
Wild McEliece Incognito

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org

3 Department of Mathematics
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

c.p.peters@mat.dtu.dk

Abstract. The wild McEliece cryptosystem uses wild Goppa codes over
finite fields to achieve smaller public key sizes compared to the original
McEliece cryptosystem at the same level of security against all attacks
known. However, the cryptosystem drops one of the confidence-inspiring
shields built into the original McEliece cryptosystem, namely a large pool
of Goppa polynomials to choose from.
This paper shows how to achieve almost all of the same reduction in
key size while preserving this shield. Even if support splitting could be
(1) generalized to handle an unknown support set and (2) sped up by a
square-root factor, polynomial-searching attacks in the new system will
still be at least as hard as information-set decoding.
Furthermore, this paper presents a set of concrete cryptanalytic chal-
lenges to encourage the cryptographic community to study the security
of code-based cryptography. The challenges range through codes over
F2,F3, . . . ,F32, and cover two different levels of how much the wildness
is hidden.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, Goppa
codes, wild Goppa codes, list decoding

1 Introduction

The McEliece cryptosystem [15] is based on classical Goppa codes (cor-
responding to genus-0 AG codes) over F2. A code is built using a Goppa

* This work was supported by the Cisco University Research Program, by the Na-
tional Institute of Standards and Technology under grant 60NANB10D263, by the
Danish Council for Independent Research under the Technology and Production
Sciences (FTP) grant 11-105325, and by the European Commission under Con-
tract ICT-2007-216676 ECRYPT II. This work was started while the third au-
thor was with Technische Universiteit Eindhoven and continued during her em-
ployment at the University of Illinois at Chicago. Permanent ID of this document:
cd39ef08c48d12b29da6b9db66559c41. Date: 2011.09.15.

2 D. J. Bernstein, T. Lange, C. Peters

polynomial g ∈ F2m [x] for some integer m. For deg(g) = t the code can
correct t errors. Generalizations of the McEliece cryptosystem (or equiv-
alently the Niederreiter cryptosystem [16]) using Goppa codes over larger
fields Fq were investigated but not found to offer advantages for small q,
since it was believed that for a code built from a polynomial g of degree
t one could correct only bt/2c errors.

Peters showed in [18] that, despite this reduced error-correction ca-
pacity, codes over F31 offer advantages in key size compared to codes over
F2 while maintaining the same security level against all attacks known.
However, codes over smaller fields such as F3 were still not competitive
in key size with codes over F2.

In [6] we introduced the “wild McEliece” cryptosystem, using Goppa
codes over Fq built on polynomials of the form gq−1. These codes have a
better error-correction capacity: they can correct up to bqt/2c errors for
deg(g) = t. The extra factor q/(q−1) makes “larger tiny fields” attractive
and bridges the gap between F2 and F31. That paper contains cryptosys-
tem parameters that minimize key size for different finite fields, subject
to the requirement of achieving 128-bit security against information-set-
decoding attacks.

This key-size optimization for 128-bit security reduces the number of
irreducible polynomials g below 2128 for q ≥ 11, and below 230 for q ≥
31. Enumerating all possibilities for g thus becomes more efficient than
performing information-set decoding. The parameters were intentionally
chosen this way in [6]; otherwise the key-size benefit of wild McEliece
would disappear as q grows.

In McEliece’s original proposal, a large space of possibilities for g is the
primary shield against structural attacks. There are secrets other than g,
specifically a random support permutation P and a random invertible ma-
trix S, but Sendrier’s support-splitting algorithm [21] quickly computes
both P and S given g and the public key. The cost of breaking McEliece’s
system is thus at most a small multiple of the number of choices of g: the
attacker checks each possibility for g with the support-splitting algorithm.

This attack fails against [6], because there is another shield in [6]: a
secret support set. In McEliece’s original proposal, the support set was
all of F2m ; however, one can define Goppa codes using smaller support
sets. We chose parameters in [6] so that there are more than 2256 possi-
ble support sets. There is no known attack against the McEliece system
with secret support sets, even if the Goppa polynomial is published ; in
particular, the support-splitting algorithm uses the support set as input.

Wild McEliece Incognito 3

However, a secret support set has far less history than a secret choice
of g, and therefore cannot inspire as much confidence. One can reasonably
worry that there is a generalization of support-splitting that handles many
support sets more efficiently than separately trying each possible support
set. Parameters relying on secret support sets were marked with biohazard
symbols in [6].

