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Divisor class group
Let F = k(C) be the function field of the irreducible curve C.

Places P of F:
e Surjective valuation vp: F — Z U {co}.

Divisors D of F:
e D = S pnpP with np € Z almost all zero.
o Vp(D) :=np, deg(D) := S pnpdeg(P).
¢ (a) := Y pVp(a)P for ac F* principal divisor, deg((a)) = 0.

Divisor class group:

o CI°(F) = ( group of degree zero divisors )/( group of principal
divisors).
o Elliptic curves: E(k) = CI%Kk(E)), P — [(P) — ()].
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Motivation

This talk is about fast arithmetic in divisor class groups of algebraic
curves over finite fields for large genus.

What you do not get from this talk:

e Fast arithmetic for low genus curves optimised for use in a
cryptographic system.

Some reasons why to consider this problem:
e Helpful to estimate practicality of index calculus attacks.
e When computing pairings on high genus curves.
e Construction of algebraic geometric codes with good parameters.

Riemann-Roch

Theorem of Riemann-Roch and genus:
e D; > D5 & vp(Dy) > vp(Dy) for all P.
e £(D):={acF*|(a) > —D}uU{0} is a k-vector space.
e dim(z (D)) =deg(D)+1—g+i(D) with 0<i(D) < g.

Riemann-Roch problem:
e Compute £ (D)!

Example:
o F =Kk(x),
o Py = oo With V.,(2) = —deg(2) for ze F,
o P> = (x— 1) with vix_1)(2) = power of x—1in zfor ze F,
eD=7P —2P,.
e Then £(D) = {T2oAiX(X— 1)?|\i € k}.
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Relation to divisor class groups
Equality of divisor class groups:
e Let [D],[E] € CI°(F). Then [E] = [D] iff £ (E — D) ZO0.

Unique class representatives:
e Let A be a fixed divisor with deg(A) = 1.

e For [D] € CI%(F) let ze £ (D +rA) with r > 0 minimal. Write

Previous work

Theory:

o Brill and Noether (1874, 1884),
e Dedekind and Weber (1882), F. K. Schmidt (1931).

Geometric and arithmetic algorithms for divisor
class groups for g — oo:

Bo=D+rA+(2. 1987] C hyperell. divcl o
e Then Dy > 0, deg(Do) < g, [Do—rA] =[D] and Dq is uniquely antor ) yperet. 'V_C arp @)
determined. 1993 | Huang, lerardi RR problem + divclgrp for
general plane curves O(n®h(D)®)
Tangent-and-chord method for elliptic curves in one step: 1994 Volcheck divclgrp for g. p. curves | O(max{n,g}’)
e A=. D=(P)— () +(Q) — (). 1998 | Galbraith, Paulus, |divclgrp for superell. curves| — O(n*g*)
e Can choose r =1 because g=1. Smart
e Do =(P+Q). (P+Q) —(») = (P) — () +(Q) — () +(2). 1999 Arita divclgrp for C.p, curves o(g®)
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Previous work Previous work
There is a long history of previous work on the theory and on Geometric and arithmetic algorithms for divisor
algorithms for the class groups for g — o (ctd):
Ri -Roch I -
* |.(;r1nantr.1 .OCI problem 1999 Hess RR problem and divclgrp o
* alrl lr)ne_lc inc ass.grou(;)s for general (plane) curves |for fixed n
® ? ge ra!c geometric c_o es . 2001 | Khuri-Makdisi | divclgrp for general curves| O™ (g°)
e integration of algebraic functions 2004 with precomputation

e parametrisation of algebraic curves
e ...

Can roughly be divided into
e arithmetic methods (integral closures, ideals, ...)
e geometric methods (Brill-Noether method of adjoints, ...)

This and next slide n=min{[F : k(X)] | x € F separating }.
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Discussion

KM result:

e Links complexity of divclgrp to complexity of linear algebra
over k in dimension O™(g).

e Probably optimal in the general case (n Z 9/2).
e Fast linear algebra O~(g®) with w=2.376.

