AMD T

Software Optimization
Guide for AMD Athlon™ 64
and
AMD Opteron™ Processors

AMD

&y

Opteron

Publication # 25112 Revision: 3.04

© 2001 — 2004 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license,
whether express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or
implied warranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of any intellec-
tual property right.

AMD'’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD'’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron, and combinations thereof, 3DNow! and AMD-8151 are trademarks of
Advanced Micro Devices, Inc.

HyperTransport is alicensed trademark of the HyperTransport Technology Consortium.
Microsoft is aregistered trademark of Microsoft Corporation.
MMX isatrademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDAQ

25112 Rev.304 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
Contents
Revision Historyciuiiiiiiiiiiiiiiiiiiiiiiiieiinteesneeesscersscnsasnncnns XV
Chapter 1 Introductionc.oiuiuiiiiniiiieeneneneeresosnsnssssssososasans 1
11 Intended AUIENCE 1
12 GettingStarted QUiCKly 1
13 UsSingThiSGUIdEt e et e et e 2
1.4 Important New TermMS e e 4
15 Key Optimizationsttt 6
Chapter 2 C and C++ Source-Level Optimizationscoiiiiiiiiiiiiinene. 7
21 Declarationsof Floating-PointValues i, 9
22 UsingArraysand POINErSttt 10
23 Unrolling Small LOOPS . . . oo it 13
24 Expression Order in Compound Branch Conditions 14
25 LongLogica ExpressionsinIf Statements i 16
2.6 Arrange Boolean Operands for Quick Expression Evaluation 17
2.7 Dynamic Memory Allocation Consideration 19
2.8 Unnecessary Store-to-Load Dependencies 20
29 MatchingStoreand Load Size e 22
210 SWITCH and Noncontiguous Case EXPressionsovvvnnennennnn... 25
211 Arranging Cases by Probability of Occurrence, 28
212 Useof FUNCtion Prototypeso 29
213 Useof const TypeQualifiert 30
214 GenericLoop HOIStINGot 31
215 Local StatiC FUNCHIONS ... oottt 34
216 ExplicitParadlelisminCode 35
2.17 Extracting Common SUDEXPreSSIONS vttt et ee e 37
2.18 Sorting and Padding C and C++ Structurest 39
219 SortingLocal Variables 41

Contents iii

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
220 Replacing Integer Division with Multiplication 43
221 Frequently Dereferenced Pointer Argumentsoouiiinneenennnn... 44
222 Aray INdiCESo 46
223 32-BitIntegral Data TyPeS . ..o vttt e 47
224 Signof Integer Operandsiiiiie i e e 48
2.25 Accelerating Floating-Point Division and SquareRoot 50
2.26 Fast Floating-Point-to-Integer Conversion, 52
2.27 Speeding Up Branches Based on Comparisons Between Floats 54
2.28 Improving Performancein Linux Libraries 57
Chapter 3 General 64-Bit Optimizationsc.iiiiiiiiiiiiiiierncnnnnss 59
3.1 64-Bit Registersand Integer Arithmetic i 60
3.2 64-Bit Arithmetic and Large-Integer Multiplication 62
3.3 128-Bit Medialnstructions and Floating-Point Operations 67
34 32-BitLegacy GPRsand Small Unsigned Integersccooiiiion.. 68
Chapter 4 Instruction-Decoding Optimizationscoiiiiiiiiiiiienn.. 71
41 DirectPath INStructions i e 72
4.2 Load-EXecute INStruCtionsot 73
421 Load-Execute Integer INSrUCtions 73
422 L oad-Execute Floating-Point Instructions with Floating-Point Operands . . .74
423 L oad-Execute Floating-Point Instructions with Integer Operands 74
43 Branch Targetsin ProgramHOt Spotst 76
44 32/64-Bit vs. 16-Bit Formsof the LEA Instruction 77
45 ShortInstruction ENcodingst e 78
4.6 Partid-Register Readsand Writes i 79
47 Using LEAVE for Function Epilogues, 81
4.8 Alternativesto SHLD INStructiont 83
49 8-Bit Sign-Extended ImmediateValues i 85
4,10 8-Bit Sign-Extended Displacementsco i 86
411 Code Padding with Operand-Size OverrideandNOP 87
Chapter 5 Cache and Memory Optimizationsoiiiiiiiiiieinrnrnnanss 89
iv Contents

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

51 Memory-Size MismalChest e 90
52 Natural Alignment of DataObjects ...t 93
5.3 Cache-Coherent Nonuniform Memory Access (cCNUMA) 9
54 Multiprocessor Considerationscoiii it 97
55 Storeto-Load Forwarding Restrictionst 98
56 Prefetch InStructions oot 102
5.7 Writecombining 110
58 LlDataCacheBank Conflicts 111
5.9 Placing Code and Datain the Same 64-Byte CachelLine..................... 113
5.10 Sortingand Padding Cand C++ Structuresoiiiviinnnnennn.. 114
511 SortingLoca Variables 116
5.12 Appropriate Memory CopyingRoutines, 117
513 Stack ConSiderations.ottt e 128
5.14 Cache Issueswhen Writing Instruction BytestoMemory 129
515 InterleavelLoadsand StOrest 130
Chapter 6 Branch Optimizationsottt iiiiiiiiiiinenenenenns 131
6.1 Densityof Branches i e 132
6.2 Two-Byte Near-Return RET Instruction ..., 134
6.3 BranchesThat Dependon RandomDataccooviiiiiinaa.. 136
6.4 PairingCALL and RETURN i i i 138
6.5 ReCUrsIVEFUNCLIONS e 139
6.6 Nonzero Code-SegmentBaseVaues ..., 141
6.7 Replacing Brancheswith Computationo, 142
6.8 TheLOOPINStruCtiono 147
6.9 Far Control-Transfer INStructionst 148
Chapter 7 Scheduling Optimizationscciiiiiiiiiiiiririnenenresnnass 149
7.1 Instruction Schedulingby Latency 150
7.2 LoopUnrollingcooi 151
7.3 INlNEFUNCLIONS 155
7.4 Address-GenerationInterlocks 157

Contents v

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
75 MOVZX and MOV SX ..t e e 159
7.6 Pointer ArithmeticinLOoOPSo vt it 160
7.7 Pushing Memory DataDirectly ontothe Stack 163
Chapter 8 Integer Optimizationsottt iiiiiiiiienenenenenns 165
8.1 Replacing Division with Multiplication 166
8.2 Alternative Code for Multiplyingby aConstant 170
8.3 Repeated String INStructions o 173
84 UsingXORtoClear Integer RegiSters 175
8.5 Efficient 64-Bit Integer Arithmeticin 32-BitMode 176
8.6 Efficient Implementation of Population-Count Function in 32-Bit Mode 185
8.7 Efficient Binary-to-ASCIl Decimal Conversionc...ouuiieen... 187
8.8 Derivation of Algorithm, Multiplier, and Shift Factor for Integer
Division by Constantso oot 192
Chapter 9 Optimizing with SIMD Instructionscoiiiiiiiiiiiiiiiiennn. 199
9.1 Ensure All Packed Floating-Point Dataare Aligned 201
9.2 Improving Scalar SSE and SSE2 Floating-Point Performance with MOVLPD and
MOVLPS When Loading DatafromMemorycccoiiienn... 202
9.3 Use MOVLPX/MOVHPX Instructions for Unaligned DataAccess 204
94 Use MOVAPD and MOVAPS Instead of MOVUPD and MOVUPS 205
9.5 Structuring Code with Prefetch Instructionsto Hide Memory Latency 206
9.6 Avoid Moving Data Directly Between General-Purpose and MMX™ Registers . .212
9.7 Use MMX™ [nstructions to Construct Fast Block-Copy Routinesin 32-Bit Mode 213
9.8 Passing Data between MMX™ and 3DNow! ™ Instructions 214
9.9 Storing Floating-Point Datain MMX™ Registers, 215
910 EMMSand FEMMSUSAgEo viii i e 216
9.11 Using SIMD Instructions for Fast Square Roots and Fast Reciprocal
SQUANE ROOLS o 217
9.12 Use XOR Operations to Negate Operands of SSE, SSE2, and
SDNOW! ™ INSIIUCHIONS . . . o o oot e e e e 221
9.13 Clearing MMX™ and XMM Registerswith XOR Instructions. 222
vi Contents

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
9.14 Finding the Floating-Point Absolute Value of Operands of SSE, SSE2,

and 3DNOW! ™ [NSLFUCLIONS . .. oot e 223

9.15 Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and
BDNOW! ™ INSIIUCHIONS . . . o o oottt e e e 224
9.16 Complex-Number Arithmetic Using SSE, SSE2, and 3DNow! ™ Instructions227
9.17 Optimized 4 x 4 Matrix Multiplication on 4 x 1 Column Vector Routines 236
Chapter 10 x87 Floating-Point Optimizations0 ittt 243
10.1 Using Multiplication Rather Than Division 244
10.2 Achieving Two Floating-Point Operationsper Clock Cycle 245
10.3 FHoating-Point Compare INStructionsoviiiiein i 250
10.4 Using the FXCH Instruction Rather Than FST/FLD Pairs 251
10.5 Hoating-Point Subexpression Elimination 252
10.6 Accumulating Precision-Sensitive Quantitiesin x87 Registers 253
10.7 Avoiding Extended-PrecisionDatat 254
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors ..255
Al Key Microarchitecture Featurest 256
A.2 Microarchitecture forAMD Athlon™ 64 and AMD Opteron™ Processors. 257
A3 SUPErSCalar PrOCESSOr . .o i vttt et et 257
A4 Processor Block Diagramot 257
A5 LlInstruction Cachet e 258
A.6 Branch-PredictionTable 259
A7 Fetch-Decode Unit i 259
A.8 InstructionControl Unit 260
A9 Trandation-Lookaside Buffer i 260
Ad0 LIDaaCachecooiriiit 261
A1l Integer SCheduler o 262
A12 Integer Execution Unito 262
A.13 Foating-Point Scheduler 263
A.14 Foating-Point Execution Unit i, 264
AL5 Load-StoreUnit 265

Contents vii

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
ALB L2 CaChe . . it 266
AL7 WrHIte-COMbDINING . ..ot 266
A.18 Busesfor AMD Athlon™ 64 and AMD Opteron™ Processor 267
A.19 Integrated Memory Controller i 267
A.20 HyperTransport™ Technology Interface 267
Appendix B Implementation of Write-Combiningcooiiiiiiiiiiiinn.. 269
B.1 Write-Combining Definitionsand Abbreviations. 269
B.2 Programming Details e 270
B.3 Write-combining Operationsiuiiiiie it 270
B.4 Sending Write-Buffer DatatotheSystem oo, 272
Appendix C Instruction Latenciescciitiiiiiiiiiiiiinenrnrnrennsenenns 273
C.1 Understanding InstructionEntries i, 274
C.2 INteger INStrUCHIONSottt e e 277
C.3 MMX™ Technology INStrUCtioNSot 307
C.4 x87Floating-Point INStructionst 311
C.5 3DNow!™ Technology Instructions.t 318
C.6 3DNow!™ Technology EXtENSIONScoviiiiiiii i iieenn 320
C.7 SSEINSITUCIONS . .. ottt e e e e e 321
C.8 SSE2INSrUCiONSttt e e 330
Appendix D AGP Considerationsccoiiiiiiiiiiiiiiiiiinenenenenennenns 347
D.1 Fast-Write Optimizationsttt 347
D.2 Fast-Write Optimizations for Graphics-Engine Programming 348
D.3 Fast-Write Optimizations for Video-Memory Copies 351
D4 Memory Optimizationst e 353
D.5 Memory Optimizations for Graphics-Engine Programming
Usingthe DMA Model e 354
D.6 Optimizationsfor Texture-Map Copiesto AGPMemory 355
D.7 Optimizations for Vertex-Geometry Copiesto AGPMemory 355
Appendix E SSE and SSE2 Optimizationsc.ciiiiiiiiiiiiiiiienenennenns 357
E.1 SSEand SSE2 Instructionand DataTypescooiiiiiinnnennnnnnn. 359
viii Contents

AMDAQ

25112 Rev.304 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

E.2 Bit Manipulationson Floating-Point Numbers. 362

E3 Reuseof Dead RegISIErS . .. oottt 363

E.4 Moving Data Between XMM Registersand GPRS 364

E5 Saving and Restoring Registersof UnknownFormat 365

E6 SSEandSSE2 COopY LOOPS .. v vviti ittt 366

E.7 ExplicitLoad INStrUCtioNSo 367

E.8 DataConVerSiONttt ettt 368

E.9 Comparisonsand Logical Operations on Floating-Point Numbers 370

E10 Swizzling fromMemory e e 371

E.11 SSEandSSE2andDenormalsouuiiiiiii i 373

15) 375

Contents ix

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

X Contents

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Tables

Table 1.
Table 2.
Table 3:
Table 4:
Table5:
Table6.
Table7.
Table 8.
Table9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.

Instructions, Macro-0ps and MICIO-0PS........coueueruererenireeseseseesesreeseeeeseeseeseeaeseeseessenes 5
OptimizationNS DY RANK..........ciiieiiiiieie e 6
COMPAITSONS AQQAINSE ZENO.....c.eeieeuenireeteiererieteiese sttt sttt ese e es 55
Comparisons against POSItIVE CONSLANTc.coueererieerieiere e seeeenens 55
Comparisons among TWO FIOALS........cccccvieiiiiie e 55
Routine Selection for BIOCK COPIES........ccccvriieiirece e 119
Latency of Repeated String INSITUCLIONS.........ccoveeeeeieeeere e 173
L1 Instruction Cache Specifications by PrOCESSOrcouvririeirenieeninenieeresiee e 259
L1 Instruction TLB SPeCIfiCaliONS.........cccrrueueiririeieiererieieneseeie et 260
L1 Data TLB SPCIfiCaIONScueiueuerieirierieerieesie st re e sne e 261
L2 TLB Specifications Dy PrOCESSO.........cccvevieiiiiiiceeeseeeeeeie et 261
L1 Data Cache Specifications by PrOoCESSON.........cccveeieeeeeeeeieeeree e 262
HyperTransport™ Specifications by PrOCESSONccveveereeieeieiereereesee e 268
Write-Combining Completion EVENES..........coociieirinecees e 271
INEEGEN INSIIUCHIONS.... ettt bbb e 277
MMX™ Technology INSLIUCHIONS.........ccieriieere et eb e 307
X87 Floating-PoiNt INSITUCLIONS........coeiiieieciese et e 311
3DNow! ™ Technology INSITUCLIONS..........cccviiiiiiececeeeeeee e s 318
3DNow! ™ Technology EXIENSIONS........ccccvriieiesieesereeeesee e st see e neas 320
ISl g o SR 321
IS S o SR 330
Clearing XIMM REQISLEIS.....cccieieieirteseesiees et s e 361
Converting SCAlAr VAIUESccvieiieeiceses sttt st s nas 368
ConVerting VECLOr VAIUES.........cuciieieee ettt sa et nas 369
Converting Directly from MEMOIYcccocvriieieni et 369

Tables xi

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Xii Tables

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
Figures
Figurel. Simple SMP BIOCK DiagQramM.......ccccceiviiririeiirieeeeeesieeeseesiesteseeseessessessessessessessessesssnenns 95
Figure2. Opteron CCNUMA CONFIQUIALIONc.civiuieiririnieiirereete e 95
Figure3. Memory-Limited COOEc.oeuiriririiirrieierresiete et 107
Figure4. Processor-Limited COOEccocoiruiriririeinieietesiecsie st 107
Figure5. AMD Athlon™ 64 and AMD Opteron™ Processors Block Diagram............c.cccevee.. 258
Figure 6. Integer EXECUtiON PIPEliNE........cocciieiiie e 262
Figure 7. Integer EXECULION UNIL........coooieieieire et sa e nas 263
Figure8. Floating-POiNt UNIt.......c.oiiriiiiiiriieesnieie ettt 265
Figure 9. LOa0-StOre UNItcovcuiiieeeeiieectcereiee ettt st 266
Figure 10. AGP 8x Fast-WIrite TranSaCtioNc.cccceeririerieerienerie e e 348
Figure11. Cacheable-Memory Command StTUCLUFEccecuveeveriieeeeeeeeeee e 349
Figure 12. Northbridge Command FIOWcccooiieiiii e 354

Figures xiii

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

xiv Figures

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Revision History

Date Rev. | Description

March 2004 3.04 | Incorporated a section on ccNUMA in Chapter 5. Added sections on moving
unaligned versus unaligned data. Added to PREFETCHNTA information in Chapter
5. Fixed many minor typos.

September 2003 | 3.03 | Made several minor typographical and formatting corrections.

July 2003 3.02 | Added index references. Corrected information pertaining to L1 and L2 data and
instruction caches. Corrected information on alignment in Chapter 5, “Cache and
Memory Optimizations”. Amended latency information in Appendix C.

April 2003 3.01 | Clarified section 2.22 'Array Indices'. Corrected factual errors and removed
misleading examples from Cache and Memory chapter..

April 2003 3.00 | Initial public release.

Revision History xv

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

xvi Revision History

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 1 Introduction

This guide provides optimization information and recommendations for the AMD Athlon™ 64 and
AMD Opteron™ processors. These optimizations are designed to yield software code that is fast,
compact, and efficient. Toward this end, the optimizations in each of the following chapters are listed
in order of importance.

This chapter covers the following topics:

Topic Page
Intended Audience 1
Getting Started Quickly
Using This Guide

Important New Terms

ol I NP

Key Optimizations

1.1 Intended Audience

This book isintended for compiler and assembler designers, as well as C, C++, and assembly-
language programmers writing performance-sensitive code sequences. This guide assumes that you
arefamiliar with the AMD64 instruction set and the AM D64 architecture (registers and programming
modes). For complete information on the AMD®64 architecture and instruction set, see the
multivolume AMD64 Architecture Programmer s Manual available from AMD.com. Documentation
volumes and their order numbers are provided below.

Title Order no.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

1.2 Getting Started Quickly

More experienced readers may skip to “Key Optimizations’ on page 6, which identifies the most
important optimizations.

Chapter 1 Introduction 1

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

1.3 Using This Guide

This chapter explains how to get the most benefit from this guide. It defines important new termsyou
will need to understand before reading the rest of this guide and lists the most important optimizations
by rank.

Chapter 2 describes techniques that you can use to optimize your C and C++ source code. The
“Application” section for each optimization indicates whether the optimization applies to 32-bit
software, 64-bit software, or both.

Chapter 3 presents general assembly-language optimizations that improve the performance of
software designed to run in 64-bit mode. All optimizationsin this chapter apply only to 64-bit
software.

The remaining chapters describe assembly-language optimizations. The “Application” section under
each optimization indicates whether the optimization applies to 32-bit software, 64-bit software, or
both.

Chapter 4 Instruction-Decoding Optimizations
Chapter 5 Cache and Memory Optimizations
Chapter 6 Branch Optimizations

Chapter 7 Scheduling Optimizations

Chapter 8 Integer Optimizations

Chapter 9 Optimizing with SIMD Instructions
Chapter 10 x87 Floating-Point Optimizations

Appendix A discusses the internal design, or microarchitecture, of the processor and provides
specifications on the translation-lookaside buffers. It aso provides information on other functional
units that are not part of the main processor but are integrated on the chip.

Appendix B describes the memory write-combining feature of the processor.

Appendix C provides acomplete listing of all AMD64 instructions. It shows each instruction’s
encoding, decode type, execution |atency, and—where applicable—the pipe used in the floating-point
unit.

Appendix D discusses optimizations that improve the throughput of AGP transfers.

Appendix E describes coding practices that improve performance when using SSE and SSE2
instructions.

2 Introduction Chapter 1

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Special Information
Special information in this guide looks like this:

U rhis symbol appears next to the most important, or key, optimizations.

Numbering Systems

The following suffixes identify different numbering systems:

This suffix Identifies a

b Binary number. For example, the binary equivalent of the number 5 is written 101b.

d Decimal number. Decimal numbers are followed by this suffix only when the possibility of
confusion exists. In general, decimal numbers are shown without a suffix.

h Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is
written 3Ch.

Typographic Notation

This guide uses the following typographic notations for certain types of information:

This type of text Identifies

italic Placeholders that represent information you must provide. Italicized text is also used
for the titles of publications and for emphasis.

nonow dt h Program statements and function names.

Providing Feedback

If you have suggestions for improving this guide, we would like to hear from you. Please send your
comments to the following e-mail address:

code.optimization@amd.com

Chapter 1 Introduction 3

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

1.4 Important New Terms

This section defines several important terms and concepts used in this guide.

Primitive Operations

AMD Athlon 64 and AMD Opteron processors perform four types of primitive operations:
* Integer (arithmetic or logic)

* Floating-point (arithmetic)

e Load

e Store

Internal Instruction Formats

The AMDG64 instruction set is complex; instructions have variable-length encodings and many
perform multiple primitive operations. AMD Athlon 64 and AMD Opteron processors do not execute
these complex instructions directly, but, instead, decode them internally into simpler fixed-length
instructions called macro-ops. Processor schedulers subsequently break down macro-ops into
sequences of even simpler instructions called micro-ops, each of which specifies a single primitive
operation.

