
Dedicated Hardware to Solve
Sparse Systems of Linear Equations:

State of the Art & Application to Integer Factoring

Rainer Steinwandt

Florida Atlantic University, USA

(based on joint work with Willi Geiselmann, Adi Shamir, Eran Tromer)

Why linear algebra hardware?

linear system of equations expected for a
1024 bit NFS-based factorization rather big
(though one may argue about the exact size)

other algorithms may profit from possibility to solve large
systems of linear equations over “arbitrary” fields
(→[Frey04])

... key motivation is 1024-bit RSA, of course

LA hardware: basic approach
Motivated by factoring with NFS, focus of LA hardware is on

(Block) Wiedemann algorithm for GF(2):
reduces NFS' LA step to iterated matrix-vector multiplications

Av, A 2v, A3v, ..., Akv
with sparse (... but potentially large) matrix A

... but most recent design applies to other fields, too

1024 bit: A ∈ GF(2)1010×1010

LA & 2-D mesh architectures
Devices proposed for the LA step in the last years

offer methods for efficiently computing the vector chains
Av, A 2v, A 3v, ..., Akv using a 2-D mesh architecture:

2-D sorting (→[Bernstein '01])
2-D routing (→[Lenstra et al. '02])

impose another 2-D splitting for doing with small chips
(→[Geiselmann, S. '03])

... not utopian, but not as simple & efficient as desirable

..., cheap..., cheap

CHES ’05: Another proposal
New design seems to overcome several shortcomings:

modest chip sizes with pretty regular layout
no need for heuristic complexity bounds
software simulation possible
error handling taken into account
adapting the design to fields ≠GF(2) possible

… still, for 1024-bit we would need thousands of chips

Multiplying with v ∈GF(q)n

CPU #2: entries of row #2
CPU #3: entries of row #3

CPU #n−1: entries in row #n−1

...

v1

v2

vn−1

vn

...

CPU #1: entries of row #1

CPU #n: entries in row #n

...

(multiply &) add when needed

Collecting rows in stations

station #u: entries of
rows #n−s u+1 ... #n

...

station #1: entries of
rows #1 ... #s1

...
v1

v2

vn−1

vn

...

Matrices to be processed are highly sparse
collect several rows into a single station

Additional parallelization
Needed arithmetics is not space-consuming

process k>1 vector components in parallel

station #u: entries of
rows #n−su+1 ... #n

... v1...vk

vk+1...v2k

vn−k+1...vn

...

station #1: entries of
rows #1 ... #s1

...

... using intra-station buses
Handling k vector components in parallel in each station:

circular buses for intra-station transport of v-entries

...

CP
U

#
k

CP
U

 #
1

CP
U

 #
2

Each CPU:
• si /k matrix rows
• GF(q)-multiplier

(& -adder)

Multiplying with A again
Actually needed: A⋅v, A ⋅Av, A ⋅A 2v, ...

result of multiplication must go back into vector pipeline
rearrange stations:

... have each station scan v in a different cyclic order

v

Doing another multiplication
GF(p)-addition commutative

1 complete cycle yields A⋅v
v

Device is immmediately prepared for next multiplication.

stations switch to 2nd

mem. bank holding A⋅v

Critical parameters
I/O Bandwidth, number of pins:

limits the speed at which v can be fed into the stations &
therewith overall LA time

Memory:
representing the non-zero entries of A &
storing the vector(s) v requires large amount of (D)RAM

Clock rate:
simple logic allowing high clocking rate vs.
(slow) space-optimized memory

Techn(olog)ical limitations
#pins limited through chip size (>212 pins means large chips)
logic for systolic design simpler than for mesh-based designs

increasing clocking rate to 1 GHz seems doable

vector v : dense, 2×(D)RAM for n (=1010) GF(q)-entries
matrix A: GF(q)×-entry, row coord. within CPU, auxiliary flags

no need for random access, DRAM sufficient

What about the memory?

Matrix handling

...

"External table" for reading v-entries:
#wait cycles "read it" flag bus no. to write on

"Internal table" for storing the matrix:
#wait cycles "read it" flag bus no. to read from
GF(q)×-entry row coord. "delete it" flag

Distributing the matrix
As with mesh based designs, we can split A into submatrices
(→[Geiselmann, S. '03]):

A1,1 A1,2 ... A1,r

A2,1 A2,2 ... A2,r

As,1 As,2 ... As,r

…

v =

v1,1

v1,r

vs,1

vs,r

A= ... =… … A ⋅v=

Σ A1,j ⋅v1,j

Σ As,j ⋅vs,j

…

store submatrix
coordinates only

, ,

Block matrix multiplication
assign a multiplication circuit to each submatrix Ai,j

distribute/load appropriate v-parts into each circuit

compute all Ai,j ⋅ vi,j –values

output all subproducts & add them in a pipeline

result must be split &
loaded into the device

Limiting factor for run time: I/O bandwidth/#pins

Systolic parallelization
Increased blocking factor without repeatedly storing A:

D
R
AM

 s
to

rin
g

A

de
vi

ce
 #

1

de
vi

ce
 #

2

de
vi

ce
 #

r

...

v1 v2 vr

Combining it all?
splitting of A into submatrices can be combined

with systolic parallelization

short vectors + small matrices + simple logic

small interconnected chips

... may be fast, but not that trivial to implement

practical point of view: 2D-systolic looks preferable

1024-bit: what seems doable?
Current manufacturing technology (90 nm, 1GHz, 1 cm2,...):

300x90 array of ASIC chips (blocking factor K=900),
each (90-chip) row fed by a 108-Gbit DRAM,

multiplication chains can be completed in ≈2.4 months

Mesh-based design (90 nm, 200 Mhz, 85×85, 12.25 cm2,...):
≈11.7 months; throughput/silicon area worse by factor 6.5

… CHES ’05 design seems to be faster & more practical

What about errors?
Uniform design offers local fault tolerance:
on a faulty chip one can “bypass” faulty stations

High-level error recovery remains crucial:
running time of months is likely to involve errors

little extra hardware computing vector inner products allows
reliable error detection “backtrack” to good state

Conclusion

systolic design looks preferable to mesh-based approach:
seems to be simpler, faster and require smaller chips

topic of "optimal" parameter choice (purely systolic,
matrix splitting, ...) deserves further exploration

small GF(2)-prototype seems doable and desirable

... for factoring, improvements in sieving would be nice

	Dedicated Hardware to Solve�Sparse Systems of Linear Equations:�State of the Art & Application to Integer Factoring
	Why linear algebra hardware?
	LA hardware: basic approach
	LA & 2-D mesh architectures
	CHES ’05: Another proposal
	Multiplying with v GF(q)n
	Collecting rows in stations
	Additional parallelization
	 ... using intra-station buses
	 Multiplying with A again
	Doing another multiplication
	Critical parameters
	 Techn(olog)ical limitations
	 Matrix handling
	Distributing the matrix
	Block matrix multiplication
	Systolic parallelization
	 Combining it all?
	1024-bit: what seems doable?
	What about errors?
	Conclusion