In this paper we hide the wild codes in two ways, achieving almost all
of the key-size benefit of wild McEliece without sacrificing the confidence
provided by a large space of polynomials. First, we consider codes built
on polynomials f · gq−1; for deg(f) = s and deg(g) = t these codes can
correct up to b(s+ qt)/2c errors. A small extra factor f makes the space
of polynomials too large to search. Second, we use subcodes as suggested
by Berger and Loidreau in [2]. The combination of these defenses leads
to slightly larger key sizes but requires the attacker to see simultaneously
through subcodes, secret support sets, and a huge set of polynomials.

This paper also announces a web page of code-based crypto chal-
lenges and presents some sample challenges. The challenges cover finite
fields as large as F32 and start with training challenges that should be
easy to break but still can show which attacks are faster than others.
We originally considered issuing challenges with several different wild-
ness percentages, ranging from 100% wild codes (gq−1) to 50% wild codes
(fgq−1 with deg(f) ≈ (q − 1) deg(g)) and beyond, but we decided to fo-
cus on percentages close to 100%, since those are adequate to prevent
polynomial enumeration. For each set of parameters, a public key and a
ciphertext are presented.

Acknowledgement: The authors are grateful to Peter Beelen for in-
teresting discussions and in particular for allowing us to use his suggestion
of the extra factor f as a way to hide the wildness of gq−1.

2 An extra shield for wild Goppa codes

Fix a prime power q; a positive integer m; a positive integer n ≤ qm; an
integer t < n/m; distinct elements a1, . . . , an in Fqm ; and a polynomial
g(x) in Fqm [x] of degree t such that g(ai) 6= 0 for all i.

We denote the linear code consisting of all words c = (c1, . . . , cn) in
Fn
qm satisfying

n∑
i=1

ci
x− ai

≡ 0 (mod g(x)) (2.1)

4 D. J. Bernstein, T. Lange, C. Peters

by Γqm(a1, . . . , an, g); this is a special case of a generalized Reed–Solomon
code over Fqm having dimension n− t.

The Goppa code Γq(a1, . . . , an, g) with Goppa polynomial g(x) and
support a1, . . . , an is the restriction of Γqm(a1, . . . , an, g) to the field Fq,
i.e., the set of elements (c1, . . . , cn) in Fn

q that satisfy (2.1); this code
Γq(a1, . . . , an, g) has dimension at least n−mt and minimum distance at
least t+ 1. These codes were introduced in [11] and [12].

Goppa codes can be decoded by any decoder for generalized Reed–
Solomon codes. For example, Berlekamp’s algorithm corrects bt/2c errors;
see, e.g., [3]. Note that t+ 1 is a lower bound for the minimum distance.
There are Goppa codes whose minimum distance is much larger. Binary
Goppa codes have minimum distance at least 2t + 1 as shown in [11],
and allow fast decoding of t errors. The standard t-error decoding al-
gorithm for binary Goppa codes, in the typical case that g is monic and
irreducible, is Patterson’s algorithm from [17]. There are polynomial-time
list-decoding algorithms that decode more errors; for more information
and references see, e.g., [4], [1], and [5].

In this paper we use the McEliece cryptosystem, the Niederreiter cryp-
tosystem, etc. with codes of the form Γq(a1, . . . , an, fg

q−1), where f and
g are coprime squarefree monic polynomials.

If g = 1 then Γq(a1, . . . , an, fg
q−1) is the squarefree Goppa code

Γq(a1, . . . , an, f); these are, for q = 2, the traditional codes used in the
McEliece cryptosystem. If f = 1 then Γq(a1, . . . , an, fg

q−1) is the wild
Goppa code Γq(a1, . . . , an, g

q−1), which we proposed in [6] for the wild
McEliece cryptosystem; what makes these codes interesting is that they
can correct bqt/2c errors, or even slightly more using list decoding.

The Goppa code with polynomial fgq−1 has dimension at least n −
m(s + (q − 1)t), where s is the degree of f and t is the degree of g.
Theorem 2.1 below says that fgq gives the same Goppa code. It follows
that Γq(a1, a2, . . . , an, fg

q−1) has minimum distance at least s+qt+1. One
can plug fgq into (e.g.) the alternant decoder described in [6, Section 5]
to efficiently decode b(s+ qt)/2c errors, or into the list-decoder described
in [5] to efficiently decode more errors.