A macro-op is afixed-length instruction that:

» Expresses, at most, oneinteger or floating-point operation and one load and/or store operation.
* Isthe primary unit of work managed (that is, dispatched and retired) by the processor.

A micro-op is afixed-length instruction that:

« Expresses one and only one of the primitive operations that the processor can perform (for
example, aload).

* Isexecuted by the processor’s execution units.

4 Introduction Chapter 1

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 1 summarizes the differences between AMD64 instructions, macro-ops, and micro-ops.

Table 1. Instructions, Macro-ops and Micro-ops
Comparing AMDG64 instructions Macro-ops Micro-ops
Complexity Complex Average Simple

A single instruction may

specify one or more of

each of the following

operations:

* Integer or floating-point
operation

* Load
e Store

A single macro-op may
specify—at most—one
integer or floating-point
operation and one of the
following operations:

* Load
e Store

» Load and store to the
same address

A single micro-op
specifies only one of the
following primitive
operations:

« Integer or floating-point
e Load
» Store

Encoded length

Variable (instructions are
different lengths)

Fixed (all macro-ops are
the same length)

Fixed (all micro-ops are
the same length)

Regularized
instruction fields

No (field locations and
definitions vary among
instructions)

Yes (field locations and
definitions are the same
for all macro-ops)

Yes (field locations and
definitions are the same
for all micro-ops)

Types of Instructions

Instructions are classified according to how they are decoded by the processor. There are three types

of instructions:

Instruction Type

Description

DirectPath Single

A relatively common instruction that the processor decodes directly into one macro-op
in hardware.

DirectPath Double

A relatively common instruction that the processor decodes directly into two macro-
ops in hardware.

VectorPath

A sophisticated or less common instruction that the processor decodes into one or
more (usually three or more) macro-ops using the on-chip microcode-engine ROM
(MROM).

Chapter 1

Introduction 5

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

1.5 Key Optimizations

While all of the optimizations in this guide help improve software performance, some of them have
more impact than others. Optimizations that offer the most improvement are called key optimizations.

Guideline

Concentrate your efforts on implementing key optimizations before moving on to other optimizations,
and incorporate higher-ranking key optimizations first.

Key Optimizations by Rank

Table 1 lists the key optimizations by rank.

Table 2. Optimizations by Rank

Rank Optimization Page
1 Memory-Size Mismatches 90
2 Natural Alignment of Data Objects 93
3 Appropriate Memory Copying Routines 117
4 Density of Branches 132
5 Prefetch Instructions 102
6 Two-Byte Near-Return RET Instruction 134
7 DirectPath Instructions 72
8 Load-Execute Integer Instructions 73
9 Load-Execute Floating-Point Instructions with Floating-Point Operands 74
10 Load-Execute Floating-Point Instructions with Integer Operands 74
11 Write-combining 110
12 Branches That Depend on Random Data 136
13 SSE and SSE2 Instruction and Data Types 359
14 Placing Code and Data in the Same 64-Byte Cache Line 113

6 Introduction Chapter 1

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 2 C and C++ Source-Level
Optimizations

Although C and C++ compilers generally produce very compact object code, many performance
improvements are possible by careful source code optimization. Most such optimizations result from
taking advantage of the underlying mechanisms used by C and C++ compilers to translate source
code into sequences of AMDG64 instructions. This chapter includes guidelines for writing C and C++
source code that result in the most efficiently optimized AMD64 code.

This chapter covers the following topics:

Topic Page
Declarations of Floating-Point Values 9
Using Arrays and Pointers 10
Unrolling Small Loops 13
Expression Order in Compound Branch Conditions 14
Long Logical Expressions in If Statements 16
Arrange Boolean Operands for Quick Expression Evaluation 17
Dynamic Memory Allocation Consideration 19
Unnecessary Store-to-Load Dependencies 20
Matching Store and Load Size 22
SWITCH and Noncontiguous Case Expressions 25
Arranging Cases by Probability of Occurrence 28
Use of Function Prototypes 29
Use of const Type Qualifier 30
Generic Loop Hoisting 31
Local Static Functions 34
Explicit Parallelism in Code 35
Extracting Common Subexpressions 37
Sorting and Padding C and C++ Structures 39
Sorting Local Variables 41
Replacing Integer Division with Multiplication 43
Frequently Dereferenced Pointer Arguments 44
Array Indices 46
32-Bit Integral Data Types a7
Sign of Integer Operands 48

Chapter 2 C and C++ Source-Level Optimizations 7

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Topic Page
Accelerating Floating-Point Division and Square Root 50
Fast Floating-Point-to-Integer Conversion 52
Speeding Up Branches Based on Comparisons Between Floats 54

8 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.1 Declarations of Floating-Point Values

Optimization
When working with single precision (f | oat) values:
e Usethef or F suffix (for example, 3. 14f) to specify a constant value of typef 1 oat .

« Use function prototypes for all functions that accept arguments of typef | oat .

Application

This optimization applies to:
* 32-hit software

e 64-bit software

Rationale

C and C++ compilers treat floating-point constants and arguments as double precision (doubl €)
unless you specify otherwise. However, single precision floating-point values occupy half the
memory space as double precision values and can often provide the precision necessary for a given
computational problem.

Chapter 2 C and C++ Source-Level Optimizations 9

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.2 Using Arrays and Pointers

Optimization

Use array notation instead of pointer notation when working with arrays.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

C alows the use of either the array operator ([]) or pointers to access the elements of an array.
However, the use of pointersin C makes work difficult for optimizersin C compilers. Without
detailed and aggressive pointer analysis, the compiler has to assume that writes through a pointer can
write to any location in memory, including storage allocated to other variables. (For example, *p and
*q can refer to the same memory location, while x[0] and x[2] cannot.) Using pointers causes
aliasing, where the same block of memory is accessible in more than one way. Using array notation
makes the task of the optimizer easier by reducing possible aliasing.

10 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Example
Avoid code, such as the following, which uses pointer notation:

typedef struct {
float x, vy, z, w
} VERTEX;

typedef struct {
float nf4][4];
} MATRI X;

void XForm(float *res, const float *v, const float *m int nunverts) {
float dp;

int i;
const VERTEX* vv = (VERTEX *)v;

for (i =0; i < nunverts; i++) {
dp = vv->Xx * *mt+
dp += vv->y * *mk+;

dp += vv->z * *m+,
dp += vv->w * *m+;

*res++ = dp; // Wite transformed x.

dp = vv->X * *mt+
dp += vv->y * *m+;
dp += vv->z * *mt+;
dp += vv->w * *m+;

*res++ = dp; // Wite transfornmed y.

dp = vv->X * *mt+
dp += vv->y * *mt+;
dp += vv->z * *mt+;
dp += vv->w * *mr+;

*res++ = dp; // Wite transfornmed z.

dp = vv->x * *me+
dp += vv->y * *mt+;
dp += vv->z * *m+;
dp += vv->w * *m+,

*res++ = dp; // Wite transformed w.

++vv; /1 Next input vertex
m-=16; // Reset to start of transformmatrix.

Chapter 2 C and C++ Source-Level Optimizations 11

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Instead, use the equivalent array notation:

typedef struct {
float x, y, z, w
} VERTEX;

typedef struct {
float nf4][4];
} MATRI X;

void XForn(float *res, const float *v, const float *m int nunverts) {

int i;

const VERTEX* vv = (VERTEX *)v;
const MATRI X* mm = (MATRI X *)m
VERTEX* rr = (VERTEX *)res;

for (i =0; i < numverts; i++) {

rr->x = vv->x * Mm>n{0][0] + vv->y * m>n{0][1] +
vv->z * fm>n{0][2] + vv->w * mm>n{0][3];

rr->y = vv->x * mMm>n{1][0] + vv->y * mm>n{1][1] +
vv->z * fm>n{1][2] + vv->w * mm>n{1][3];

rr->z = vv->x * Mm>n{2][0] + vv->y * m>n{2][1] +
vv->z * fm>n{2][2] + vv->w * mm>n{2][3];

re->w = vv->x * mMm>n{3][0] + vv->y * m>n{3][1] +
vv->z * fm>n{3][2] + vv->w * mm>n{3][3];

++rr; /1 Increment the results pointer.

++vv; /1 Increment the input vertex pointer.

}

Additional Considerations

Source-code transformations interact with a compiler’s code generator, making it difficult to control
the generated machine code from the source level. It is even possible that source-code transformations
aimed at improving performance may conflict with compiler optimizations. Depending on the
compiler and the specific source code, it is possible for pointer-style code to compile into machine
code that is faster than that generated from equivalent array-style code. Compare the performance of
your code after implementing a source-code transformation with the performance of the original code
to be sure that there is an improvement.

12 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.3 Unrolling Small Loops

Optimization

Completely unroll loops that have a small fixed loop count and a small loop body.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Many compilers do not aggressively unroll loops. Manually unrolling loops can benefit performance,
especialy if the loop body is small, which makes the loop overhead significant.

Example
Avoid asmall loop like this:

/1 3D-transform Miltiply vector V by 4x4 transformmatrix M
for (i =0; i < 4; i++) {
r[i] = 0;
for (j =0; j <4 j++) {
riil +=nfjI0il * vljl;

}
}
Instead, replace it with its completely unrolled equivalent, as shown here:
r(o] =nf0][0] * v[O] + nf{1][0] * v[1] + n{2][O0] * v[2] + n{3][O] * v[3];
r(1] = nfo][1] * v[O] + nf1][1] * v[1] + n{2][1] * v[2] + n{3][1] * v[3];
r(2] =nfo][2] * v[O] + nf1][2] * v[1] + n{2][2] * v[2] + n{3][2] * v[3];
r(3] =nfo][3] * v[0O] + nf1][3] * v[1] + n{2][3] * v[2] + n{3][3] * v[3];

Related Information

For information on loop unrolling at the assembly-language level, see “Loop Unrolling” on page 151.

Chapter 2 C and C++ Source-Level Optimizations 13

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.4 Expression Order in Compound Branch
Conditions

Optimization

In the most active areas of a program, order the expressions in compound branch conditions to take
advantage of short circuiting of compound conditional expressions.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

Branch conditionsin C programs often consist of compound conditions consisting of multiple
boolean expressions joined by the logical AND (&&) and logical OR (] |) operators. C compilers
guarantee short-circuit evaluation of these operators. In a compound logical OR expression, the first
operand to eval uate to true terminates the eval uation, and subsequent operands are not evaluated at all.
Similarly, inalogical AND expression, the first operand to eval uate to fal se terminates the evaluation.
Because of this short-circuit evaluation, it is not always possible to swap the operands of logical OR
and logical AND. Thisisespecially true when the evaluation of one of the operands causes aside
effect. However, in most cases the order of operandsin such expressionsisirrelevant.

When used to control conditional branches, expressionsinvolving logical OR and logical AND are
tranglated into a series of conditional branches. The ordering of the conditional branchesisafunction
of the ordering of the expressions in the compound condition and can have a significant impact on
performance. It isimpossible to give an easy, closed-form formula on how to order the conditions.
Overall performanceisafunction of avariety of the following factors:

« Probability of abranch misprediction for each of the branches generated

< Additiona latency incurred due to a branch misprediction

« Cost of evaluating the conditions controlling each of the branches generated

* Amount of parallelism that can be extracted in evaluating the branch conditions

« Datastream consumed by an application (mostly due to the dependence of misprediction
probabilities on the nature of the incoming data in data-dependent branches)

It is recommended to experiment with the ordering of expressionsin compound branch conditionsin
the most active areas of a program (so-called “hot spots,” where most of the execution time is spent).

14 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Such hot spots can be found through the use of profiling by feeding atypical data stream to the
program while doing the experiments.

Chapter 2 C and C++ Source-Level Optimizations 15

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.5 Long Logical Expressions in If Statements

Optimization

Ini f statements, avoid long logical expressions that can generate dense conditional branches that
violate the guideline described in “Density of Branches’ on page 132.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale
Listing 1. Preferred for Data that Falls Mostly Within the Range
if (a<=nmx & a >= nn & b <= nax && b >= nin)

If most of the data falls within the range, the branches will not be taken, so the above code is
preferred. Otherwise, the following code is preferred.

Listing 2. Preferred for Data that Does Not Fall Mostly Within the Range
if (a>mx || a<nmn]|| b>mx || b<mnmn)

16 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.6 Arrange Boolean Operands for Quick Expression
Evaluation

Optimization

In expressions that use the logical AND (&&) or logical OR (| |) operator, arrange the operands for
quick evaluation of the expression:

If the expression uses this Then arrange the operands from left to right in decreasing
operator probablity of being

&& (logical AND) False

|| (logical OR) True

Application

This optimization applies to:
o 32-hit software
* 64-hit software

Rationale

C and C++ compilers guarantee short-circuit evaluation of the boolean operators&& and | | . Inan
expression that uses &&, the first operand to evaluate to fal se terminates the eval uation; subsequent
operands are not evaluated. |n an expression that uses ||, the first operand to evaluate to true terminates
the evaluation.

When used to control program flow, expressionsinvolving & & and || are trandated into a series of
conditional branches. This optimization minimizes the total number of conditions evaluated and
branches executed.

Example 1

In the following code, the operands of && are not arranged for quick expression evaluation because the
first operand is not the condition case most likely to befalse (it isfar lesslikely for an animal nameto
beginwith a'y’ than for it to have fewer than four characters):

char ani nal nane[30] ;
char *p;

p = ani mal naneg;

if ((strlen(p) > 4) & (*p =="y")) { ... }

Chapter 2 C and C++ Source-Level Optimizations 17

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Because the odds that the animal name beginswith a‘y’ are comparatively low, it is better to put that
operand first:

if ((*p=="y") & (strlen(p) >4)) { ...}

Example 2

In the following code (assuming a uniform random distribution of i), the operands of | | are not
arranged for quick expression evaluation because the first operand is not the condition most likely to
be true:

unsigned int i;

if (<4 |1 (i &1)) { ...}
Because it is more likely for the least-significant bit of i to be 1, it is better to put that operand first:

it & |1 (i <4) { ...}

18 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.7 Dynamic Memory Allocation Consideration

Dynamic memory allocation—accomplished through the use of the mal | oc library function in C—
should always return a pointer that is suitably aligned for the largest base type (quadword alignment).
Where this aligned pointer cannot be guaranteed, use the technique shown in the following code to
make the pointer quadword aligned, if needed. This code assumesthat it is possible to cast the pointer
toal ong.

doubl e *p;
doubl e *np;

(doubl e *)mal | oc(si zeof (doubl e) * nunber _of _doubles + 7L);
(double *) ((((long)(p)) + 7L) & (-8L));

p
np

Then use np instead of p to access the data. The pointer p is still needed in order to deallocate the
storage.

Application

This optimization applies to:
o 32-bit software

e 64-bit software

Chapter 2 C and C++ Source-Level Optimizations 19

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.8 Unnecessary Store-to-Load Dependencies

A store-to-load dependency exists when datais stored to memory, only to be read back shortly
thereafter. For details, see “ Store-to-Load Forwarding Restrictions’ on page 98. The

AMD Athlon™ 64 and AMD Opteron™ processors contain hardware to accel erate such store-to-load
dependencies, allowing the load to obtain the store data before it has been written to memory.
However, it is still faster to avoid such dependencies altogether and keep the datain an internal
register.

Avoiding store-to-load dependencies is especially important if they are part of along dependency
chain, as may occur in arecurrence computation. If the dependency occurs while operating on arrays,
many compilers are unable to optimize the code in away that avoids the store-to-load dependency. In
some instances the language definition may prohibit the compiler from using code transformations
that would remove the store-to-load dependency. Therefore, it is recommended that the programmer
remove the dependency manually, for example, by introducing atemporary variable that can be kept
in aregister, asin the following example. This can result in asignificant performance increase.

Listing 3. Avoid

doubl e x[VECLEN], y[VECLEN], z[VECLEN];
unsi gned int k;

for (k = 1; k < VECLEN; k++) {
X[kl = x[k-1] + y[k];
}

for (k = 1; k < VECLEN, k++) {
} X[kl = z[Kk] * (y[k] - x[k-1]);

Listing 4. Preferred

doubl e x[VECLEN], y[VECLEN], z[VECLEN;
unsi gned int k;
doubl e t;

t = x[0];

for (k =1, k < VECLEN, k++) {
t =t + y[k];
x[K] = t;

}

t = x[0];

for (k =1, k < VECLEN, k++) {
t = z[k] * (y[k] - t);
x[K] = t;

}

20 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Application

This optimization applies to:
* 32-hit software

* 64-hit software

Chapter 2 C and C++ Source-Level Optimizations 21

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.9 Matching Store and Load Size

Optimization

Align memory accesses and match addresses and sizes of stores and dependent |oads.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

The AMD Athlon 64 and AMD Opteron processors contain a load-store buffer to speed up the
forwarding of store datato dependent |oads. However, this store-to-load forwarding (STLF) inside the
|oad-store buffer occurs, in general, only when the addresses and sizes of the store and the dependent
load match, and when both memory accesses are aligned. For details, see “ Store-to-Load Forwarding
Restrictions” on page 98.

Itisimpossible to control load and store activity at the source level so asto avoid al casesthat violate
restrictions placed on store-to-load-forwarding. In someinstancesit is possible to spot such casesin
the source code. Size mismatches can easily occur when different-size dataitems are joined in a
union. Address mismatches could be the result of pointer manipulation.

The following examples show a situation involving aunion of different-size dataitems. The examples
show a user-defined unsigned 16.16 fixed-point type and two operations defined on this type.
Function f i xed_add adds two fixed-point numbers, and function fi xed_i nt extracts the integer
portion of afixed-point number. Listing 5 shows an inappropriate implementation of fi xed_i nt ,
which, when used on the result of fi xed_add, causes misalignment, address mismatch, or size
mismatch between memory operands, such that no store-to-load forwarding in the |oad-store buffer
takes place. Listing 6 shows how to properly implement fi xed_i nt in order to allow store-to-load
forwarding in the load-store buffer.

Examples

Listing 5. Avoid

typedef union {
unsi gned i nt whol e;
struct {
unsi gned short frac; /* Lower 16 bits are fraction. */
unsi gned short intg; /* Upper 16 bits are integer. */
} parts;
} FIXED U 16_16;

22 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

__inline FIXED U 16_16 fixed_add(FI XED_U 16_16 x, FIXED U 16_16 y) {
FI XED U 16_16 z;
z.whol e = x.whol e + y.whol e;
return (z);

__inline unsigned int fixed_int(FIXED U 16_16 x) {
return((unsigned int)(x.parts.intg));
}

FIXED U 16_16 y, z;
unsi gned int q;

| abel 1:

y = fixed_add (y, z);
g = fixed_int (y);

| abel 2:

The object code generated for the source code between | abel 1 and | abel 2 typically follows one of
these two variants:

Variant 1
nov edx, DWORD PTR [z]
nov eax, DWORD PTR [y] ;- +

add eax, edx o

nmov DWORD PTR [y], eax o

nmov EAX, DWORD PTR [y+2] ; <+ Address mismatch--no forwarding in LSU
and EAX, OFFFFh

nmov DWORD PTR [q], eax

Vari ant 2
nov edx, DWORD PTR [z]
nov eax, DWORD PTR [y] ;- +

add eax, edx o

nov DWORD PTR [y], eax o

novzx eax, WORD PTR [y+2] ; <+ Size and address mismatch--no forwarding in LSU
nov DWORD PTR [q], eax

Listing 6. Preferred

typedef union {
unsi gned i nt whol e;
struct {
unsi gned short frac; /* Lower 16 bits are fraction. */
unsi gned short intg; /* Upper 16 bits are integer. */
} parts;
} FIXED U 16_16;

_inline FIXED U 16_16 fixed_add(FlI XED U 16_16 x, FIXED U 16_16 y) {

Chapter 2 C and C++ Source-Level Optimizations 23

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

FIXED U 16_16 z;
z.whol e = x.whol e + y.whol e;

return(z);

}

__inline unsigned int fixed_int(FIXED U 16_16 x) {
return (x.whole >> 16);

}

FIXED U 16_16 y, z;
unsi gned int q;

| abel 1:

y fixed_add (y, z);
q fixed_int (y);

| abel 2:

25112 Rev.3.04 March 2004

The object code generated for the source code between | abel 1 and | abel 2 typically looks like this:

nov edx, DWORD PTR [z]

nov eax, DWORD PTR [y]

add eax, edx

mov DWORD PTR [y], eax -+

mov eax, DWORD PTR [Y] ; <+ Aligned (size/address match)--forwarding in LSU

shr eax, 16
mov DWORD PTR [q], eax

24 C and C++ Source-Level Optimizations

Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.10 SWITCH and Noncontiguous Case Expressions

Optimization

Usei f - el se statementsin place of swi t ch statements that have noncontiguous case expressions.
(Case expressions are the individual expressions to which the single swi t ch expression is compared.)

