
escrypt GmbH
Lise-Meitner-Allee 4

44801 Bochum

t: +49(0)234 43 870 209
f: +49(0)234 43 870 211

Efficient and Secure ECC on Embedded
Devices

André Weimerskirch, ECC 2005, Copenhagen

Acknowledgements

Special thanks to

• Christof Paar

• Sandeep Kumar

• Marko Wolf

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

Introduction

• ECC good choice for constrained (embedded)
devices

• Plenty of literature about ECC arithmetic and
side-channel resistance available

• Literature usually for PCs, stand-alone systems
and smart cards

• Requirements for embedded devices often
different

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

“A computer that doesn‘t look like a computer”, or

a “processor hidden in a product”

+ = Embedded
System

What are Embedded Systems?

Single purpose device

• Not general purpose like PC
• Interacts with the world
• No (or primitive) user interface

Characteristics of Embedded Systems

Software and Embedded Systems

• Software is important
– Standard HW micro-controller
– Adds „life“ to product
– Can give different characteristics
– Often relatively low-level languages (assembly, C)

• Often no SW updates (or inconvenient to
perform)

- code in ROM
- lack of online connection (washing machine,

digger)
- Memory / code size constrains

CPUs sold in 2000

e.g. high-end BMW
⇒ approx. 80 CPUs

Are Embedded Systems really Important?

PC & workstation
CPUs

98 %

2 %

embedded CPUs

Brave New Pervasive World

Future

Smart Dust

• Massively distributed
microcontrollers

• Wireless
communication

• Sensors

• Inexpensive enough
to deploy by the
hundreds

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

Applications of Embedded Devices

• Standard applications
• Smart card applications
• Inherent security applications

– Identification
– Payment

• Further applications
• Applications where security is just a part of the

embedded system
• Applications where security is enabler for business

models

Embedded SSL

• Provide authenticity and confidentiality

INTERNET

“flashing” of embedded
software: load program code
into embedded device

• Update software

• customization of cars
• new products (SW tuning kits)
• new business models (“20 HP more for the weekend for €19.99”)

But: Unauthorized flashing poses major risk for safety and profits

⇒ Need authenticity!

Secure Download (Flashing)

RQST

Data

Payment

Service Provider

Navigation Data
• Data on demand

• e.g., two weeks of an Italy
map

• Enables new business models

• But: user tries to break the rules

Digital Rights Management System

Lessons learned: Cryptographic protection (e.g. digital signature)
is enabling technology for new business models

• Car and component „recognize“ each
other

⇒ Component is „chained“ to car

• Security Objectives
– Protection of faked parts

(Innovation protection, safety)

– Theft protection

– Protection against manipulation

⇒ Cryptography has real-world impact!

Component Identification

Future Applications with Security Need

• Networked devices (GSM, 3G, WiFi):
• Access control
• Security & integrity of communication
• Anonymity (e.g., privacy of location)

• Protection of digital content (navigation data, music,
video, …)

• Software updates of all kind (via flashing, online, …)

• Theft protection

• Legal applications (speed control, warranty, …)

• …

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

Basics

• Core operation
• point multiplication k*P

• Security
• Based on discrete logarithm problem (DLP) which is believed to be

secure

• Main ECC schemes
• Signature scheme (e.g. ECDSA)
• Key agreement (e.g. ECDH, MQV)

• Benefits (mainly compared to RSA)
• Fast signature generation
• Small key sizes / small signature size

• But
• Slow signature verification

Assumptions

• Implementation
• We consider only software implementations here

• Constrained resources
• Memory: code size / RAM
• CPU power
• Power consumption

• Low-cost device with no or little physical security
• No cryptographic co-processor

• Long life span of device (> 15 years)

CPU Classification

Rough classification of
embedded processors

Class speed : high-end Intel

Class 0: few 1000 gates ?
Class 1: 8 bit μP, ≤ 10MHz ≈ 1: 103

Class 2: 16 bit μP, ≤ 50MHz ≈ 1: 102

Class 3: 32 bit μP, ≤ 100MHz ≈ 1: 10

CPU Classification

Class 1: 8 bit μP, ≤ 10MHz
• Symmetric algorithms possible at low data rates
• Asymmetric difficulty without co-processor

Class 3: 32 bit μP, ≤ 100MHz
• Full range possible

Note: CPU might allow crypto application but code
size might still be too large!

Crypto Engineering

Definition

1. Efficient and

2. Secure

implementation

Literature

• Often, only speed matters or secure implementation

• Code size and cost rarely matter

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

Resources – Code and RAM Size

• Code / RAM size ⇔ hardware cost

• Cryptographic methods often included afterwards
⇒ minimal free memory left

• Low code and RAM size contradict fast running
times

• Use of pre-computed points
• Fast implementation techniques

Resources – Running Time

• Depends on application
• Running time sometimes not important

– Secure download at repair shop
• Sometimes crucial

– User interaction: < 1 sec.
– Vehicle’s engine start: < 50 ms

Physical Security and Standards

Physical Security

• Secure Implementation
• Resistance to side-channel attacks
• Flawless implementation

• Tamper resistant or evident

Standards

• Often standardized curves such as NIST
recommended curves are requested

Contradictions

• large code /RAM size ⇔
high cost

• cryptographic processor
⇔ cost

• small code size ⇔ slow
execution time

• side-channel resistance
⇔ slower execution time
/ larger code size

• Standard HW ⇔ no
tamper resistance

Performance

Code Size /
Cost

So what are the Requirements?

