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Motivation

Additionally to the DLP in elliptic curves, the DLP in class
groups of hyperelliptic curves has been suggested as a
cryptographic primitive.

However, it is well known that one can attack the DLP in
class groups (Jacobian groups / Picard groups) of
hyperelliptic curves via index calculus.

State of the art: Such attacks are more efficient than
generic attacks if the genus is ≥ 3.

What about non-hyperelliptic curves?
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Why is this important?

1. The DLP in class groups of non-hyperelliptic genus 3
curves has been suggested as a cryptographic primitive.

- Basiri, Enge, Faugère, Gürel. The arithmetic of Jacobian
groups of superelliptic cubics (Math. Comp, 2005)

- Basiri, Enge, Faugère, Gürel. Implementing the Arithmetic
of C3,4-curves. ANTS VI (2004)

- Flon, Oyono. Fast arithmetic on Jacobians of Picard
curves. PKC (2004)

- Koike, Weng. Construction of CM-Picard curves.
(Math. Comp. 2004)

- Bauer, Teske, Weng. Point Counting on Picard Curves in
Large Characteristic. (Math. Comp.)
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Why is this important?

2. It is sometimes possible to transfer the DLP in elliptic
curves or in class groups of hyperelliptic curves over Fqn to
the DLP in class groups of curves of higher genus over Fq.

The idea is: If the genus of the resulting curve is not too
large, it should be more efficient to attack the resulting DLP
via index calculus than the original one with generic
methods.

Examples of such attacks:
- GHS
- work by D. & Scholten (talk at last ECC).

Very often the resulting curve is not hyperelliptic anymore.
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General result (informally)

An observation.

There is no principal problem in adapting the well known
index calculus algorithms from hyperelliptic curves to
arbitrary curves.

Heuristically, the running times stay the same except maybe
for logarithmic factors.

General result.

The DLP in class groups of non-hyperelliptic curves of small
genus can often be solved faster than the DLP in class
groups of hyperelliptic curves of the same genus over the
same field.
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The case of genus 3 curves

Let us consider genus 3 curves over Fq.

- The rho method: Õ(q3/2).

- Gaudry’s algorithm with optimal factor base (the algorithm
by Gaudry and Harley): Õ(q3/2).

- ... with double large prime variation: Õ(q4/3) (Gaudry,
Thériault, Thomé).

For non-hyperelliptic genus 3 curves one can obtain Õ(q)
(heuristically).
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Why?

Why can one obtain better results for non-hyperelliptic
curves?

One can exploit the fact that non-hyperelliptic curves can
often be defined by equations of a smaller degree.

For example: Non-hyperelliptic genus 3 curves can be
defined by equations of degree 4. But hyperelliptic genus 3
curves can only be defined by equations of degree 5 or
higher.
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More generally ...
Let us consider curves of a fixed genus g defined by
equations of a fixed degree d ≥ 4. Then we have
heuristically:

Gaudry’s algorithm with optimal factor base + double large
prime variation:

Õ(q2− 2
g ) .

New algorithm (also with double large prime variation):

Õ(q2− 2
d−2 ) .

Moreover, every “sufficiently general” curve of genus g can
be defined by an equation of degree d + 1. This gives a
running time of

Õ(q2− 2
g−1 ) .
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Arithmetic in class groups of curves

1. We consider curves C/Fq represented by possibly
singular plane models Cpm of a fixed degree d. The
defining equation is F (X,Y, Z) = 0.

2. Points on C are given by their coordinates (x, y, z).

3. Divisors on C are given as formal sums of points (over
extension fields) (“free representation”).

4. Let us fix a point P0 ∈ C(Fq). By the Theorem of
Riemann-Roch every element in Cl0(C/Fq) is given by
D − gP0 for some divisor D of degree g = g(C).
“Usually”, the divisor D is unique.
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Arithmetic in class groups

Proposition Let us consider curves represented by plane
models of a fixed degree over finite fields Fq with a fixed
point P0 ∈ C(Fq). Then the arithmetic in Cl0(C/Fq) can be
performed in randomized polynomial time in log(q).

This means: Given two divisors D1, D2 of degree g in free
representation, one can calculate a third divisor D3 of
degree g in free representation with

([D1]− g[P0]) + ([D2]− g[P0]) = [D3]− g[P0] ,

i.e. with
D1 + D2 ∼ D3 + gP0

in randomized polynomial time in log(q).
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The algorithm by Gaudry and Harley

Let C/Fq and P0 ∈ C(Fq) be as above. Let a, b ∈ Cl0(C/Fq)
with b ∈ 〈a〉.
The goal is to find an x ∈ N with x · a = b.

We assume that ` := #〈a〉 is known.

Let r ∈ (0, 1].

1. Fix a factor base F = {F1, F2, . . .} ⊂ C(Fq) of size ≈ qr.
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The algorithm by Gaudry and Harley
2. Construct a sparse matrix R over Z/`Z as follows:

For i = 1, . . . ,#F + 1 do:

{ Select αi, βi ∈ Z/`Z independently and uniformly randomly
and calculate Di with

[Di]− g[P0] = αia+ βib .

