
Divisor class group
Let F = k(C) be the function field of the irreducible curve C.

Places P of F:
• Surjective valuation vP : F → Z∪{∞}.

Divisors D of F :
• D = ∑PnPP with nP ∈ Z almost all zero.
• vP(D) := nP, deg(D) := ∑PnPdeg(P).
• (a) := ∑PvP(a)P for a∈ F× principal divisor, deg((a)) = 0.

Divisor class group:

• Cl0(F) = ( group of degree zero divisors )/( group of principal
divisors ).

• Elliptic curves: E(k) ∼= Cl0(k(E)), P 7→ [(P)− (∞)].
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Riemann-Roch
Theorem of Riemann-Roch and genus:
• D1 ≥ D2 :⇔ vP(D1) ≥ vP(D2) for all P.
• L (D) := {a∈ F× | (a) ≥−D}∪{0} is a k-vector space.
• dim(L (D)) = deg(D) + 1−g+ i(D) with 0 ≤ i(D) ≤ g.

Riemann-Roch problem:
• Compute L (D)!

Example:
• F = k(x),
• P1 = ∞ with v∞(z) = −deg(z) for z∈ F ,
• P2 = (x−1) with v(x−1)(z) = power of x−1 in z for z∈ F ,
• D = 7P1−2P2.

• Then L (D) = {∑5
i=0 λixi(x−1)2 |λi ∈ k}.
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Motivation

This talk is about fast arithmetic in divisor class groups of algebraic
curves over finite fields for large genus.

What you do not get from this talk:
• Fast arithmetic for low genus curves optimised for use in a

cryptographic system.

Some reasons why to consider this problem:
• Helpful to estimate practicality of index calculus attacks.
• When computing pairings on high genus curves.
• Construction of algebraic geometric codes with good parameters.
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Previous work
Theory:
• Brill and Noether (1874, 1884),
• Dedekind and Weber (1882), F. K. Schmidt (1931).

Geometric and arithmetic algorithms for divisor
class groups for g→ ∞:

1987 Cantor hyperell. divclgrp O(g2)

1993 Huang, Ierardi RR problem + divclgrp for
general plane curves O(n6h(D)6)

1994 Volcheck divclgrp for g. p. curves O(max{n,g}7)

1998 Galbraith, Paulus, divclgrp for superell. curves O(n4g4)
Smart

1999 Arita divclgrp for Ca,b curves O(g3)
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Previous work
Geometric and arithmetic algorithms for divisor
class groups for g→ ∞ (ctd):

1999 Hess RR problem and divclgrp O(g2)
for general (plane) curves for fixed n

2001 Khuri-Makdisi divclgrp for general curves O∼(g3)
2004 with precomputation

This and next slide n = min{[F : k(x)] |x∈ F separating }.
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Relation to divisor class groups
Equality of divisor class groups:

• Let [D], [E] ∈ Cl0(F). Then [E] = [D] iff L (E−D) 6= 0.

Unique class representatives:
• Let A be a fixed divisor with deg(A) = 1.

• For [D] ∈ Cl0(F) let z∈ L (D + rA) with r ≥ 0 minimal. Write
D0 = D + rA + (z).

• Then D0 ≥ 0, deg(D0) ≤ g, [D0− rA] = [D] and D0 is uniquely
determined.

Tangent-and-chord method for elliptic curves in one step:
• A = ∞. D = (P)− (∞) + (Q)− (∞).
• Can choose r = 1 because g = 1.
• D0 = (P+ Q). (P+ Q)− (∞) = (P)− (∞) + (Q)− (∞) + (z).
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Previous work

There is a long history of previous work on the theory and on
algorithms for the

• Riemann-Roch problem
• arithmetic in class groups
• algebraic geometric codes
• integration of algebraic functions
• parametrisation of algebraic curves
• ...

Can roughly be divided into
• arithmetic methods (integral closures, ideals, ...)
• geometric methods (Brill-Noether method of adjoints, ...)
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Arithmetic in the ideal class group

Represent ideal classes [I ] by integral ideals I of small
”
degree“.

Basic ideal operations for integral ideals I , J:
• Simple multiplication: Compute zI for z∈ J.
• Integral division: Compute I/J for J | I .

Degree reduction:
• Rz/I has small degree if z∈ I has degree close to that of I .
• Do not neccessarily get unique reduction ...
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Arithmetic in the ideal class group

Arithmetic operations for [I ], [J] ∈ Cl(R):

• Division: [I ][J]−1 = [(zI)/J] for z∈ J.
• Inversion: Use division with [I ] = [R].
• Multiplication: Use division and inversion.

