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Introduction

• ECC good choice for constrained (embedded) 
devices

• Plenty of literature about ECC arithmetic and 
side-channel resistance available

• Literature usually for PCs, stand-alone systems 
and smart cards

• Requirements for embedded devices often 
different
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“A computer that doesn‘t look like a computer”, or

a “processor hidden in a product”

+ = Embedded
System

What are Embedded Systems?



Single purpose device

• Not general purpose like PC
• Interacts with the world
• No (or primitive) user interface

Characteristics of Embedded Systems



Software and Embedded Systems

• Software is important
– Standard HW micro-controller
– Adds „life“ to product
– Can give different characteristics
– Often relatively low-level languages (assembly, C)

• Often no SW updates (or inconvenient to 
perform)

- code in ROM
- lack of  online connection (washing machine, 

digger)
- Memory / code size constrains



# CPUs sold in 2000

e.g. high-end BMW 
⇒ approx. 80 CPUs

Are Embedded Systems really Important?

PC & workstation
CPUs

98 %

2 %

embedded CPUs



Brave New Pervasive World



Future

Smart Dust

• Massively distributed 
microcontrollers

• Wireless 
communication

• Sensors

• Inexpensive enough 
to deploy by the 
hundreds
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Applications of Embedded Devices

• Standard applications
• Smart card applications
• Inherent security applications

– Identification
– Payment

• Further applications
• Applications where security is just a part of  the 

embedded system
• Applications where security is enabler for business 

models



Embedded SSL

• Provide authenticity and confidentiality

INTERNET



“flashing” of embedded 
software: load program code 
into embedded device

• Update software

• customization of cars
• new products (SW tuning kits)
• new business models (“20 HP more for the weekend for €19.99”)

But: Unauthorized flashing poses major risk for safety and profits

⇒ Need authenticity!

Secure Download (Flashing)



RQST

Data

Payment

Service Provider

Navigation Data
• Data on demand

• e.g., two weeks of an Italy 
map

• Enables new business models

• But: user tries to break the rules

Digital Rights Management System

Lessons learned: Cryptographic protection (e.g. digital signature) 
is enabling technology for new business models



• Car and component „recognize“ each 
other

⇒ Component is „chained“ to car

• Security Objectives
– Protection of faked parts 

(Innovation protection, safety)

– Theft protection

– Protection against manipulation

⇒ Cryptography has real-world impact!

Component Identification



Future Applications with Security Need

• Networked devices (GSM, 3G, WiFi):
• Access control 
• Security & integrity of communication
• Anonymity (e.g., privacy of location)

• Protection of digital content (navigation data, music, 
video, …)

• Software updates of all kind (via flashing, online, …)

• Theft protection 

• Legal applications (speed control, warranty, …)

• …
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Basics

• Core operation
• point multiplication k*P

• Security
• Based on discrete logarithm problem (DLP) which is believed to be 

secure

• Main ECC schemes
• Signature scheme (e.g. ECDSA)
• Key agreement (e.g. ECDH, MQV)

• Benefits (mainly compared to RSA)
• Fast signature generation
• Small key sizes / small signature size

• But
• Slow signature verification



Assumptions

• Implementation
• We consider only software implementations here

• Constrained resources
• Memory: code size / RAM
• CPU power
• Power consumption

• Low-cost device with no or little physical security
• No cryptographic co-processor

• Long life span of device (> 15 years)



CPU Classification

Rough classification of 
embedded processors

Class speed : high-end Intel

Class 0: few 1000 gates ?
Class 1: 8 bit μP, ≤ 10MHz ≈ 1: 103

Class 2: 16 bit μP, ≤ 50MHz ≈ 1: 102

Class 3: 32 bit μP, ≤ 100MHz ≈ 1: 10



CPU Classification

Class 1: 8 bit μP, ≤ 10MHz
• Symmetric algorithms possible at low data rates
• Asymmetric difficulty without co-processor

Class 3: 32 bit μP, ≤ 100MHz
• Full range possible

Note: CPU might allow crypto application but code 
size might still be too large!