Theorem 2.1 is a special case of a theorem of Sugiyama, Kasahara,
Hirasawa, and Namekawa [24]. To keep this paper self-contained we give
a streamlined proof here, generalizing the streamlined proof for f = 1
from [6].

Theorem 2.1 Let q be a prime power. Let m be a positive integer. Let
n be an integer with 1 ≤ n ≤ qm. Let a1, a2, . . . , an be distinct elements
of Fqm. Let f and g be coprime monic polynomials in Fqm [x] that both

Wild McEliece Incognito 5

do not vanish at any of a1, . . . , an. Assume that g is squarefree. Then
Γq(a1, a2, . . . , an, fg

q−1) = Γq(a1, a2, . . . , an, fg
q).

Proof. If
∑

i ci/(x − ai) = 0 in Fqm [x]/(fgq) then certainly
∑

i ci/(x −
ai) = 0 in Fqm [x]/(fgq−1).

Conversely, consider any (c1, c2, . . . , cn) ∈ Fn
q such that

∑
i ci/(x −

ai) = 0 in Fqm [x]/(fgq−1); i.e., fgq−1 divides
∑

i ci/(x − ai) in Fqm [x].
We need to show that fgq divides

∑
i ci/(x− ai) in Fqm [x], in particular

that gq divides
∑

i ci/(x − ai) in Fqm [x]. Find an extension k of Fqm

so that g splits into linear factors in k[x]. Then
∑

i ci/(x − ai) = 0 in
k[x]/gq−1, so

∑
i ci/(x − ai) = 0 in k[x]/(x − r)q−1 for each factor x − r

of g. The elementary series expansion

1

x− ai
= − 1

ai − r
− x− r

(ai − r)2
− (x− r)2

(ai − r)3
− · · ·

then implies∑
i

ci
ai − r

+ (x− r)
∑
i

ci
(ai − r)2

+ (x− r)2
∑
i

ci
(ai − r)3

+ · · · = 0

in k[x]/(x − r)q−1; i.e.,
∑

i ci/(ai − r) = 0,
∑

i ci/(ai − r)2 = 0, . . . ,∑
i ci/(ai−r)q−1 = 0. Now take the qth power of the equation

∑
i ci/(ai−

r) = 0, and use the fact that ci ∈ Fq, to obtain
∑

i ci/(ai− r)q = 0. Work
backwards to see that

∑
i ci/(x− ai) = 0 in k[x]/(x− r)q.

By hypothesis g is the product of its distinct linear factors x − r.
Therefore gq is the product of the coprime polynomials (x − r)q, and∑

i ci/(x − ai) = 0 in k[x]/gq; i.e.,
∑

i ci/(x − ai) = 0 in Fqm [x]/gq.
Finally, f is coprime to gq, so

∑
i ci/(x− ai) = 0 in Fqm [x]/(fgq). ut

3 Attacks and defenses

Generic attacks against code-based cryptosystems are those whose hard-
ness depends only on the code parameters q, n, k and the number w of
errors. For q > 2 the most efficient generic attack stated in the literature
is the generalized information-set-decoding attack described in [18]. As
far as we know, generic attacks are the largest threat against the wild
McEliece system and the wild McEliece incognito system, when parame-
ters are chosen sensibly.

The extra factor f described in the previous section allows us to in-
crease the number of Goppa polynomials so that an attacker cannot enu-
merate all polynomials f and g of the given degrees in less time than

6 D. J. Bernstein, T. Lange, C. Peters

performing information-set decoding. We actually suggest increasing the
number of polynomials to the square of this, in case there is some square-
root attack against the space of polynomials. We also retain the defense
used in [6], namely choosing the support as a secret proper subset of
Fqm , again with the number of possibilities being the square of the cost
of information-set decoding.

One might think that the factorizability of fgq−1 is somehow analo-
gous to the concatenated structure attacked in [20]. However, one cannot
even begin the attack of [20] without finding low-weight words in the dual
code. We have checked in examples of various sizes that the dual code of
Γq(a1, . . . , an, fg

q−1) does not have words of low weight, so attacks of
this type do not apply. Note that any severe problem with factorizability
would also break the original McEliece system, since every polynomial
can be factored over a suitable extension field.