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

If the case expressions are contiguous or nearly contiguous integer values, most compilers translate
the swi t ch statement as ajump table instead of a comparison chain. Jump tables generally improve
performance because:

¢ They reduce the number of branches to a single procedure call.
* Thesize of the control-flow code is the same no matter how many cases there are.

e Theamount of control-flow code that the processor must execute is the same for all values of the
swi t ch expression.

However, if the case expressions are noncontiguous values, most compilers trandate the swi t ch
statement as a comparison chain. Comparison chains are undesirable because:

» They use dense sequences of conditional branches, which interfere with the processor’s ability to
successfully perform branch prediction.

* Thesize of the control-flow code increases with the number of cases.

e Theamount of control-flow code that the processor must execute varies with the value of the
swi t ch expression.

Chapter 2 C and C++ Source-Level Optimizations 25

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Example 1

A swi t ch statement like this one, whose case expressions are contiguous integer values, usually
provides good performance:

swi tch (grade)
{

case ‘A:
br eak;
case ‘B :
br eak;
case ‘C:
br eak;
case ‘D :
br eak;
case ‘F':
br eak;

}

Example 2

Because the case expressions in the following swi t ch statement are not contiguous values, the
compiler will likely trans ate the code into a comparison chain instead of ajump table:

switch (a)
{
case 8:
/'l Sequence for a==8
br eak;
case 16:
/'l Sequence for a==16
br eak;
defaul t:
/1 Default sequence
br eak;

26 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

To avoid a comparison chain and its undesirabl e effects on branch prediction, replace the swi t ch
statement with aseriesof i f - el se statements, asfollows:

if (a==8) {
/'l Sequence for a==8

}
else if (a==16) {
/'l Sequence for a==16

}
el se {

/1 Default sequence
}

Related Information

For information on preventing branch-prediction interference at the assembly-language level, see
“Density of Branches’ on page 132.

Chapter 2 C and C++ Source-Level Optimizations 27

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.11 Arranging Cases by Probability of Occurrence

Optimization

Arrange swi t ch statement cases by probability of occurrence, from most probable to least probable.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Arranging swi t ch statement cases by probability of occurrence improves performance when the
swi t ch statement is translated as a comparison chain; this arrangement has no negative impact when
the statement is trandated as a jump table.

Example

Avoid swi t ch statements such as the following, in which the cases are not arranged by probability of
occurrence;

int days_in_nonth, short_nonths, normal _nonths, |ong_nonths;

switch (days_in_nonth) {
case 28:
case 29: short_nont hs++; break;
case 30: nornmal _nont hs++; break;
case 31: |ong_nonths++; break;
default: printf("Mnth has fewer than 28 or nore than 31 days.\n");

}
Instead, arrange the cases to test for frequently occurring values first:

switch (days_in_nonth) {
case 31: |ong_nonths++; break;
case 30: nornmal _nont hs++; break;
case 28:
case 29: short_nont hs++; break;
default: printf("Mnth has fewer than 28 or nore than 31 days.\n");

28 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.12 Use of Function Prototypes

Optimization

In general, use prototypes for all functions.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Prototypes can convey additional information to the compiler that might enable more aggressive
optimizations.

Chapter 2 C and C++ Source-Level Optimizations 29

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.13 Use of const Type Qualifier

Optimization

For objects whose values will not be changed, use the const type qualifier.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Using the const type qualifier makes code more robust and may enable the compiler to generate
higher-performance code. For example, under the C standard, a compiler is not required to allocate
storage for an object that isdeclared const , if its addressis never used.

30 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.14 Generic Loop Hoisting

Optimization

To improve the performance of inner loops, reduce redundant constant calculations (that is, loop-
invariant calculations). Thisidea can aso be extended to invariant control structures.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale and Examples

The following example demonstrates the use of an invarient conditioninani f statementinaf or
loop. The second listing shows the preferred optimization.

Listing 7. (Avoid)
for (i...) {
i f (CONSTANTO) {
DoWor kO(i) ; /1 Does not affect CONSTANTO.
}
el se {
DoWor k1(i); /1 Does not affect CONSTANTO.
}
}

Listing 8. (Preferred Optimzation)
i f (CONSTANTO) {
for (i...) {

DoWor kO(i) ;
}
}
el se {
for (i...) {
DoWor k1(i);
}
}

The preferred optimization in Listing 8 tightens the inner loops by avoiding repetitious eval uation of a
knowni f control structure. Although the branch would be easily predicted, the extrainstructions and
decode limitations imposed by branching (which are usually advantageous) are saved.

Chapter 2 C and C++ Source-Level Optimizations 31

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

25112 Rev.3.04 March 2004

To generalize the example in Listing 8 further for multiple-constant control code, more work may be
needed to create the proper outer loop. Enumeration of the constant cases reduces thisto asimple

SWi

t ch statement.

Listing 9.

f or

(i...) Ao

if (CONSTANTO) {
Doworko(i); /1/

}

el se {
DoWor k1(i); /1
}
i f (CONSTANT1) ({
DoWor k2(i) ; /1
}

el se {
DoWor k3(i) ; /1
}

Does not affect CONSTANTO or CONSTANTL1.

Does not affect CONSTANTO or CONSTANTL.

Does not affect CONSTANTO or CONSTANTL1.

Does not affect CONSTANTO or CONSTANTL1.

32

C and C++ Source-Level Optimizations

Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Transform the loop in Listing 9 (by using the swi t ch statement) into:

#define conmbine(cl, c2) (((cl) << 1) + (c2))
swi tch (cormbi ne(CONSTANTO != 0, CONSTANT1 != 0)) {
case conbine(0, 0):
for(i...) {
DoWor kO(i) ;
DoWor k2(i) ;
}
br eak;
case conbine(1, 0):
for(i...) {
DoWor k1(i);
DoWor k2(i);
}
break;
case conbine(0, 1):

for(i...) {

DoWor kO(i) ;
DoWor k3(i);
}
br eak;

case conbine(1, 1):

for(i...) {
DoWor k1(i);
DoWor k3(i) ;
}

br eak;
defaul t:
br eak;

}

Some introductory code is necessary to generate all the combinations for the swi t ch constant and the
total amount of code has doubled. However, the inner loops are now free of i f statements. Inidea
cases where the Dowor kn functions are inlined, the successive functions have greater overlap, leading
to greater parallelism than possible in the presence of interveningi f statements.

The same idea can be applied to constant swi t ch statements or to combinations of swi t ch statements
andif statementsinside of f or loops. The method used to combine the input constants becomes
more complicated but benefits performance.

However, the number of inner loops can also substantially increase. If the number of inner loopsis
prohibitively high, then only the most common cases must be dealt with directly, and the remaining
cases can fall back to the old code in the default clause of the swi t ch statement. This situation is
typical of run-time generated code. While the performance of run-time generated code can be
improved by means similar to those presented here, it is much harder to maintain and devel opers must
do their own code-generation optimizations without the help of an available compiler.

Chapter 2 C and C++ Source-Level Optimizations 33

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.15 Local Static Functions

Optimization

Declareasst at i ¢ functions that are not used outside the file where they are defined.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Declaring afunction asst at i ¢ forcesinternal linkage. Functions that are not declared asst ati ¢
default to external linkage, which may inhibit certain optimizations—for example, aggressive
inlining—with some compilers.

34 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.16 Explicit Parallelism in Code

Optimization

Where possible, break long dependency chains into severa independent dependency chains that can
then be executed in parallel, exploiting the execution unitsin each pipeline.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale and Examples

Thisis especialy important to break long dependency chains into smaller executing units in floating-
point code, whether it is mapped to x87, SSE, or SSE2 instructions, because of the longer latency of
floating-point operations. Because most languages (including ANSI C) guarantee that floating-point
expressions are not reordered, compilers cannot usually perform such optimizations unless they offer
aswitch to allow noncompliant reordering of floating-point expressions according to algebraic rules.

Reordered code that is algebraically identical to the original code does not necessarily produce
identical computational results due to the lack of associativity of floating-point operations. There are
well-known numerical considerations in applying these optimizations (consult a book on numerical
anaysis). In some cases, these optimizations may lead to unexpected results. In the vast majority of
cases, the final result differs only in the least-significant bits.

Listing 10. Avoid

doubl e a[100], sum
int i;

sum = 0. 0f;
for (i =0; i < 100; i++) {
sum += af[i];

}

Chapter 2 C and C++ Source-Level Optimizations 35

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Listing 11. Preferred
doubl e a[100], sunil, sunR, sunB, sumd, sum

int i;

1

sumil
sung
sung
sumi ;
for (i 0; i <100; i + 4) {

sunl += a[i];

sunR += a[i +1];

sunB += a[i +2];

sumd += a[i +3];

.0
. 0;
. 0;
.0

1

[eNeNeNe]

}
sum = (sumd + sunB) + (sunl + sunR);

25112 Rev.3.04 March 2004

Notice that the four-way unrolling is chosen to exploit the four-stage fully pipelined floating-point
adder. Each stage of the floating-point adder is occupied on every clock cycle, ensuring maximum

sustained utilization.

36 C and C++ Source-Level Optimizations

Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.17 Extracting Common Subexpressions

Optimization

Manually extract common subexpressions where C compilers may be unable to extract them from
floating-point expressions due to the guarantee against reordering of such expressionsin the ANSI
standard.

Application
This optimization appliesto:

¢ 32-hit software
¢ 64-hit software

Rationale

Specifically, the compiler cannot rearrange the computation according to algebraic equivalencies
before extracting common subexpressions. Rearranging the expression may give different
computational results due to the lack of associativity of floating-point operations, but the results
usually differ in only the least-significant bits.

Examples

Listing 12. Avoid
double a, b, ¢, d, e, f;

e

b
f b

*c/ d;

[d* a

Listing 13. Preferred

double a, b, ¢, d, e, f, t;

t
e
f

o n
* F ~~

D O T

d;
t;
t;
Listing 14. Avoid

double a, b, c, e, f;

e
f

al c;
b/ c;

Chapter 2 C and C++ Source-Level Optimizations 37

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Listing 15. Example 2 (Preferred)
double a, b, c, e, f, t;

t
e
f

o n
* ok~

(oI

c
t
t

25112 Rev.3.04 March 2004

38 C and C++ Source-Level Optimizations

Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.18 Sorting and Padding C and C++ Structures

Optimization
Sort and pad C and C++ structuresto achieve natural alignment.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

In order to achieve better alignment for structures, many compilers have optionsthat allow padding of
structures to make their sizes multiples of words, doublewords, or quadwords. In addition, to improve
the alignment of structure members, some compilers might allocate structure elementsin an order that
differs from the order in which they are declared. However, some compilers might not offer any of
these features, or their implementations might not work properly in al situations.

By sorting and padding structures at the source-code level, if the first member of a structureis
naturally aligned, then all other members are naturally aligned aswell. This allows, for example,
arrays of structures to be perfectly aligned.

Sorting and Padding C and C++ Structures
To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’s type size.

Examples

Avoid structure declarations in which the members are not declared in order of their type sizesand the
size of the structure is not a multiple of the size of the largest member’s type:

struct {
char a[5]; \\ Smallest type size (1 byte * 5)
I ong k; \\ 4 bytes in this exanple
doubl e x; \\ Largest type size (8 bhytes)

} baz;

Chapter 2 C and C++ Source-Level Optimizations 39

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Instead, declare the members according to their type sizes (largest to smallest) and add padding to
ensure that the size of the structure is a multiple of the largest member’s type size:

struct {

doubl e x; \\ Largest type size (8 bytes)

I ong k; \\ 4 bytes in this exanple

char a[5]; \\ Smallest type size (1 byte * 5)

char pad[7]; \\ Make structure size a multiple of 8.
} baz;

40 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.19 Sorting Local Variables

Optimization

Sort local variables according to their type sizes, declaring those with larger type sizes ahead of those
with smaller type sizes.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

It can be helpful to presort local variables, if your compiler allocates local variables in the same order
in which they are declared in the source code. If thefirst variableis allocated for natural alignment, all
other variables are allocated contiguously in the order they are declared and are naturally aligned
without padding.

Some compilers do not allocate variables in the order they are declared. In these cases, the compiler
should automatically allocate variables that are naturally aligned with the minimum amount of
padding. In addition, some compilers do not guarantee that the stack is aligned suitably for the largest
type (that is, they do not guarantee quadword alignment), so that quadword operands might be
misaligned, even if this technique is used and the compiler does allocate variables in the order they
are declared.

Example
Avoid local variable declarations, when the variables are not declared in order of their type sizes:

short ga, gu, gi;

| ong foo, bar;
double x, y, z[3];
char a, b;

fl oat baz;

Instead, sort the declarations according to their type sizes (largest to smallest):

double z[3];
double x, vy;

| ong foo, bar;
fl oat baz;

short ga, gu, gi;

Chapter 2 C and C++ Source-Level Optimizations 41

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

25112 Rev.3.04 March 2004

Related Information

For information on sorting local variables at the assembly-language level, see “ Sorting L ocal
Variables’ on page 116.

42 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.20 Replacing Integer Division with Multiplication

Optimization

Replace integer division with multiplication when there are multiple divisionsin an expression. (This
ispossible only if no overflow will occur during the computation of the product. The possibility of an
overflow can be determined by considering the possible ranges of the divisors.)

Application

This optimization appliesto:
o 32-bit software

e 64-bit software

Rationale

Integer division isthe slowest of all integer arithmetic operations.

Examples

Avoid code that uses two integer divisions:

int i, j, k, m

m=i /| k

Instead, replace one of the integer divisions with the appropriate multiplication:

m=i / (j * k);

Chapter 2 C and C++ Source-Level Optimizations 43

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.21 Frequently Dereferenced Pointer Arguments

Optimization

Avoid dereferenced pointer arguments inside a function.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Because the compiler has no knowledge of whether aliasing exists between the pointers, such
dereferencing cannot be “ optimized away” by the compiler. Since data may not be maintained in
registers, memory traffic can significantly increase.

Many compilers have an “assume no aliasing” optimization switch. This allows the compiler to
assume that two different pointers always have disjoint contents and does not require copying of
pointer arguments to local variables. If your compiler does not have this type of optimization, then
copy the data pointed to by the pointer argumentsto local variables at the start of the function and if
necessary copy them back at the end of the function.

Examples

Listing 16. Avoid

/1 Assunes pointers are different and g !=r.
void isqrt(unsigned |long a, unsigned long *q, unsigned long *r) {

=al *q) {
ry >> 1,

44 C and C++ Source-Level Optimizations Chapter 2

AMDAQ
25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Listing 17. Preferred

/1 Assunes pointers are different and q !=r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

unsigned long qq, rr;
aq = a&;
if (a>0) {
while (qq > (rr =a/ qq)) {
aqgq = (qq + rr) >> 1

}
}
rr.=a- qq * qaq;
*q = qq;
*ro=orr,

Chapter 2 C and C++ Source-Level Optimizations 45

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.22 Array Indices

Optimization

The preferred type for array indicesis ptrdiff t.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Array indices are often used with pointers while doing arithmetic. Using ptrdiff_t produces more
portable code and will generally provide good performance.

46 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.23 32-Bit Integral Data Types
Optimization
Use 32-hit integersinstead of integers with smaller sizes (16-bit or 8-hit).

Application

This optimization applies to 32-hit software.

Rational

Be aware of the amount of storage associated with each integral datatype.

Chapter 2 C and C++ Source-Level Optimizations 47

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.24 Sign of Integer Operands

Optimization

Where thereisachoice of using either asigned or an unsigned type, takeinto consideration that some
operations are faster with unsigned types while others are faster for signed types.

Application
This optimization appliesto:
e 32-bit software

Rationale

In many cases, the type of datato be stored in an integer variable determines whether asigned or an
unsigned integer typeis appropriate. For example, to record the weight of a person in pounds, no
negative numbers are required, so an unsigned type is appropriate. However, recording temperatures
in degrees Celsius may require both positive and negative numbers, so a signed type is needed.

Integer-to-floating-point conversion using integers larger than 16 bitsis faster with signed types, as
the AMDG64 architecture providesinstructions for converting signed integers to floating-point but has
no instructions for converting unsigned integers. In atypical case, a 32-bit integer is converted by a
compiler to assembly as follows:

Examples
Listing 18. (Avoid)
doubl e x; ====> nov [tenp+4], O
unsi gned int i; nov eax, |
nov [tenp], eax
X = i; fild QAMORD PTR [tenp]

fstp QMORD PTR [X]
The preceding codeis slow not only because of the number of instructions, but also because asize
mismatch prevents store-to-load forwarding to the FILD instruction. Instead, use the following code:

Listing 19. (Preferred)

doubl e x; ====> fild DWORD PTR [i]
int i; fstp QAMORD PTR [X]
X =1i;

Computing quotients and remaindersin integer division by constants is faster when performed on
unsigned types. The following typical case isthe compiler output for a 32-bit integer divided by 4:

48 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Listing 20. Example 2 (Avoid)
int i; ====> nov eax, i

cdq
=0l 4 and edx, 3

add eax, edx

sar eax, 2

nov i, eax
Listing 21. Example 2 (Preferred)
unsigned int i; ====> shr i, 2
=i/ 4
In summary, use unsigned types for:
« Division and remainders
e Loop counters
* Array indexing
Use signed typesfor:
« Integer-to-floating-point conversion
Chapter 2 C and C++ Source-Level Optimizations 49

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.25 Accelerating Floating-Point Division and Square
Root

Optimization

In applications that involve the heavy use of single precision division and square root operations, it is
recommended that you port the code to SSE or 3DNow! ™ inline assembly or use a compiler that can
generate SSE or 3DNow! technology code. If neither of these methods are possible, the x87 FPU
control word register precision control specification bits (PC) can be set to single precision to improve
performance. (The processor defaults to double-extended precision. See AMDG64 Architecture
Programmer s Manual Volume 1: Application Programming (order# 24592) for details on the FPU
control register.)

Application

This optimization applies to 32-bit software.

Rationale

Division and square root have amuch longer latency than other floating-point operations, even though
the AMD Athlon 64 and AMD Opteron processors provide significant acceleration of these two
operations. In some application programs, these operations occur so often as to seriously impact
performance. If code has hot spots that use single precision arithmetic only (that is, all computation
involves data of typef | oat) and for some reason cannot be ported to 3DNow! code, the following
technique may be used to improve performance.

The x87 FPU has a precision-control field as part of the FPU control word. The precision-control
setting determines rounding precision of instruction results and affects the basic arithmetic
operations, including division and the extraction of square root. Division and square root on the

AMD Athlon 64 and AMD Opteron processors are only computed to the number of bits necessary for
the currently selected precision. Setting precision control to single precision (versus the Win32
default of double precision) lowers the latency of those operations.

The Microsoft® Visual C environment provides functions to manipulate the FPU control word and
thus the precision control. Note that these functions are not very fast, so insert changes of precision
control where it creates little overhead, such as outside a computation-intensive loop. Otherwise, the
overhead created by the function calls outwei ghs the benefit from reducing the latencies of divide and
sguare-root operations. For more information on this topic, see AMDG64 Architecture Programmer's
Manual Volume 1: Application Programming (order# 24592).

The following example shows how to set the precision control to single precision and later restore the
original settingsin the Microsoft Visual C environment.

50 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Examples

Listing 22.

/* Prototype for _controlfp function */
#i ncl ude <float. h>
unsi gned int orig_cw,

/* Get current FPU control word and save it. */
orig_cw = _control fp(0, 0);

/* Set precision control in FPU control word to single precision.
This reduces the latency of divide and square-root operations. */
_control fp(_PC 24, MCW PC);

/* Restore original FPU control word. */
_control fp(orig_cw, Oxfffff);

Chapter 2 C and C++ Source-Level Optimizations 51

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.26 Fast Floating-Point-to-Integer Conversion

Optimization

Use 3DNow! PF2ID instruction to perform truncating conversion to accomplish rapid floating-point-
to-integer conversion, if the floating-point operand isatype f1oat.

Application

This optimization appliesto 32-hit software.

Rationale

Floating-point-to-integer conversionin C programsistypically avery slow operation. The semantics
of C and C++ demand that the conversion use truncation. If the floating-point operand is of type

f1 oat , and the compiler supports 3SDNow! code generation, then the 3DNow! PF2ID instruction,
which performs truncating conversion, can be utilized by the compiler to accomplish rapid floating-
point-to-integer conversion.

Note: The PF2ID instruction does not provide conversion compliant with the IEEE-754 standard.
Some operands of type f| oat (IEEE-754 single precision) such as NaNs, infinities, and
denormals, are either unsupported or not handled in compliance with the IEEE-754 standard
by 3DNow! technology.

For double precision operands, the usual way to accomplish truncating conversion involves the
following algorithm:

1. Savethe current x87 rounding mode (thisis usually round to nearest or even).
2. Set the x87 rounding mode to truncation.

3. Load the floating-point source operand and store the integer result.

4. Restore the original x87 rounding mode.

This algorithm is typically implemented through the C run-time library function f t ol . While the
AMD Athlon 64 and AMD Opteron processors have specia hardware optimizations to speed up the
changing of x87 rounding modes and thereforef t ol , callstoft ol may still tend to be slow.