H result:

e Links complexity of divclgrp to complexity of polynomial arithmetic
over k in degree O(g).

e Probably optimal under the assumption n= O(1).
e Fast polynomial arithmetic O™(g).

This talk: Combine both running time characteristics
towards O~ (gn®1) with n=0O(g).

Arithmetic in the ideal class group

Represent ideal classes [I] by integral ideals | of small ,degree”.

Basic ideal operations for integral ideals I, J:
e Simple multiplication: Compute zl for z€ J.
e Integral division: Compute | /J for J|I.

Degree reduction:

e Rz/| has small degree if z¢ | has degree close to that of I.

e Do not neccessarily get unique reduction ...
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Divisor and ideal class groups

Let
e X € F be separating with (X), = nP and deg(P) =1,
e R=IntCI(k[x], F).
e n=0(g).

Then
e Ris a Dedekind domain.

e Ideals | #{0} of Rare free k[x]-modules of rank n and form a
multiplicative monoid with cancellation law.

e CI(R) = ( group of fractional ideals )/( group of principal ideals ).
e CI(R) = CI°F).

Arithmetic in the ideal class group

Arithmetic operations for [I],[J] € CI(R):
e Division: [I][J]~t=[(zl)/J] for z€ J.
e Inversion: Use division with [I] =[R].
e Multiplication: Use division and inversion.

Equality test for [I],[J] € CI(R):
eLet [K]=[I[J] %

e Then [I] =[J] iff K = Rzfor some z € K of smallest degree.

Use linear algebra over k[X]!
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Bases, matrices and degree function

Integral basis wy,...,w, € Rof R
e Vze R: 3 unique A; € K[X] such that z= §; Ajw.
e Multiplication table A; j, € K[X]: wwj = 3y Aj j v

Ideal basis a; € | of ideal I:
evze | : Junique A; € K[X] such that z= 3 Aia;.
e Basis matrix M; € K[X]™"™ (dy,...,0n) = (W, ..., wn)M,.

Principal ideal I:
e | =Rzfor some z€ I.
e Representation matrix M, € K[x]™" (zwy, . .., zwy,) = (0, . . ., )M,

Degree function:
e deg’(2) = —Vvp(2) for ze R, deg’(l) = deg(det(M,)).
e Have deg*(x) = deg”(RX = n.

Linear algebra over polynomial rings

References: Storjohann, Villard, ...

Matrix multiplication in dimension n and degree d:
e Time O(d’nd).

Degree reduction (function field LLL, weak Popov form):
elLetM=(vq,...,Vy) € KIX]™™, r be the rank of M,
d = deg(M) = max; deg(v;) the maximum polynomial degree in M.
o M is reduced iff deg(T; Aivi) = max; deg(Aivi) for all A; € K[x].
e M can be transformed into reduced matrix by unimodular column
operations in time O(d?nmr).
Kernel of M:
e Assume M has a basis matrix K for the k[x]-column kernel with
deg(K) < d and that m> n.
e Then such a K can be computed in time O(d?nr).
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Bounded representations

Fix oy, ..., w, with successively smallest deg*-values and let d =g/n.

Theorem:
1. Elements of CI(R) can be represented by integral ideals |

with deg”(l) = O(g).
2. deg’(I) = O(g) iff there is a basis matrix M, with deg(M,) = O(d).
3. deg’(3;Aiwx) = O(g) iff deg(A;) = O(d) for all i.
4. There is a basis a; of | with deg*(a;) = deg*(l) +O(g) for all i.

Represent elements of CI(R) by integral ideals with n x n basis
matrices of degree O(d).

( KM proceeds in the end quite similar ... )

Ideal basis reduction

Ideal basis reduction for | with deg*(l) = O(g):
e Let d = [deg*(wy)/n]. Then d; = O(d).
e Let M, be a basis matrix of | with deg(M,) = O(d).

Algorithm:
o Multiply the i-th row of M, by x% for all i
e Apply the reduction algorithm.
e Divide the i-th row of the result by x4 for all i.
e Denote the result by M;.