To make structural attacks even harder we suggest using an idea of
Berger and Loidreau [2] which they introduced in an attempt to protect
Generalized Reed-Solomon (GRS) codes, namely to add ` additional rows

to the parity-check matrix. There are
(
k
`

)
q

= (1−qk)(1−qk−1)···(1−qk−`+1)
(1−q)(1−q2)···(1−q`)

subspaces of dimension ` in a k-dimensional code over Fq; this is a very
large number even for ` = 1. Wieschebrink showed in [25] that the struc-
ture of GRS can still be detected despite the extra defense, but the attack
relies strongly on properties of GRS and does not seem to carry over to
wild Goppa codes and their close relatives.

We emphasize that these defenses have very low cost, only slightly
increasing the size of the public key compared to pure wild McEliece. The
effect of [2] is that in systematic form the public key has (n−k+`)(k−`)
entries instead of (n−k)k; this is a negligible effect for small `. The small
effect of f on the key size is illustrated with optimized numerical examples
in Section 5. There are even cases (e.g., 2100 security for q = 31) where the
improved granularity of fgq−1 allowed our computations to find smaller
keys for fgq−1 than for gq−1 at the same security level.

4 Challenges

We have created a spectrum of cryptanalytic challenges as a way to mea-
sure and focus progress in attacking our proposals. Each challenge consists
of a public key and a ciphertext; we challenge the readers to find a match-
ing plaintext or even to find the secret keys. Our challenges are online at
http://pqcrypto.org/wild-challenges.html. We intend to keep this
web page up to date to show

Wild McEliece Incognito 7

– any solutions (plaintexts) sent to us — with credit to the first solver
of each challenge, and with as much detail as the solver is willing to
provide regarding how the challenge was cryptanalyzed;

– any secret keys sent to us — again with credit to the first solver of
each challenge;

– cryptanalytic benchmarks — measurements of the speed of publicly
available cryptanalytic software for the smaller challenges, as a way
for the community to verify and demonstrate improvements in attack
algorithms;

– predictions — estimates of how difficult the larger challenges will be
to break.

Our challenges, like the RSA Factoring Challenge (see [19] and [26]) and
the Certicom ECC Challenges (see [8]), cover a wide range of levels of dif-
ficulty. The smallest challenges require only a small amount of computer
time; the larger challenges increase rapidly in difficulty. However, we did
not imitate (e.g.) the 1000× increase in difficulty between the ECC2K-
108 and ECC2K-130 challenges in [8]. That increase has kept the list of
solved ECC2K challenges static since 2000, not reflecting the impact of
more than a decade of advances in computer technology; we prefer smaller
gaps between challenges.

Each of our challenges is labelled by (1) “wild McEliece” for [6], or
“wild Mceliece incognito” for this paper; (2) a field size q; (3) a key size
expressed in kilobytes. Each challenge also has public parameters m,n, s, t
chosen as discussed below. After choosing these parameters we built the
challenge as follows:

– Choose a secret sequence of n distinct elements a1, . . . , an of Fqm .

– Choose a secret irreducible polynomial g of degree t in Fqm [x]. If g
has any of a1, . . . , an as roots, repeat this step. (This can occur only
for t = 1.)

– Choose a secret irreducible polynomial f of degree s in Fqm [x]. If f
has any of the a1, . . . , an as roots, repeat this step. (In principle we
should, but we did not, also check for the rare possibility that s = t
and f = g.)

– Write down an (n− k)×n parity-check matrix H for the Goppa code
Γq(a1, · · · , an, fgq−1), where k = n−m(s+ (q − 1)t).

– Row-reduce H so that it begins with an (n − k) × (n − k) identity
matrix and continues with an (n− k)× k public key. If this fails (i.e.,
the first n − k columns of H are not invertible), go back to the first
step.

8 D. J. Bernstein, T. Lange, C. Peters

– Choose a secret plaintext. Here we use the Niederreiter variant [16]: a
plaintext is a random element of Fn

q of Hamming weight w, where w =
b(s+ (q − 1)t)/2c. (This can be made CCA2-secure with negligible
loss of efficiency, by techniques analogous to the techniques of [14].)
For simplicity we do not use list decoding here. We also do not use
the Berger–Loidreau defense.

– Multiply the secret plaintext by the row-reduced H, obtaining a public
ciphertext in Fn−k

q .

– As a verification step, use the secret key to legitimately decrypt the
ciphertext, and then check that the result matches the original plain-
text.

