ RD set of inter-
mediate results for computation along γ(d,D ∈ N only depend on γ).

Goal: Use Lemma 1 to express Aγ as a groupUγ e.b. in an algebraically
presented group G to be defined.

Theorem 5. Let X := {x(i,s) : s ∈ R, i ∈ N} ∪ {y}, G := 〈X〉 and
subgroup Uγ := 〈w̄r̄ : r̄ ∈ Aγ〉 where w̄(r1,...,rd) := x−1

(k,rd)
· · ·x−1

(1,r1)
·

y · x
(1,r1)

· · ·x
(k,rd)

for r1, . . . , rd ∈ R.

Then Uγ has a presentation which is effectively benign in the alge-
braically presented group G.
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A few proof details

Definition 4. (HNN extensions) Let G = 〈X|R〉, let A = 〈V |R〉, B =
〈W |R〉 be subgroups of G, and φ′ : 〈V 〉 → 〈W 〉 be a realization of an
isomorphism φ between A and B. The Higman-Neumann-Neumann
(HNN) extension of G relative to A,B and φ is the presented group

〈G; t | ta = φ(a)t∀a ∈ A〉 :=
〈
X∪{t} | R∪{φ′(v̄)tv̄−1t−1 : v̄ ∈ V }

〉
,

where t 6∈ X is a new generator called the stable letter.
Note: A = B possible in above definition.

Definition 5. (Effectively benign groups) Let X ⊆ R∞, V ⊆ 〈X〉.
The subgroup A = 〈V |R〉 of G = 〈X|R〉 is effectively benign (e.b.)
in G if the HNN extension 〈X ; t | ta = at∀a ∈ A〉 admits an effective
embedding into some algebraically presented group K = 〈Y |S〉.

Important: If A is e.b. in G, then A’s word problem is reducible to K’s.

Lemma 1. (Properties of e.b. groups)
a) Let A = 〈V |R〉 ⊆ H = 〈W |R〉 ⊆ G = 〈X|R〉 sub-/groups, V ⊆
〈W 〉,W ⊆ 〈X〉. If W is decidable and A e.b. in G, then A is e.b. in H .
b) If G = 〈X|R〉 is algebraically presented and subgroup A = 〈V |R〉
has decidable V , then A is e.b. in G.
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Main Results

Theorem 3. Let G = 〈X|R〉 denote an algebraically enumerated real
group. Then the associated word problem is BSS semi-decidable.

Proof idea: Quantifier elimination for real closed fields.

Main Theorem. There exists an algebraically presented real group H =
〈X|R〉 such that H is BSS-reducible to the word problem in H.

Sketch of proof ideas:

- generalization of group theoretic tools to our setting: effective ho-
momorphisms, amalgamation, HNN extensions

- introduce effectively benign (e.b.) groups; description of each path
set as e.b. subgroup of an algebraically presented group. Notion
allows reduction of word problem between certain real groups

- joining path sets by exploiting properties of e.b. groups gives com-
putable embedding in free algebraically presented group.
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Example 2. Three presentations 〈X|R〉 of (Q,+):

a)X =
{
xr : r ∈ Q

}
, R =

{
xrxs = xr+s : r, s ∈ Q

}
.

b)X = {xp,q : p, q ∈ Z, q 6= 0},
R =

{
xp,qxa,b = x(pb+aq,qb) : p, q, a, b ∈ Z

}
∪{

xp,q = x(np,nq) : p, q, n ∈ Z, n 6= 0
}

.

c) Let (bi)i∈I denote an algebraic basis of the Q–vector space R; w.l.o.g.
0 ∈ I and b0 = 1. Consider the linear projection P : R → Q,∑
i ribi 7→ r0 with ri ∈ Q;

X =
{
xt : t ∈ R

}
R =

{
xtxs = xt+s : t, s ∈ R

}
∪

{
xt = xP (t) : t ∈ R

}
.

Case b) yields an algebraic presentation, a) is not even algebraically
generated but c) is. The word problem is decidable for a) and b) but not
for c).

Example 3. Weil representation of SL2(R)
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Definition 3. (Real Groups and their Word Problem) Let X ⊆ R∞ :=⊕
d∈N Rd and R ⊆ 〈X〉 ⊆ R∞. The tuple (X,R) is called a presen-

tation of the real group G = 〈X|R〉. This presentation is algebraically
generated if X is BSS-decidable and X ⊆ RN for some N ∈ N.
G is termed algebraically enumerated if R is in addition BSS semi-
decidable; if R is even BSS-decidable, call G algebraically presented.
The word problem for the presented real group G = 〈X|R〉 is the task
of BSS-deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds in G.