For situations where very fast floating-point-to-integer conversion is required, the conversion code in
Listing 24 on page 53 may be helpful. This code uses the current rounding mode instead of truncation
when performing the conversion. Therefore, the result may differ by 1 from theft ol result. The
replacement code adds the “ magic number” 252+25! to the source operand, then stores the double
precision result to memory and retrieves the lower doubleword of the stored result. Adding the magic
number shifts the original argument to the right inside the double precision mantissa, placing the
binary point of the sum immediately to the right of the least-significant mantissa bit. Extracting the
lower doubleword of the sum then delivers the integral portion of the original argument.

52 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

The following conversion code causes a 64-bit store to feed into a 32-bit load. The load is from the
lower 32 hits of the 64-bit store, the one case of size mismatch between a store and a dependent load
that is specifically supported by the store-to-load-forwarding hardware of the AMD Athlon 64 and
AMD Opteron processors.

Examples

Listing 23. Slow

doubl e x;
int i;

i = x;

Listing 24. Fast

#def i ne DOUBLE2I NT(i, d) \
{double t = ((d) + 6755399441055744.0); i = *((int *)(&));}

doubl e x;
int i;

DOUBLE2I NT(i, x);

Chapter 2 C and C++ Source-Level Optimizations 53

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

2.27 Speeding Up Branches Based on Comparisons
Between Floats

Optimization

Store operands of type float into amemory location and use integer comparison with the memory
location to perform fast branches in cases where compilers do not support fast floating-point
comparison instructions or 3DNow! code generation.

Application

This optimization appliesto 32-hit software.

Rationale

Branches based on floating-point comparisons are often slow. The AMD Athlon 64 and

AMD Opteron processors support the FCOMI, FUCOMI, FCOMIP, and FUCOMIP instructions that
allow implementation of fast branches based on comparisons between operands of type doubl e or
typef | oat . However, many compilers do not support generating these instructions. Likewise,
floating-point comparisons between operands of typef | oat can be accomplished quickly by using
the 3DNow! PFCMP instruction if the compiler supports 3DNow! code generation.

Many compilers only implement branches based on floating-point comparisons by using FCOM or
FCOMP to compare the floating-point operands, followed by FSTSW AX in order to transfer the x87
condition-code flags into EAX. The subsequent branch is then based on the contents of the EAX
register. Although the AMD Athlon 64 and AMD Opteron processors have acceleration hardware to
speed up the FSTSW instruction, this processis still fairly slow.

Branches Dependent on Integer Comparisons Are Fast

One aternative for branches dependent upon the outcome of the comparison of operands of type

f1 oat isto storethe operand(s) into amemory location and then perform an integer comparison with
that memory location. Branches dependent on integer comparisons are very fast. It should be noted
that the replacement code uses aload dependent on an immediately prior store. If the storeis not
doubleword-aligned, no store-to-load-forwarding takes place, and the branch is still slow. Also, if
thereisalot of activity in the load-store queue, forwarding of the store data may be somewhat
delayed, thus negating some of the advantages of using the replacement code. It is recommended that
you experiment with the replacement code to test whether it actually provides a performance increase
in the code at hand.

The replacement code works well for comparisons against zero, including correct behavior when
encountering a negative zero as allowed by the IEEE-754 standard. It also works well for comparing

54 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

to positive constants. In that case, the user must first determine the integer representation of that
floating-point constant. This can be accomplished with the following C code snippet:

float x;
scanf ("9%g", &x);
printf("9@8X\n", (*((int *)(&x))));

The replacement code is |[EEE-754 compliant for all classes of floating-point operands except NaNs.
However, NaNs do not occur in properly working software.

Examples

Intial definitions:
#def i ne FLOAT2I NTCAST(f)
#def i ne FLOAT2UI NTCAST(f)

int *)(&f)))

(*((
(*((unsigned int *)(&f)))

Table 3: Comparisons against Zero

Use this ... Instead of this.
i f (FLOAT2UI NTCAST(f) > 0x80000000U) if (f < 0.0f)
if (FLOATZINCAST(f) <= 0) if (f <= 0.0f)
if (FLOATZINTCAST(f) > 0) if (f > 0.0f)
i f (FLOAT2UI NTCAST(f) <= 0x80000000U) if (f >= 0.0f)

Table 4: Comparisons against Positive Constant

Use this ... Instead of this.
i f (FLOAT2I NTCAST(f) < 0x40400000) if (f < 3.0f)
i f (FLOAT2I NTCAST(f) <= 0x40400000) if (f <= 3.0f)
i f (FLOAT2I NTCAST(f) > 0x40400000) if (f > 3.0f)
i f (FLOAT2I NTCAST(f) >= 0x40400000) if (f >= 3.0f)
Table 5: Comparisons among Two Floats

Use this ... Instead of this.
float t = f1 - f2; if (f1 <f2)
i f (FLOAT2UI NTCAST(t) > 0x80000000U)

Chapter 2 C and C++ Source-Level Optimizations 55

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 5: Comparisons among Two Floats

25112 Rev.3.04 March 2004

Use this ... Instead of this.
float t = f1 - f2; if (fl <=12)
i f (FLOAT2I NTCAST(t) <= 0)
float t = f1 - f2; if (f1>12)
i f (FLOAT2I NTCAST(t) > 0)
float t = f1 - f2; if (f1 >=12)
f (FLOAT2UI NTCAST(f) <= 0x80000000U)
56 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

2.28 Improving Performance in Linux Libraries

Optimization

If interposition is not important to a particular application, then, if using Id in the binutils package,
you can make use of alinker option that results in referencesto public global routinesinside the
library that cannot be overridden.

Application This optimization applies to:
e 32-bit software

e 64-hit software

Rationale

Dynamically loadable libraries are a versatile feature of the Linux operating system. They allow one
or more symbolsin one library to override the same symbol in another library. Known as
interposition, this ability makes customizations and probing seamless. Interposition is implemented
by means of a procedure linkage table (PLT). The PLT is so flexible that even referencesto an
overridden symbol inside the library end up referencing the overriding symbol. However, the PLT
imposes a performance penalty by requiring all function calls to public global routinesto go through
an extra step that increases the chances of cache misses and branch mispredictions. Thisis
particularly severe for C++ classes whose methods typically refer to other methods in the same class.

Examples

When using Id, include the following command line option:
-Bsynbolic

If using gee to build alibrary, add this option to the command-line:
-WIl,-Bsymbolic

Chapter 2 C and C++ Source-Level Optimizations 57

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

58 C and C++ Source-Level Optimizations Chapter 2

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 3 General 64-Bit Optimizations

In long mode, the AM D64 architecture provides both a compatibility mode, which alows a 64-bit
operating system to run existing 16-bit and 32-bit applications, and a 64-bit mode, which provides
64-bit addressing and expanded register resources to support higher performance for recompiled
64-bit programs. This chapter presents general optimizations that improve the performance of
software designed to run in 64-bit mode. Therefore, al optimizations in this chapter apply only to
64-bit software.

This chapter covers the following topics:

Topic Page
64-Bit Registers and Integer Arithmetic 60
64-Bit Arithmetic and Large-Integer Multiplication 62
128-Bit Media Instructions and Floating-Point Operations 67
32-Bit Legacy GPRs and Small Unsigned Integers 68

Chapter 3 General 64-Bit Optimizations 59

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

3.1 64-Bit Registers and Integer Arithmetic

Optimization

Use 64-hit registers for 64-bit integer arithmetic.

Rationale

Using 64-hit registersinstead of their 32-bit equivalents can dramatically reduce the amount of code
necessary to perform 64-bit integer arithmetic.

Example 1
This code performs 64-bit addition using 32-bit registers:

; Add ECX: EBX to EDX: EAX, and place sumin EDX: EAX
00000000 03 C3 add eax, ebx
00000002 13 D1 adc edx, ecx

Using 64-hit registers, the previous code can be replaced by one simple instruction (assuming that
RAX and RBX contain the 64-bit integer values to add):

00000000 48 03 C3 add rax, rbx

Although the preceding instruction requires one additional byte for the REX prefix, it is still one byte
shorter than the original code. More importantly, thisinstruction still has alatency of only one cycle,
uses two fewer registers, and occupies only one decode slot.

60 General 64-Bit Optimizations Chapter 3

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Example 2

To perform the low-order half of the product of two 64-bit integers using 32-bit registers, a procedure
such as the following is necessary:

I n: [ESP+8]:[ESP+4] = multi plicand
[ESP+16] : [ESP+12] = nultiplier
Qut : EDX: EAX = (multiplicand * nultiplier) % 2764

Destroys: EAX, ECX, EDX, EFI ags

Il mul PROC
mov edx, [esp+8] ; multiplicand_hi
nmov ecx, [esp+16] ; mul tiplier_hi
or edx, ecx ; One operand >= 2732?
mov edx, [esp+12] ; multiplier_lo
nmov eax, [esp+4] ; multiplicand_|lo
jnz twomul ; Yes, need two multiplies.
mul edx ; multiplicand_lo * nmultiplier_lo
ret ; Done, return to caller.
t worrul :
imul edx, [esp+8] ; p3_lo = multiplicand_hi * nultiplier_lo
imul ecx, eax ; p2_lo = multiplier_hi * multiplicand_lo
add ecx, edx ; p2_lo + p3_lo
mul dword ptr [esp+12] ; pl = multiplicand_lo * multiplier_lo
add edx, ecx ; pl + p2_lo + p3_lo = result in EDX EAX
ret ; Done, return to caller.
Il mul ENDP

Using 64-bit registers, the entire product can be produced with only one instruction:

; Multiply RAX by RBX. The 128-bit product is stored in RDX: RAX
00000000 48 F7 EB imul rbx

Related Information

For more examples of 64-bit arithmetic using only 32-bit registers, see “Efficient 64-Bit Integer
Arithmetic in 32-Bit Mode”’ on page 176.

Chapter 3 General 64-Bit Optimizations 61

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

3.2 64-Bit Arithmetic and Large-Integer Multiplication

Optimization

Use 64-bit arithmetic for integer multiplication that produces 128-bit or larger products.

Background

Large-number multiplications (those involving 128-bit or larger products) are utilized in
cryptography algorithms, which figure importantly in e-commerce applications and secure
transactions on the Internet. Processors cannot perform large-number multiplication natively; they
must break the operation into chunks that are permitted by their architecture (32-bit or 64-bit
additions and multiplications).

Rationale

Using 64-bit rather than 32-bit integer operations dramatically reduces the number of additions and
multiplications required to compute large products. For example, computing a 1024-bit product using
64-bit arithmetic requires fewer than one quarter the number of instructions required when using
32-hit operations:

Comparing... 32-bit arithmetic 64-bit arithmetic
Number of multiplications 256 64

Number of additions with carry 509 125

Number of additions 255 63

In addition, the processor performs 64-bit additionsjust asfast asit performs 32-bit additions, and the
latency of 64-bit multiplicationsisonly dightly higher than for 32-bit multiplications. (The processor
is capable of performing a 64-bit addition each clock cycle and a 64-bit multiplication every other
clock cycle.)

Example

Consider the multiplication of two unsigned 64-bit numbers a and b, represented in terms of 32-bit
numbers al:a0 and b1:h0.

a=al* 22+ 40
b=b1*2%+p0
The product of ¢ and b, ¢, can be expressed in terms of products of the 32-bit components, as follows:

¢ =(al * b1)* 2%+ (al * b0 +a0* b1)* 2%2 + (a0 * b0)

62 General 64-Bit Optimizations Chapter 3

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Each of the products of the components of a and 4 (for example, al * b1) is composed of 64 bits—an
upper 32 bits and alower 32 bits. it is convenient to represent these individual products asd, e, f, and
g, asfollows:

a0* b0 =d1:d0=dI* 2%+ do

al * b0 =el:e0=el * 22 + ¢0

a0* bl =f1f0=f1* 222+ 10

al * bl =gl:g0=gl* 2%+ g0

Substitution yields the following equation:

¢ =(gl* 2% +g0)* 254+ (el * 252 + €0 + 1 * 252 + f0) * 232 + (d1 * 2%% + d0)
Simplifying yields this equation:

c=gl* 2%+ (el +f1+g0)* 25+ (d] + €0 + f0) * 232 + d0

it is convenient to represent the terms that are multiplied by each power of 2 asc3, ¢2, ¢1, and c0, as
follows:

gl=c3

el +f1+g0=c2

dl +e0+f0=cl

d0=c0

Substituting again yields:

c=e3* 2% 4c2% %4 1% 2224 ¢

Chapter 3 General 64-Bit Optimizations 63

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

The following procedure performs 64-bit unsigned integer multiplication, as previously illustrated
using 32-hit integer operations:

; 32bitalu_64x64(int *a, int *b, int *c);
; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG
; m . exe -coff -c 32bital u_64x64. asm

. 586

. K3D

. XMW

_DATA SEGVENT
tenpESP dd 0
_DATA ENDS

_TEXT SEGVENT
ASSUME DS: _DATA

PUBLI C _32bi t al u_64x64
_32bital u_64x64 PROC NEAR

; Save the register state. Registers EAX, ECX, and EDX are considered volatile
;and assuned to be changed, while the registers bel ow nust be preserved.
push ebp

nov ebp, esp

; Paraneters passed into routine:
;[ebp+8] ->a
; [ebp+12] ->b
i [ebp+16] ->C

push ebx
push esi
push edi

nov esi, [ebp+8] ; ESI
nov edi, [ebp+12] ; EDI
nov ecx, [ebp+16] ; ECX
push ebp

nov [tenpESP], esp

->a
->b
->c

; Multiply 64-bit nunbers a and b, each of which is conposed of two 32-bit
; conponents:

; a=al* 2732 + a0

; b =Dbl* 2232 + b0

nov eax, [esi] ; EAX = a0

nov edx, [edi] ; EDX = b0

mul edx ; EDX: EAX = a0*b0 = d1:d0
nmov ebx, edx ; EDX = d1

nov [ecx], eax ; ¢0 = EAX

Xor esp, esp ; ESP =0

xor ebp, ebp ; EBP =0

64 General 64-Bit Optimizations Chapter 3

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

nov eax, [esi +4] EAX = al
nov edx, [edi] EDX = b0
mul edx EDX: EAX = al*b0 = el:e0
add ebx, eax EBX = d1 + e0
adc ebp, edx EBP = el + possible carry from dl+e0
adc esp, 0 Col | ect possible carry into c3.
nov eax, [esi] EAX = a0
nov edx, [edx+4] EDX = bl
mul edx EDX: EAX = a0*bl = f1:f0
add ebx, eax EBX = dl1 + e0 + fO
adc ebp, edx EBP = el + f1 + carry
adc esp, 0 Col | ect possible carry into c3.
nov [ecx+4], ebx cl =dl1 +e0 + fO
nov eax, [esi +4] EAX = al
nov edx, [edi +4] EDX = bl
mul edx EDX: EAX = al*bl = g1:g0
add ebp, eax EBP = el + f1 + g0 + carry
adc esp, edx ESP = g1 + carry
nov [ecx+8], ebp c2 =el +f1l + g0 + carry
nov [ecx+12], esp c3 =gl + carry

Restore the register state.
nov esp, [tenpESP]
pop ebp
pop edi
pop esi
pop ebx
nov esp, ebp
pop ebp
ret
_32bital u_64x64 ENDP
_TEXT ENDS
END
Chapter 3 General 64-Bit Optimizations 65

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

25112 Rev.3.04 March 2004

To improve performance and substantially reduce code size, the following procedure performs the

same 64-bit integer multiplication using 64-bit instead of 32-bit operations:

; 64bitalu_64x64(int *a, int *b, int *c);

; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG
; m 64. exe -c¢ 64bital u_64x64.asm
_TEXT SEGVENT

64bi tal u_64x64 PROC NEAR

; Paraneters passed into routine:

; rcx = ->a
; rdx = ->b
; r8 =->c
nov rax, [rcx] ; RAX = [a0]
mul [rdx] ; Multiply [a0] by [bO] such that
; RDX:RAX = [cl]:[cO].
nov [r8], rax ; Store 128-bit product of a and b.

nov [r8+8], rdx

ret
64bi tal u_64x64 ENDP
END

66 General 64-Bit Optimizations

Chapter 3

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

3.3 128-Bit Media Instructions and Floating-Point
Operations

Optimization
Use 128-bit media (SSE and SSE?2) instructions instead of x87 or 64-bit media(MMX™ and
3DNow! ™ technology) instructions for floating-point operations.

Rationale

In 64-bit mode, the processor provides eight additional XMM registers (XMM8-XMM15) for atotal
of 16. These extraregisters can substantially reduce register pressure in floating-point code written
using 128-bit mediainstructions.

Although the processor fully supports the x87 and 64-bit mediainstructions, there are only eight
registers available to these instructions (ST(0)-ST(7) or MMX0-MM X7, respectively).

Chapter 3 General 64-Bit Optimizations 67

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

3.4 32-Bit Legacy GPRs and Small Unsigned Integers

Optimization

Use the 32-hit legacy general-purpose registers (EAX through ESI) instead of their 64-bit extensions
to store unsigned integer values whose range never requires more than 32 bits, even if subsequent
statements use the 32-bit value in a 64-bit operation. (For example, use ECX instead of RCX until you
need to perform a 64-bit operation; then use RCX.)

Rationale

In 64-bit mode, the machine-language representation of many instructions that operate on 64-bit
register operands requires a REX prefix byte, which increases the size of the code. However,
instructions that operate on a 32-bit legacy register operand do not require the prefix and have the
desirable side-effect of clearing the upper 32 bits of the extended register to zero. For example, using
the AND instruction on ECX clears the upper half of RCX.

Caution

Because the assembler also uses a REX prefix byte to encode the 32-bit sizes of the eight new 64-bit
general-purpose registers (R8BD—R15D), you should only use one of the original eight general-
purpose registers (EAX through ESI) to implement this technique.

Example

The following example illustrates the unnecessary use of 64-bit registers to calculate the number of
bytes remaining to be copied by an aligned block-copy routine after copying the first few bytes having
addresses not meeting the routine’s 8-byte-alignment requirements. The first two statements, after the
program comments, use the 64-bit R10 register—presumably, because this valueis later used to
adjust a 64-hit value in R8—even though the range of values stored in R10 take no more than four bits
to represent. Using R10 instead of a smaller register requires a REX prefix byte (in this case, 49),
which increases the size of the machine-language code.

I nput :
R10 = source address (src)
i R8 = nunmber of bytes to copy (count)
49 F7 DA neg r10 ; Subtract the source address from 2764.

49 83 E2 07 and r10, 7 ; Determ ne how many bytes were copi ed separately.
4D 2B 2 sub r8, r10 ; Subtract the nunmber of bytes already copied from

the nunmber of bytes to copy.

68 General 64-Bit Optimizations Chapter 3

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

To improve code density, the following rewritten code uses ECX until it is absolutely necessary to use
RCX, eliminating two REX prefix bytes:

F7 D9 neg ecx ; Subtract the source address from 2732 (the processor
; clears the high 32 bits of RCX).

83 E1 07 and ecx, 7 ; Determ ne how many bytes were copi ed separately.

4C 2B C1 sub r8, rcx ; Subtract the nunber of bytes already copied from

; the nunber of bytes to copy.

Chapter 3 General 64-Bit Optimizations 69

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

70 General 64-Bit Optimizations Chapter 3

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 4 Instruction-Decoding

Optimizations

The optimizations in this chapter are designed to help maximize the number of instructions that the

processor can decode at one time.

Theinstruction fetcher of both the AMD Athlon™ 64 and AMD Opteron™ processors reads 16-byte

packets from the L1 instruction cache. These packets are 16-byte aligned. The instruction bytes are
then merged into a 32-byte pick window. On each cycle, the in-order front-end engine selects for

decode up to three AMD®64 instructions from the pick window.

This chapter covers the following topics:

Topic Page
DirectPath Instructions 72
Load-Execute Instructions 73
Load-Execute Integer Instructions 73
Load-Execute Floating-Point Instructions with Floating-Point Operands 74
Load-Execute Floating-Point Instructions with Integer Operands 74
Branch Targets in Program Hot Spots 76
32/64-Bit vs. 16-Bit Forms of the LEA Instruction 77
Short Instruction Encodings 78
Partial-Register Reads and Writes 79
Using LEAVE for Function Epilogues 81
Alternatives to SHLD Instruction 83
8-Bit Sign-Extended Immediate Values 85
8-Bit Sign-Extended Displacements 86
Code Padding with Operand-Size Override and NOP 87

Chapter 4 Instruction-Decoding Optimizations

71

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

4.1 DirectPath Instructions

Optimization

[]Use DirectPath instructions rather than VectorPath instructions. (To determine the type of an
instruction—either DirectPath or VectorPath—see Appendix C, “Instruction Latencies.”)
Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

DirectPath instructions minimize the number of operations per AMDG64 instruction, thus providing
for optimally efficient decode and execution. Up to three DirectPath Single instructions, or one and a
half DirectPath Double instructions, can be decoded per cycle. VectorPath instructions block the
decoding of DirectPath instructions.

The AMD Athlon 64 and AMD Opteron processors implement the majority of instructions used by a
compiler as DirectPath Single and DirectPath Double instructions. However, assembly writers must
still take into consideration the use of DirectPath versus VectorPath instructions.