Repeat this until
Di =

∑

j

ri,jFj .

(Now
∑
ri,j [Fj ]− g[P0] = αia+ βib.)

Store (ri,j)j as the i-th row of R. }

3. Calculate a random element γ ∈ ker(Rt), i.e. γR = 0.
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The algorithm by Gaudry and Harley

We now have

(
∑

i γiαi) · a+ (
∑

i γiβi) · b =
∑

i γi · (αi · a+ βib) =
∑

i γi ·
∑

j ri,j([Fj ]− [P0]) =
∑

i,j γi ri,j · ([Fj ]− [P0]) = 0.

Assume that (
∑

i γiβi)
−1 ∈ (Z/`Z)∗. Then it follows:

b = −(
∑

i

γiβi)
−1 · (

∑

i

γiαi) · a

b = −(
∑

i

γiβi)
−1 · (

∑

i

γiαi)

︸ ︷︷ ︸
x

·a.
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The algorithm by Gaudry and Harley

The probability that a divisor of degree g splits completely
into rational points is asymptotically (for fixed g)

1

g!
.

The probability that a completely split divisor is “smooth”
(i.e. it is the sum of elements of the factor base) is (roughly)

(
#F

#C(Fq)

)g

which is asymptotically

qg·(r−1) .
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The algorithm by Gaudry and Harley

This means that we can expect:

We have to generate g! · qg·(1−r) · qr relations until R has
more rows than columns. For fixed g the total running time is

Õ(qg·(1−r) · qr + q2r) .

For r = g/(g + 1) we obtain

Õ(q2· g
g+1 ) = Õ(q2− 2

g+1 ) .

(This running time can be proven for cyclic class groups.)
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Our variant

We have a running time of

Õ(q2− 2
g+1 ) .

We now show that with a variant of this algorithm one can
obtain heuristically a running time of

Õ(q2− 2
d−1 ) .

(This is without double large prime variation.)
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Our variant

Let C/Fq be as above, and let F = {F1, F2, . . .} ⊂ C(Fq) be a
“factor base”.

Note: If h ∈ Fq(C) with

div(h) =
∑

j

rjFj ,

then we have the relation
∑

j

rj [Fj ] = 0 ∈ Cl0(C/Fq) .
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Our variant

Let Cpm be the fixed plane model of C. Let us (for simplicity)
assume that Cpm is non-singular “at infinity”.

Let D∞ be the intersection of Cpm with the line Z = 0

(deg(D) = d).

Let L(X,Y, Z) = λX +µY + νZ with λ, µ, ν ∈ Fq. Let D be the
intersection of L(X,Y, Z) = 0 with Cpm. Let us again assume
that the intersection does not contain singular points.

Now D and D∞ are both divisors on C, and we have

div(λ
X

Z
+ µ

Y

Z
+ ν) = div(

L(X,Y, Z)

Z
) = D −D∞ .
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Our variant

We want D to be smooth, i.e. L(X,Y, Z) to pass only
through points of the factor base.

Note: This implies that L(X,Y, Z) passes through two points
of the factor base, thus we can restrict our attention to lines
passing through two points of the factor base.

The algorithm is as follows: Fix some number r ∈ (0, 1].

1. Find relations of the form
∑

i

[Pi]− g[P0] = αa,
∑

i

[P ′i ]− g[P0] = βb.

2. Fix the factor base F ⊂ C(Fq) without singular points with
#F ≈ qr, and include thereby P0, Pi, P

′
i into F .

Index Calculus in Class Groups of Plane Curves of Small Degree – p.19/33



Our variant

3. Construct a matrix R over Z/`Z as follows:

Consider a line L(X,Y, Z) = 0 through two points of F . Let
D be the intersection (deg(D) = d).

If D splits over the factor base, store a corresponding row
for R.

Repeat this until all lines are exhausted or the matrix R has
more different rows than non-zero columns.

4. Calculate a random element γ ∈ ker(Rt).

Now γ1αa + γ2βb = 0. If γ2 6= 0, we have a solution to the
DLP.
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Complexity of our variant

Complexity estimates for a fixed d.

Finding relations for αa and βb can be done in polynomial
time in log(q).

Heuristically, the probability that the divisor of a line through
two points of the factor base splits fully over the factor base
is equal to the probability that a divisor of degree d− 2 on
C/Fq splits completely over the factor base.

This probability is

1

(d− 2)!
q(d−2)·(r−1)

asymptotically for fixed d.
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Complexity of our variant

We want to generate more different completely split lines
than elements of the factor base.

On the basis of the heuristic probability above, one can
prove:

This is the case if

#F ≈ qr ≤ d!
1
d−1 · q1− 1

d−1 .

If we have equality, we obtain a running time of

Õ(q2− 2
d−1 )

for both the relation generation and the linear algebra part.
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Our variant

Warning. The algorithm only works if d! > q.

