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Abstract. This paper shows that quantum information-set-decoding at-
tacks are asymptotically much faster than non-quantum information-set-
decoding attacks.
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1 Introduction

Assume that large quantum computers are built, and that they scale as smoothly
as one could possibly hope. Shor’s algorithm and its generalizations will then
completely break RSA, DSA, ECDSA, and many other popular cryptographic
systems: for example, a quantum computer will find an RSA user’s secret key at
essentially the same speed that the user can apply the key. See [21] for Shor’s
original algorithm, [24] for a detailed complexity analysis, and [16] for a survey
of generalizations.

It seems inconceivable, however, that Shor’s period-finding idea will ever have
any relevance to the vast majority of “one-way” cryptographic systems: secret-
key stream ciphers, hash-based public-key signature systems, etc. There are,
furthermore, several well-known “trapdoor one-way” cryptographic systems—
most importantly, public-key encryption systems—that seem immune to Shor’s
algorithm. The oldest example is the code-based public-key system introduced
by McEliece in [19] thirty years ago.

The conventional wisdom is that all of these systems will nevertheless need to
double their key sizes in order to survive quantum computers. Shor’s algorithm is
not the only application of quantum computers! A quantum searching algorithm
introduced by Grover in [13] and [14] finds (e.g.) a 256-bit AES key in only about
2128 quantum operations, given a few known plaintexts encrypted under that key.
Users who want to push the attacker’s cost significantly higher than 2128—the
original motivation for 256-bit AES—will need a cipher with significantly more
than a 256-bit key.
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There is, however, no reason to think that the doubled key size for a secret-
key cipher will be matched by a doubled hash-function output length, a doubled
key size for McEliece, etc. Consider the following examples:

• A frequently cited Brassard–Høyer–Tapp paper “Quantum cryptanalysis of
hash and claw-free functions” [8] argues that quantum computers force a
1.5× expansion in the output length of a collision-resistant black-box hash
function. My new paper [3] argues that quantum computers actually have
no impact on the difficulty of finding black-box hash collisions.

• Quantum computers obviously have no impact on the key length required for
the Gilbert–MacWilliams–Sloane authenticator [11] and other information-
theoretically secure cryptographic systems.

• Overbeck and Sendrier argue in [20, Section 3.5] that quantum computers
have only a small impact on the McEliece public-key system, reducing the
attacker’s decoding cost from (e.g.) 2140 to 2133 for a code of length 4096
and dimension 4096− 45 · 12 = 3556.

Grover’s algorithm takes only square-root time compared to a brute-force key
search, but this does not mean that it takes less time than the more sophisticated
algorithms used to find hash collisions, McEliece error vectors, etc. Sometimes
Grover’s idea can be used to speed up the more sophisticated algorithms, but
understanding the extent of the speedup requires careful analysis.

Contents of this paper. This paper points out a way to attack the McEliece
system with Grover’s algorithm. This attack is asymptotically much faster than
the approach analyzed in [20, Section 3.5].

Fix a rational number R with 0 < R < 1. State-of-the-art information-set-
decoding algorithms take time just c(1+o(1))n/lg n to break a length-n rate-R
code; here c = 1/(1 − R)1−R, and o(1) is a function of n that converges to 0
as n → ∞. See [6] for a much more detailed analysis. What this paper shows
is that quantum versions of the same information-set-decoding algorithms take
time only c(1/2+o(1))n/lg n. Protecting against this attack requires replacing n by
(2 + o(1))n, essentially quadrupling the McEliece key size.

Users who were already making the worst-case assumption regarding the
impact of Grover’s algorithm, namely a square-root speedup in all attacks, will
not be affected by this paper. However, users who were making more optimistic
assumptions to reduce key size, decryption time, etc. will need to change their
parameters in the McEliece system and in other code-based systems to survive
quantum computers.

2 Review of attacks against the McEliece system

This section reviews the McEliece public-key cryptosystem; information-set-
decoding attacks against the system; and some claims in the literature regarding
the applicability of quantum computers to information-set decoding.

Review of McEliece encryption. Recall that the McEliece public key is a
“random” full-rank k× n matrix G with entries in F2. Here k and n are system



parameters. McEliece originally suggested k = 524 and n = 1024, aiming for
64-bit security, but these parameters were broken in [5]. Users today take much
larger parameters, such as k = 3556 and n = 4096.

The matrix G specifies a linear map from Fk
2 to Fn

2 . The sender encrypts a
suitably randomized message m ∈ Fk

2 , together with a uniform random vector
e ∈ Fn

2 of Hamming weight t, as Gm + e ∈ Fn
2 . Here t is another system

parameter. Typically t = (n− k)/dlg ne.
The receiver secretly generates G as a scrambled Goppa matrix, and uses

this structure to quickly decode Gm + e, obtaining m and e. This structure
means that G is not actually a uniform random full-rank matrix. However, all
known “structural attacks” that discover the secret, or that merely distinguish
G from uniform random, are much slower than the information-set-decoding
attacks discussed below.