72 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.2 Load-Execute Instructions

A load-execute instruction isan instruction that loads a value from memory into aregister and then
performs an operation on that value. Many general purpose instructions, such as ADD, SUB, AND,
etc., have load-execute forms:

add rax, QWORD PTR [fo0]
Thisinstruction loads the value f oo from memory and then adds it to the value in the RAX register.

The work performed by aload-execute instruction can also be accomplished by using two discrete
instructions—a load instruction followed by an execute instruction. The following example employs
discrete load and execute stages:

nmov rbx, QAORD PTR [fo0]
add rax, rbx

Thefirst statement loads the value f oo from memory into the RBX register. The second statement
addsthe valuein RBX to the value in RAX.

The following optimizations govern the use of |oad-execute instructions:

¢ Load-Execute Integer Instructions on page 73.
* Load-Execute Floating-Point Instructions with Floating-Point Operands on page 74.

* Load-Execute Floating-Point Instructions with Integer Operands on page 74.

4.2.1 Load-Execute Integer Instructions

Optimization

[Jwhen performing integer computations, use load-execute instructions instead of discrete load and
execute instructions. Use discrete |oad and execute instructions only to avoid scheduler stalls for
longer executing instructions and to explicitly schedule load and execute operations.

Application

This optimization applies to:

e 32-bit software

¢ 64-bit software

Rationale

Most |load-execute integer instructions are DirectPath decodable and can be decoded at the rate of
three per cycle. Splitting aload-execute integer instruction into two separate instructions reduces
decoding bandwidth and increases register pressure, which resultsin lower performance.

Chapter 4 Instruction-Decoding Optimizations 73

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

4.2.2 Load-Execute Floating-Point Instructions with Floating-Point
Operands

Optimization

[Jwhen performing floating-point computations using floating-point (not integer) source operands,
use load-execute instructions instead of discrete |oad and execute instructions.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

Using |oad-execute floating-point instructions that take floating-point operands improves
performance for the following reasons:

» Denser code alows more work to be held in the instruction cache.

» Denser code generates fewer internal macro-ops, alowing the floating-point scheduler to hold
more work, which increases the chances of extracting parallelism from the code.

Example

Avoid code like this, which uses discrete load and execute instructions:

novss xmmD, [float_var1]
novss xmml2, [float_var?2]
mul ss xmmD, xnmmil2

Instead, use code like this, which uses a load-execute floating-point instruction:

novss xmmD, [float_var1]
mul ss xmmD, [float_var?2]

4.2.3 Load-Execute Floating-Point Instructions with Integer Operands

Optimization

[] Avoid x87 load-execute floati ng-point instructions that take integer operands (FIADD, FICOM,
FICOMP, FIDIV, FIDIVR, FIMUL, FISUB, and FISUBR). When performing floating-point
computations using integer source operands, use discrete load (FILD) and execute instructions
instead.

74 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Application

This optimization applies to:
* 32-hit software

* 64-hit software

Rationale

The load-execute floating-point instructions that take integer operands are VectorPath instructions and
generate two micro-opsin a cycle, while discrete |load and execute intructions enable a third
DirectPath instruction to be decoded in the same cycle. In some situations, these optimizations can
also reduce execution time if FILD can be scheduled several instructions ahead of the arithmetic
instruction in order to cover the FILD latency.

Example

Avoid code such as the following, which uses load-execute floating-point instructions that take
integer operands:

fld QAORD PTR [f 00] ; Push foo onto FP stack [ST(0) = foo].
fimul DWORD PTR [bar] ; Multiply bar by ST(0) [ST(0) = bar * foo].
fiadd DWORD PTR [baz] ; Add baz to ST(0) [ST(0) = baz + (bar * foo)].

Instead, use code such as the following, which uses discrete load and execute instructions:

fild DWRD PTR [bar] ; Push bar onto FP stack.

fild DWRD PTR [baz] ; Push baz onto FP stack.

fld QAORD PTR [f 00] ; Push foo onto FP stack.

frmul p st(2), st ; Multiply and pop [ST(1) = foo * bar, ST(0) = baz].
faddp st(1), st ; Add and pop [ST(0) = baz + (foo * bar)].

Chapter 4 Instruction-Decoding Optimizations 75

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

4.3 Branch Targets in Program Hot Spots

Optimization
In program “hot spots’ (as determined by either profiling or loop-nesting analysis), branch targets

should be placed at or near the beginning of code windows that are 16-byte aligned. The smaller the
basic block, the more beneficial this optimization will be.

Application

This optimization appliesto:
o 32-bit software

e 64-bit software

Rationale

Aligning branch targets maximizes the number of instructions in the pick window and preserves
instruction-cache space in branch-intensive code outside such hot spots.

76 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.4 32/64-Bit vs. 16-Bit Forms of the LEA Instruction

Optimization

Use the 32-hit or 64-bit forms of the Load Effective Address (LEA) instruction rather than the 16-bit
form.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

The 32-hit and 64-bit LEA instructions are implemented as DirectPath operations with an execution
latency of only two cycles. The 16-bit LEA instruction, however, is a VectorPath instruction, which
lowers the decode bandwidth and has alonger execution latency.

Chapter 4 Instruction-Decoding Optimizations 77

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

4.5 Short Instruction Encodings

Optimization

Use instruction forms with shorter encodings rather than those with longer encodings. For example,
use 8-hit displacements instead of 32-bit displacements, and use the single-byte form of simple
integer instructions instead of the 2-byte opcode-ModRM form.

Application

This optimization appliesto:

e 32-bit software

e 64-bit software

Rationale

Using shorter instructions increases the number of instructions that can fit into the L1 instruction
cache and increases the average decode rate.

Example

Avoid the use of instructions with longer encodings, such as those shown here:

81 C0 78 56 34 12 add eax, 12345678h ; 2-byte opcode form (w th MddRM
81 C3 FB FF FF FF add ebx, -5 ; 32-bit imediate val ue
OF 84 05 00 00 00 jz labell ; 2-byte opcode, 32-bit inmediate val ue

Instead, choose instructions with shorter encodings, like these:

05 78 56 34 12 add eax, 12345678h ; 1-byte opcode form
83 C3 FB add ebx, -5 ; 8-bit sign-extended i nmedi ate val ue
74 05 jz labell ; 1-byte opcode, 8-bit inmediate val ue

78 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.6 Partial-Register Reads and Writes

Optimization

Avoid partial register reads and writes.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

In order to handle partial register writes, the processor’s execution core implements a data merging
scheme,

In the execution unit, an instruction that writes part of a register merges the modified portion with the
current state of the other part of the register. Therefore, the dependency hardware can potentially
force afalse dependency on the most recent instruction that writes to any part of the register.

In addition, an instruction that has a read dependency on any part of a given architectural register has
aread dependency on the most recent instruction that modifies any part of the same architectural
register.

Example 1

Avoid code such as the following, which writes to only part of aregister:

nov al, 10 ; Instruction 1

nov ah, 12 ; Instruction 2 has a fal se dependency on instruction 1.

Instruction 2 nerges new AH with current EAX register
val ue forwarded by instruction 1.

Example 2

Avoid code such as the following, which both reads and writes only parts of registers:

nmov bx, 12h ; Instruction 1
nov bl, dl ; Instruction 2 has a fal se dependency on the conpl etion
; of instruction 1.
nmov bh, cl ; Instruction 3 has a fal se dependency on the conpl etion
; of instruction 2.
nmov al, bl ; Instruction 4 depends on the conpletion of instruction 2.

Chapter 4 Instruction-Decoding Optimizations 79

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Example 3

Avoid:
nmov al, bl

Preferred:
novzx eax, bl

Example 4

Avoid:
mv al, [ebx]

Preferred:
movzx eax, byte ptr [ebx]

Example 5

Avoid:
nmov al, 0Olh

Preferred:
nmov eax, 00000001h

Example 6
Avoid:

movss xmml, xmm2

Preferred:

movaps xmml, xmm2

25112 Rev.3.04 March 2004

80 Instruction-Decoding Optimizations

Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.7 Using LEAVE for Function Epilogues

Optimization

The recommended optimization for function epilogues depends on whether the function allocates
local variables.

If the function Then
Allocates local variables Replace the traditional function epilogue with the LEAVE instruction.
Does not allocate local variables Do no use function prologues or epilogues. Access function

arguments and local variables through rSP.

Application
This optimization appliesto:
e 32-bit software

¢ 64-bit software

Rationale

Functions That Allocate Local Variables

The LEAVE instruction is a single-byte instruction and saves 2 bytes of code space over the
traditional epilogue. Replacing the traditional sequence with LEAVE also preserves decode
bandwidth.

Functions That Do not Allocate Local Variables

Accessing function arguments and local variables directly through ESP frees EBP for use asa
general-purpose register.

Background

The function arguments and local variablesinside afunction are referenced through a so-called frame
pointer. In AMD®64 code, the base pointer register (rBP) is customarily used as a frame pointer. You
set up the frame pointer at the beginning of the function using a function prologue:

push ebp ; Save old frame pointer.
mov ebp, esp ; Initialize new frame pointer.
sub esp, n ; Allocate space for local variables (only if the

function allocates |ocal variables).

Chapter 4 Instruction-Decoding Optimizations 81

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Function arguments on the stack can how be accessed at positive offsets relative to rBP, and local
variables are accessible at negative offsets relative to rBP.

Example
The traditional function epilogue looks like this:

nov esp, ebp ; Deal | ocate | ocal variables (only if space was allocated).
pop ebp ; Restore old frame pointer.

Replace the traditional function epilogue with asingle LEAVE instruction:

| eave

82 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.8 Alternatives to SHLD Instruction

Optimization

Where register pressureis low, replace the SHLD instruction with alternative code using ADD and
ADC, or SHR and LEA.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Using alternative code in place of SHLD achieves lower overall latency and requires fewer execution
resources. The 32-bit and 64-bit forms of ADD, ADC, SHR, and LEA are DirectPath instructions,
while SHLD is a VectorPath instruction. Use of the replacement code optimizes decode bandwidth
because it potentially enables the simultaneous decoding of athird DirectPath instruction. However,
the replacement code may increase register pressure because it destroys the contents of one register
(reg2 in the following examples) whereas the register is preserved by SHLD.

Example 1

Replace this instruction:

shld regi, reg2 1

with this code sequence:

add reg2, reg2
adc regl, regl

Example 2
Replace this instruction:

shid regl, reg2 2

with this code sequence:

shr reg2, 30
lea regl, [regl*4+regZ]

Chapter 4 Instruction-Decoding Optimizations 83

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Example 3
Replace this instruction:

shld regi, reg2 3

with this code sequence:

shr reg2, 29
lea regl, [regl*8+regZ]

25112 Rev.3.04 March 2004

84 Instruction-Decoding Optimizations

Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.9 8-Bit Sign-Extended Immediate Values

Optimization

Use 8-hit sign-extended immediate values instead of larger-size values.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Using 8-bit sign-extended immediate values improves code density with no negative affects on the
processor.

Example
Consider thisinstruction:

add bx, -5

Avoid encoding it as:

81 C3 FF FB

Instead, encode it as:

83 C3 FB

Chapter 4 Instruction-Decoding Optimizations 85

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

4.10 8-Bit Sign-Extended Displacements

Optimization

Use 8-hit sign-extended displacements for conditional branches.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Using short, 8-bit sign-extended displacements for conditional branches improves code density with
no negative affects on the processor.

86 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4.11 Code Padding with Operand-Size Override and
NOP

Optimization

Use one or more operand-size overrides (66h) and the NOP instruction (90h) to align code and space
out branches.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Occasionally it is necessary to insert neutral code fillers into the code stream (for example, for code-
alignment purposes or to space out branches). Because thisfiller code is executable, it should take up
as few execution resources as possible, not diminish decode density, and not modify any processor
state other than advancing the instruction pointer (rIP). Although there are several possible multibyte
NOP-equivalent instructions that do not change the processor state (other than rIP), combinations of
the operand-size override and the NOP instruction work best.

Example

Assign code-padding sequences like these and use them to align code and space out branches. These
sequences are suitable for both 32-bit and 64-bit code, and you can use them on the AMD Athlon 64
and AMD Opteron processors, as well as seventh-generation AMD Athlon processors:

NOP1_OVERRI DE_NOP TEXTEQU <DB 090h>
NOP2_OVERRI DE_NOP TEXTEQU <DB 066h, 090h>

NOP3_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 090h>

NOP4_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 066h, 090h>

NOP5_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 090h, 066h, 090h>

NOP6_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 090h, 066h, 066h, 090h>

NOP7_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 066h, 090h, 066h, 066h, 090h>
NOP8_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 066h, 090h, 066h, 066h, 066h, 090h>
NOP9_OVERRI DE_NOP TEXTEQU <DB 066h, 066h, 090h, 066h, 066h, 090h, 066h, 066h, 090h>

For x87 floating-point instructions, a better single-byte padding exists. See “Align and Pack
DirectPath x87 Instructions’ on page 248.

Chapter 4 Instruction-Decoding Optimizations 87

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

88 Instruction-Decoding Optimizations Chapter 4

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 5 Cache and Memory Optimizations

The optimizations in this chapter take advantage of the large L 1 caches and high-bandwidth buses of

the AMD Athlon™ 64 and AMD Opteron™ processors.

This chapter covers the following topics:

Topic Page
Memory-Size Mismatches 90
Natural Alignment of Data Objects 93
Cache-Coherent Nonuniform Memory Access (cCNUMA) 94
Multiprocessor Considerations 97
Store-to-Load Forwarding Restrictions 98
Prefetch Instructions 102
Write-combining 110
L1 Data Cache Bank Conflicts 111
Placing Code and Data in the Same 64-Byte Cache Line 113
Sorting and Padding C and C++ Structures 114
Sorting Local Variables 116
Appropriate Memory Copying Routines 117
Stack Considerations 128

Chapter 5 Cache and Memory Optimizations

89

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

5.1 Memory-Size Mismatches

Optimization

25112 Rev.3.04 March 2004

[Avoid memory-si ze mismatches when different instructions operate on the same data. WWhen one
instruction stores and another instruction subsequently loads the same data, keep their operands
aligned and keep the loads/stores of each operand the same size.

Application

This optimization appliesto:
o 32-bit software

e 64-bit software

Examples—Store-to-Load-Forwarding Stalls

The following code examples result in a store-to-load-forwarding stall:

64-bit (Avoid)
foo DQ ?

mov DWORD PTR f oo, eax
nmov DWORD PTR foo+4, ebx
mov rcx, QAORD PTR foo

32-bit (Avoid)
foo DQ ?

mov DWORD PTR f oo, eax
mov DWORD PTR f oo+4, edx
fld QMORD PTR f oo

Avoid
nmov foo, eax
mov foo+4, edx

novg mD, foo

Preferred

nmov f oo, eax
nmov foo+4, edx
nmovd m0D, foo

punpckl dg m0, foo+4

; Assume foo is 8-byte aligned.

; Store a DWORD to foo.
; Now store to foo+4.
; Load a QWORD from foo.

; Assunme foo is 4-byte aligned.

; Store a DWORD in foo.
; Store a DWORD in foo+4.
; Load a QWORD from foo.

90

Cache and Memory Optimizations

Chapter 5

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Preferred If Stores Are Close to the Load

nmovd mD, eax
nmov foo+4, edx
punpckl dg moO, foo+4

Examples—Large-to-small Mismatches

Avoid large-to-small mismatches, as shown in the following code:

64-bit (Avoid)
foo DQ ?

mov QAORD PTR f oo, rax
nmov eax, DWORD PTR foo
mov edx, DWORD PTR foo+4

32-bit (Avoid)
foo DQ ?

fst QAMORD PTR f oo

nmov eax, DWORD PTR foo
mov edx, DWORD PTR foo+4

Avoid
nmovqg foo, MO

mov eax, foo
mov edx, foo+4

Preferred

nmovd foo, mmD
pswapd mm0D, mmD
nmovd foo+4, mD
pswapd mmO, mmD

nmov eax, foo
nmov edx, foo+4

Assunme foo is 8-byte aligned.

Store a QAORD to foo.
Load a DWORD from f oo.

Load a DWORD from f oo+4.

Assume foo is 4-byte aligned.

Store a QAORD in foo.
Load a DWORD from f oo.

Load a DWORD from f oo+4.

Preferred If the Contents of MMO are No Longer Needed

nmovd foo, mmD
punpckhdg m©O, m0
nmovd foo+4, mmD

nmov eax, foo
nmov edx, foo+4

Chapter 5

Cache and Memory Optimizations 91

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Preferred If the Stores and Loads are Close Together, Option 1
novd eax, mmD
pswapd mmO, mmD
novd edx, mmD
pswapd mmO, mm0

Preferred If the Stores and Loads are Close Together, Option 2

nmovd eax, nmmD
punpckhdg m©O, m0
nmovd edx, nmmD

92 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

5.2 Natural Alignment of Data Objects

Optimization

[IMake sure data objects are naturally aligned. An object is naturally aligned if it islocated at an
address that isamultiple of its size.

Locate this type of object At an address evenly divisible by
Word 2
Doubleword 4
Quadword 8
Ten-byte (for example, TBYTE or REAL10) 8 (instead of 10)
Double quadword 16
Application

This optimization applies to:
* 32-hit software
e 64-bit software

Rationale

A misaligned store or load operation suffers a minimum one-cycle penalty in the processor’s load-
store pipeline. Also, using misaligned loads and stores increases the likelihood of encountering a
store-to-load forwarding pitfall, especially when operating in long mode (64-bit software). (For a
more detailed discussion of store-to-load forwarding issues, see “ Store-to-Load Forwarding
Restrictions’” on page 98.)

In addition, if the Alignment Mask hit is set in Control Register 0 (CRO0), an unaligned memory
reference may cause an alignment check exception. For more information on this topic, see Volume 2
of the AMD64 Architecture Programmer s Manual (order# 24593).

Chapter 5 Cache and Memory Optimizations 93

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.3 Cache-Coherent Nonuniform Memory Access
(ccNUMA)

Optimization

For applications with multiple threads, use OS functions to run athread on a particular node and let
that thread allocate the memory that it requires so that the memory used islocal to that node. In the
Microsoft Windows environment, the function to run athread on a particular node is

SetThread AffinityMask().

Be sure operating systems are properly configured to support ccNUMA.. All versions of Microsoft
Windows XP for AMD64 and Windows Server for AMD64 support ccNUMA without any changes.
The 32-bit versions of Windows Server 2003, Enterprise Edition and Windows Server 2003,
Datacenter Edition require the /PAE boot parameter to support ccNUMA.

For 64-bit Linux, there may be separate kernels supporting ccNUMA that should be selected.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Cache-coherent nonuniform memory access (ccNUMA) is atype of architecture for multiprocessing
systems. The AMD Opteron processor implements a ccNUMA architecture when two or more
processors are connected together on the same motherboard.

Most multiple processor systems available today employ a symmetric multiprocessing (SMP)
architecture. Processors on an SMP platform generally share acommon or centralized memory bus,
having identical memory access latencies regardless of the processor position. Because the processors
use the same bus and memory, system performance may be negatively affected when bottlenecks
occur dueto increased demands on the single memory bus. Figure 1 showsasimplified block diagram
for atwo processor SMP system.

94 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

CPUO CPU1

{ {
!

Memory

Figure 1. Simple SMP Block Diagram

In accNUMA design, each processor has its own memory system. When a processor accesses

memory on its own local memory system, the latency isrelatively low, especially when compared to a
similar SMP system. If a processor accesses memory located on a different processor, then the latency
will be higher. The phrase ‘ non-uniform memory access' refersto this potential differencein latency.

In an AMD Opteron processor system, each processor contains its own memory controller. Figure 2
shows an example of atwo processor AMD Opteron system in accNUMA configuration.

HyperTransport

AMD Opteron AMD Opteron

cpuo | 1" crun
Memory Memory

Figure 2. Opteron ccNUMA Configuration

OS Implications

An operating system running on an AMD Opteron platform will coordinate and manage the memory
configuration so that an application does not have to be aware of this memory configuration. Thanks
tothe OS, the platform will simply appear to have one contiguous block of memory regardless of how
many processors are in the platform.

Because of the differencein latenciesin ccNUMA systems, the OS must make determinations that
enabl e the best performance. It would be undesirable, for example, to spawn athread on a processor
while allocating the memory space for that thread on a different processor. For such reasons, it is

Chapter 5 Cache and Memory Optimizations 95

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

important to be aware of the capabilities of the OS being used. Microsoft's Windows Server 2003
products are ccNUMA aware. The SUSE distribution of 64-bit Linux also hasa ccNUMA aware
kernel for AMD®64 processors.

Windows applications that spawn severa threads, where each thread operates on largely independent
data, might benefit from distributing those threads across several processors and allocating memory
locally for each thread. This can be accomplished by using the SetThreadAffinityMask() function
and by allocating memory blocks using VirtualAlloe() from within the thread that will be heavily
accessing that memory block. See the Microsoft documentation on MSDN for more details (search
for SetThreadAffinityMask()).

