
List decoding for binary Goppa codes

Daniel J. Bernstein

Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. This paper presents a Patterson-style list-decoding algorithm
for classical irreducible binary Goppa codes. The algorithm corrects, in
polynomial time, approximately n−

√
n(n− 2t− 2) errors in a length-n

classical irreducible degree-t binary Goppa code. Compared to the best
previous polynomial-time list-decoding algorithms for the same codes,
the new algorithm corrects approximately t2/2n extra errors.

1 Introduction

Patterson in [26] introduced a polynomial-time decoding algorithm that corrects
t errors in a classical irreducible degree-t binary Goppa code.

This paper introduces a considerably more complicated, but still polynomial-
time, list-decoding algorithm for classical irreducible binary Goppa codes. The
advantage of the new algorithm is that it corrects approximately

n−
√
n(n− 2t− 2) ≈ t+ 1 +

(t+ 1)2

2(n− t− 1)

errors in a length-n degree-t code. Typically t is chosen close to n/(2 lg n); then
the new algorithm corrects approximately t+ 1 + n/(8(lg n)2) errors.

Comparison to previous list-decoding algorithms. A different strategy for
decoding a degree-t classical binary Goppa code Γ2(. . . , g) is to view it as an “al-
ternant code,” i.e., a subfield code of a degree-t generalized Reed–Solomon code
Γ2m(. . . , g) over the larger field F2m . The generalized Reed–Solomon code can
be decoded by several different algorithms: Berlekamp’s algorithm, for example,
or the famous algorithm introduced by Guruswami and Sudan in [17].

Both of those algorithms are much less effective than Patterson’s algorithm.
Berlekamp corrects only t/2 errors; Guruswami and Sudan correct approximately
n−
√
n(n− t) > t/2 errors but still do not reach t errors. Guruswami and Sudan

in [17, Section 3.1] point out this limitation of their algorithm (“performance can
only be compared with the designed distance, rather than the actual distance”);

Permanent ID of this document: 210ecf064c479a278ab2c98c379f72e0. Date of this
document: 2011.02.23. This work was carried out while the author was visiting Tech-
nische Universiteit Eindhoven. This work has been supported by the National Science
Foundation under grant ITR–0716498.

2 Daniel J. Bernstein

they do not mention how serious this limitation is in the binary-Goppa case,
where moving to a larger field chops the distance in half.

The first draft of this paper, posted in July 2008, was to my knowledge the
first improvement in more than thirty years on the decoding power of Patterson’s
algorithm. I was wrong in thinking that it was the first list-decoding algorithm
for a useful class of binary codes—a March 2007 paper [27] by Wu reached
essentially the same number of errors for narrow-sense binary BCH codes—but
narrow-sense BCH codes are much more special than classical Goppa codes. I
have not investigated the question of whether Wu’s algorithm can be viewed as
a special case of this paper’s algorithm.

Extra errors by brute force. Another standard way to correct extra errors
is to guess the positions of the extra errors. For example, one can guess e error
positions, flip those e bits, and then apply Patterson’s algorithm to correct t
additional errors, overall correcting t+e errors. The guess is correct with proba-
bility

(
n−e
t

)
/
(
n
t+e

)
, so after

(
n
t+e

)
/
(
n−e
t

)
guesses one has a good chance of finding

any particular codeword at distance t+e. One can bring the chance exponentially
close to 1 by moderately increasing the number of guesses.

Although this algorithm involves many repetitions of Patterson’s algorithm,
it remains a polynomial-time algorithm if e is chosen so that

(
n
t+e

)
/
(
n−e
t

)
grows

polynomially. In particular, in the typical case t ∈ Θ(n/lg n), one can decode
Θ((lg n)/(lg lg n)) extra errors in polynomial time.

Similarly, one can guess e error positions, flip those e bits, and then ap-
ply this paper’s new list-decoding algorithm. Compared to Patterson’s original
algorithm, this method decodes

• the same t errors, plus
• approximately n− t−

√
n(n− 2t− 2) extra errors from the new algorithm,

plus
• e additional errors from guessing;

and the method remains polynomial-time if e is small. In particular, for t ≈
n/(2 lg n), the new algorithm adds approximately n/(8 lg n)2 extra errors, and
guessing adds Θ((lg n)/(lg lg n)) extra errors, still in polynomial time.

A refined algorithm analysis would consider the number of errors correctable
in time n1+o(1), the number of errors correctable in time n2+o(1), etc., rather than
simply the number of errors correctable in polynomial time. This paper does
not carry out this level of analysis, and does not incorporate various speedups
visible at this level of analysis. Such speedups are evident at several levels of
algorithm design: for example, one should use essentially-linear-time FFT-based
algorithms for multiplication, multipoint polynomial evaluation, interpolation,
etc., rather than quadratic-time schoolbook algorithms. For a survey of the FFT-
based algorithms see, e.g., my paper [4].

Comparison to subsequent list-decoding algorithms. Another strategy
for decoding Γ2(. . . , g) is to first apply Goppa’s identity Γ2(. . . , g) = Γ2(. . . , g2)
and then view Γ2(. . . , g2) as an alternant code: i.e., to decode the generalized
Reed–Solomon code Γ2m(. . . , g2) over F2m .

List decoding for binary Goppa codes 3

The decoding of Γ2m(. . . , g2) can again be carried out by several different
algorithms. The simplest choice is Berlekamp’s algorithm, which now decodes
t errors since deg(g2) = 2t. The resulting decoder for Γ2(. . . , g) is somewhat
simpler than Patterson’s algorithm and corrects the same number of errors. On
the other hand, Patterson’s algorithm seems to be faster, since it works modulo
g rather than modulo g2, and appears to have become the standard decoding
algorithm for these codes. I am not aware of any serious investigation of the
speed of the g2 approach.

Switching from Berlekamp’s algorithm to the Guruswami–Sudan algorithm
now decodes approximately n −

√
n(n− 2t) errors, just like the algorithm in

this paper. The first publication of this list-decoding algorithm, as far as I know,
was in the paper [7, Section 5] in July 2010, two years after the first draft of
this paper was posted. Compared to my Patterson-style list-decoding algorithm,
this g2 list-decoding algorithm has the advantage of simplicity, and the further
advantage of generalizing immediately to “wild Goppa codes” Γq(. . . , g

q−1) as
explained in [7], using the Sugiyama–Kasahara–Hirasawa–Namekawa identity
Γq(. . . , g

q−1) = Γq(. . . , g
q). On the other hand, I would guess that the Patterson-

style algorithm in this paper is faster, justifying its additional complexity.
A followup paper [2] in December 2010 says that varying multiplicities in

the Guruswami–Sudan technique corrects approximately (1/2)(n−
√
n(n− 4t))

errors. For t ≈ n/(2 lg n) this means decoding approximately t+ 1 +n/(4(lg n)2)
errors, rather than t+ 1 +n/(8(lg n)2) errors—but I would again guess that this
paper’s technique is faster.

An application to code-based cryptography. McEliece in [23] proposed a
public-key encryption system using exactly the same codes considered in this
paper. The public key is a generator matrix (or, as proposed by Niederreiter in
[25], a parity-check matrix) of a code equivalent to a classical irreducible degree-t
binary Goppa code chosen secretly by the receiver. The sender encodes a message
and adds t errors; the receiver decodes the errors.

Adding more errors makes McEliece’s system harder to break by all known
attacks, but also requires the receiver to decode the additional errors, posing the
problem tackled in this paper: exactly how many errors can be efficiently decoded
in a classical irreducible binary Goppa code? See [6] for further discussion and
security analysis. One could also switch to a different class of codes over F2, but
I am not aware of codes over F2 that allow efficient decoding of more errors!