• Small code size: < 2-3 KB

• Small RAM size: < 200 Bytes

• Running time: < 1 sec.

• Standard curves (NIST)

• Tamper resistant implementation on non tamper
resistant hardware ☺

Examples

• Car industry
• minimal code and RAM size
• Often 16 bit micro-controller (sometimes even 8 bit)
• E.g., secure downloading (ECDSA / RSA signature

verification)

• Infotainment
• e.g., vehicle navigation system
• Optimized running times
• Side-channel resistance
• Usually 32-bit micro-controller
• Code size negligible

Examples

• Smart Card
• Optimized running times
• Small code size
• Side-channel resistance
• 8-bit micro-controller
• Note: Co-Processor might be cheaper than

additional EEPROM memory

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

Implementation - Literature

• Running time
• Plenty of literature about fast ECC in SW

• Only little about small code size in SW
• Straight forward engineering task up to a certain point
• Non-trivial with further objectives

• Plenty about side-channel resistance in SW
• at least SPA and DPA, but
⇒Some side-channels not well understood yet (e.g., RF)
⇒Often vulnerable to DFA
• Only little in combination with other objectives such as running

time and code size

Implementation Overview

Minimal code
size

Negligible
code size

Speed
optimized

? / ? ? / x

Speed not
optimized

x / x x / x

Side-channel resistance / no resistance

Implementation

1. Speed optimized / minimal code size / side
channel resistance

• Use hardware cryptographic co-processor
• SW solution always trade-off

2. Speed optimized / standard code size / side
channel resistance

• Combine window methods / pre-computed tables
with side-channel resistant methods

• < 1 sec., 7 KB code-size

Implementation

3. Speed not optimized / minimal code size / with or
without side-channel resistance

• High-level engineer’s task rather than
cryptographer’s

• Becomes more difficult with side-channel resistance
• < 2-3 KB code-size
• < 1 sec. running time

Performance – Low Cost Controller

• Optimized speed / side-channel resistance / no
cryptographic processor (8051 @ 33 MHz):

• ECDSA signature generation:
– 500 ms (ECC 160)
– 750 ms (ECC 192)

• Code Size: 7 KB (incl. pre-computed points)
• Side-channel resistance
• Incorporates pre-computed points with side-channel

resistance

Performance – Vehicle Platform

• Minimum code size / no cryptographic processor
(16 and 32-bit, e.g. C166 and ARM7 @ 40 MHz):

• ECDSA signature generation:
– 300 ms / 1 sec. (ECC 160)

• Code Size: 2-3 KB (no pre-computed points)
• Side-channel resistance

Tamper Resistance

• Requires special hardware

• But can raise engineering effort for mounting an attack

• Introduce some kind of obscurity (although against any schoolbook)
• e.g., secret curve parameters, base point
• Must follow same generation principles
• Is not comparable to raising cryptographic security level!!!

• But weaknesses usually induced by implementation, not by
cryptographic primitives

⇒ Incorporate in security design
• Successful attack to single device must not scale
• Attack should require hardware modifications

Long Life Span

• Consider using 192 bit ECC instead of 160
• Although embedded tends to have smaller key

sizes

• Include update mechanism in system design
• It is hard to ensure a secure system for a decade at

industrial level
– e.g., hardware might be vulnerable to new

attacks
• But it might be possible to correct it

– Include update mechanism

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to RSA

5. Conclusions

• ECC almost
always wins

• RSA wins for
• Signature

verification
• Code size

ECC RSA

Signature
verification

Signature
generation

Key
Agreement

Key /
Signature
Size

Code Size

Comparison

Contents

1. Introduction

2. Embedded Systems

3. Next Generation Crypto Applications

4. ECC
• Basics
• Requirements
• Implementation
• Comparison to other Schemes

5. Conclusions

Conclusions

• ECC has special requirements on embedded devices

• ECC for embedded devices enables new applications
• e.g., new business models

• Secure and efficient implementation hard to achieve
• Several competing objectives
• Several side-channel issues not well understood yet

• ECC not always best choice

• But ECC works fine even on smallest embedded
devices

escrypt GmbH
Lise-Meitner-Allee 4

44801 Bochum

t: +49(0)234 43 870 209
f: +49(0)234 43 870 211

Thank you for your attention!

André Weimerskirch
escrypt GmbH

aweimerskirch@escrypt.com

	Efficient and Secure ECC on Embedded Devices
	Acknowledgements
	Contents
	Introduction
	Contents
	What are Embedded Systems?
	Characteristics of Embedded Systems
	Software and Embedded Systems
	Are Embedded Systems really Important?
	Brave New Pervasive World
	Future
	Contents
	Applications of Embedded Devices
	Embedded SSL
	Secure Download (Flashing)
	Digital Rights Management System
	Component Identification
	Future Applications with Security Need
	Contents
	Basics
	Assumptions
	CPU Classification
	CPU Classification
	Crypto Engineering
	Contents
	Resources – Code and RAM Size
	Resources – Running Time
	Physical Security and Standards
	Contradictions
	So what are the Requirements?
	Examples
	Examples
	Contents
	Implementation - Literature
	Implementation Overview
	Implementation
	Implementation
	Performance – Low Cost Controller
	Performance – Vehicle Platform
	Tamper Resistance
	Long Life Span
	Contents
	Comparison
	Contents
	Conclusions
	