96 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

54 Multiprocessor Considerations

In amultiprocessor system, data within asingle cache line that is shared between processors can
reduce performance. In certain cases (for example, semaphores), this kind of cache-line data sharing
cannot be avoided, but it should be minimized where possible.

Data can often be restructured so this does not occur. Cache lines on AMD Athlon 64 and
AMD Opteron processors are presently 64 bytes, but a scheme that avoids this problem regardless of
cache-line size makes for more performance-portable code.

For exampl e, per-thread data can be allocated on the heap (for example, viacallsto mal | oc()), and
thisis preferred over statically defined shared arrays and variables that are potentially located in a
single cache line. Furthermore, some software environments even provide special versions of mal | oc
that guarantee data alignment to a specified value, and these can be useful in aligning data and
eliminating unwanted cache line overlap.

Application

This optimization applies to:
o 32-hit software

* 64-hit software

Chapter 5 Cache and Memory Optimizations 97

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.5 Store-to-Load Forwarding Restrictions

Store-to-load forwarding refers to the process of aload reading (forwarding) data from the store
buffer. When this can occur, it improves performance because the load does not have to wait for the
recently written (stored) datato be written to cache and then read back out again. There are instances
in the load-store architecture of the AMD Athlon 64 and AMD Opteron processors when aload
operation is not allowed to read needed data from a store in the store buffer.

In these cases, the load cannot complete (load the needed datainto aregister) until the store has
retired out of the store buffer and written to the data cache. A store-buffer entry cannot retire and
write to the data cache until every instruction before the store has completed and retired from the
reorder buffer.

The implication of thisrestriction isthat all instructions in the reorder buffer, up to and including the
store, must complete and retire out of the reorder buffer before the load can compl ete. Effectively, the
load has a fal se dependency on every instruction up to the store.

Dueto the significant depth of the LS buffer of the AMD Athlon 64 and AMD Opteron processors,
any load that is dependent on a store that cannot bypass data through the LS buffer may experience
significant delays of up to tens of clock cycles, where the exact delay is a function of pipeline
conditions.

The following sections describe store-to-load forwarding examples.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is alowed to read data from the store-buffer entry only if all of the following conditions are
satisfied:

e The start address of the load matches the start address of the store.

* Theload operand sizeis equa to or smaller than the store operand size.

« Neither the load nor the store is misaligned.

* The store datais not from a high-byte register (AH, BH, CH, or DH).

The following sections describe common-case scenarios to avoid. In these scenarios, aload has atrue
dependency on an L S2-buffered store, but cannot read (forward) data from a store-buffer entry.
Narrow-to-Wide Store-Buffer Data-Forwarding Restriction

If the following conditions are present, there is a narrow-to-wide store-buffer data-forwarding
restriction:

e Theoperand size of the store data is smaller than the operand size of the load data.

e Therange of addresses spanned by the store data covers some subrange of the addresses spanned
by the load data.

98 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Avoid

nov eax, 10h

nmov WORD PTR [eax], bx ; Word store

nov ecx, DWORD PTR [eax] ; Doubl eword | oad--cannot forward upper byte

; fromstore buffer

Avoid

nov eax, 10h

nov BYTE PTR [eax+3], bl ; Byte store

nov ecx, DWORD PTR [eax] ; Doubl eword | oad--cannot forward upper byte

fromstore buffer

Wide-to-Narrow Store-Buffer Data-Forwarding Restriction

If the following conditions are present, there is awide-to-narrow store-buffer data-forwarding
restriction:

« The operand size of the store datais greater than the operand size of the load data.
* The start address of the store data does not match the start address of the load data.

Avoid

nov eax, 10h

add DWORD PTR [eax], ebx ; Doubl eword store

mov cx, WORD PTR [eax+2] ; Word | oad--cannot forward high word
; fromstore buffer

Avoid

novq [foo], mml ; Store upper and | ower half.

add eax, [foo] ; Fine

add edx, [foo+4] ; Not good!

Preferred

novd [foo], nml ; Store lower half.

punpckhdg mi, nmml ; Copy upper half into | ower half.

novd [foo+4], mml ; Store |lower half.

add eax, [foo] ; Fine

add edx, [foo+4] ; Fine

Misaligned Store-Buffer Data-Forwarding Restriction

If the following condition is present, there is amisaligned store-buffer data-forwarding restriction:

e Thestore or load address is misaligned. For example, a quadword storeis not aligned to a
quadword boundary.

Chapter 5 Cache and Memory Optimizations 99

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

A common case of misaligned store-data forwarding involves the passing of misaligned quadword
floating-point data on the doubleword-aligned integer stack. Avoid the type of code shown in the
following example:

nov esp, 24h

fstp QWORD PTR [esp] ; ESP = 24
C. ; Store occurs to quadword misaligned address.
fld QARD PTR [esp] ; Quadword | oad cannot forward from quadword

m sal i gned ‘ FSTP[ESP]’ store operation.

High-Byte Store-Buffer Data-Forwarding Restriction

If the following condition is present, there is a high-byte store-data buffer-forwarding restriction—the
store data is from a high-byte register (AH, BH, CH, DH).

Avoid the type of code shown in the following example:

nov eax, 10h
nov [eax], bh ; High-byte store

nmov dl, [eax] ; Load cannot forward from hi gh-byte store.

One Supported Store-to-Load Forwarding Case

Thereis one case of a mismatched store-to-load forwarding that is supported by AMD Athlon 64 and
AMD Opteron processors. The lower 32 bits from an aligned quadword write feeding into a
doubleword read is allowed, asillustrated in the following example:

novq [al i gnedQword], mmD

nov eax, [alignedQaord]

Store-to-Load Forwarding—False Dependencies

A load may detect afalse dependency on a store-buffer entry if the load does not have atrue
dependency on the most recent store that matches address bits 11-2 of the load. A false match could
occur on the most recent store that writes somewhere within the same doubleword of memory as the
load. In addition, afalse match could occur if astore addressis located at an exact multiple of

100 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

4-Kbyte pages away from the load address (address bits 47—12 do not match). Avoid the type of code
shown in the following example:

nov eax, 10h

nov [eax], bx ; Word store to address 10

nov cXx, [eax+2] ; Word load to address 12

; Load detects a fal se dependency
; on store because it is in the

; sane doubl eword of nenory

; Wrd load to address 14

; Load does not detect a false

; dependency because it is to a

; different doubl eword of nenory.

nov cXx, [eax+4]

Here is another example of the type of code to avoid:

nov eax, 10h

nov [eax], bl ; First store to DWORD at address 10h
nov [eax+1], cl ; Second store to DWORD at address 10h
nov dl, [eax] ; Load detects a false

; dependency on the second store

; because it is the npst recent

; store to the sane doubl eword of

; menory as the | oad.

Summary of Store-to-Load-Forwarding Pitfalls to Avoid

To avoid store-to-load-forwarding pitfalls, follow these guidelines:

« Maintain consistent use of operand size across al |oads and stores. Preferably use doubleword or
guadword operand sizes.

« Avoid misaligned data references.

* Avoid narrow-to-wide and wide-to-narrow forwarding cases.

« When using word or byte stores, avoid |oading data from anywhere in the same doubleword of
memory other than the identical start addresses of the stores.

Application

This optimization appliesto:

e 32-bit software

e 64-hit software

Chapter 5 Cache and Memory Optimizations 101

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.6 Prefetch Instructions

Optimization

Where appropriate, use one of the prefetch instructions to increase the effective bandwidth of the
AMD Athlon 64 and AMD Opteron processors.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

Prefetch instructions take advantage of the high bus bandwidth of the AMD Athlon 64 and

AMD Opteron processors to hide latencies when fetching data from system memory. A prefetch
instruction initiates a read request of a specified address and reads the entire cache line that contains
that address.

AMD Athlon 64 and AMD Opteron processors perform three types of prefetches:

Prefetch type Description

Load Reads the data into the L1 data cache; the data is later evicted to the L2 cache. The
following instructions perform load prefetches: PREFETCH, PREFETCHTO,
PREFETCHT1, and PREFETCHT2.

Store Reads the data into the L1 data cache and marks the data as modified; the data is
later evicted to the L2 cache. The PREFETCHW instruction performs a store prefetch.

Nontemporal The PREFETCHNTA instruction performs a nontemporal prefetch. Reads the data
into way 0 of the L1 data cache; when a PREFETCHNTA misses in the L2 cache and
reads from memory, the data is never evicted to the L2 cache, avoiding cache
pollution. (When a PREFETCHNTA hits in the L2 cache, the data is evicted back to
the L2 cache.)

The prefetch instructions can be used anywhere, in any type of code. The use of prefetch instructions
is not affected by the values of Control Register 0 (CRO) bits, such as CRO.EM and CRO.TS.

Prefetching versus Preloading

In code that makes irregular memory accesses rather than sequential accesses, an ordinary MOV
instruction isthe best way to load data. But in situations where sequential addresses are read, prefetch
instructions can improve performance. Prefetch instructions only update the L 1 data cache and do not
update an architectural register. This uses one less register compared to aload instruction.

102 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Unit-Stride Access

Large data sets typically require unit-stride access to ensure that all data pulled in by a prefetch
instruction is actually used. Large data sets make use of all datathat isread from memory, rather than
using only a sparse subset of the memory. If necessary, you should reorganize algorithms or data
structures to allow unit-stride access. For a definition of unit-stride access, see “ Definitions” on
page 108.

Hardware Prefetching

The AMD Athlon 64 and AMD Opteron processors implement a hardware prefetching mechanism.
The prefetched dataisloaded into the L2 cache. The hardware prefetcher works most efficiently when
datais accessed on a cache-line-by-cache-line basis (that is, without skipping cache lines). Cache
lines on current AMD Athlon 64 and AMD Opteron processors are 64 bytes, but cache-line sizeis
implementation dependent.

In some cases, using prefetch instructions on processors with hardware prefetching may slightly
reduce performance. In these cases, it may be necessary to remove the prefetch instructions. You
should weigh the measured gains obtained on non-hardware-prefetch-enabled processors using the
software prefetch instruction against any loss in performance on processors with the hardware
prefetcher. All current AMD Athlon 64 and AMD Opteron processors have hardware prefetching
mechanisms.

The hardware prefetcher prefetches data that is accessed in an ascending order on a cache-line-by-
cache-line basis. When the hardware prefetcher detects an accessto cacheline/ followed by an access
to cacheline/ + 1, it initiates a prefetch of cache line / + 3. Accessing data in increments larger than
64 bytes may fail to trigger the hardware prefetcher because cache lines are skipped. In these cases,
software-prefetch instructions should be employed. The hardware prefetcher also is not triggered
when code accesses memory in a descending order.

PREFETCH/W versus PREFETCHNTA/TO/T1/T2

PREFETCHNTA, PREFETCHTO, PREFETCHT1, and PREFETCHT2 are SSE instructions and are
processor-implementation dependent. For the AMD Athlon 64 and AMD Opteron processors, data
that is prefetched with the PREFETCHNTA instruction is not placed into the L2 cache when it is
evicted unlessit was originaly in L2 when prefetched.

PREFETCHNTA isintended for non-temporal datathat will not be needed again soon.
PREFETCHNTA should also be used when reading arrays that are so large that they are larger than
the L2 cache. Because of their size, such large arrays will not be availablein L2 even if they are
needed again, and by feeding them through the L2 cache, other possibly useful data will also be
evicted from L2.

Note: The L2 cache size of the processor can be determined by using the CPUID instruction.
Chapters 5 and 9 show examples of how to use the PREFETCHNTA instruction.

Chapter 5 Cache and Memory Optimizations 103

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Note: PREFETCHNTA should NOT be used for large arrays that are only being written, not read.
In such cases, write-combining stores should be used. (See “Write-combining” on page 110,
Appendix B “Implementation of Write-Combining” on page 269, and “Write-Combining” in
Volume 2 of the AMDG64 Architecture Programmer s Manual (order no. 24593).)

Current AMD Athlon 64 and AMD Opteron processors implement the PREFETCHTO,
PREFETCHT1 and PREFETCHT2 instructions in exactly the same way as the PREFETCH
instructions. That is, the datais brought into the L1 data cache. This functionality could be changed in
future implementations.

PREFETCHW versus PREFETCH

Code that intends to modify the cache line that is brought in through prefetching should use the
PREFETCHW instruction. PREFETCHW gives a hint to the AMD Athlon 64 and AMD Opteron
processors of an intent to modify the cache line. The AMD Athlon 64 and AMD Opteron processors
mark the cache line being read by PREFETCHW as modified. Using PREFETCHW can save
additional cycles compared to PREFETCH, and avoid the subsequent cache state change caused by a
write to the prefetched cache line. Only use PREFETCHW if thereis awrite to the same cacheline
afterwards.

Write-Combining Usage

Use write-combining instructions instead of PREFETCHW in situations where al of the following
conditions are true:

« The codewill overwrite one or more complete cache lines with new data.
« Thenew datawill not be used again soon.

Write-combining instructions include the SSE and SSE2 instructions MOVNTDQ, MOVNTI,
MOVNTPS, and MOVNTPD. They aso include the MMX instruction MOVNTQ.

Write-combining instructions can dramatically improve memory-write performance. They write data
directly to memory through write-combining buffers, bypassing the cache. Thisis faster than
PREFETCHW because data does not need to be initially read from memory to fill the cache lines,
only to be completely overwritten shortly thereafter. The new datais simply written to memory,
replacing the old datain memory, so no memory read is performed.

One application where write-combining is useful, often in conjunction with prefetch instructions, isin
copying large blocks of memory.

Note: The write-combining instructions are not recommended or necessary for write-combined
memory regions since the processor will automatically combine writes for those regions.
Write-combine memory types are indicated through the MTRRs and the page-attribute table
(PAT).

Note: For best performance, do not mix write-combining instructions on a cache line with non-
write-combining store instructions.

104 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

For more information on write-combining, see Appendix B, “Implementation of Write-Combining.”

Multiple Prefetches

Programmers can initiate multiple outstanding prefetches on the AMD Athlon 64 and AMD Opteron
processors. The AMD Athlon 64 and AMD Opteron processors can have a theoretical maximum of
eight outstanding prefetches, but in practice the number is usually smaller. When al resources are
filled by various memory read requests, the processor waits until resources become free before
processing the next request. Multiple prefetch requests are essentially handled in order, prefetching
datain the order that it is needed.

The following example shows how to initiate multiple prefetches when traversing more than one
array.

Example—Multiple Prefetches
. CODE

. K3D

. 686

Original C code:

#defi ne LARGE_NUM 65536
#define ARR S| ZE (LARGE_NUM 8)

doubl e array_a[LARGE_NUM ;
doubl e array_b[LARGE_NUM ;
doubl e array_c[LARGE_NUM ;
int i;

for (i = 0; i < LARGENUM i++) {

a[i] = b[i] * c[i];
}
mov edx, (-LARGE_NUM ; Use biased index.
mov eax, OFFSET array_a ; Get address of array_a.
mov ebx, OFFSET array_b ; Cet address of array_b.
mov ecx, OFFSET array_c ; Cet address of array_c.
| oop:
prefetchw [eax+256] ; Four cache |ines ahead
prefetch [ebx+256] ; Four cache |ines ahead
prefetch [ecx+256] ; Four cache |ines ahead
fld QAORD PTR [ebx+edx*8+ARR_SI ZE] ; bli]
frul QAORD PTR [ecx+edx*8+ARR_SI ZE] ;o b[i] * oc[i]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE] ;oafi] = b[i] * c[i]
fld QAORD PTR [ebx+edx*8+ARR_SI ZE+8] . b[i+1]
frul QAORD PTR [ecx+edx*8+ARR_SI ZE+8] ;o b[i+1] * c[i+1]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+8] ;oafi+l] = b[i+1] * c[i+1]
fld QAORD PTR [ebx+edx*8+ARR_SI ZE+16] . b[i+2]
frul QAORD PTR [ecx+edx*8+ARR_SI ZE+16] ;o b[i+2]*c[i +2]

Chapter 5 Cache and Memory Optimizations 105

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+16] ;oa[i+2] = [i+2] * c[i+2]
fld QAORD PTR [ebx+edx*8+ARR_SI| ZE+24] ;o b[i+3]
frrul QAORD PTR [ecx+edx*8+ARR_SI ZE+24] ;o b[1+3] * c[i+3]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+24] ; a[i+3] = b[i+3] * c[i+3]
fld QAORD PTR [ebx+edx*8+ARR_SI| ZE+32] ;o b[i+4]
frrul QAORD PTR [ecx+edx*8+ARR_SI ZE+32] ;o b[i+4] * c[i+4]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+32] ; a[i+4] = b[i+4] * c[i+4]
fld QAORD PTR [ebx+edx*8+ARR_SI| ZE+40] ; b[i+5]
frrul QAORD PTR [ecx+edx*8+ARR_SI ZE+40] ; b[i+5] * c[i+5]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+40] ; a[i+5] = b[i+5] * c[i+5]
fld QAORD PTR [ebx+edx*8+ARR_S| ZE+48] ; b[i+6]
frrul QAORD PTR [ecx+edx*8+ARR_SI ZE+48] ; b[i+6] * c[i+6]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+48] ; a[i+6] = b[i+6] * c[i+6]
fld QAORD PTR [ebx+edx*8+ARR_SI| ZE+56] ;o b[i+7]
frrul QAORD PTR [ecx+edx*8+ARR_SI ZE+56] ;o b[1+7] * c[i+7]
fstp QMORD PTR [eax+edx*8+ARR_SI ZE+56] ;oa[i+7] = b[i+7] * c[i+7]
add edx, 8 ; Conmput e next 8 products
jnz loop ; until none left.
END

The following optimization rules are applied to this example:

e Partialy unroll loopsto ensure that the data stride per loop iteration is equal to the length of a
cache line. This avoids overlapping PREFETCH instructions and thus makes optimal use of the
available number of outstanding prefetches.

e Becausethearray arr ay_a iswritten rather than read, use PREFETCHW instead of PREFETCH
to avoid overhead for switching cache lines to the correct state. The prefetch distance is optimized
such that each loop iteration is working on three cache lines while active prefetches bring in the
next cache lines.

¢ Reduce index arithmetic to a minimum by use of complex addressing modes and biasing of the
array base addresses in order to cut down on loop overhead.

Determining Prefetch Distance

When determining how far ahead to prefetch, the basic guideline isto initiate the prefetch early
enough so that the datais in the cache by the time it is needed, under the constraint that there can not
be more than eight prefetchesin flight at any given time.

To determine the optimal prefetch distance, use empirical benchmarking when possible. Prefetching
three or four cache lines ahead (192 or 256 bytes) is a good starting point and usually gives good
results. Trying to prefetch too far ahead impairs performance.

Memory-Limited versus Processor-Limited Code

Software prefetching can help to hide the memory latency, but it can not increase the total memory
bandwidth. Many loops are limited by memory bandwidth rather than processor speed, as shown in
Figure 3. In these cases, the best that software prefetching can do isto ensure that enough memory

106 Cache and Memory Optimizations Chapter 5

AMDQOl

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

requests are “in flight” to keep the memory system busy all of the time. The AMD Athlon 64 and
AMD Opteron processors support amaximum of eight concurrent memory requeststo different cache
lines. Multiple requests to the same cache line count as only one towards this limit of eight.

memory burst time time
(one 64-byte cache line)

v

Total Memory Latency

Prefetch distance is
~4 cache lines ahead

Prefetchnta [esi + 64 * ﬂ]

Figure 3. Memory-Limited Code

Code that performs many computations on each cache lineis limited by processor speed rather than
memory bandwidth, as shown in Figure 4. In this case, the goal of software prefetching isjust to
ensure that the memory data is available when the processor needs it. As the processor speed
increases, the optimal prefetch distance increases until the memory bandwidth becomes the limiting
factor.

For an example of how to use software prefetching in processor-limited code, see “ Structuring Code
with Prefetch Instructions to Hide Memory Latency” on page 206.

memory burst time
(one 64-byte cache line)

oot | w2 | [ma ||

cycles
CPU time

(process one cache line)

time

Total Memory LatencyT

CPU
loops

Prefetch distance is
Prefetchnta [esi + 64 * 2 1 ~2 cache lines ahead
(maybe use 3 for safety)

Figure 4. Processor-Limited Code

Chapter 5 Cache and Memory Optimizations 107

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Definitions

Unit-stride access refers to amemory access pattern where consecutive memory accesses are made to
consecutive array elements, in ascending or descending order. If the arrays are made of elemental
types, then they imply adjacent memory locations as well. For example:

char j, K[MAX];

for (i =0; i < MX i++) {

J+: k[i]; /1 Every byte is used.
}

doubl e x, y[MAX];

for (i = 0; i < MAX; i++) {
x +=y[i]; // Every byte is used.
}

Exception to Unit Stride

The unit-stride concept works well when stepping through arrays of elementary data types. In some
instances, unit stride alone may not be sufficient to determine how to use the PREFETCH instruction
properly. For example, assume that there is a vertex structure of 256 bytes and the code steps through
the vertices in unit stride, but using only the x, y, z, w components, each being of typef 1 oat (for
example, thefirst 16 bytes of each vertex). In this case, the prefetch distance obviously should be
some function of the data size structure (for a properly chosen n):

prefetch [eax+n*structure_size]

add eax, structure_size

You should experiment to find the optimal prefetch distance; there is no formula that works for all
situations.