2 Review of divisors in arithmetic progressions

Consider the problem of finding all divisors of n congruent to u modulo v, where
u, v, n are positive integers with gcd{v, n} = 1. (What does this have to do with
list decoding? Bear with me.)

There is no difficulty if v ≥ n1/2. Lenstra in [21] published a polynomial-time
algorithm for v ≥ n1/3. Konyagin and Pomerance in [19] published a polynomial-
time algorithm for v ≥ n3/10. Coppersmith, Howgrave-Graham, and Nagaraj
found a polynomial-time algorithm for v ≥ nα

2

for any fixed α > 1/2; see [18,

4 Daniel J. Bernstein

Section 5.5] and [15]. (Lenstra subsequently pointed out that one could handle
α = 1/2, but this extra refinement is not relevant here.) More generally, the
Coppersmith–Howgrave-Graham–Nagaraj algorithm finds all divisors of n in an
arithmetic progression u − Hv, u − (H − 1)v, . . . , u − v, u, u + v, . . . , u + (H −
1)v, u + Hv. The algorithm is polynomial-time if the smallest entry u − vH is

n1/α and the number 2H + 1 of entries is smaller than approximately n1/α
2

.

The algorithm actually does more: it finds all small integers s such that the
fraction (s + w)/n has small denominator. Here w is the quotient of u by v
modulo n. Note that (s + w)/n has denominator at most n/(u + sv) if u + sv
divides n: indeed, (s+ w)/n = v̄(u+ sv)/n+ (w − uv̄)/n+ s(1− vv̄)/n, where
v̄ is the reciprocal of v modulo n.

Boneh later pointed out—see [8]—that the same algorithm can be viewed
as a state-of-the-art list-decoding algorithm for “CRT codes” under a standard
weighted distance. Take n to be a product of many small primes p1, p2, . . ., and
consider codewords (s mod p1, s mod p2, . . .) where s ∈ {−H, . . . , 0, 1, . . . ,H}. A
word (w mod p1, w mod p2, . . .) is close to a codeword (s mod p1, s mod p2, . . .)
if and only if s−w has a large factor in common with n, i.e., (s−w)/n has small
denominator.

The algorithm. Fix positive integers `, k with ` > k. Define L ⊂ Q[z] as the
`-dimensional lattice generated by the polynomials

1,
Hz + w

n
,

(
Hz + w

n

)2

, . . . ,

(
Hz + w

n

)k
,

Hz

(
Hz + w

n

)k
, (Hz)2

(
Hz + w

n

)k
, . . . , (Hz)`−k−1

(
Hz + w

n

)k
.

The Coppersmith–Howgrave-Graham–Nagaraj algorithm uses lattice-basis re-
duction to find a nonzero vector ϕ ∈ L with small coefficients. It then finds the
desired integers s by finding rational roots s/H of ϕ.

Specifically, L has determinant H`(`−1)/2/n`k−k(k+1)/2, so the well-known
LLL algorithm finds ϕ with norm at most (2H)(`−1)/2/nk−k(k+1)/2`. If |s/H| ≤ 1
then ϕ(s/H) ≤

√
`(2H)(`−1)/2/nk−k(k+1)/2`; but ϕ(s/H) is also a multiple of

1/Dk where D is the denominator of (s+ w)/n. In particular, ϕ(s/H) must be
0 if 1/Dk >

√
`(2H)(`−1)/2/nk−k(k+1)/2`.

The algorithm thus finds all integers s ∈ {−H, . . . ,−1, 0, 1, . . . ,H} such that
the denominator of (s+w)/n is smaller than n1−(k+1)/2`/`1/2k(2H)(`−1)/2k. By
choosing a moderately large k, and choosing ` ≈ k

√
(lg 2n)/ lg 2H, one can push

the denominator bound up to approximately n/2
√

(lg 2n)(lg 2H), and in particular

find divisors larger than approximately 2
√

(lg 2n)(lg 2H).

The function-field analogue. The integers in the Coppersmith–Howgrave-
Graham–Nagaraj algorithm can be replaced by polynomials over a finite field.
The LLL algorithm for integer lattice-basis reduction is replaced by simpler
algorithms for polynomial lattice-basis reduction. See, e.g., [20, Section 1] for a

List decoding for binary Goppa codes 5

gentle introduction to polynomial lattice-basis reduction, or [24, Section 2] for a
faster algorithm.

Many of the cryptanalytic applications of the algorithm are uninteresting
for polynomials, since polynomials can be factored efficiently into irreducibles.
However, the list-decoding application remains interesting for polynomials—it
is essentially the Guruswami–Sudan algorithm!

Section 3 extends the Coppersmith–Howgrave-Graham–Nagaraj algorithm
to solve a slightly more complicated “linear combinations as divisors” problem.
Section 7 presents this paper’s new list-decoding method for binary Goppa codes,
combining the function-field analogue of the “linear combinations as divisors”
algorithm with the extension of Patterson’s algorithm presented in Section 6.

3 Linear combinations as divisors

The Coppersmith–Howgrave-Graham–Nagaraj algorithm discussed in Section 2,
given positive integers u, v, n with gcd{v, n} = 1, finds all small integers s such
that u+ sv divides n. This section explains, more generally, how to find all pairs
of small coprime integers (r, s) with r > 0 such that ru + sv divides n. The
precise meaning of “small” is defined below.

The algorithm sometimes outputs additional pairs (r, s). It is up to the user
to check which of the pairs (r, s) is small, has ru+ sv dividing n, etc. However,
the algorithm is guaranteed to finish quickly (and therefore to output very few
pairs), and its output is guaranteed to include all of the desired pairs (r, s).

The algorithm. Compute the quotient w of u by v modulo n. This algorithm
actually looks for small coprime (r, s) such that (s + rw)/n has small denomi-
nator.

Fix positive integers G,H, and define Θ = H/G. The algorithm focuses on
pairs (r, s) such that 1 ≤ r ≤ G and −H ≤ s ≤ H.

Fix positive integers `, k with ` > k. Define L ⊂ Q[z] as the `-dimensional
lattice generated by the polynomials

1,
Θz + w

n
,

(
Θz + w

n

)2

, . . . ,

(
Θz + w

n

)k
,

Θz

(
Θz + w

n

)k
, (Θz)2

(
Θz + w

n

)k
, . . . , (Θz)`−k−1

(
Θz + w

n

)k
.

Use lattice-basis reduction to find a nonzero vector ϕ ∈ L with small coefficients.
For each rational root of ϕ: Multiply the root by Θ, write the product in the

form s/r with gcd{r, s} = 1 and r > 0, and output (r, s).

What the algorithm accomplishes. Observe that the determinant of L is
Θ`(`−1)/2/n`k−k(k+1)/2. Reduction guarantees that√

ϕ2
0 + ϕ2

1 + · · · ≤ (2Θ)(`−1)/2

nk−k(k+1)/2`
.

6 Daniel J. Bernstein

Assume that 1 ≤ r ≤ G and −H ≤ s ≤ H. Then∣∣∣r`−1ϕ(s

Θr

)∣∣∣ =

∣∣∣∣ϕ0r
`−1 + ϕ1r

`−2 s

Θ
+ · · ·+ ϕ`−1

s`−1

Θ`−1

∣∣∣∣
≤

√
(r`−1)2 + · · ·+

(
s`−1

Θ`−1

)2√
ϕ2
0 + ϕ2

1 + · · ·

≤
√
`G`−1

(2Θ)(`−1)/2

nk−k(k+1)/2`
=

√
`(2GH)(`−1)/2

nk−k(k+1)/2`
.