– Throw away all the secret information, leaving only the ciphertext
and the public key.

We wrote a script in the Sage computer-algebra system [23] to do all
this, relying on Sage’s random-number generator to produce all secrets;
the Sage documentation indicates that the random-number generator is
cryptographic. This script appears on our web page. The script was de-
signed mainly as a reference implementation, easy to understand and easy
to verify; it was not designed for speed. However, we did incorporate a
few standard speedups (such as a balanced product tree inside interpola-
tion in generalized Reed–Solomon decryption) to reduce the time spent
generating challenges.

We formatted each challenge as a text file containing cryptosystem
parameters, a ciphertext, and a public key. For example, here is our 20kB
“wild McEliece incognito” challenge for q = 13, except that in the actual
file there are various additional numbers in place of the dots:

kilobytes = 19.9869819590563

q = 13

m = 3

n = 472

s = 7

t = 3

u = 43

k = 343

w = 23

ciphertext = [7, 4, 12, 7, 7, ..., 2, 8, 10, 5, 0]

recovered_plaintext_using_secret_key = True

pubkeycol129 = [9, 11, 0, 4, 9, ..., 4, 12, 8, 1, 3]

pubkeycol130 = [5, 4, 12, 7, 2, ..., 6, 12, 5, 11, 12]

Wild McEliece Incognito 9

...

pubkeycol471 = [0, 1, 11, 3, 6, ..., 11, 12, 4, 11, 3]

In this example there are approximately 21644 possible sets {a1, . . . , a472},
and approximately 2107 possible pairs (f, g). This challenge has wild-
ness percentage 84% because deg(gq−1) = 36 accounts for 84% of u =
deg(fgq−1) = 43. The ciphertext is a column vector containing n−k = 129
elements of F13. This column vector is a sum of nonzero coefficients times
w = 23 columns chosen secretly from the 472 columns of the row-reduced
H; these 472 columns consist of k = 343 public-key columns shown in the
challenge file, and 129 extra columns containing an identity matrix.

The public key in this challenge has 343 · 129 · log(13)/ log 2 ≈ 163733
bits of information, slightly below the advertised “20kB” (163840 bits).
A standard radix-13 integer encoding of the matrix would fit into 163734
bits but would take some work to uncompress. Packing each 129-entry
column separately into 478 bits would consume 163954 bits. A standard
4-bit encoding of F13 would consume only slightly more space, 21.6kB.

The generalized information-set-decoding attack introduced by Peters
in [18] will break this challenge in roughly 253 bit operations. This is
obviously feasible.

As another example, our 40kB “wild McEliece” challenge for q = 31
has m = 2, n = 666, s = 0, t = 2, k = 546, and w = 31. In this
case security relies critically on the defense suggested in [6]: there are
only about 219 possible polynomials g, but there are almost 2850 possible
support sets. Information-set decoding will break this challenge in roughly
289 bit operations.

As a final example, our 20kB “wild McEliece” challenge for q = 3
has m = 6, n = 729, s = 0, t = 16, k = 537, and w = 24. In this case
there is only 1 possible set {a1, . . . , a729}, namely all of F36 , but there
are approximately 2148 possible polynomials g. Information-set decoding
will break this challenge in roughly 254 bit operations. Does knowing the
support help any attack?

We considered a huge number of possible parameters m,n, s, t for
each challenge, and many parameters for the attack in [18], subject to
the key-size constraint k(n − k) log2 q ≤ 8192K, where K is the speci-
fied number of kilobytes in the key. We assigned a security level 2b to
(m,n, s, t) according to an approximation to the cost of the attack in
[18]. For the “wild McEliece incognito” challenges we rejected (m,n, s, t)
whenever the number of polynomials was below 22b, and we also rejected
(m,n, s, t) whenever the number of support sets was below 22b. For the
“wild McEliece” challenges we did not require these defenses separately:

10 D. J. Bernstein, T. Lange, C. Peters

we allowed the product of the number of polynomials and the number of
support sets to be as small as 22b. Subject to these constraints we selected
(m,n, s, t) for each challenge to maximize b. This procedure matches how
we would expect parameters to be chosen in practice.