Data Stride per Loop Iteration

Assuming unit-stride access to asingle array, the data stride of aloop (the loop stride) refersto the
number of bytes accessed in the array per loop iteration. For example:

fldz
add_| oop:
fadd QMORD PTR [ebx*8+base_addr ess]
dec ebx
jnz add_l oop

The data stride of the above loop is eight bytes. In general, for optimal use of prefetching, the data
stride per iteration is the length of a cache line (64 bytesin the AMD Athlon 64 and AMD Opteron
processors). If the loop stride is smaller, unroll the loop enough to use awhole cache line of data per

108 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

iteration. However, unrolling the loop may not be feasible if the original loop strideis very small (for
example, only two bytes).

Prefetch at Least 64 Bytes Away from Surrounding Stores

The prefetch instructions can be affected by fal se dependencies on stores. If thereis a storeto an
address that matches arequest, that request (the prefetch instruction) may be blocked until the storeis
written to the cache. Therefore, code should prefetch datathat islocated at |east 64 bytes away from
any surrounding store's data address.

Chapter 5 Cache and Memory Optimizations 109

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.7 Write-combining

Optimization

[] Operating-system, device-driver, and BIOS programmers should take advantage of the write-
combining capabilities of the AMD Athlon 64 and AMD Opteron processors.

For details, see Appendix B, “Implementation of Write-Combining.” For more information on write-
combining, see “Write-Combining” in Volume 2 of the AMD64 Architecture Programmer s Manual
(order no. 24593).

Application

This optimization appliesto:

e 32-bit software

e 64-bit software

Rationale

In order to improve system performance, the AMD Athlon 64 and AMD Opteron processors
aggressively combine multiple memory-write cycles (of any data size) that address locations within a
64-byte cache-line-aligned write buffer.

110 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

5.8 L1 Data Cache Bank Conflicts

Optimization

Utilize pair loads that do not have a bank conflict in the L1 data cache to improve load thoughput.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Fields Used to Address the Multibank L1 Data Cache

The L1 data cacheisamultibank design consisting of 8 banks total, where each bank is 8 bytes wide.
To address the L1 data cache, the processor uses fields within the address as shown in the following
diagram:

CI-LIITTITTIITIITTIT]

J L Loyte
Index Bank
How to Know If a Bank Conflict Exists

The existence of abank conflict between two neighboring |oads depends on their bank and index
values:

When the bank is And the index is Then a bank conflict
Different Either the same or different Does not exist

The same The same Does not exist

The same Different Exists

In other words, with common data types, consecutive array €lements cannot have abank conflict. If
the array elements are 4 bytes or less, the two loads are to the same index and the same bank, and no
conflict occurs. If the array elements are 8 bytes, the loads are to the same index but different banks,
so abank conflict does not occur either.

Chapter 5 Cache and Memory Optimizations 111

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Rationale

Loads are served by the L 1 data cache in program order, but the number of loads that the processor
can perform in one cycle depends on whether a bank conflict exists between the loads:

When a bank conflict Then the number of loads the processor can perform per cycle is
Exists 1
Does not exist 2

Therefore, pairing loads that do not have a bank conflict helps maximize load throughpuit.

Example

Avoid code like this, where two loads without a bank conflict are separated by other instructions:

fld gword ptr [eax]
frul gword ptr [ebx]
faddp st(3), st

fld gword ptr [eax+8]
frul gqword ptr [ebx+8]
faddp st(2), st

Instead, rearrange the two loads so they appear asa pair:

fld gword ptr [eax]
fld gword ptr [eax+8]
frul gword ptr [ebx+8]
faddp st(2), st

frmul gword ptr [ebx]
faddp st(3), st

112 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

5.9 Placing Code and Data in the Same 64-Byte Cache
Line

Optimization

[Avoid placing code and data together within a cache line, especially if the data becomes modified.

Application
This optimization applies to:
o 32-bit software

¢ 64-bit software

Rationale

Sharing code and data in the same 64-byte cache line may cause the L1 caches to thrash
(unnecessarily cast out code or data) in order to maintain coherency between the separate instruction
and data caches. The AMD Athlon 64 and AMD Opteron processors have a cache-line size of 64
bytes.

For example, consider that a memory-indirect JIMP instruction may have the data for the jump table
residing in the same 64-byte cache line as the IMP instruction. This mixing of code and datain the
same cache line results in lower performance.

Do not place critical code at the border between 32-byte-aligned code segments and data segments.
Code at the beginning or end of a data segment should be executed as infrequently as possible or
padded.

In summary, avoid self-modifying code and storing data in code segments.

Chapter 5 Cache and Memory Optimizations 113

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.10 Sorting and Padding C and C++ Structures

Optimization

Sort and pad C and C++ structuresto achieve natural alignment.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

By sorting and padding structures at the source-code level, if the first member of a structureis
naturally aligned, then all other members are naturally aligned as well. This allows, for example,
arrays of structures to be perfectly aligned.

Sorting and Padding C and C++ Structures

To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’'s type size.

Example
Consider the following structure declaration in a C function:

struct {
char a[5];
I ong k;
doubl e x;
} baz;

Instead of alocating the membersin the order in which they are declared, allocate them from lower to
higher addresses in the following order and add padding:

x, k, a[4], a[3], a[2], a[l1], a[0], pad byteé, ..., pad_byt e0

114 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Related Information

For information on sorting and padding C and C++ structures at the C-source level, see “ Sorting and
Padding C and C++ Structures’ on page 39.

Chapter 5 Cache and Memory Optimizations 115

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.11 Sorting Local Variables

Optimization

Sort locd variables according to their type sizes, alocating those with larger type sizes ahead of those
with smaller type sizes.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

If thefirst variableis allocated for natural alignment, all other variables are allocated contiguoudly in
the order they are declared and are naturally aligned without any padding.

Example

Consider the following declarationsin a C function:

short ga, gu, gi;
I ong foo, bar;
double x, y, z[3];
char a, b;

fl oat baz;

Instead of allocating the variablesin the order in which they are declared, allocate them from lower to
higher addresses in the following order:

X, vy, z[2], z[1], z[O], foo, bar, baz, ga, gu, gi, a, b

Related Information

For information on sorting local variables at the C-source level, see “ Sorting Local Variables’ on
page 41.

116 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

5.12 Appropriate Memory Copying Routines

Optimization

[usethe appropriate routine when copying a block of memory. This section provides examples of
routines you can use to copy blocks of memory and explains how to improve performance by
choosing the appropriate routine for a given situation.

Application

This optimization appliesto:

e 64-bit software

Types of Routines as Classified by Block Size

With regard to block size, there are two types of block-copy routines:

Routine type Description

Small block Designed for use with small blocks (blocks that are the same size as or smaller than
the L1 data cache) and when the data in the block will be needed again soon.

Small block-copy routines leave the destination data in the L1 data cache for fast
access by subsequent instructions.

The performance numbers given for small block copies were measured with the
source data in the L1 data cache and the cache lines already allocated for the
destination data. Because these numbers are entirely dependent on the speed of the
processor, they are given in units of bytes/clock.

Large block Designed for use with large blocks (blocks that are larger than the L1 data cache) or
when the data in the block will not be needed again soon.

Large block-copy routines use prefetch instructions to efficiently read the source data
from main memory; these routines also use write-combining instructions to efficiently
write destination data directly to main memory without polluting any of the caches.

The performance numbers given for large block copies (in the comments of the
routines that follow) were measured using single-channel DDR333 memory with
CAS2 timing. For comparison purposes, performance numbers are given for both a
small (8-Kbyte) block and a large (8-Mbyte) block. The 8-Kbyte numbers are provided
for comparison purposes only. The performance numbers given for 8-Kbyte blocks
were measured with the source data in the L1 data cache, so these numbers are
higher than for 8-Mbyte blocks, where the source data is not in the cache. The
measurements for both 8-Kbyte and 8-Mbyte block copies would be the same if the
8-Kbyte block was read from main memory instead of the L1 data cache.

Note: All performance numbers count total traffic, which includes both a read and a write for each
byte copied.

Chapter 5 Cache and Memory Optimizations 117

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004

Processors

Types of Alignment

There are two basic types of alignment for a block of memory or data object:

Alignment type Description
Aligned A block of memory or a data object whose starting address is evenly divisible by a
particular power of two. For example, an aligned block might be 8-byte aligned.
Unaligned A block of memory or a data object whose starting address is not evenly divisible by a
power of two.
Granularity

The granularity of aroutine is the number of bytes that the routine's outer loop copies at atime and,
therefore, the minimum number of bytes that the routine can copy.

Determining Which Routine to Use

In terms of performance, the best routine to use to copy a block of memory depends on the size and
aignment of the block.

118

Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Use Table 6 to determine which routine to use for a given block.
Table 6. Routine Selection for Block Copies

Wh‘“t” the blockto be Then use the routine in this section on

copied is page

Less than or equal to | Routine 3: Small Aligned Block Copy Using MOVSQ 123

64 bytes

* Greater than Routine 4: Small Block Copy Using Discrete Moves 124
64 bytes

Small enough to fit
in the L1 data cache

Needed again soon

Greater than Routine 6: Large Aligned Block Copy Using Discrete Moves (Fast) 126
64 bytes

Small enough to fit
in the L1 data cache

Not needed again
soon

Grebater than Routine 6: Large Aligned Block Copy Using Discrete Moves (Fast)" 126
64 bytes

Larger than the L1
data cache

Needed again soon

Greater than Routine 6: Large Aligned Block Copy Using Discrete Moves (Fast) 126
64 bytes

Larger than the L1
data cache

Not needed again
soon

Note:

* For blocks larger than the L1 data cache but smaller than the L2 cache, the small copy routines may provide better
performance.

Aligning the Destination Starting Address

If the original destination address does not meet the recommended routine’s alignment requirements,
follow these steps:

1. Copy the bytes whose destination addresses are smaller than the lowest properly aligned
destination address using the routine in “Routine 1: Small, General Block Copy Using MOV SB”
on page 121.

2. Usethe recommended routine to copy the remainder of the block.

Chapter 5 Cache and Memory Optimizations 119

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Copying Remaining Bytes
If uncopied bytes remain after using the recommended routine, do this:

e Copy the remaining bytes using the routine in “Routine 1: Small, General Block Copy Using
MOV SB” on page 121.

120 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Routine 1: Small, General Block Copy Using MOVSB

Thisroutine illustrates a fast and simple way to copy a block of memory. You can use thisroutine to
copy any block, regardless of its alignment; however, this routine is not an efficient way to copy a
block of more than about 64 bytes.

Reserve this routine for copying unaligned or two-byte-aligned blocks of memory that are less than
64 bytes.

Thr oughput (8-Kbyte block): ~1.4 bytes/clock

Thr oughput (8- Myte block): ~0.79 CGbytes/s (The performance for |arge bl ocks
is shown for conparison purposes only. This routine is not recomended

for large blocks.)

Destination alignnment: Any
Source alignment: Any
Granularity: 1 byte

I nput :
RCX = destination address (dest)
RDX = source address (src)

R8 = nunber of bytes to copy (count)

nc_novsb PROC NEAR
Save RSI and RDI.

mov rsi, rdx ; Load source address.

mov rdi, rcx ; Load destination address.

nmv rcx, r8 ; Load nunber of bytes to copy.
rep novsb ; Copy bytes until none rensin.

; Restore RSI and RDI.
ret
nc_novsb ENDP

Chapter 5 Cache and Memory Optimizations 121

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Routine 2: Small Aligned Block Copy Using MOVSD

Thisroutine shows a fast and simple way to copy ablock of datathat is 4-byte aligned, not 8-byte
aigned.

Thr oughput (8-Kbyte block): ~5-6 bytes/clock

Thr oughput (8- Myte block): ~1.05 CGbytes/s (The performance for |arge bl ocks
is shown for conparison purposes only. This routine is not recomended

for large blocks.)

Destination alignment: none required
Source alignnment: none required
Granul arity: 4 bytes
I nput :

RCX = destination address (dest)

RDX = source address (src)

R8 = nunber of bytes to copy (count)

nc_novsd PROC NEAR
Save RSI and RDI.

mov rsi, rdx ; Load source address.

mov rdi, rcx ; Load destination address.

mv rcx, r8 ; Load nunber of bytes to copy.

shr rcx, 2 ; Convert nunber of bytes to nunmber of DWORDs.
rep novsd ; Copy DWORDs until none remain.

; Restore RSI and RDI.
ret
nc_novsd ENDP

122 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Routine 3: Small Aligned Block Copy Using MOVSQ
Thisroutine shows a fast and simple way to copy ablock of datathat is 8-byte aligned.

nc_novsq PROC NEAR
; Save RSI

Thr oughput (8-Kbyte bl ock): ~11-12 bytes/cl ock

Throughput (8-Myte block): 1.22 CGoytes/s (The performance for |arge bl ocks
is shown for
| arge bl ocks.)

for

conpari son purposes only. This routine is not recomended

Destination alignment: none required
Source alignnment: none required
Granularity: 8 bytes

I nput :

RCX
RDX

R8 =

nmov
nmov
nmov
shr
rep

destination address (dest)
source address (src)

nunber of bytes to copy (count)

rsi,
rdi,
rcx,
rcx,
nmvsq

r dx
rcx
r8
3

and

RDI .

; Load source address.

; Load destination address.

; Load nunber of bytes to copy.

; Convert nunber of bytes to number of QAORDs.
; Copy QAORDs until none remain.

; Restore RSI and RDI.

ret

nmc_novsqg ENDP

Chapter 5

Cache and Memory Optimizations 123

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Routine 4: Small Block Copy Using Discrete Moves

When compared with “Routine 3: Small Aligned Block Copy Using MOV SQ” on page 123, this
routine provides better performance for ablock of memory that is 8-byte aligned. Although the size of
the code islarger, the performance is 10-15% higher.

Thr oughput (8-Kbyte bl ock): ~11-14 bytes/cl ock

Destination alignment: none required
Source alignnment: none required
Granul arity (sub-block size): 32 bytes
I nput :

RCX = destination address (dest)

RDX = source address (src)

R8 = nunber of bytes to copy (count)

nc_sm al i gned PROC NEAR

add rdx, r8 ; Add to source address the number of bytes to copy.
add rcx, r8 ; Add to destination address the nunber of bytes to copy.
shr r8, 3 ; Convert nunber of bytes to nunber of QAORDs.
neg r8 ; Make number of QAORDs negati ve.
ALI GN 16 ; Pad to align top of |oop.
copyl oop:
mov rax, [rdx+r8*8] ; Copy sub-block (four QAORDs).

mov [rcx+r8*8], rax
mov rax, [rdx+r8*8+8]
mov [rcx+r8*8+8], rax
mov rax, [rdx+r8*8+16]
mov [rcx+r8*8+16], rax
mov rax, [rdx+r8*8+24]
mov [rcx+r8*8+24], rax

add r8, 4 ; Decrenent nunber of QAORDs to copy.
jnz copyl oop ; I f QADRDs renmmin, then junp.
ret

nc_sm al i gned ENDP

124 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Routine 5: Large, Aligned Block Copy Using Discrete Moves (Basic)

Thisroutine is a easy way to copy alarge block of memory; however, if the block islarger than eight
Kbytes, you can achieve better performance using the routine in “Routine 6: Large Aligned Block
Copy Using Discrete Moves (Fast)” on page 126.

Thisroutine copies a 16-byte-aligned block of memory to a 16-byte-aligned destination address using
arelatively small granularity of 32 bytes.

If the original destination addressis not 16-byte aligned, you can achieve the required 16-byte
destination alignment by separately copying the bytesthat precede the lowest 16-byte-aligned address
in the destination block. For more information, see “Aligning the Destination Starting Address’ on
page 119.

; Throughput (8-Kbyte block): ~4.7 CGoytes/s (The perfornmance for small bl ocks
;1s shown for conparison purposes only.)
; Throughput (8-Moyte block): ~2.0 CGoytes/s

; Destination alignment: 16 bytes
; Source alignnent: 16 bytes

; Granularity (sub-block size): 32 bytes
; Input:

; RCX = destination address (dest)

; RDX = source address (src)

i R8 = nunmber of bytes to copy (count)

nc_| g_al i gned_basi c PROC NEAR

add rdx, r8 ; Add to source address the nunmber of bytes to copy.

add rcx, r8 ; Add to destination address the nunber of bytes to copy.

shr r8, 3 ; Convert nunber of bytes to number of QAORDs.

neg r8 ; Make number of QAORDs negati ve.

copyl oop:

prefetchnta [rdx+r8*8+256] ; Load a line into the L1 data cache; mark the
; line soit will not be evicted to L2.

nmovdqa xmmD, [rdx+r8*8] ; Copy sub-bl ock (four QAORDs) using

novnt dq [rex+r8*8], xmmD ; write-conbining buffer.

novdqa xmi, [rdx+r8*8+16]

novnt dq [rex+r8*8+16], xmil

add rg, 4 ; Decrenent nunber of QAORDs to copy.

jnz copyl oop ; I f QAORDs renmin, then junp.

sfence ; Flush the wite-conbining buffer.

ret

nc_| g_al i gned_basi c ENDP

Chapter 5 Cache and Memory Optimizations 125

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Routine 6: Large Aligned Block Copy Using Discrete Moves (Fast)

Thisroutine provides excellent performance for large block sizes. It copies a 16-byte-aligned block of
memory to a 16-byte-aligned destination address using arelatively large granularity of eight Kbytes.
To copy ablock of memory smaller than eight Kbytes, see “Routine 5: Large, Aligned Block Copy
Using Discrete Moves (Basic)” on page 125.

Thisroutine avoids frequent alternation between reads and writes by first loading eight Kbytes of data
into the L1 data cache without interruption, and then writing that chunk of data to the destination
address in main memory. If necessary, you can modify this routine to copy datain smaller chunks;
however, reducing the granularity also reduces the performance.

If the original destination addressis not 16-byte aligned, you can achieve the required 16-byte
destination alignment by separately copying the bytes that precede the lowest 16-byte-aligned address
in the destination block. For more information, see “Aligning the Destination Starting Address’ on
page 119.

Thr oughput (8-Kbyte block): ~4.7 Goytes/s (The performance for small bl ocks
is shown for conparison purposes only.)
Thr oughput (8- Myte block): ~2.3 Cbhytes/s

Destination alignment: 16 bytes
Source alignment: 16 bytes
Granul arity (chunk size): 8 Kbytes

I nput :
RCX = destination address (dest)
RDX = source address (src)

R8 = nunber of bytes to copy (count)

nc_| g_aligned_fast PROC NEAR

add rdx, r8 ; Add to source address the number of bytes to copy.
add rcx, r8 ; Add to destination address the nunber of bytes to copy.
shr r8, 3 ; Convert nunber of bytes to nunber of QAORDs.
neg r8 ; Make number of QAORDs negati ve.
chunkl oop:
; Prefetch and copy a chunk (8 Kbytes) of nenory.
mov r9, r8 ; Save nunber of QAORDs.
mov r10, 64 ; Initialize nunber of cache-line pairs to prefetch.

pr ef et chl oop:

prefetchnta [rdx+r8*8] ; Load a line (64 bytes) into the L1 data cache;
; mark the line so it will not be evicted to L2.

prefetchnta [rdx+r8*8+64] ; Load next cache line.

add r8, 16 ; Sel ect next cache-line pair.

dec r10 ; Decrenent number of cache-line pairs.

jnz prefetchloop ; If cache-line pairs remain, then junp.

mov r8, r9 . Restore number of QAORDs.

nmov eax, 64*4 ; Initialize nunber of sub-blocks to copy.

126 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
copyl oop:
nmovdqga xmmD, [rdx+r8*8] Copy sub-bl ock (four QAORDs) using
nmovnt dq [rcx+r8*8], xmmD write-conbining buffer.
nmovdqga xmmil, [rdx+r 8*8+16]
nmovnt dq [rcx+r8*8+16], xmml
add rg, 4 Sel ect next sub- bl ock.
dec eax Decrenment nunber of sub-blocks to copy.
jnz copyl oop I f anot her sub-bl ock remains, then junp.
or rg, r8 Test whether chunk count is 0.
jnz chunkl oop I f anot her chunk renmins, then junp.
sfence Fl ush the wite-conbining buffer.
ret

nc_| g_aligned_fast ENDP

Chapter 5 Cache and Memory Optimizations 127

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.13 Stack Considerations

Make sure the stack is suitably aligned for the local variable with the largest base type. Then, using
the technique described in “ Sorting and Padding C and C++ Structures’ on page 114, all variablescan
be properly aigned with no padding.

Application
This optimization appliesto:
e 32-bit software

Extend Arguments to 32 Bits Before Pushing onto Stack

Function arguments smaller than 32 bits should be extended to 32 bits before being pushed onto the
stack, which ensures that the stack is always doubleword aligned on entry to a function.