Crypto Engineering

Definition

1. Efficient and 

2. Secure 

implementation

Literature

• Often, only speed matters or secure implementation

• Code size and cost rarely matter
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Resources – Code and RAM Size

• Code / RAM size  ⇔ hardware cost

• Cryptographic methods often included afterwards 
⇒ minimal free memory left 

• Low code and RAM size contradict fast running 
times

• Use of pre-computed points
• Fast implementation techniques



Resources – Running Time

• Depends on application
• Running time sometimes not important

– Secure download at repair shop
• Sometimes crucial

– User interaction: < 1 sec.
– Vehicle’s engine start: < 50 ms



Physical Security and Standards

Physical Security

• Secure Implementation
• Resistance to side-channel attacks
• Flawless implementation

• Tamper resistant or evident

Standards

• Often standardized curves such as NIST 
recommended curves are requested



Contradictions

• large code /RAM size ⇔
high cost

• cryptographic processor 
⇔ cost 

• small code size ⇔ slow 
execution time

• side-channel resistance 
⇔ slower execution time 
/ larger code size

• Standard HW ⇔ no 
tamper resistance

Performance

Code Size / 
Cost



So what are the Requirements?

• Small code size: < 2-3 KB

• Small RAM size: < 200 Bytes

• Running time: < 1 sec.

• Standard curves (NIST)

• Tamper resistant implementation on non tamper 
resistant hardware ☺



Examples

• Car industry
• minimal code and RAM size
• Often 16 bit micro-controller (sometimes even 8 bit)
• E.g., secure downloading (ECDSA / RSA signature 

verification)

• Infotainment
• e.g., vehicle navigation system 
• Optimized running times
• Side-channel resistance
• Usually 32-bit micro-controller
• Code size negligible



Examples

• Smart Card
• Optimized running times
• Small code size
• Side-channel resistance
• 8-bit micro-controller
• Note: Co-Processor might be cheaper than 

additional EEPROM memory
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Implementation - Literature

• Running time
• Plenty of literature about fast ECC in SW

• Only little about small code size in SW
• Straight forward engineering task up to a certain point
• Non-trivial with further objectives

• Plenty about side-channel resistance in SW 
• at least SPA and DPA, but
⇒Some side-channels not well understood yet (e.g., RF)
⇒Often vulnerable to DFA 
• Only little in combination with other objectives such as running

time and code size



Implementation Overview

Minimal code
size

Negligible
code size

Speed
optimized

? / ? ? / x

Speed not
optimized

x / x x / x 

Side-channel resistance / no resistance



Implementation

1. Speed optimized / minimal code size / side 
channel resistance

• Use hardware cryptographic co-processor
• SW solution always trade-off

2. Speed optimized / standard code size / side 
channel resistance

• Combine window methods / pre-computed tables 
with side-channel resistant methods

• < 1 sec., 7 KB code-size



Implementation

3. Speed not optimized / minimal code size / with or 
without side-channel resistance

• High-level engineer’s task rather than 
cryptographer’s

• Becomes more difficult with side-channel resistance
• < 2-3 KB code-size
• < 1 sec. running time



Performance – Low Cost Controller

• Optimized speed / side-channel resistance / no 
cryptographic processor (8051 @ 33 MHz):

• ECDSA signature generation:
– 500 ms (ECC 160)
– 750 ms (ECC 192)

• Code Size: 7 KB (incl. pre-computed points)
• Side-channel resistance
• Incorporates pre-computed points with side-channel 

resistance



Performance – Vehicle Platform

• Minimum code size / no cryptographic processor 
(16 and 32-bit, e.g. C166 and ARM7 @ 40 MHz):

• ECDSA signature generation:
– 300 ms / 1 sec. (ECC 160)

• Code Size: 2-3 KB (no pre-computed points)
• Side-channel resistance



Tamper Resistance

• Requires special hardware

• But can raise engineering effort for mounting an attack

• Introduce some kind of obscurity (although against any schoolbook)
• e.g., secret curve parameters, base point
• Must follow same generation principles
• Is not comparable to raising cryptographic security level!!!

• But weaknesses usually induced by implementation, not by 
cryptographic primitives

⇒ Incorporate in security design
• Successful attack to single device must not scale
• Attack should require hardware modifications 



Long Life Span

• Consider using 192 bit ECC instead of 160 
• Although embedded tends to have smaller key 

sizes

• Include update mechanism in system design
• It is hard to ensure a secure system for a decade at 

industrial level
– e.g., hardware might be vulnerable to new 

attacks
• But it might be possible to correct it

– Include update mechanism
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• ECC almost 
always wins

• RSA wins for 
• Signature 

verification
• Code size

ECC RSA

Signature
verification

Signature
generation

Key 
Agreement

Key / 
Signature
Size

Code Size

Comparison
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Conclusions

• ECC has special requirements on embedded devices

• ECC for embedded devices enables new applications
• e.g., new business models

• Secure and efficient implementation hard to achieve
• Several competing objectives
• Several side-channel issues not well understood yet

• ECC not always best choice

• But ECC works fine even on smallest embedded 
devices
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