5 Parameters

In this section we propose parameters (n, k, s, t) for the McEliece cryp-
tosystem using codes Γ = Γq(a1, . . . , an, fg

q−1) that provide 2128 security
against information-set decoding and that have more than 2256 choices
of fgq−1. Our parameter search uses the analysis of information-set de-
coding in [18]. We chose the code length n, the degree s of f , the degree
t of g and the dimension k = n −

⌈
logq n

⌉
(s + (q − 1)t) of Γ to mini-

mize the key size d(n− k)k log2 qe for 128-bit security when w errors are
added. Table 5.1 gives an overview. The last column of the table shows
the “wildness percentage” p, i.e., the contribution of gq−1 to the Goppa
polynomial, measured in terms of how its degree relates to the overall
degree.

q key size n k s t w p

3 186 kB 2136 1492 0 46 69 100%

4 210 kB 2252 1766 0 27 54 100%

5 191 kB 1878 1398 0 24 60 100%

7 170 kB 1602 1186 8 16 60 92%

8 187 kB 1628 1204 8 14 60 92%

9 205 kB 1668 1244 10 12 59 91%

11 129 kB 1272 951 17 9 58 84%

13 142 kB 1336 1033 17 7 54 83%

16 157 kB 1328 1010 16 6 56 85%

17 162 kB 1404 1113 17 5 51 82%

19 169 kB 1336 1015 17 5 56 84%

23 183 kB 1370 1058 16 4 54 85%

25 189 kB 1314 972 18 4 59 84%

27 200 kB 1500 1218 42 2 48 55%

29 199 kB 1390 1081 19 3 53 82%

31 88 kB 856 626 25 3 59 78%

32 89 kB 852 618 24 3 60 79%

Table 5.1: Optimized parameters (n, k, s, t) for wild Goppa codes over Fq achieving
128-bit security when introducing w = b(s + qt)/2c errors.

Wild McEliece Incognito 11

Figure 5.1 illustrates for q = 13 that, given a particular key size, higher
wildness percentages generally add extra security against information-set
decoding. The figure compares Goppa codes with no correction factor
(100% wild) to Goppa codes where the degrees of f and gq−1 are balanced
(50% wild), and to Goppa codes without the wild trick (0% wild). We
emphasize that adding our shield against polynomial-searching attacks
does not require dropping the wildness percentage from 100% all the way
down to 50%; the parameters suggested in Table 5.1 typically have very
small extra factors f , profiting from the higher error-correction capability
induced by gq−1.

30

40

50

60

70

80

90

100

112

128

 2 20 40 60 80 100 120 140 160

se
c

le
ve

l

kB

q=13 (0% wildness)
q=13 (50% wildness)

q=13 (100% wildness)

Fig. 5.1: Security levels attained for wild McEliece keys with different wildness percent-
ages for q = 13.

12 D. J. Bernstein, T. Lange, C. Peters

References

[1] Daniel Augot, Morgan Barbier, Alain Couvreur, List-decoding of binary Goppa
codes up to the binary Johnson bound (2010). URL: http://arxiv.org/abs/1012.
3439. Citations in this document: §2.

[2] Thierry P. Berger, Pierre Loidreau, How to mask the structure of codes for a crypto-
graphic use, Designs, Codes and Cryptography 35 (2005), 63–79. MR 2006d:94038.
URL: http://www.springerlink.com/index/JR001118R1567U13.pdf. Citations in
this document: §1, §3, §3.

[3] Elwyn R. Berlekamp, Algebraic coding theory, Aegean Park Press, 1984. ISBN
0894120638. Citations in this document: §2.

[4] Daniel J. Bernstein, List decoding for binary Goppa codes, in IWCC [10] (2011), 62–
80. URL: http://cr.yp.to/papers.html#goppalist. Citations in this document:
§2.

[5] Daniel J. Bernstein, Simplified high-speed high-distance list decoding for alternant
codes, in PQCrypto [27] (2011). URL: http://cr.yp.to/papers.html#simplelist.
Citations in this document: §2, §2.

[6] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Wild McEliece, in SAC 2010
[7] (2011), 143–158. URL: http://eprint.iacr.org/2010/410. Citations in this
document: §1, §1, §1, §1, §1, §1, §2, §2, §2, §3, §4, §4.

[7] Alex Biryukov, Guang Gong, Douglas R. Stinson (editors), Selected areas in
cryptography — 17th international workshop, SAC 2010, Waterloo, Ontario, Canada,
August 12–13, 2010, revised selected papers, Lecture Notes in Computer Science,
6544, Springer, 2011. See [6].

