Dedicated Hardware to Solve
Sparse Systems of Linear Equations:
State of the Art & Application to Integer Factoring

Rainer Steinwandt
Florida Atlantic University, USA

(based on joint work with Willi Geiselmann, Adi Shamir, Eran Tromer)



Why linear algebra hardware?

~ linear system of equations expected for a
1024 bit NFS-based factorization rather big
(though one may argue about the exact size)

- other algorithms may profit from possibility to solve large

systems of linear equations over “arbitrary” fields
(—>[Frey04])

... key motivation is 1024-bit RSA, of course &

BaU O




LA hardware: basic approach

Motivated by factoring with NFS, focus of LA hardware is on

(Block) Wiedemann algorithm for GF(2):

Av, A2v, A3v, ..., Akv

\

reduces NFS' LA step to iterated matrix-vector multiplications

\ with sparse ( but potentially |al‘ge) matrix A

E&U




LA & 2-D mesh architectures

Devices proposed for the LA step in the last years

- offer methods for efficiently computing the vector chains
Av, A2y, A3y, ..., A*v using a 2-D mesh architecture:

e 2-D sorting (—[Bernstein '01])
¢ 2-D routing (—[Lenstra et al. '02])

~impose another 2-D splitting for doing with small chips

(—[Geiselmann, S. '03])

... not utopian, but not as simpleq8<l: efficient as desirable

E&U




CHES '05: Another proposal

New design seems to overcome several shortcomings:

- modest chip sizes with pretty regular layout
- no need for heuristic complexity bounds

- software simulation possible

~error handling taken into account

~adapting the design to fields #GF(2) possible

... Still, for 1024-bit we would need thousands of chips

L

E&U



5 ny N

’/ N - '; -

Multiplying with v eGF(g)”
/CPU #1: entries of row #l\

CPU #2: entries of row #2
CPU #3: entries of row #3

CPU #n-1: entries in row #nr-1
\CPU #n: entries in row #n/ B

(multiply &) add when nee@ Y

EaU O



Collecting rows in stations

Matrices to be processed are highly sparse
==) collect several rows into a single station

/‘

station #1: entries of
rows #1 ... #s;

\

station #u: entries of
rows #n-s+1 ... #n

\S

E&U




Additional parallelization

Needed arithmetics is not space-consuming
==> process k>1 vector components in parallel

/‘

station #1: entries of
rows #1 ... #5;

\

station #u: entries of
rows #n-s,+1 ... #n

2

E&U




... Using intra-station buses

Handling & vector components in parallel in each station:

—Each CPU: )
e 5;/k matrix rows

e GF(g)-multiplier

(& -adder) )

EAU O I




Multiplying with 4 again

Actually needed: A-v, A-Av, A-A%v, ...
==) result of multiplication must go back into vector pipeline
==> rearrange stations: '

4

4

°

... have each station scan v in a different cyclic order

E&U




Doing another multiplication

GF(p)-addition commutative

.

1 complete cycle yields A v ‘
>

.

stations switch to 2nd
mem. bank holding 4 v

.

Device is immmediately prepared for next multiplication.

E&U




Critical parameters

I/0 Bandwidth, number of pins:
limits the speed at which v can be fed into the stations &
therewith overall LA time

Memory:
representing the non-zero entries of A &
storing the vector(s) v requires large amount of (D)RAM

Clock rate:
simple logic allowing high clocking rate vs.
(slow) space-optimized memory

EAU o




Techn(olog)ical limitations

#pins limited through chip size (>212? pins means large chips)
logic for systolic design simpler than for mesh-based designs
== Increasing clocking rate to 1 GHz seems doable

/vector v: dense, 2x(D)RAM for n (=1019) GF(g)-entries
matrix 4: GF(g)*-entry, row coord. within CPU, auxiliary flags
\ no need for random access, DRAM sufficient )

E&U




Matrix handling

"External table" for reading v-entries:

#wait cycles | "read it" flag | bus no. to write D |
— U

L I— L
"Internal table" for storing the matrix:
#walit cycles |"read it" flag | bus no. to read from
GF(g)*-entry| row coord. |"delete it" flag
—

E&U




Distributing the matrix

( »[Geiselmann, S. '03]):

e

: Al,r\ 1.1

1,1 ’41,2
/4211 /42’2 - /42’,.
V/ =
’45,2 ' As,r Z;
/ " o
store submatr

IX
@ordinates on@

Vs1

= |, A-v=

S,/

§,41J~ Vl’jﬁ
\&




Block matrix multiplication

assign a multiplication circuit to each submatrix A,
distribute/load appropriate v=parts into each circuit
compute all 4;;- v;;,—values

output all subproducts & add them in a pipeline

result must be split &
loaded into the device




Systolic parallelization

Increased blocking factor without repeatedly storing A4:

DRAM storing A
device #2
device #r

—
3+
o)
2
>
@
S

E&U




Combining it all?

splitting of A into submatrices can be combined
with systolic parallelization

:

short vectors + small matrices + simple logic

small interconnected chips

:

[ ... may be fast, but not that trivial to implement ]

practical point of view: 2D-systolic looks preferable

EaU Ore




1024-bit: what seems doable?

- Current manufacturing technology (90 nm, 1GHz, 1 cm?,...):

» 300x90 array of ASIC chips (blocking factor A=900),
» each (90-chip) row fed by a 108-Gbit DRAM,

==> multiplication chains can be completed in ~2.4 months

- Mesh-based design (90 nm, 200 Mhz, 85x85, 12.25 cm?,...):
~11.7 months; throughput/silicon area worse by factor 6.5

... CHES ‘05 design seems to be faster & more practical

FEaU O




What about errors?

Uniform design offers local fault tolerance:
on a faulty chip one can “bypass” faulty stations

High-level error recovery remains crucial:
running time of months is likely to involve errors

-

little extra hardware computing vector inner products allows
reliable error detection === “pbacktrack” to good state

e

EaU




Conclusion

- systolic design looks preferable to mesh-based approach:
seems to be simpler, faster and require smaller chips

~ topic of "optimal” parameter choice (purely systolic,
matrix splitting, ...) deserves further exploration

- small GF(2)-prototype seems doable and desirable

... for factoring, improvements in sieving would be nice

E&U




	Dedicated Hardware to Solve�Sparse Systems of Linear Equations:�State of the Art & Application to Integer Factoring
	Why linear algebra hardware?
	LA hardware: basic approach
	LA & 2-D mesh architectures
	CHES ’05: Another proposal
	Multiplying with v GF(q)n
	Collecting rows in stations
	Additional parallelization
	 ... using intra-station buses
	 Multiplying with A again
	Doing another multiplication
	Critical parameters
	 Techn(olog)ical limitations
	 Matrix handling
	Distributing the matrix
	Block matrix multiplication
	Systolic parallelization
	 Combining it all?
	1024-bit: what seems doable?
	What about errors?
	Conclusion