Review of basic information-set decoding. Basic information-set decoding
works as follows. Choose a uniform random size-k subset S ⊆ {1, 2, . . . , n}, and
consider the natural projection Fn

2 → FS
2 that extracts the coordinates indexed

by S, discarding all other coordinates. Assume that the following two events
occur simultaneously:

• The error vector e projects to 0 ∈ FS
2 ; i.e., the entries of e indexed by S are

all 0.
• The composition Fk

2
G−→ Fn

2 → FS
2 is invertible; i.e., the columns of G

indexed by S form an invertible k × k matrix.

Obtain m by applying the inverse to the projection of Gm + e, and obtain e
by subtracting Gm from Gm + e. If this fails—i.e., if the composition is not
invertible, or if the resulting e does not have Hamming weight t—then go back
to the beginning and try another set S.

The first event occurs for exactly
(
n−t

k

)
out of the

(
n
k

)
choices of S, so it

occurs on average after
(
n
k

)
/
(
n−t

k

)
iterations. If k = Rn and t ≈ (1 − R)n/lg n

then (
n
k

)(
n−t

k

) =
n · · · (n− t + 1)

(n− k) · · · (n− k − t + 1)
≈
(

n

n− k

)t

=
(

1
1−R

)t

≈ cn/lg n

where c = 1/(1 − R)1−R. These approximations are quite crude, but a more
careful analysis shows that

(
n
k

)
/
(
n−t

k

)
∈ c(1+o(1))n/lg n when t is sufficiently close

to (1−R)n/lg n.
For any particular S, the second event occurs for approximately 29% of all

matrices G, since approximately 29% of all k×k matrices over F2 are invertible.
It is tempting to leap to the conclusion that, for any particular G, the second
event occurs for approximately 29% of all choices of S, and that the combination
of events occurs for approximately 0.29

(
n−t

k

)
out of the

(
n
k

)
choices of S. This

conclusion is wrong for some choices of G but does appear to be correct for
McEliece public keys. For further discussion of this point see [6, Section 2, under
“Model of the number of iterations”].



Review of advanced information-set decoding. More advanced forms of
information-set decoding complicate each iteration but decrease the number of
iterations required, for example by allowing e to have a few bits set within S
and combinatorially searching for those bits. There are also many techniques
to reduce the cost of finding appropriate sets S, computing inverses, checking
whether m is correct, etc. See generally [5].

The analysis in [6] shows that these improvements collectively reduce the
cost of information-set decoding by more than a constant power of n but that
the final cost is still c(1+o(1))n/lg n.

Review of previous analyses of quantum decoding attacks. I am aware
of two previous attempts to quantify the impact of quantum computers upon
information-set decoding. The first is by Barg and Zhou in [2, Section 1]. The
second is by Overbeck and Sendrier in [20, Section 3.5], as mentioned above.

The Barg–Zhou analysis is a brief sentence claiming that Grover’s algorithm
can decode any length-n code C, linear or not, “on a quantum computer of
circuit size O(n|C|1/2) in time O(n|C|1/2), which is essentially optimal following
a result in [1997 Bennett et al.].” Note that if C has rate R then |C| = 2Rn and
|C|1/2 = 2Rn/2.

There are many reasons to question the Barg–Zhou claim. Specifying an
arbitrary non-linear code of length n and rate R requires almost 2Rnn bits of
information; there is no theoretical obstacle to this information being packed
into only O(2Rn/2n) qubits, but Barg and Zhou give no explanation of how to
extract the information again from those qubits, never mind the question of what
this has to do with Grover’s algorithm.

There is no difficulty in building a small computer to enumerate a large linear
code. In this case a naive application of Grover’s algorithm would take essentially
2Rn/2 iterations but would require only a polynomial-size quantum computer,
far below the “optimal” circuit size claimed by Barg and Zhou. Furthermore,
information-set decoding takes time only about cn/lg n on a small non-quantum
computer, asymptotically far below the “optimal” time 2Rn/2 claimed by Barg
and Zhou.

The Overbeck–Sendrier analysis is more detailed and is aimed at giving an
“intuition why Grover’s algorithm is not able [to] give a significant speed-up
for the existing attacks.” Overbeck and Sendrier begin with “the simplifying
assumption that by Grover’s algorithm we are able to search a set of size N
in O(

√
N) operations on a quantum computer with at least log2(N) QuBits.”

They say that the combinatorial search in advanced forms of information-set
decoding (e.g., the collision search introduced by Stern in [23]) “achieves the
same speed-up as Grover’s algorithm would achieve.”

Overbeck and Sendrier also briefly consider, but dismiss, the idea of using
Grover’s algorithm for “the guessing phase,” i.e., to search for sets S having both
of the desired properties. They say that “this would either require an iterative
application of Grover’s algorithm (which is not possible) or a memory of size of
the whole search space, as the search function in the second step depends on the



first step. This would clearly ruin the ‘divide-and-conquer’ strategy and is thus
not possible either.”