Assume further that (s+ rw)/n has denominator D. Then (s/r + w)/n is a
multiple of 1/Dr so all of

1,
s/r + w

n
, . . . ,

(
(s/r + w)

n

)k
, . . . , (s/r)`−k−1

(
(s/r + w)

n

)k
are multiples of (1/r)`−k−1(1/Dr)k = 1/Dkr`−1. Thus ϕ(s/Θr) is a multiple of
1/Dkr`−1; i.e., r`−1ϕ(s/Θr) is a multiple of 1/Dk.

Now assume additionally that D < n1−(k+1)/2`/`1/2k(2GH)(`−1)/2k. Then
1/Dk >

√
`(2GH)(`−1)/2/nk−k(k+1)/2`, so r`−1ϕ(s/Θr) must be 0; i.e., s/Θr is

a root of ϕ. The algorithm finds s/Θr if gcd{r, s} = 1.
In particular, if ru + sv is a divisor of n with 1 ≤ r ≤ G, −H ≤ s ≤ H,

gcd{r, s} = 1, and ru + sv > `1/2k(2GH)(`−1)/2kn(k+1)/2`, then the algorithm
outputs (r, s).

By choosing a moderately large k, and choosing ` ≈ k
√

(lg 2n)/ lg 2GH,
one can push the bound `1/2k(2GH)(`−1)/2kn(k+1)/2` down to approximately

2
√

(lg 2n)(lg 2GH).

Comparison to other “Coppersmith-type” algorithms. My survey paper
[5] discusses a general method that, given a polynomial f , finds all small-height
rational numbers s/r such that f(s/r) has small height. Here “small height”
means “small numerator and small denominator.” This includes finding divisors
in residue classes and finding codeword errors beyond half the minimum distance,
as discussed in Section 2; other standard applications are finding divisors in
short intervals, finding high-power divisors, and finding modular roots. See [5]
for credits and historical discussion, including both the rational number-field
case and the rational function-field case.

All of the applications mentioned in the previous paragraph specify the de-
nominator r; in other words, they find all small integers s such that f(s) has
small height. But this limitation is not inherent in the method. The method
discovers small pairs (r, s) even if both r and s are allowed to vary.

(Recently Cohn and Heninger in [13] have generalized the method to cover all
global fields—but with the same limitation, searching only for integral elements
of those fields. Presumably the limitation can be removed.)

In particular, one can efficiently find all small-height rational numbers s/r
such that (s/r + w)/n has small height—in particular, all small-height rational
numbers s/r such that ru + sv divides n. What I have shown in this section

List decoding for binary Goppa codes 7

is that, for divisors ru + sv ≈ n1/α, “small” includes all (r, s) with rs up to

approximately n1/α
2

.
The same method generalizes to polynomials f in more variables. One can,

for example, find all small integer pairs (r, s) such that f(r, s) has small height.
However, the bivariate method is considerably more difficult to analyze and
optimize than the univariate method. Even when the bivariate method can be
proven to work, it typically searches fewer f inputs than the univariate method.
What the algorithm in this section illustrates is that homogeneous bivariate
polynomials are almost as easy to handle as univariate polynomials.

In [12]—more than a year after I posted the first draft of this paper and more
than five years after I posted the first draft of [5]—Castagnos, Joux, Laguillau-
mie, and Nguyen published a “new rigorous homogeneous bivariate variant of
Coppersmith’s method.” They used this method to attack a cryptosystem. Their
“new” variant is, in fact, an uncredited special case of the method in [5]—the
same special case that I had, for the same reasons, already highlighted in this
paper.

The function-field analogue. The integers in this section’s ru+sv algorithm,
like the integers in other Coppersmith-type algorithms, can be replaced by poly-
nomials over a finite field. The resulting algorithm can be used for list decoding
of classical irreducible binary Goppa codes. See Section 7.

In this application one cares only about squares r, s. In other words, one
wants to find divisors of n of the form r2u + s2v. One can apply lattice-basis-
reduction methods directly to the polynomial (s2 + r2w)/n, but I don’t see how
this would allow larger rs. Perhaps I’m missing an easy factor-of-2 improvement
(in general, or in the characteristic-2 case), or perhaps there’s an explanation
for why this type of improvement can’t work.

4 Review of classical irreducible binary Goppa codes

This section reviews three equivalent definitions of the classical irreducible bi-
nary Goppa code Γ2(a1, . . . , an, g): the “polynomial” definition, the “classical”
definition, and the “evaluation” definition.

The notations m, t, n, a1, . . . , an, g, h, Γ in this section will be reused in Sec-
tions 5, 6, and 7.

Parameters for the code. Fix an integer m ≥ 3. Typically m ∈ {10, 11, 12}
in the cryptographic applications mentioned in Section 1.

Fix an integer t with 2 ≤ t ≤ (2m−1)/m. The Goppa code will be a “degree-t
code” designed to correct t errors. Extremely small and extremely large values
of t are not useful, but intermediate values of t produce interesting codes; for
m = 11 one could reasonably take (e.g.) t = 32, or t = 70, or t = 100.

Fix an integer n with mt + 1 ≤ n ≤ 2m. It is common to restrict attention
to the extreme case n = 2m; e.g., n = 2048 if m = 11. However, a wider range
of n allows a better security/efficiency tradeoff for code-based cryptography, as
illustrated in [6, Section 7] and [7].

8 Daniel J. Bernstein

Fix a sequence a1, . . . , an of distinct elements of the finite field F2m . Typically
n = 2m and a1, . . . , an are chosen as all the elements of F2m in lexicographic
order, given a standard basis for F2m over F2. For n < 2m there is more flexibility.

Finally, fix a monic degree-t irreducible polynomial g ∈ F2m [x]. There are
no standard choices here; in the classic study of minimum distance it is an open
problem to find the best g, and in code-based cryptography it is important for
g to be a randomly chosen secret.

The “polynomial” view of the code. Define h =
∏
i(x − ai) ∈ F2m [x]. In

the extreme case n = 2m, this polynomial h is simply xn − x, with derivative
h′ = nxn−1 − 1 = 1, slightly simplifying some of the formulas below.

Define

Γ = Γ2(a1, . . . , an, g) =

{
c ∈ Fn2 :

∑
i

ci
h

x− ai
mod g = 0

}
.

This set Γ is the kernel of the “syndrome” map Fn2 → Ft2m that maps c to
the coefficients of 1, x, . . . , xt−1 in

∑
i cih/(x− ai) mod g; consequently Γ is an

F2-module of dimension at least n−mt, i.e., an [n,≥ n−mt] code over F2.
In other words: The polynomials h/(x − a1) mod g, h/(x − a2) mod g, . . . ,

h/(x− an) mod g, viewed as vectors over F2, form a parity-check matrix for the
code Γ .

The “classical” view of the code. By construction g has degree t ≥ 2, and
has none of a1, . . . , an as roots. Therefore h is coprime to g.

Consequently the polynomial
∑
i cih/(x− ai) in F2m [x] is a multiple of g if

and only if
∑
i ci/(x − ai) equals 0 in the field F2m [x]/g. The classical Goppa

code associated to a1, . . . , an, g is most commonly defined as the set of c ∈ Fn2
such that

∑
i ci/(x− ai) = 0 in F2m [x]/g; this is the same code as Γ .

Another consequence of the coprimality of h and g is that the minimum
distance of Γ is at least 2t + 1; i.e., Γ is an [n,≥ n −mt,≥ 2t + 1] code over
F2. Proof: If c ∈ Γ − {0} then g divides the polynomial

∑
i cih/(x − ai) =∑

i:ci=1 h/(x − ai) = hε′/ε where ε =
∏
i:ci=1(x − ai). Thus g divides ε′. Write

ε as α2 + xβ2, and observe that β 6= 0, since by construction ε is not a square.
Now ε′ = β2, so g divides β2; but g is irreducible, so g divides β, so β has degree
at least t, so ε has degree at least 2t+ 1.