Correspondence between classical discrete and new real notions:

Turing BSS
finitely generated algebraically generated
recursively presented algebraically enumerated
finitely presented algebraically presented

The next example shows already one major difference to finitely pre-
sented groups: Decidability of the word problem might depend on the
representation.
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Definition 2. (Word Problem) The word problem for 〈X|R〉 is the task
of deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds in 〈X|R〉.

The famous work of Novikov and, independently, Boone establishes
the word problem for finitely presented groups to be Turing-complete:

Theorem 1. (Novikov, Boone, 1958/59) There exists a finitely pre-
sented group 〈X|R〉 whose associated word problem is many-one re-
ducible by a Turing machine from the discrete Halting Problem H .

An important tool in the proof is

Theorem 2. (Higman Embedding Theorem) Every recursively pre-
sented group can be embedded in a finitely generated one.

The above embedding theorem gives a reduction from the word prob-
lem of recursively presented groups to that of finitely generated ones.

Note here that trivially each such embedding is computable by a Turing
machine. Computability (in the BSS model) of embeddings will not
any longer be a triviality for the groups we consider below!
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2. The Word Problem: Classical and new setting

Definition 1.

a) The free group 〈X〉 generated by a set X , is the set of all finite
sequences w̄ = xε11 · · ·xεnn with n ∈ N, xi ∈ X , εi ∈ {−1,+1},
equipped with concatenation ◦ as group operation subject to the rules

x ◦ x−1 = 1 = x−1 ◦ x ∀x ∈ X,

where x1 := x and where 1 denotes the empty word (unit element).

b) For a group H and W ⊆ H , 〈W 〉H is the subgroup of H generated
by W and 〈W 〉Hn the normal subgroup of H generated by W.

c) For X and R ⊆ 〈X〉 consider the quotient group G := 〈X〉/〈R〉n,
also denoted by 〈X|R〉. If both X and R are finite, the tuple (X,R)
will be called a finite presentation of G; if X is finite and R recur-
sively enumerable (by a Turing machine, that is in the discrete sense;
equivalently: semi-decidable), it is a recursive presentation; if X is
finite and R arbitrary, G is finitely generated.
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It bears many structural similarities to the discrete setting like for ex-
ample the existence of a Universal Machine or the undecidability of the
associated real Halting Problem H, that is the question of termination
of a given BSS-machine M.

Concerning BSS-complete problems P however, not many are known
so far. The Turing-complete ones for example and, more generally,
any discrete problem becomes decidable over the reals; and extending
an undecidable discrete problem to the reals generally does not work
either:

Example 1. Hilbert’s Tenth Problem (over R) is the task of deciding,
given a multivariate polynomial equation over R, whether it has a so-
lution in R. For integers R = Z, this problem was proven (Turing-
)undecidable. For reals R = R however, it is (BSS-)decidable by virtue
of Tarski’s Quantifier Elimination.

The goal of this work is to extend the classical word problem for finitely
presented groups to a new class of groups and show its computational
equivalence to the real Halting Problem H.
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1. Introduction

In 1936, ALAN M. TURING introduced the now so-called Turing Ma-
chine and proved the associated Halting ProblemH , that is the question
of termination of a given such machine M , to be undecidable. On the
other hand simulating a machine M on a Universal Turing Machine es-
tablishes H to be semi-decidable. In the sequel, several other problems
P were also revealed semi-, yet un-decidable. Two of them, Hilbert’s
Tenth and the Word Problem for groups, became particularly famous,
not least because they arise and are stated in purely mathematical terms
whose relation to computer science turned out considerable a surprise.

For real number problems of Scientific Computation as for example
in Numerics, Computer Algebra, and Computational Geometry on the
other hand, several independent previous formalizations were in 1989
subsumed in a real counterpart to the classical Turing Machines called
the Blum-Shub-Smale, for short BSS model.
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Abstract

The word problem for discrete groups is well-known to be undecidable
by a Turing Machine; more precisely, it is reducible both to and from
and thus equivalent to the discrete Halting Problem.
The present work introduces and studies a real extension of the word
problem for a certain class of groups which are presented as quotient
groups of a free group and a normal subgroup. Most important, these
groups may be generated by uncountably many generators with index
running over certain sets of real numbers. This includes many mathe-
matically important groups which are not captured by the finite frame-
work of the classical word problem.
Our contribution extends computational group theory from the discrete
to the Blum-Shub-Smale (BSS) model of real number computations.
We believe this to be an interesting step towards applying BSS theory,
in addition to semi-algebraic geometry, also to further areas of mathe-
matics.
The main result establishes the word problem for such groups to be
computationally equivalent to the Halting Problem for BSS machines.
It thus provides the first non-trivial example of a natural problem com-
plete, that is, computationally universal for this model.
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