This paper shows the opposite: Grover’s searching algorithm can be used to
drastically speed up the search for sets S. One might speculate that previous
authors were misled by Grover’s often-repeated description of his algorithm as
searching a “database.” See the next section of this paper for further discussion
of what Grover’s algorithm actually does.

3 Quantum information-set decoding

Grover’s algorithm is properly understood not as searching through a “database”
but as searching for roots of a function. It is easy, from this perspective, to see
how to apply Grover’s algorithm to information-set decoding. This section spells
out the details.

Grover’s algorithm. Grover’s algorithm is actually a generic constructive
transformation from conventional circuits into quantum root-finding circuits.
The input to the transformation is a circuit that computes a function f : Fb

2 →
F2. The output is a quantum circuit that computes a root of f (if one exists): a
b-bit string x such that f(x) = 0.

In this paper I will be satisfied with a limited class of b-bit-to-1-bit circuits,
namely “combinatorial” circuits: i.e., directed acyclic graphs where each node has
two incoming edges and computes the NAND of its predecessor nodes. There is
a loss of space efficiency from unrolling a long computation into a combinatorial
circuit, but the specific functions used in this paper do not take very long to
compute, at least compared to the speedups discussed in this paper.

To build a quantum circuit for f one must first build a “reversible” circuit
for f : a non-erasing circuit built from Toffoli gates (x, y, z) 7→ (x, y, z + xy)
rather than NANDs. This costs small constant factors in the number of input
bits and in the size of the circuit. Replacing the bits by qubits, and replacing
the Toffoli gates by quantum Toffoli gates, then produces a circuit of essentially
the same size, and essentially the same speed, that computes f on a quantum
superposition of inputs.

Grover assumes for simplicity that f has a unique root; combines a quantum
circuit for f with a quantum rotation and a Hadamard transformation; and
iterates the resulting quantum circuit approximately

√
2b times, obtaining the

root of f with high probability. The rotation and the Hadamard transformation
take negligible time and space compared to typical functions f .

Boyer, Brassard, Høyer, and Tapp in [7] presented a generalization of Grover’s
algorithm using

√
2b/r iterations to handle a function f having r roots. The

number r need not be known in advance. The generalization in [7] is not actually
necessary: one can simply apply Grover’s algorithm to random restrictions of f
having 1 input, 2 inputs, 4 inputs, etc. With either approach, the number of
iterations used by quantum search is only about the square root of the number
of iterations used by a traditional brute-force search.



Basic quantum information-set decoding. Fix y ∈ Fn
2 , and fix a k × n

matrix G. Consider the function that, given a size-k subset S ⊆ {1, 2, . . . , n},

• inverts the composition Fk
2

G−→ Fn
2 → FS

2 , giving up if the composition is
not invertible;

• applies the inverse to the image of y in FS
2 , obtaining a vector m ∈ Fk

2 ;
• computes Gm ∈ Fn

2 ;
• gives up if Gm− y does not have Hamming weight t; and, finally,
• returns 0.

This function can easily be computed by a combinatorial circuit consisting of
O(n3) bit operations.

Recall that basic information-set decoding searches randomly for a root of
this function. The search uses approximately

(
n
k

)
/0.29

(
n−t

k

)
≈ cn/lg n function

evaluations on average.
This paper’s basic quantum information-set-decoding algorithm finds a root

of exactly the same function by Grover’s algorithm. Grover’s algorithm uses

only about
√(

n
k

)
/0.29

(
n−t

k

)
≈ c(1/2)n/lg n iterations. Each iteration is a quantum

function evaluation performing O(n3) qubit operations; each iteration thus takes
time nO(1) on a quantum computer of size nO(1). The total time to find S is
c(1/2+o(1))n/lg n on a quantum computer of size nO(1). Having found S one can
compute m and e = Gm− y with negligible extra effort.

Consider again the example (n, k, t) = (4096, 3556, 45) from [20, Section 3.5].
Basic quantum information-set decoding performs only about 268 evaluations of
this function. Each function evaluation takes a few billion bit operations, so the
total cost is approximately 2100 qubit operations. Evidently these parameters
are far below a safe 128-bit security level, contrary to the analysis in [20].

Advanced quantum information-set decoding. Recall that more advanced
forms of information-set decoding evaluate more complicated functions that have
more roots S. One can—and, to properly optimize parameters, should—consider
analogous forms of quantum information-set decoding.

Beware that optimization of quantum information-set decoding is not the
same as optimization of non-quantum information-set decoding. A 100× increase
in the cost of function evaluation has a 100× impact in both settings, but a 100×
increase in the number of roots has only a 10× impact in the quantum setting.

For example, the improvement introduced by Lee and Brickell in [17] increases
the number of roots by a factor n2+o(1), while increasing the cost of each iteration
by only a constant factor. See [6, Section 3] for a detailed analysis of these factors.
This improvement therefore saves a factor n1+o(1) in quantum information-set
decoding.

The improvement introduced by Stern in [23] increases the number of roots by
a larger factor. However, it also increases the cost of each iteration by more than
the square root of the same factor. I do not see how Stern’s collision-searching
idea can save time in quantum information-set decoding.
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