The “evaluation” view of the code. Define

Γ2m(a1, . . . , an, g) =

{
c ∈ Fn2m :

∑
i

ci
h

x− ai
mod g = 0

}
.

This set Γ2m(a1, . . . , an, g) is an [n, n − t] code over F2m . The classical binary
Goppa code Γ is a subfield code of Γ2m(a1, . . . , an, g).

If f is a polynomial in F2m [x] with deg f < n− t then the vector

(f(a1)g(a1)/h′(a1), f(a2)g(a2)/h′(a2), ..., f(an)g(an)/h′(an))

List decoding for binary Goppa codes 9

is in Γ2m(a1, . . . , an, g). Indeed,
∑
i(f(ai)g(ai)/h

′(ai))h/(x − ai) = fg by La-
grange interpolation, and fg mod g = 0.

Conversely, every element of Γ2m(a1, . . . , an, g) can be written as a vector of
this form: if

∑
i cih/(x−ai) ∈ F2m [x] is a multiple of g, say fg, then f(ai)g(ai) =

cih
′(ai) so c = (f(a1)g(a1)/h′(a1), f(a2)g(a2)/h′(a2), ..., f(an)g(an)/h′(an)).
Therefore Γ2m(a1, . . . , an, g) is a geometric Goppa code, specifically a genus-0

geometric Goppa code, specifically a geometric Goppa code over the projective
line.

5 Review of Patterson’s algorithm

This section reviews Patterson’s algorithm for correcting t (or fewer) errors in the
classical irreducible binary Goppa code Γ = Γ2(a1, . . . , an, g) defined in Section
4.

The algorithm. The input to the algorithm is a vector w ∈ Fn2 . The output
is a list of all codewords c ∈ Γ such that the Hamming distance |c − w| =
#{i : ci 6= wi} is at most t. There is at most one such codeword—recall that the
minimum distance of Γ is at least 2t+ 1.

Define the norm |ϕ| of a polynomial ϕ ∈ F2m [x] as 2degϕ if ϕ 6= 0 and 0
if ϕ = 0. Extend the norm multiplicatively to rational functions ϕ ∈ F2m(x):
the norm |ϕ/ψ| is |ϕ|/|ψ|. For example, |x3/(x5 + x+ 1)| = |x3|/|x5 + x+ 1| =
23/25 = 2−2.

Compute the square root of (
∑
i wi/(x − ai))−1 − x in the field F2m [x]/g.

This computation fails if
∑
i wi/(x− ai) is zero in the field; if so, output w and

stop.
Lift the square root to a polynomial s ∈ F2m [x] of degree < t. Apply lattice-

basis reduction to the lattice L ⊆ F2m [x]2 generated by the vectors (s, 1) and
(g, 0), obtaining a minimum-length nonzero vector (α0, β0). Here the length
|(α, β)| of a vector (α, β) ∈ F2m [x]2 is, by definition, the norm of the polynomial
α2 + xβ2.

Compute ε0 = α2
0 + xβ2

0 . Use a polynomial-factorization algorithm to see
whether the monic part of ε0 (i.e., ε0 divided by its leading coefficient) splits
into distinct linear factors of the form x−ai. If it does, output the unique vector
c ∈ Fn2 such that {i : wi 6= ci} = {i : ε0(ai) = 0}.

Why the algorithm works. If the algorithm outputs w in the first step then∑
i wi/(x − ai) = 0 in the field F2m [x]/g so w ∈ Γ . Conversely, if w ∈ Γ then

the algorithm correctly outputs w in the first step. Note that in this case there
are no other codewords at distance ≤ 2t.

Assume from now on that w /∈ Γ . Then
∑
i wi/(x− ai) 6= 0 in F2m [x]/g.

The specified basis (s, 1), (g, 0) of L has orthogonalization (0, 1), (g, 0), with
lengths |(0, 1)| = |x| = 21 and (g, 0) = |g2| = 22t, product 22t+1. Consequently
|(α0, β0)| ≤ 2(2t+1)/2 = 2t+1/2; i.e., deg ε0 ≤ t+ 1/2; i.e., deg ε0 ≤ t.

Furthermore, the lattice L is exactly the set of vectors (α, β) ∈ F2m [x]2 such
that α − sβ is a multiple of g. Consequently any (α, β) ∈ L satisfies α2/β2 =

10 Daniel J. Bernstein

s2 = (
∑
i wi/(x − ai))−1 − x in the field F2m [x]/g, if β is not a multiple of g.

The polynomial ε = α2 + xβ2 ∈ F2m [x] satisfies ε′ = β2, so ε/ε′ = α2/β2 + x =
(
∑
i wi/(x− ai))−1 in the field F2m [x]/g.
If the algorithm outputs a vector c then the monic part of ε0 splits into linear

factors, so ε0 is not a square, so α2
0 +xβ2

0 is not a square, so β0 6= 0; but deg β0 ≤
(t− 1)/2 < t = deg g, so β0 is not a multiple of g, so ε0/ε

′
0 = (

∑
i wi/(x− ai))−1

in the field F2m [x]/g. Thus
∑
i wi/(x − ai) = ε′0/ε0 =

∑
i:ε0(ai)=0 1/(x − ai) =∑

i:wi 6=ci 1/(x− ai) =
∑
i(wi− ci)/(x− ai) =

∑
i wi/(x− ai)−

∑
i ci/(x− ai) in

the field F2m [x]/g. Subtract to see that
∑
i ci/(x−ai) = 0 in the field F2m [x]/g,

i.e., that c ∈ Γ . The Hamming distance |w − c| is exactly #{i : ε0(ai) = 0} =
deg ε0 ≤ t. Summary: The output of the algorithm is a codeword at distance ≤ t
from w.

Conversely, assume that c ∈ Γ has |w− c| ≤ t. Define ε =
∏
i:wi 6=ci(x− ai) ∈

F2m [x], and write ε in the form α2+xβ2. Then
∑
i ci/(x−ai) = 0 in F2m [x]/g, so∑

i wi/(x−ai) =
∑
i(wi− ci)/(x−ai) =

∑
i:wi 6=ci 1/(x−ai) = ε′/ε in F2m [x]/g,

so s2 = ε/ε′−x = α2/β2 in F2m [x]/g. Squaring in the field F2m [x]/g is injective,
so s = α/β in F2m [x]/g, so α − sβ is a multiple of g in F2m [x]; i.e., (α, β) ∈ L.
Furthermore deg ε ≤ t so |(α, β)| ≤ 2t so |(α, β)||(α0, β0)| ≤ 22t. Every basis of
L has product of lengths at least |(0, 1)||(g, 0)| ≥ 22t+1, so (α, β), (α0, β0) are
not a basis; i.e., (α, β) is parallel to (α0, β0); but (α0, β0) has minimum length
in L, so (α, β) is a multiple of (α0, β0), say q(α0, β0) where q ∈ F2m [x]. Now
ε = α2 + xβ2 = q2(α2

0 + xβ2
0) = q2ε0. By construction ε is squarefree so ε/ε0

is a constant. Hence the monic part of ε0 splits into exactly the distinct linear
factors x− ai that divide ε, and the algorithm finds exactly the codeword c.

Numerical example. Define m = 8, n = 2m = 256, and t = 22. Construct
F2m as F2[ζ]/(ζ8 + ζ4 + ζ3 + ζ2 + 1). Define a1 = ζ, a2 = ζ2, and so on through
a255 = ζ255 = 1; define a256 = 0. Choose g = x22 + x17 + x15 + x12 + x5 + ζ78 ∈
F2m [x]; one can easily check that g is irreducible.