The basis elements a; then satisfy deg*(a;) < deg*(l) + O(g).
Hence deg(M,) < cd for some absolute constant c.

Required time O(d’n®).
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Simple multiplication

Compute reduced basis of zl for ze€ R with deg*(2) = O(g)
and | integral ideal with deg*(l) = O(g).

Algorithm:
e Compute representation matrix M, of zwrt .
If z= 3w then zw; = 5, (5 A jv) -
e Multiply M; and basis matrix of | to obtain a basis matrix of zI.
e Apply ideal basis reduction.

Note deg*(zl) = deg*(2) +deg*(l).

Each step requires time O(d’n3).

Principal ideal test

Principal ideal test for | with deg*(l) = O(g):
e deg’(2) > deg’(l) forall ze |,
o | =Rziff ze | and deg*(2) = deg*(l).

e Let a; be a reduced ideal basis.

e The ideal basis reduction also yields integers e; < --- < e, with
L(l,ry={zel|deg’(® <rn}={3;Aa;| deg(A)) < —e+r} forall r € Z.

e If z€ R such that deg*(zl) =rn, then zI principal iff (zl,r) ZO0.

Algorithm:
e Compute z € R such that deg*(zl) = rn and deg*(2) = O(0).
e Using ideal basis reduction on zl check £(zl,r) ZO0.

Required time O(d’n®).
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Integral division

Let 1,J with I |J and deg"(J) = O(g). Compute JI~1={ze R|zl C J}.
o Let| = 3" RB; and M, be the basis matrix of J.
eForz=y; Ay and A = (Ag,...,Ap)t € K[X]™

Mg, M; \7/‘
zeldl 't e v ekX": | tl=0
M, YA

Algorithm:

e Compute basis of kernel of big matrix, has rank n and degree O(d).

e Apply ideal basis reduction to top nx n matrix.
Required time O(d?(hn)3).

( For h big compute kernel in a different way. )

|deal generating sets
Time for integral division is O(d?(hn)®).

Let | be an ideal with deg*(l) = O(g) and reduced basis a;.
Let h=max{log,(9), 2}

Proposition (KM):
¢ A random choice of h elements B; of ${1, ka; is a generating
system for | with probability > 1/2.

Algorithm for integral division:
e Choose h random such 3; (for n=0O(1) we can take the a;).
e Compute reduced basis of J/ 5 RB;.
o If deg”(J/ 5 jRB;) 7 deg”(J) — deg’(l) then repeat.

Required expected time O™~ (d’n®).
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Multiplication table speed up

Time for representation matrix computation O(d?nd).
Use FFT inspired technique:

Define @: £ (2r-P) — [1;R/p;’ with ¥ ;r;deg’(pj) > 2r
for some large enough r = O(g).

@is injective, k-linear and ¢(z12) = ®z)P(z) for z3,2, € L(r - P).

KM: For d = O(1) we only have to do linear algebra over k.
¢ Hence do all computations in []; R/p?".
e Choose for example rj =1 and deg(p;) = 1.
e Then representation matrix computation requires time O(g?).

Conclusion

The overall running time is O~(d?n®) = O~ (g°n) where dn=g.
e For d = O(1) we obtain O~ (g% (KM).
e For n=0(1) we obtain O(g?) (H).
e For C,p, curves we obtain O~(g%?).

The running time should be completely linkable to linear

algebra over polynomial rings, resulting in O~ (dn®) = O~(gn®1).

An n=0(1) and time O(g?) implementation is available in
the computer algebra systems Kash and Magma.
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Multiplication table speed up

Assume there is y € Rwith oy =y 1.
e Then (n— 1)(deg*(y) — 1) = 2g and we have a C,, curve.
¢ Plane curve equation has degree nin y and degree O(d) in x.
¢ Representation matrix computation requires time O(d’n?).

Faster linear algebra over polynomials:
e the required operations should have running time O~ (dn®).
e Representation matrix computation should be possible

in time O™~ (dn®) using the FFT inspired technique and completions.
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