Equality test for [I ], [J] ∈ Cl(R):

• Let [K] = [I ][J]−1.
• Then [I ] = [J] iff K = Rzfor some z∈ K of smallest degree.

Use linear algebra over k[x]!
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Discussion
KM result:
• Links complexity of divclgrp to complexity of linear algebra

over k in dimension O∼(g).
• Probably optimal in the general case (n ' g/2).
• Fast linear algebra O∼(gω) with ω = 2.376.

H result:
• Links complexity of divclgrp to complexity of polynomial arithmetic

over k in degree O(g).
• Probably optimal under the assumption n = O(1).
• Fast polynomial arithmetic O∼(g).

This talk: Combine both running time characteristics

towards O∼(gnω−1) with n = O(g).
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Divisor and ideal class groups

Let
• x∈ F be separating with (x)∞ = nP and deg(P) = 1,
• R= IntCl(k[x],F).
• n = O(g).

Then
• R is a Dedekind domain.
• Ideals I 6= {0} of R are free k[x]-modules of rank n and form a

multiplicative monoid with cancellation law.
• Cl(R) = ( group of fractional ideals )/( group of principal ideals ).

• Cl(R) ∼= Cl0(F).
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Linear algebra over polynomial rings
References: Storjohann, Villard, ...

Matrix multiplication in dimension n and degree d:

• Time O(d2n3).

Degree reduction (function field LLL, weak Popov form):
• Let M = (v1, . . . ,vm) ∈ k[x]n×m, r be the rank of M,

d = deg(M) = maxi deg(vi) the maximum polynomial degree in M.
• M is reduced iff deg(∑i λivi) = maxi deg(λivi) for all λi ∈ k[x].
• M can be transformed into reduced matrix by unimodular column

operations in time O(d2nmr).

Kernel of M:
• Assume M has a basis matrix K for the k[x]-column kernel with

deg(K) ≤ d and that m≥ n.

• Then such a K can be computed in time O(d2m3).
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Ideal basis reduction

Ideal basis reduction for I with deg∗(I ) = O(g):
• Let di = ⌈deg∗(ωi)/n⌉. Then di = O(d).
• Let MI be a basis matrix of I with deg(MI) = O(d).

Algorithm:

• Multiply the i-th row of MI by xdi for all i
• Apply the reduction algorithm.

• Divide the i-th row of the result by xdi for all i.
• Denote the result by MI .

The basis elements αi then satisfy deg∗(αi) ≤ deg∗(I ) + O(g).
Hence deg(MI) ≤ cd for some absolute constant c.

Required time O(d2n3).
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Bases, matrices and degree function
Integral basis ω1, . . . ,ωn ∈ R of R:
• ∀z∈ R : ∃ unique λi ∈ k[x] such that z= ∑i λiωi.
• Multiplication table λi, j ,ν ∈ k[x]: ωiω j = ∑ν λi, j ,νων.

Ideal basis αi ∈ I of ideal I :
• ∀z∈ I : ∃ unique λi ∈ k[x] such that z= ∑i λiαi.
• Basis matrix MI ∈ k[x]n×n: (α1, . . . ,αn) = (ω1, . . . ,ωn)MI .

Principal ideal I :
• I = Rzfor some z∈ I .
• Representation matrix Mz∈ k[x]n×n: (zω1, . . . ,zωn) = (ω1, . . . ,ωn)Mz.

Degree function:
• deg∗(z) = −vP(z) for z∈ R, deg∗(I ) = deg(det(MI)).
• Have deg∗(x) = deg∗(Rx) = n.
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Bounded representations

Fix ω1, . . . ,ωn with successively smallest deg∗-values and let d = g/n.

Theorem:
1. Elements of Cl(R) can be represented by integral ideals I

with deg∗(I ) = O(g).

2. deg∗(I ) = O(g) iff there is a basis matrix MI with deg(MI) = O(d).

3. deg∗(∑i λiωi) = O(g) iff deg(λi) = O(d) for all i.

4. There is a basis αi of I with deg∗(αi) = deg∗(I ) + O(g) for all i.

Represent elements of Cl(R) by integral ideals with n×n basis
matrices of degree O(d).

( KM proceeds in the end quite similar ... )
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Principal ideal test
Principal ideal test for I with deg∗(I ) = O(g):
• deg∗(z) ≥ deg∗(I ) for all z∈ I ,
• I = Rziff z∈ I and deg∗(z) = deg∗(I ).

• Let αi be a reduced ideal basis.
• The ideal basis reduction also yields integers e1 ≤ ·· · ≤ en with
L (I , r) = {z∈ I | deg∗(z) ≤ rn} = {∑i λiαi | deg(λi) ≤−ei + r} for all r ∈ Z.