Now the Goppa code Γ is a [256,≥ 80,≥ 45] code over F2. I generated a
random element of Γ and added 22 random errors to it, obtaining the word

w = (0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1,

1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,

0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,

0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,

0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0)

in Fn2 . Here is what Patterson’s algorithm does with this word w.
The sum

∑
i wi/(x−ai) in the field F2m [x]/g is 1/(x−a2)+1/(x−a3)+1/(x−

a6)+· · · = 1/(x−ζ2)+1/(x−ζ3)+1/(x−ζ6)+· · · = ζ64+ζ110x+ζ204x2+ζ53x3+
ζ91x4 + ζ200x5 + ζ147x6 + ζ67x7 + ζ196x8 + ζ253x9 + ζ235x10 + ζ161x11 + ζ92x12 +

List decoding for binary Goppa codes 11

ζ146x13+ζ125x14+ζ141x15+ζ9x16+ζ34x17+ζ15x18+ζ139x19+ζ229x20+ζ68x21.
Invert, subtract x, and compute a square root, namely ζ200 + ζ46x + ζ51x2 +
ζ91x3+ζ232x4+ζ12x5+ζ179x6+ζ3x7+ζ146x8+ζ93x9+ζ130x10+ζ92x11+ζ28x12+
ζ219x13+ζ96x14+ζ114x15+ζ131x16+ζ61x17+ζ251x18+ζ76x19+ζ237x20+ζ40x21.
Define s as this polynomial in F2m [x].

The vector (g, 0) has degree (22, 0) and therefore length 244. The vector
(s, 1) has degree (21, 0) and therefore length 242. The quotient bg/sc is ζ−40x−
ζ237−80 = ζ215x − ζ157; the difference (g, 0) − bg/sc(s, 1) is the vector (g mod
s, ζ215x − ζ157), which has degree (20, 1) and therefore length 240. Continued
reduction eventually produces the vector (α0, β0) where α0 = ζ181 + ζ216x +
ζ219x2+ζ188x3+ζ69x4+ζ126x5+ζ145x6+ζ233x7+ζ243x8+ζ31x9+ζ182x10+x11

and β0 = ζ105 +ζ50x+ζ5x2 +ζ116x3 +ζ150x4 +ζ123x5 +ζ7x6 +ζ224x7 +ζ220x8 +
ζ84x9 + ζ150x10; this vector has degree (11, 10) and therefore length 222 ≤ 2t.

The polynomial ε0 = α2
0 + xβ2

0 splits into 22 linear factors, namely x − ζ7,
x− ζ25, x− ζ51, x− ζ60, x− ζ68, x− ζ85, x− ζ126, x− ζ135, x− ζ136, x− ζ138,
x−ζ155, x−ζ167, x−ζ168, x−ζ172, x−ζ173, x−ζ189, x−ζ191, x−ζ209, x−ζ212,
x− ζ214, x− ζ234, x− ζ252. Consequently w has distance 22 from the codeword
c ∈ Γ obtained by correcting positions 7, 25, 51, etc.

6 Extracting more information from Patterson’s
algorithm

If Patterson’s algorithm is given a word w at distance more than t from the
closest codeword—in other words, if the error polynomial ε has degree larger
than t—then the algorithm’s output is empty. However, a closer look at the
same calculations reveals more information about ε. This section presents an
easy extension of Patterson’s algorithm, identifying two polynomials ε0, ε1 such
that ε is a small linear combination of ε0, ε1.

The algorithm. The input, as before, is a vector w ∈ Fn2 . Assume that w /∈ Γ .
Compute the square root of (

∑
i wi/(x − ai))−1 − x in the field F2m [x]/g,

and lift it to a polynomial s ∈ F2m [x] of degree below t.
Apply lattice-basis reduction to the lattice L ⊆ F2m [x]2 generated by the

vectors (s, 1) and (g, 0), obtaining a minimum-length nonzero vector (α0, β0)
and a minimum-length independent vector (α1, β1). Here the length |(α, β)| of
a vector (α, β) ∈ F2m [x]2 is, as before, the norm of the polynomial α2 + xβ2.

Compute ε0 = α2
0 + xβ2

0 and ε1 = α2
1 + xβ2

1 . Output (ε0, ε1).

What the algorithm accomplishes. Reduction guarantees that |(α0, β0)| ≤
2(2t+1)/2 and that |(α0, β0)||(α1, β1)| = 22t+1. Thus deg ε0 ≤ t, as in Section 5,
and deg ε0 + deg ε1 = 2t+ 1.

Fix c ∈ Γ . Define ε =
∏
i:wi 6=ci(x − ai) ∈ F2m [x], and write ε in the form

α2 + xβ2. Then (α, β) ∈ L, exactly as in Section 5, so (α, β) can be written as
q0(α0, β0)+q1(α1, β1) for some polynomials q0, q1. Consequently ε = q20ε0 +q21ε1.

The explicit formulas q0 = (αβ1−βα1)/g and q1 = (αβ0−βα0)/g show that
q0 and q1 are very small if ε is small. Specifically, fix an integer u ≥ 0, and assume

12 Daniel J. Bernstein

that deg ε ≤ t+u; also write t0 = deg ε0, and note that deg ε1 = 2t+1−t0. Then
degα0 ≤ bt0/2c, deg β0 ≤ b(t0 − 1)/2c, degα1 ≤ b(2t+ 1− t0)/2c, deg β1 ≤
b(2t− t0)/2c, degα ≤ b(t+ u)/2c, and deg β ≤ b(t+ u− 1)/2c, so deg q0 ≤
b(t+ u+ 2t− t0)/2c − t = b(t+ u− t0)/2c and deg q1 ≤ b(t+ u+ t0 − 1)/2c −
t = b(t0 + u− t− 1)/2c.

Using the results of the algorithm. In the simplest case u = 0 (i.e., deg ε ≤
t), the degree of q1 is at most b(t0 − t− 1)/2c ≤ b−1/2c < 0, so q1 = 0, so
ε = q20ε0. Evidently constant multiples of ε0 are the only possible squarefree
choices for ε, and one can simply check whether the monic part of ε0 splits into
linear factors. This is exactly what Patterson’s algorithm does.

However, for larger u, both q0 and q1 can be nonzero, and it is not so easy to
see which choices for ε are possible. There are ≈ 2mu coprime polynomial pairs
(q0, q1) matching the degree bounds; enumerating all of those pairs is practical
for a tiny fixed u, such as u = 1, but becomes intolerably slow as u increases.

The main point of this paper is an asymptotically much faster algorithm to
pin down the possibilities for ε. See Section 7.

Refinement: gcd{ε1, h} = 1. There are many choices of ε1: one can adjust
(α1, β1), without changing its length, by adding small multiples of (α0, β0) to it.
In particular, for any r ∈ F2m , one can replace (α1, β1) by (α1, β1) +

√
r(α0, β0),

replacing ε1 by ε1 + rε0.
It will be convenient later to choose ε1 coprime to h. In practice it seems

that, by trying several r ∈ F2m , one easily finds r such that ε1 + rε0 is coprime
to h; consequently, replacing ε1 with ε1 + rε0, one obtains ε1 coprime to h.

Can it be proven that this is always possible? Here are some remarks on
this topic. I am indebted to Tanja Lange for related discussions, and for helpful
comments on other parts of this paper.

If ε1 + r1ε0 and ε1 + r2ε0, with r1 6= r2, have a common root s, then s is
also a root of ((ε1 + r1ε0) − (ε1 + r2ε0))/(r1 − r2) = ε0 and (r2(ε1 + r1ε0) −
r1(ε1 + r2ε0))/(r2 − r1) = ε1, so s is a root of (ε0ε1)′ = g2, contradicting the
irreducibility of g. Consequently each s ∈ F2m is a root of ε1 + rε0 for at most
one r ∈ F2m .