[8] Certicom, Certicom ECC Challenge (1997). URL: http://www.certicom.com/

images/pdfs/cert_ecc_challenge.pdf. Citations in this document: §4, §4.

[9] Pascale Charpin (editor), Livre des résumés — EUROCODE 94, Abbaye de la
Bussière sur Ouche, France, October 1994, 1994. See [20].

[10] Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huax-
iong Wang, Chaoping Xing (editors), Coding and cryptology — third international
workshop, IWCC 2011, Qingdao, China, May 30–June 3, 2011, proceedings, Lec-
ture Notes in Computer Science, 6639, Springer. See [4].

[11] Valery D. Goppa, A new class of linear error correcting codes, Problemy Peredachi
Informatsii 6 (1970), 24–30. Citations in this document: §2, §2.

[12] Valery D. Goppa, Rational representation of codes and (L, g)-codes, Problemy
Peredachi Informatsii 7 (1971), 41–49. Citations in this document: §2.

[13] Kwangjo Kim (editor), Public key cryptography: proceedings of the 4th international
workshop on practice and theory in public key cryptosystems (PKC 2001) held on
Cheju Island, February 13–15, 2001, Lecture Notes in Computer Science, 1992,
Springer, 2001. See [14].

[14] Kazukuni Kobara, Hideki Imai, Semantically secure McEliece public-key crypto-
systems — conversions for McEliece PKC, in PKC 2001 [13] (2001), 19–35. MR
2003c:94027. Citations in this document: §4.

[15] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §1.

[16] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §1, §4.

http://arxiv.org/abs/1012.3439
http://arxiv.org/abs/1012.3439
http://www.springerlink.com/index/JR001118R1567U13.pdf
http://cr.yp.to/papers.html#goppalist
http://cr.yp.to/papers.html#simplelist
http://eprint.iacr.org/2010/410
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

Wild McEliece Incognito 13

[17] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions
on Information Theory 21 (1975), 203–207. Citations in this document: §2.

[18] Christiane Peters, Information-set decoding for linear codes over Fq, in PQCrypto
2010 [22] (2010), 81–94. URL: http://eprint.iacr.org/2009/589. Citations in
this document: §1, §3, §4, §4, §4, §5.

[19] RSA Laboratories, The RSA Factoring Challenge (1991). URL: http://www.rsa.
com/rsalabs/node.asp?id=2092. Citations in this document: §4.

[20] Nicolas Sendrier, On the structure of a randomly permuted concatenated code, in
EUROCODE 94 [9] (1994), 169-173. Citations in this document: §3, §3.

[21] Nicolas Sendrier, Finding the permutation between equivalent linear codes: the sup-
port splitting algorithm, IEEE Transactions on Information Theory 46 (2000),
1193–1203. MR 2001e:94017. URL: http://hal.inria.fr/docs/00/07/30/37/

PDF/RR-3637.pdf. Citations in this document: §1.
[22] Nicolas Sendrier (editor), Post-quantum cryptography, third international work-

shop, PQCrypto, Darmstadt, Germany, May 25-28, 2010, Lecture Notes in Com-
puter Science, 6061, Springer, 2010. See [18], [25].

[23] William Stein (editor), Sage Mathematics Software (Version 4.4.3), The Sage
Group, 2010. URL: http://www.sagemath.org. Citations in this document: §4.

[24] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, Toshihiko Namekawa, Fur-
ther results on Goppa codes and their applications to constructing efficient binary
codes, IEEE Transactions on Information Theory 22 (1976), 518–526. Citations in
this document: §2.

[25] Christian Wieschebrink, Cryptanalysis of the Niederreiter public key scheme based
on GRS subcodes, in PQCrypto 2010 [22] (2010), 61–72. Citations in this document:
§3.

[26] Wikipedia, RSA Factoring Challenge — Wikipedia, The Free Encyclopedia, ac-
cessed 01 July 2011 (2011). URL: http://en.wikipedia.org/wiki/RSA_Factoring_
Challenge. Citations in this document: §4.

[27] Bo-Yin Yang (editor), Post-quantum cryptography, fourth international workhop,
PQCrypto, Taipei, Taiwan, November 29–December 02, 2011, Lecture Notes in
Computer Science, 2011. See [5].

http://eprint.iacr.org/2009/589
http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.rsa.com/rsalabs/node.asp?id=2092
http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://www.sagemath.org
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