Asymptotically for fixed d, this is no problem.
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Double large prime variation

One can use a double large prime variation for both the
algorithm by Gaudry-Harley and our algorithm.

Idea of double large prime variation:

Consider relations of the form
∑

j

rj [Fj ] + [P ] + [Q]− g[P0] = αa+ βb

or ∑

j

rj [Fj ] + [P ] + [Q]− [D∞] = 0

with P,Q ∈ C(Fq). (The set C(Fq)−F is called the set of
large primes.)
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Double large prime variation

We construct a graph of large prime variation on L ·∪ {∗}:
1. If we have a relation with two large primes P and Q, we

insert the points P and Q as vertices into the graph of
large prime variation as well as an edge from P to Q
(with the data for (rj)j , α, β).

2. If we have a relation with one large prime P , we insert
an edge from ∗ to P .

... provided we do not obtain a cycle.

If we would obtain a cycle containing ∗, we cancel all large
primes and thus have a relation over the factor base.
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The result

We have the following heuristic result:

Let us consider the DLP in class groups of curves
represented by plane models of a fixed degree d ≥ 4. Then
“essentially all” instances of the DLP in such groups can be
solved in an expected running time of

Õ(q2− 2
d−2 ) .
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Experimental results by E. Thomé

Emmanuel Thomé has implemented both

- the algorithm by Gaudry-Harley with double large prime
variation for hyperelliptic genus 3 curves

- the new algorithm with double large prime variation for
non-hyperelliptic genus 3 curves.

For hyperelliptic curves the largest experiment was for
q = 227.

For non-hyperelliptic curves the largest experiment was for
q = 231.
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Experimental results by E. Thomé

Some data:

For the hyperelliptic genus 3 curve, q = 227:

Factor base: ≈ 130 000 elements

CPU time for relation search: 9 days.

For the non-hyperelliptic genus 3 curve, q = 231:

Factor base: ≈ 88 000 elements

CPU time for relation search: 1 day.

Index Calculus in Class Groups of Plane Curves of Small Degree – p.28/33



Experimental results by E. Thomé

Some data:

For the hyperelliptic genus 3 curve, q = 227:

Factor base: ≈ 130 000 elements

CPU time for relation search: 9 days.

For the non-hyperelliptic genus 3 curve, q = 231:

Factor base: ≈ 88 000 elements

CPU time for relation search: 1 day.

Index Calculus in Class Groups of Plane Curves of Small Degree – p.28/33



Plane models of small degree
Let C/Fq be some curve. We want to find plane models of
small degree.

First approach:

Let D∞ be a random divisor of degree g + 2. Then the
complete linear system |D∞| “should” define a map
C −→ P2 which is birational to its image, and the image then
has degree g + 2. Experimentally, this always works.

We obtain a heuristic running time of

O(q2− 2
g ) ,

as in the algorithm by Gaudry-Harley with double large
prime variation.
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Plane models of small degree

Second approach:

Let C be non-hyperelliptic. Let K be a canonical divisor.
Now let D0 be a random divisor of degree g − 3. Then
|K −D0| has degree 2g − 2− g + 3 = g + 1 and is special. If
C and D0 are “sufficiently general”, |K −D0| defines a map
C −→ P2 which is birational to its image, and the image then
has degree g + 1.

Note: If g(C) = 3, the canonical linear system |K| itself
defines an embedding of C into P2 of degree 4. The image
is called a canonical curve.

For fixed g, we obtain a running time of

Õ(q2− 2
g−1 ).
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Õ(q2− 2
g−1 ).

Index Calculus in Class Groups of Plane Curves of Small Degree – p.30/33



Plane models of small degree

Second approach:

Let C be non-hyperelliptic. Let K be a canonical divisor.
Now let D0 be a random divisor of degree g − 3. Then
|K −D0| has degree 2g − 2− g + 3 = g + 1 and is special. If
C and D0 are “sufficiently general”, |K −D0| defines a map
C −→ P2 which is birational to its image, and the image then
has degree g + 1.

Note: If g(C) = 3, the canonical linear system |K| itself
defines an embedding of C into P2 of degree 4. The image
is called a canonical curve.

For fixed g, we obtain a running time of

Õ(q2− 2
g−1 ).

Index Calculus in Class Groups of Plane Curves of Small Degree – p.30/33



Historical remark

The idea to use principal divisors to generate relations was
used by before by Adleman, DeMarrais, Huang in the “large
genus” case.

They obtained an algorithm with a heuristic subexponential
running time of L[1

2 ] for the DLP in class groups of
hyperelliptic curves with g ≥ c · log(q).
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Conclusions

The DLP in class groups of non-hyperelliptic curves of
small genus can often be solved faster than the DLP in
class groups of hyperelliptic curves of the same genus
over the same field.

In the “small genus” case, the degree of an equation of
a plane model of a curve is at least as important, if not
more important, than the genus.

There is an argument against the usage of
non-hyperelliptic genus 3 curves in cryptographic
applications. But currently there is no argument for it ...
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