Suppose that, for each r ∈ F2m , there is a root s ∈ F2m of ε1 + rε0. Counting
then shows that each ε1 + rε0 has exactly one root s, and that each s is a root of
exactly one ε1 + rε0. In particular, if n < 2m, then there exists an s ∈ F2m that
is not a root of h, and the corresponding ε1 + rε0 is coprime to h as desired. The
only remaining case is n = 2m.

Fix s, and find the unique r such that s is a root of ε1 + rε0. Then ε1(s) =
rε0(s). Furthermore ε0(s) 6= 0: otherwise ε1(s) = 0, contradicting the irreducibil-
ity of g as above. Consequently ε1(s)/ε0(s) = r. Therefore the rational function
ε1/ε0, applied to F2m , is a “permutation function”: it takes each value in F2m

exactly once.
Note that a uniform random function F2m → F2m has probability only about

exp(−2m) of being a permutation function: for example, probability about 2−369

for m = 8. One does not expect to bump into a permutation function by chance!
But this heuristic is not a proof. Some simple rational functions—including all

List decoding for binary Goppa codes 13

linear functions, squares of linear functions, etc.—are permutation functions on
F2m . Is there any reason that ε1/ε0 cannot be a permutation function?

Define ϕ = (ε0(x)ε1(y) − ε1(x)ε0(y))/(x − y) ∈ F2m [x, y]. If s1 6= s2 then
ε1(s1)/ε0(s1) 6= ε1(s2)/ε0(s2) so ϕ(s1, s2) 6= 0. Furthermore ϕ(x, x) = ε0ε

′
1 −

ε1ε
′
0 = (ε0ε1)′ = g2; therefore ϕ(s, s) 6= 0 for each s ∈ F2m [x, y]. Thus there are

no roots of ϕ with coordinates in F2m . In other words, the curve ϕ has no points
over F2m .

The Hasse–Weil bounds imply, however, that a nonconstant curve of small
degree must have points, producing a contradiction if t is small enough. Perhaps
one can handle a larger range of t with refined bounds that take account of the
special shape of ϕ; for relevant genus information see, e.g., [3, Theorem 1.3.5].

To summarize: There might exist pairs (ε0, ε1) where ε1 cannot be adjusted
to be coprime to h. However, one expects that such pairs do not occur by chance.
Furthermore, no such pairs exist if n < 2m, and no such pairs exist if t is small.

A simple (and deterministic) way to handle all the remaining failure cases is
to extend the field: any r ∈ F22m−F2m has ε1+rε0 coprime to h. The application
of gcd{ε1, h} = 1 in Section 7 becomes slower, but still polynomial time, if m is
replaced by 2m.

Numerical example. As in Section 5, define m = 8, n = 2m = 256, and t = 22;
construct F2m as F2[ζ]/(ζ8 + ζ4 + ζ3 + ζ2 + 1); define a1 = ζ, a2 = ζ2, and so
on through a255 = ζ255 = 1; define a256 = 0; and choose g = x22 + x17 + x15 +
x12 + x5 + ζ78 ∈ F2m [x].

I generated a random element of the Goppa code Γ and added 24 random
errors to it, obtaining the word

w = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1,

0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,

1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,

1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0).

Given this word, Patterson’s algorithm computes s = ζ51 + ζ119x+ ζ64x2 +
ζ230x3 + ζ9x4 + ζ30x5 + ζ187x6 + ζ226x7 + ζ55x8 + ζ84x9 + ζ80x10 + ζ72x11 +
ζ71x12 + ζ152x13 + ζ220x14 + ζ221x15 + ζ224x16 + ζ154x17 + ζ166x18 + ζ130x19 +
ζ225x20 + ζ11x21. Reducing the basis (s, 1), (g, 0) produces a minimum-length
nonzero vector (α0, β0) and a minimum-length independent vector (α1, β1); here
α0 = ζ52+ζ27x+ζ89x2+ζ58x3+ζ140x4+ζ139x5+ζ86x6+ζ247x7+ζ245x8+ζ181x9+
ζ85x10 + ζ37x11, β0 = ζ26 + ζ203x+ ζ175x2 + ζ130x3 + ζ122x4 + ζ168x5 + ζ168x6 +
ζ95x7 + ζ154x8 + ζ114x9 + ζ202x10, α1 = ζ124 + ζ115x+ ζ194x2 + ζ127x3 + ζ175x4 +
ζ84x5+ζ167x6+ζ119x7+ζ55x8+ζ145x9+ζ204x10, and β1 = ζ221+ζ32x+ζ113x2+
ζ118x3 + ζ162x4 + ζ93x5 + ζ110x6 + ζ178x7 + ζ67x8 + ζ140x9 + ζ11x10 + ζ218x11.

14 Daniel J. Bernstein

At this point Patterson’s algorithm would hope for ε0 = α2
0 + xβ2

0 to divide
h, but there is no such luck; there are no codewords c ∈ Γ with |w − c| ≤ 22.

The polynomial α2
1 + xβ2

1 has roots, as does the polynomial α2
1 + xβ2

1 + ε0,
but the polynomial ε1 = α2

1 + xβ2
1 + ζε0 has no roots; i.e., gcd{ε1, h} = 1. This

paper’s extension of Patterson’s algorithm outputs (ε0, ε1).
Out of curiosity I checked all 256 possibilities for r ∈ F2m , and found that

a uniform random choice of r has gcd
{
α2
1 + xβ2

1 + rε0, h
}

= 1 with probability
91/256 ≈ exp(−1). In retrospect it is not surprising that a few tries sufficed to
find a successful value of r.

7 List decoding via divisors

Recall that the algorithm from Section 6 finds two polynomials ε0, ε1 ∈ F2m [x]
such that each desired error polynomial ε is a small linear combination of ε0
and ε1. Specifically, if deg ε ≤ t + u and deg ε0 = t0 then ε = q20ε0 + q21ε1 for
some polynomials q0, q1 ∈ F2m [x] with deg q0 ≤ b(t+ u− t0)/2c and deg q1 ≤
b(t0 + u− t− 1)/2c.

A polynomial ε = q20ε0 + q21ε1 is useful only if its monic part splits into linear
factors of the form x−ai; in other words, only if it divides h =

∏
i(x−ai). Note

that q0, q1 must be coprime; otherwise ε would not be squarefree.
How do we search for divisors of h that are small coprime linear combina-

tions of ε0, ε1? Answer: This is exactly the function-field analogue of the linear-
combinations-as-divisors problem solved in Section 3!

To avoid unnecessary dependence on Sections 2 and 3, this section gives a self-
contained statement of the list-decoding algorithm. Readers who have studied
the algorithm in Section 3 should recognize its similarity to the algorithm in this
section.

The list-decoding algorithm. Fix an integer u ≥ 0. This algorithm will try
to correct t+ u errors.

Compute ε0, ε1 by the algorithm of Section 6. Define t0 = deg ε0; g0 =
2b(u+ t− t0)/2c; g1 = 2b(u+ t0 − t− 1)/2c; and θ = g1 − g0.

Adjust ε1, as discussed in Section 6, so that gcd{ε1, h} = 1. Compute a
polynomial δ ∈ F2m [x] such that ε1δ mod h = ε0.

Fix integers ` > k > 0. Define L ⊂ F2m(x)[z] as the `-dimensional lattice
generated by the polynomials

1,
xθz + δ

h
,

(
xθz + δ

h

)2

, . . . ,

(
xθz + δ

h

)k
,

xθz

(
xθz + δ

h

)k
, (xθz)2

(
xθz + δ

h

)k
, . . . , (xθz)`−k−1

(
xθz + δ

h

)k
.

Use lattice-basis reduction to find a minimal-length nonzero vector ϕ ∈ L. Here
the length of ϕ0 + ϕ1z + · · · is, by definition, max{|ϕ0|, |ϕ1|, . . .}.