• If z∈ R such that deg∗(zI) = rn, then zI principal iff L (zI, r) 6= 0.

Algorithm:
• Compute z∈ R such that deg∗(zI) = rn and deg∗(z) = O(g).
• Using ideal basis reduction on zI check L (zI, r) 6= 0.

Required time O(d2n3).
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Ideal generating sets
Time for integral division is O(d2(hn)3).

Let I be an ideal with deg∗(I ) = O(g) and reduced basis αi.
Let h = max{logq(g),2}.

Proposition (KM):
• A random choice of h elements β j of ∑n

i=1 kαi is a generating
system for I with probability ≥ 1/2.

Algorithm for integral division:
• Choose h random such β j (for n = O(1) we can take the αi).
• Compute reduced basis of J/∑ j Rβ j.
• If deg∗(J/∑ j Rβ j) 6= deg∗(J)−deg∗(I ) then repeat.

Required expected time O∼(d2n3).
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Simple multiplication

Compute reduced basis of zI for z∈ R with deg∗(z) = O(g)
and I integral ideal with deg∗(I ) = O(g).

Algorithm:
• Compute representation matrix Mz of z wrt ωi.

If z= ∑i µiωi then zω j = ∑ν(∑i µiλi, j ,ν)ων.
• Multiply Mz and basis matrix of I to obtain a basis matrix of zI.
• Apply ideal basis reduction.

Note deg∗(zI) = deg∗(z) + deg∗(I ).

Each step requires time O(d2n3).
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Integral division

Let I ,J with I |J and deg∗(J) = O(g). Compute JI−1 = {z∈ R|zI ⊆ J}.

• Let I = ∑h
j=1 Rβ j and MJ be the basis matrix of J.

• For z= ∑i λiωi and λ = (λ1, . . . ,λn)t ∈ k[x]n:

z∈ JI−1 ⇔ ∃vi ∈ k[x]n :





Mβ1 MJ
... . . .

Mβh
MJ













λ
v1
...
vh









= 0.

Algorithm:
• Compute basis of kernel of big matrix, has rank n and degree O(d).
• Apply ideal basis reduction to top n×n matrix.

Required time O(d2(hn)3).

( For h big compute kernel in a different way. )
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Conclusion

The overall running time is O∼(d2n3) = O∼(g2n) where dn= g.

• For d = O(1) we obtain O∼(g3) (KM).

• For n = O(1) we obtain O(g2) (H).

• For Ca,b curves we obtain O∼(g5/2).

The running time should be completely linkable to linear

algebra over polynomial rings, resulting in O∼(dnω) = O∼(gnω−1).

An n = O(1) and time O(g2) implementation is available in
the computer algebra systems Kash and Magma.
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Multiplication table speed up

Time for representation matrix computation O(d2n3).
Use FFT inspired technique:

Define φ : L (2r ·P) → ∏ j R/p
r j
j with ∑ j r j deg∗(p j) > 2r

for some large enough r = O(g).

φ is injective, k-linear and φ(z1z2) = φ(z1)φ(z2) for z1,z2 ∈ L (r ·P).

KM: For d = O(1) we only have to do linear algebra over k.

• Hence do all computations in ∏ j R/p
r j
j .

• Choose for example r j = 1 and deg(p j) = 1.

• Then representation matrix computation requires time O(g2).
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Multiplication table speed up

Assume there is y∈ R with ωi = yi−1.
• Then (n−1)(deg∗(y)−1) = 2g and we have a Ca,b curve.
• Plane curve equation has degree n in y and degree O(d) in x.

• Representation matrix computation requires time O(d2n2).

Faster linear algebra over polynomials:
• the required operations should have running time O∼(dnω).
• Representation matrix computation should be possible

in time O∼(dnω) using the FFT inspired technique and completions.

22– iii Copenhagen 22.09.2005


	3, Divisor class group-- v
	4, Riemann-Roch-- iv
	1, Arithmetic on general curves and applications
	2, Motivation-- iii
	7, Previous work-- iv
	8, Previous work
	5, Relation to divisor class groups-- iv
	6, Previous work
	11, Arithmetic in the ideal class group-- iv
	12, Arithmetic in the ideal class group-- iv
	9, Discussion-- iv
	10, Divisor and ideal class groups-- iii
	15, Linear algebra over polynomial rings-- iv
	16, Ideal basis reduction-- iv
	13, Bases, matrices and degree function-- v
	14, Bounded representations-- vii
	19, Principal ideal test-- iv
	20, Ideal generating sets-- iii
	17, Simple multiplication-- iii
	18, Integral division-- v
	23, Conclusion-- v
	21, Multiplication table speed up-- iii
	22, Multiplication table speed up-- iii