Use standard polynomial-factorization algorithms to find all of ϕ’s roots in
F2m(x), and in particular to find roots that have the form q20/x

θq21 for coprime

List decoding for binary Goppa codes 15

polynomials q0, q1 ∈ F2m [x]. For each such root, compute ε = q20ε0 + q21ε1, and
check whether ε is a divisor of h; if it is, output the unique c ∈ Fn2 such that
{i : ci − wi = 1} = {i : ε(ai) = 0}.
What the algorithm accomplishes. Consider any c ∈ Γ with |w− c| ≤ t+u.
Define ε =

∏
i:wi 6=ci(x − ai) ∈ F2m [x]. Then there are polynomials q0, q1 ∈

F2m [x], such that ε = q20ε0 + q21ε1, with deg q0 ≤ b(t+ u− t0)/2c = g0/2 and
deg q1 ≤ b(t0 + u− t− 1)/2c = g1/2; see Section 6.

If q0 = 0 then ε = q21ε1, but ε is squarefree, so ε/ε1 is a constant, so ε1 divides
h, so the algorithm outputs c. Assume from now on that q0 6= 0.

The fraction (q20ε0 + q21ε1)/h is exactly 1/(h/ε), so the fraction (q21 + q20δ)/h
is a multiple of 1/(h/ε), so the fraction (q21/q

2
0 + δ)/h is a multiple of 1/(q20h/ε).

The value ϕ(q21/x
θq20) is a linear combination of

1,
q21/q

2
0 + δ

h
,

(
q21/q

2
0 + δ

h

)2

, . . . ,

(
q21/q

2
0 + δ

h

)k
,

q21
q20

(
q21/q

2
0 + δ

h

)k
, . . . ,

(
q21
q20

)`−k−1(
q21/q

2
0 + δ

h

)k
,

all of which are multiples of (1/q20)`−k−1(1/(q20h/ε))
k = 1/(q20)`−1(h/ε)k. The

homogenized value (q20)`−1ϕ(q21/x
θq20) is therefore a multiple of 1/(h/ε)k, which

has degree −k(n− deg ε).
The specified basis elements of L have z-degrees 0, 1, 2, . . . , k, k + 1, k +

2, . . . , `− 1 respectively, with leading coefficients

1,
xθ

h
,

(
xθ

h

)2

, . . . ,

(
xθ

h

)k
, xθ

(
xθ

h

)k
, (xθ)2

(
xθ

h

)k
, . . . , (xθ)`−k−1

(
xθ

h

)k
.

Thus L is a lattice of dimension `. Furthermore, the product of these leading
coefficients is xθ(`−1)`/2/hk`−k(k+1)/2, with degree θ(`−1)`/2+n(k(k+1)/2−k`).
Thus each coefficient of ϕ has degree at most θ(`− 1)/2 + n(k(k + 1)/2`− k).

The degree of q20 is at most g0, and the degree of q21/x
θ is at most g1−θ = g0,

so the homogenized value (q20)`−1ϕ(q21/x
θq20) = ϕ0(q20)`−1+ϕ1(q20)`−2q21/x

θ+· · ·+
ϕ`−1(q21/x

θ)`−1 has degree at most θ(`− 1)/2 +n(k(k+ 1)/2`− k) + (`− 1)g0 =
(g0 + g1)(`− 1)/2 + n(k(k + 1)/2`− k).

If deg ε > (g0 +g1)(`−1)/2k+n(k+1)/2` then −k(n−deg ε) > (g0 +g1)(`−
1)/2 + n(k(k + 1)/2`− k) so (q20)`−1ϕ(q21/x

θq20) must be 0. The algorithm finds
q21/x

θq20 as a root of ϕ, finds (q0, q1) since gcd{q0, q1} = 1, finds ε, sees that ε
divides h, and outputs c.

By choosing a moderately large k, and choosing ` ≈ k
√
n/(g0 + g1), one

can push the degree bound (g0 + g1)(`− 1)/2k + n(k + 1)/2` to approximately√
n(g0 + g1) ≈

√
2(u− 1)n. If the degree bound is below t+u then the algorithm

will find every codeword at distance t+ u from w; if the degree bound is below
t+u−1 then the algorithm will find every codeword at distance t+u or t+u−1
from w; etc. One can cover smaller distances by running the algorithm several
times with different choices of u. (See [5, Section 6] for discussion of an analogous
loop in the Coppersmith–Howgrave-Graham–Nagaraj algorithm.)

16 Daniel J. Bernstein

This decoding guarantee breaks down at approximately n−
√
n(n− 2t− 2)

errors: the degree bound
√

2(u− 1)n grows past t + u as t + u grows past n −√
n(n− 2t− 2).

Numerical example. This example is a continuation of the example in Section
6. Recall that the extension of Patterson’s algorithm produced two polynomials
ε0 = ζ74x22 + · · · and ε1 = ζ181x23 + · · · with gcd{ε1, h} = 1. The goal of the
algorithm in this section is to find a small linear combination ε = q20ε0 + q21ε1
that divides h = x256 − x.

Choose u = 2. Then t0 = 22, g0 = 2, g1 = 0, and θ = −2. The algorithm will
search for ε of degree t + u = 24; equivalently, for q0 of degree ≤ g0/2 = 1 and
q0 of degree ≤ g1/2 = 0.

Choose k = 8 and ` = 87. Note that (g0 + g1)(` − 1)/2k + n(k + 1)/2` =
2783/116 < 24. This example requires a moderately large k, since t+ u = 24 is
quite close to n−

√
n(n− 2t− 2) ≈ 24.1.

Divide ε0 by ε1 modulo h to obtain δ = ζ200x255 +ζ62x254 + · · ·+ζ85x+ζ104.
Define L as the F2m [x]-submodule of F2m(x)[z] generated by

1,
z/x2 + δ

h
, . . . ,

(z/x2 + δ)8

h8
,
(z
x2

) (z/x2 + δ)8

h8
, . . . ,

(z
x2

)78 (z/x2 + δ)8

h8
.

Then L is an 87-dimensional lattice. The coefficients of 1, z, z2, . . . , z86 in the
generators are the columns of the following 87× 87 matrix:

1 δ/h δ2/h2 δ3/h3 δ4/h4 δ5/h5 δ6/h6 δ7/h7 δ8/h8 0 ··· 0

0 1/x2h 0 δ2/x2h3 0 δ4/x2h5 0 δ6/x2h7 0 δ8/x2h8 ··· 0

0 0 1/x4h2 δ/x4h3 0 0 δ4/x4h6 δ5/x4h7 0 0 ··· 0

0 0 0 1/x6h3 0 0 0 δ4/x6h7 0 0 ··· 0

0 0 0 0 1/x8h4 δ/x8h5 δ2/x8h6 δ3/x8h7 0 0 ··· 0

0 0 0 0 0 1/x10h5 0 δ2/x10h7 0 0 ··· 0

0 0 0 0 0 0 1/x12h6 δ/x12h7 0 0 ··· 0

0 0 0 0 0 0 0 1/x14h7 0 0 ··· 0

0 0 0 0 0 0 0 0 1/x16h8 0 ··· 0

0 0 0 0 0 0 0 0 0 1/x18h8 ··· 0

...
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 ··· 1/x172h8

It is convenient for computation to scale the entire matrix by x172h8 = x2220 +
x180, to avoid working with fractions. The determinant of the scaled matrix is
x7482h36, with degree 16698 < 192 · 87, so lattice-basis reduction is guaranteed
to find a nonzero vector ϕ ∈ x172h8L where each component has degree < 192.

I reduced the lattice basis and, unsurprisingly, found such a vector, namely
ϕ = ϕ0 + ϕ1z + · · · + ϕ86z

86 where ϕ0 = ζ232x191 + ζ42x190 + · · · + ζ244x172,
ϕ1 = ζ232x191 + ζ226x190 + · · · + ζ132x170, and so on through ϕ86 = ζ145x191 +
ζ10x190 + · · · + ζ36x0. It turned out that the first 6 successive minima of the
lattice all have degree < 192, so there were actually 2566 − 1 possibilities for ϕ.

List decoding for binary Goppa codes 17

I then computed the roots of ϕ in F2m [x] and found exactly one root of the
desired form: namely, ϕ(q21/x

θq20) = 0 for q1 = ζ153 and q0 = x − ζ175. This
calculation was particularly straightforward since the irreducible factorization
ϕ86 = ζ145(x170 + · · ·)(x13 + · · ·)(x3 + · · ·)(x3 + · · ·)(x − ζ175)2 had only one
square factor. A greatest-common-divisor calculation between leading terms of
two independent short vectors would have revealed the same denominator even
more easily.

Finally, the sum ε = q20ε0 + q21ε1 = ζ74x24 + · · · has 24 distinct roots,
namely ζ2, ζ6, ζ7, ζ15, ζ23, ζ38, ζ46, ζ59, ζ71, ζ73, ζ86, ζ88, ζ131, ζ138, ζ142, ζ150, ζ153,
ζ159, ζ163, ζ165, ζ171, ζ172, ζ206, ζ214. Correcting the corresponding positions in w
produces the unique c ∈ Γ with |w − c| ≤ 24.

References

[1] — (no editor), Proceedings of the 32nd annual ACM symposium on theory of com-
puting, Association for Computing Machinery, New York, 2000. ISBN 1–58113–
184–4. See [8].

[2] Daniel Augot, Morgan Barbier, Alain Couvreur, List-decoding of binary Goppa
codes up to the binary Johnson bound (2010). URL: http://arxiv.org/abs/

1012.3439. Citations in this document: §1.
[3] Roberto M. Avanzi, A study on polynomials in separated variables with low genus

factors, Ph.D. thesis, Universität Essen, 2001. URL: http://caccioppoli.mac.
rub.de/website/papers/phdthesis.pdf. Citations in this document: §6.

[4] Daniel J. Bernstein, Fast multiplication and its applications, in [11] (2008), 325–
384. URL: http://cr.yp.to/papers.html#multapps. Citations in this docu-
ment: §1.

[5] Daniel J. Bernstein, Reducing lattice bases to find small-height values of uni-
variate polynomials, in [11] (2008), 421–446. URL: http://cr.yp.to/papers.

html#smallheight. Citations in this document: §3, §3, §3, §3, §7.
[6] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the

McEliece cryptosystem, in [10] (2008), 31–46. URL: http://cr.yp.to/papers.
html#mceliece. Citations in this document: §1, §4.

[7] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Wild McEliece, in SAC 2010,
to appear (2010). URL: http://eprint.iacr.org/2010/410. Citations in this
document: §1, §1, §4.

[8] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, in [1]
(2000), 265–272; see also newer version [9]. Citations in this document: §2.

[9] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, Jour-
nal of Computer and System Sciences 64 (2002), 768–784; see also older version
[8]. ISSN 0022–0000. MR 1 912 302. URL: http://crypto.stanford.edu/~dabo/
abstracts/CRTdecode.html.

[10] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second
international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17–19,
2008, proceedings, Lecture Notes in Computer Science, 5299, Springer, 2008. ISBN
978–3–540–88402–6. See [6].

[11] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [4], [5].

http://arxiv.org/abs/1012.3439
http://arxiv.org/abs/1012.3439
http://caccioppoli.mac.rub.de/website/papers/phdthesis.pdf
http://caccioppoli.mac.rub.de/website/papers/phdthesis.pdf
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#smallheight
http://cr.yp.to/papers.html#smallheight
http://cr.yp.to/papers.html#mceliece
http://cr.yp.to/papers.html#mceliece
http://eprint.iacr.org/2010/410
http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html
http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html

18 Daniel J. Bernstein

[12] Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, Phong Q. Nguyen, Fac-
toring pq2 with quadratic forms: nice cryptanalyses, in [22] (2009), 469–486. Ci-
tations in this document: §3.

[13] Henry Cohn, Nadia Heninger, Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding (2010). URL: http://arxiv.org/abs/1008.

1284. Citations in this document: §3.
[14] Don Coppersmith, Nick Howgrave-Graham, S. V. Nagaraj, Divisors in residue

classes, constructively (2004); see also newer version [15]. URL: http://eprint.
iacr.org/2004/339.

[15] Don Coppersmith, Nick Howgrave-Graham, S. V. Nagaraj, Divisors in residue
classes, constructively, Mathematics of Computation 77 (2008), 531–545; see also
older version [15]. Citations in this document: §2.

[16] Ronald L. Graham, Jaroslav Nešetřil (editors), The mathematics of Paul Erdős.
I, Algorithms and Combinatorics, 13, Springer-Verlag, Berlin, 1997. ISBN 3–540–
61032–4. MR 97f:00032. See [19].

[17] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, IEEE Transactions on Information Theory 45 (1999),
1757–1767. ISSN 0018–9448. MR 2000j:94033. URL: http://theory.lcs.mit.

edu/~madhu/bib.html. Citations in this document: §1, §1.
[18] Nicholas Howgrave-Graham, Computational mathematics inspired by RSA,

Ph.D. thesis, 1998. URL: http://cr.yp.to/bib/entries.html#1998/

howgrave-graham. Citations in this document: §2.
[19] Sergei Konyagin, Carl Pomerance, On primes recognizable in deterministic poly-

nomial time, in [16] (1997), 176–198. MR 98a:11184. URL: http://cr.yp.to/

bib/entries.html#1997/konyagin. Citations in this document: §2.
[20] Arjen K. Lenstra, Factoring multivariate polynomials over finite fields, Journal of

Computer and System Sciences 30 (1985), 235–248. MR 87a:11124. Citations in
this document: §2.

[21] Hendrik W. Lenstra, Jr., Divisors in residue classes, Mathematics of Computation
42 (1984), 331–340. ISSN 0025–5718. MR 85b:11118. URL: http://www.jstor.
org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6. Citations in
this document: §2.

[22] Mitsuru Matsui (editor), Advances in cryptology—ASIACRYPT 2009, 15th inter-
national conference on the theory and application of cryptology and information
security, Tokyo, Japan, December 6–10, 2009, proceedings, Lecture Notes in Com-
puter Science, 5912, Springer, 2009. ISBN 978-3-642-10365-0. See [12].

[23] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §1.

[24] Thom Mulders, Arne Storjohann, On lattice reduction for polynomial matrices,
Journal of Symbolic Computation 35 (2003), 377–401. Citations in this document:
§2.

[25] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §1.

[26] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions
on Information Theory 21 (1975), 203–207. Citations in this document: §1.

[27] Yingquan Wu, New list decoding algorithms for Reed–Solomon and BCH codes,
IEEE Transactions On Information Theory 54 (2008). URL: http://arxiv.org/
abs/cs/0703105. Citations in this document: §1.

http://arxiv.org/abs/1008.1284
http://arxiv.org/abs/1008.1284
http://eprint.iacr.org/2004/339
http://eprint.iacr.org/2004/339
http://theory.lcs.mit.edu/~madhu/bib.html
http://theory.lcs.mit.edu/~madhu/bib.html
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1998/penalty z@ howgrave-graham
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1998/penalty z@ howgrave-graham
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1997/penalty z@ konyagin
http://cr.yp.to/penalty z@ bib/penalty z@ entries.html#penalty z@ 1997/penalty z@ konyagin
http://www.jstor.org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6
http://www.jstor.org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://arxiv.org/abs/cs/0703105
http://arxiv.org/abs/cs/0703105