If afunction has no local variables with a base type larger than a doubleword, no further work is
necessary. If the function does have local variables whose base type is larger than a doubleword,
insert additional code to ensure proper alignment of the stack. For example, the following code
achieves quadword alignment:

pr ol ogue:
push ebp
mov ebp, esp
sub esp, SIZE OF LOCALS ; Size of local variables
and esp, -8
Push registers that need to be preserved.

epi | ogue: ; Pop register that needed to be preserved.
| eave
ret

With this technique, function arguments can be accessed through EBP, and local variables can be
accessed through ESP. Save and restore EBP between the prologue and the epilogue to keep it free for
general use.

Optimized Stack Usage

It is sometimes possible to improve performance in frequently executed routines by altering the way
variables and parameters are passed and accessed on the stack. Replacing PUSH and POP instructions
with MOV instructions can reduce stack pointer dependencies and uses fewer execution resources.
This optimization is usually most effective in smaller routines. Excessive use of this optimization can
result in increased code size as MOV instructions are considerably larger than PUSH and POP
instructions.

128 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

5.14 Cache Issues when Writing Instruction Bytes to
Memory

Optimization

When writing data consisting of instructions for future execution to memory use streaming store
(write-combining) instructions such as MOVNTDQ and MOVNTI.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

This optimization pertains to software that writes executable instructions to memory for subsequent
execution, such as might be done by ajust-in-time compiler. If normal store instructions are used to
write the code to memory, then the cache lineswill bein amodified state (either in L1 datacacheorin
L 2). When the processor eventually tries to execute the code, it will missin the instruction cache.
Because the instruction cache cannot contain cache lines that are in a modified state, the data must be
flushed to memory before it can be fetched into the instruction cache. This unneccesarily evicts
possibly useful information from the caches. By using write-combining instructions, the contents of
the cache is preserved with no performance penalty, and this possibly provides a performance
improvement.

Chapter 5 Cache and Memory Optimizations 129

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

5.15 Interleave Loads and Stores

When loading and storing data as in a copy routine, the organization of the sequence of loads and
stores can affect performance.

Application

This optimization appliesto:

o 32-bit software

¢ 64-bit software

Rationale

When using SSE and SSE2 instructionsto perform loads and stores, it isbest to interleave them in the
following pattern—L oad, Store, Load, Store, Load, Store, etc. This enables the processor to maxi-
mize the |oad/store bandwidth.

If using MMX loads and stores in 32-bit mode, the |oads and stores should be arranged in the
following pattern—L oad, Load, Store, Store, Load, Load, Store, Store, etc.

Example

The following example illustrates a sequence of 128-bit loads and stores:
novdga xmO, [rdx+r 8*8] ; Load

movnt dq [rcx+r8*8], xnmD ; Store

novdga xmil, [rdx+r 8*8+16] ; Load

novnt dq [rcx+r8*8+16] , xmml ; Store

130 Cache and Memory Optimizations Chapter 5

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 6 Branch Optimizations

The optimizations in this chapter help improve branch prediction and minimize branch penalties.

In This Chapter

This chapter covers the following topics:

Topic Page
Density of Branches 132
Two-Byte Near-Return RET Instruction 134
Branches That Depend on Random Data 136
Pairing CALL and RETURN 138
Recursive Functions 139
Nonzero Code-Segment Base Values 141
Replacing Branches with Computation 142
The LOOP Instruction 147
Far Control-Transfer Instructions 148

Chapter 6 Branch Optimizations 131

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.1 Density of Branches

Optimization

When possible, align branches such that they do not cross a 16-byte boundary.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

The AMD Athlon™ 64 and AMD Opteron™ processors have the capability to cache branch-
prediction history for amaximum of three near branches (CALL, JMP, conditional branches, or
returns) per 16-byte fetch window. A branch instruction that crosses a 16-byte boundary is counted in
the second 16-byte window. Due to architectural restrictions, a branch that is split across a 16-byte
boundary cannot dispatch with any other instructions when it is predicted taken. Perform this
alignment by rearranging code; it is not beneficial to align branches using padding sequences.

The following branches are limited to three per 16-byte window:

rel 8

rel 32
rel 8

rel 32
reg

WORD PTR
DWORD PTR
rel 16
r/mé
rel 32
r/nB2

o0
o0

Egggggbb

o

oo o
LoD

Coding more than three branches in the same 16-byte code window may lead to conflictsin the
branch target buffer. To avoid conflictsin the branch target buffer, space out branches such that three

132 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

or fewer exist in agiven 16-byte code window. For absolute optimal performance, try to limit
branches to one per 16-byte code window. Avoid code sequences like the following:

ALI GN 16

| abel 3:
call labell ; 1st branch in 16-byte code w ndow
jc | abel 3 ; 2nd branch in 16-byte code w ndow
call 1abel 2 ; 3rd branch in 16-byte code w ndow
jnz label4 ; 4th branch in 16-byte code w ndow

Cannot be predicted.

If thereis ajump table that contains many frequently executed branches, pad the table entries to
8 bytes each to assure that there are never more than three branches per 16-byte block of code.

Only branches that have been taken at least once are entered into the dynamic branch prediction, and
therefore only those branches count toward the three-branch limit.

Chapter 6 Branch Optimizations 133

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.2 Two-Byte Near-Return RET Instruction

Optimization

Use of atwo-byte near-return can improve performance. The single-byte near-return (opcode C3h) of
the RET instruction should be used carefully. Specifically, avoid the following two situations:

« Any kind of branch (either conditional or unconditional) that has the single-byte near-return RET
instruction asitstarget. See “ Examples.”

« A conditional branch that occursin the code directly before the single-byte near-return RET
instruction. See “Examples.”

Application

This optimization appliesto:

e 32-bit software

e 64-hit software

Rationale

The processor is unable to apply a branch prediction to the single-byte near-return form (opcode C3h)
of the RET instruction.

The easiest way to assure the utilization of the branch prediction mechanism isto use atwo-byte RET
instruction. A two-byte RET has a REP instruction inserted before the RET, which produces the
functional equivalent of the single-byte near-return RET instruction, but is not affected by the
prediction limitations outlined above. To use atwo-byte RET, define atext macro named REPRET and
useit instead of the RET instruction to force the intended object code.

REPRET TEXTEQU <DB 0F3h, 0C3h>

Examples
Avoid branches in which the target of the branch is a single-byte near-return:
j mp | abel ; Junp to a single-byte near-return RET instruction.

| abel :
ret ; RET is potentially mispredicted.

Avoid branches that immediately precede a single-byte near-return:

jz |abel ; Conditional branch is not taken.
ret ; RET is a fall-through instruction,
potentially m spredicted.

134 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

If possible, move an existing instruction, such as a POP instruction that is part of the function
epilogue, so that it isinserted between the branch and the RET instruction:

jz |abel
pop ebp ; Pad with at |east one non-branch instruction.
ret

If no existing instruction is available for this purpose, then insert a NOP instruction to provide the
necessary padding or, better still, use the recommended two-byte version of RET.

Chapter 6 Branch Optimizations 135

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.3 Branches That Depend on Random Data

Optimization

Avoid conditional branches that depend on random data, as these branches are difficult to predict.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Suppose a piece of code receives arandom stream of characters “A” through “Z” and branchesif the
character isbefore “M” in the collating sequence. Data-dependent branches acting upon basically
random data cause the branch-prediction logic to mispredict the branch about 50% of the time.

If possible, design branch-free alternative code sequences that result in shorter average execution
time. Thistechnique is especialy important if the branch body is small.

Examples

The following examplesillustrate this concept using the CM OV xx instruction.

Signed Integer ABS Function (x = labs(x))

nov ecx, [x] ; Load val ue.

nov ebx, ecx ; Save val ue.

neg ecx ; Negate val ue.

cnovs ecx, ebx ; If negated value is negative, select value.
nov [x], ecx ; Save labs result.

Unsigned Integer min Function (z=x<y ?x:Yy)

nov eax, [X] ; Load x val ue.

nov ebx, [y] ; Load y val ue.

cnp eax, ebx ; EBX <= EAX? CF=0: CF =1
crmovnc eax, ebx ; EAX = (EBX <= EAX) ? EBX : EAX
nov [z], eax ; Save min(XY).

136 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Conditional Write
/1 C code:

int a, b, i, dumy, c[BUFSIZE];
if (a<b) {

cli++] = a;

; Assenbly code:

| ea esi, [dummy] ;. &dumy

X0r ecx, ecx ;i =0

| ea edi, [c+ecx*4] ;o &cli]

| ea edx, [ecx+1] ;o0

cnp eax, ebx ; a<b?

crmovge edi, esi ; ptr = (a >=b) ? &ummy : &c[i]
cmovl ecx, edx ya<b?i i +1

nov [edi], eax ; *ptr = a

Chapter 6 Branch Optimizations 137

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.4 Pairing CALL and RETURN

Optimization

Always use care when pairing CALLs and RETURNS.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

When the 12-entry return-address stack gets out of synchronization, the latency of returns increases.
The return-address stack becomes unsynchronized when:

¢ Cdlsand returns do not match.

* Thedepth of the return-address stack is exceeded because of too many levels of nested function
cals.

138 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

6.5 Recursive Functions

Optimization

Use care when writing recursive functions.

Application
This optimization applies to:
e 32-bit software

¢ 64-hit software

Rationale

Returns are predicted as described in “Pairing CALL and RETURN,” so recursive functions should
be written carefully. If there are only recursive function calls within the function as shown in the
following example, the return address for each iteration of the recursive function is properly
predicted.

Preferred
I ong fac(long a)

{

if (a==0) {
return (1);
} else {

return (a * fac(a — 1));
}
}

If there are any other calls within the recursive function (except to itself) as shown in the next
example, some returns can be mispredicted. If the number of recursive function calls plus the number
of nonrecursive function calls within the recursive function is greater than 12, the return stack does
not predict the correct return address for some of the returns once the recursion begins to unwind.

Chapter 6 Branch Optimizations 139

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Avoid
I ong fac(long a)
{
if (a==0) {
return (1);
} else {
nyp(a); /1 Can cause returns to be nispredicted

return (a * fac(a - 1));
}
void nyp(long a)
{

printf("myp ");
return;

}

Because the function f ac, in the following example, is end-recursive, it can be converted to iterative
code. A recursive function is classified as end-recursive when the function call to itself is at the end of
the code. The following listing shows the rewritten code:

Preferred
I ong facl(long a)
{
long t = 1;
while (a > 0) {
nyp(a);
t *= a;
a--;
}

return (t);

140 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004

6.6 Nonzero Code-Segment Base Values

Optimization

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

In 32-hit threads, avoid using anonzero code-segment (CS) base value. (In 64-bit mode, segmentation
is disabled and the segment base value isignored and treated as zero.)

Application

This optimization appliesto:

e 32-hit software

Rationale

A nonzero CS base value causes an additional two cycles of branch-misprediction penalty when
compared with a CS base value of zero:

CS base value

Minimum branch penalty (cycles)

Prediction sequential

Prediction taken

Misprediction

0

0

1

10

Not O

0

1

12

Chapter 6

Branch Optimizations

141

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.7 Replacing Branches with Computation

Optimization

Use computation to simulate predicted execution or conditional moves.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Branches can negatively impact the performance of code. If the body of the branch is small, you can
achieve higher performance by replacing the branch with computation. The computation simulates
predicated execution or conditional moves. There are many SSE and SSE2 instructions that can be
useful for accomplishing this. The principal instructions are asfollows: ANDPS, ANDPD, ANDNPS,
ANDNPD, CMPPS, CMPSS, CMPPD, CMPSD, MINPS, MINSS, MINPD, MINSD, MAXPS,
MAXSS, MAXPD, MAXSD, ORPS, ORPD, PAND, PANDN, PCMPEQB, PCMPEQD,
PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW, PMAXSW, PMAXUB, PMINSW, PMINUB,
POR, PXOR, XORPS, and XORPD.

For 32-bit code using 3DNow! ™ instructions, try to avoid moving the MM X ™ data to integer
registersto perform comparisons and branches. Moving MM X datato integer registersrequires either
transport through memory or the use of MOV D reg, mmreg instructions, which are relatively
inefficient. When using 3DNow! technology and MMX registers, the following instructions may be
useful for eliminating branches: PCMPGTB, PCMPGTD, PCMPGTW, PFCMPGT, PFCMPGE,
PFMIN, PFMAX, PAND, PANDN, POR, and PXOR.

Muxing Constructs

The most important construct to use in avoiding branchesin SIMD code is a two-way muxing
construct that is equivalent to the ternary operator (?:) in C and C++.

142 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Examples

SSE Solution (Preferred)
;r =(x<y) ?2a:b

;oInt XMWD = a

; XML = b

; XMW = x

; XMMB =y

;o Qut: XMMD = r

cnpps xm2, xmB, 1 X <y ?Oxffffffff : O
andps xmD, xmR X<y ?a:0

andnps xm®, xmml ;X <y ?0: b

or ps xmoO, xR ;X <y ?a:b

MMX™ Solution (Avoid)
; r =(x<y) ?2a:b

;o Int MM = a

; ML = b

; MR = X

; MB =y

;o Qut: MMD =t

pcrmpgtd mMmB, M2 vy > x ? Oxffffffff . O
novq m4, mB ; Duplicate mask

pandn mB, mil Yy >x?20: b

pand m0, m4 py>x?a: 0

por m0, mB ;, r=y>x2?a:b

Because the use of PANDN destroys the mask created by PCMPGTD, the mask needs to be saved,
which requires an additional register. This adds an instruction, lengthens the dependency chain, and
increases register pressure. Therefore, write two-way muxing constructs as follows:

MMX™ Solution (Preferred)
;r=(x<y)?a:b

;o In: MWD = a

; ML = b

; MR = X

; MB =y

;o Qut: MDD = r

pcnpgtd mmB, mm Yy > x ? Oxffffffff : O
pand m0, mB py >x ?a 0

pandn m8, ml Yy >x>0: b

por m0, mB ,r =y >x?a b

Chapter 6 Branch Optimizations 143

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Sample Code Translated into AMD64 Code

The following examples use scalar code translated into AMD64 code. Note that it is not
recommended that you use 3DNow! SIMD instructions for scalar code, because the advantage of
3DNow! instructionsliesin their “SIMDness.” These examples are meant to demonstrate general
techniques for translating source code with branches into branchless SBDNow! code. Scalar source
code was chosen to keep the examples simple. These techniques work identically for vector code.

Each example shows the C code and the resulting 3DNow! code.

Example 1: C Code

float x, vy, z;

if (x <y) {

z += 1.0;
} else {

z -=1.0;
}
Example 1: 3DNow!™ Code
;oInt MDD = x

ML =y
MR = z

Qut: MWD = z
nmovq m8, mD Save x
nmovq m¥, one ;1.0
pf cnrpge MmO, mml ;o x<y?0 Oxffffffff
pslid m?0, 31 ; X <y ? 0 : 0x80000000
pxor m0, Mm% Xx <y ?1.0: -1.0
pf add m0, m Xx<y?z+1.0:z- 1.0
Example 2: C Code
float x, z;
z = abs(x);
if (z >=1) {

z =11/ z;
}
Example 2: 3DNow!™ Code
;o Int MMD = X

Qut: MM = z
novq mb, nabs i OX7fffffff
pand mOD, mb iz = abs(x)
pfrcp m2, m0 ; 1/ z approximation
nmovq mml, O ; Save z.
pfrcpitl nmmD, mmR2 ; 1/ z step
pfrcpit2 mmD, mmR2 ;7 1/ z fina
pfmn mO, mil ;0 z=z<1?2z: 1/ z

144 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Example 3: C Code
float x, z, r, res;
z = fabs(x)
if (z <0.575) {
res =r;
} else {
res =Pl [/ 2- 2"*r,
}
Example 3: 3DNow!™ Code
;o Int MMD = X
ML = r
Qut: MWD = res
novq mm7/, mabs Mask for absol ute val ue
pand m0, mv z = abs(x)
novq m2, bnd 0.575
pcnmpgtd MR, D z < 0.575 ? Oxffffffff : O
novq mmB, pi 02 pi / 2
nmovq mO, mil Save r.
pf add mil, il 2 *r
pfsubr mm, mmB pi / 2-2*r
pand m0, mP z <0.575?r : 0
pandn m2, il z<0575?20: pi / 2-2*r
por mO, mP z <0.575?2r : pi I 2-2*7
Example 4: C Code
#define Pl 3.14159265358979323
float x, z, r, res;
[* 0 <=7r1 <=Pl | 4*/
z = abs(x)
if (z <1) {
res =r;
} else {
res =Pl [/ 2 - r;
}
Example 4: 3DNow!™ Code
;o Int MMD = X
; ML = r
; Qut: MML = res
novq mb, nabs ; Mask to clear sign bit
nmovq o6, one ;1.0
pand m0, mb ; z = abs(x)
pcrmpgtd mB, D ;0 z < 1?2 Ooxffffffff : O
novq m¥, pi o2 ;opl /2
pf sub md, ml popl L2 -
pandn mb, i ;0 2z<1?20:pi [/ 2-7r
pf max mil, mb ;res=z<1?r :pi [2-7r
Chapter 6 Branch Optimizations 145

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Example 5: C Code

#define Pl 3.14159265358979323
float x, y ,xa ,ya ,r ,res

int xs, df;

XS =x<0?1: 0
xa = fabs(x);
ya = fabs(y);

df = (xa < ya);
if (xs && df) {

res =Pl | 2+
} else if (xs) {

res =Pl - r;
} elseif (df) {
res = PlI/2 - r;
} else {
res =r;
}
Example 5: 3DNow!™ Code
;oInt MMD =t
ML =y
M2 = X
Qut: MWD = res
novq mmv, sgn ; Mask to extract sign bit
novq mmb, sgn ; Mask to extract sign bit
novq nmb, mabs ; Mask to clear sign bit
pand mv, mP ; Xs = sign(x)
pand mil, b ; ya = abs(y)
pand m2, mb ; xa = abs(x)
nmovq m6, il Y
pcnmpgtd mB, M2 ; df = (xa < ya) ? Oxffffffff : O
pslld mb, 31 ; df = bit 31
nmovq mb, mv ;XS
pxor mv, b ; xs N df ? 0x80000000 : O
novq mB, npio2 ; -pi / 2
pxor mb, mB ; Xs ?2pi /2 -pi | 2
psrad m6, 31 ;df 2?2 Oxffffffff : O
pandn B, mb ; Xs ?2 (df 20 pi [/ 2) @ (df 2 0: -pi [2)
pf sub mb, mB ;o pr =pi [/ 2+ (xs ? (df ?20: pi / 2)
;o (df 20 -pi 1 2))
por mo, mv ;ar = xs A df o ? -r or
pf add m0, mb ; res = ar + pr

146 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

6.8 The LOOP Instruction

Optimization
Avoid using the LOOP instruction.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale
The LOOP instruction has a latency of at least 8 cycles.

Example
Avoid code like this, which uses the L OOP instruction:
| abel :
i bbp | abel
Instead, replace the loop instruction with aDEC and a INZ:
| abel :
dec rex
jnz | abel

Chapter 6 Branch Optimizations 147

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

6.9 Far Control-Transfer Instructions

Optimization

Use far control-transfer instructions only when necessary. (Far control-transfer instructions include
the far forms of IMP, CALL, and RET, aswell asthe INT, INTO, and IRET instructions.)

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

The processor’s branch-prediction unit, which is used for both conditional and unconditional
branches, does not predict far branches.

148 Branch Optimizations Chapter 6

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 7 Scheduling Optimizations

The optimizations discussed in this chapter help improve scheduling in the processor.

This chapter covers the following topics:

Topic Page
Instruction Scheduling by Latency 150

Loop Unrolling 151

Inline Functions 155
Address-Generation Interlocks 157
MOVZX and MOVSX 159

Pointer Arithmetic in Loops 160
Pushing Memory Data Directly onto the Stack 163
Chapter 7 Scheduling Optimizations 149

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

7.1 Instruction Scheduling by Latency

Optimization

In general, select instructions with shorter latencies that are DirectPath—not VectorPath—
instructions. For alist of instruction latencies and classifications, see Appendix C, “Instruction
Latencies”

The AMD Athlon™ 64 and AMD Opteron™ processors can execute up to three AMDG64 instructions
per cycle, with each instruction possibly having a different latency. The AMD Athlon 64 and

AMD Opteron processors have flexible scheduling, but for absol ute maximum performance, schedule
instructions according to their latencies and data dependencies. The goal is to reduce the overall
length of dependency chains.

Application
This optimization applies to:
o 32-bit software

¢ 64-bit software

150 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

7.2 Loop Unrolling

Optimization

Use loop unrolling where appropriate to increase instruction-level parallelism:

If all of these conditions are true Then use

» The loop is in a frequently executed piece of code. Complete loop unrolling
» The number of loop iterations is known at compile time.
» The loop body includes fewer than 10 instructions.

» Spare registers are available (for example, when operating in 64-bit mode, Partial loop unrolling
where additional registers are available).

» The loop body is small, so that loop overhead is significant.
« The number of loop iterations is likely greater than 10.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Loop Unrolling

Loop unrolling is atechnique that duplicates the body of aloop one or moretimesin order to increase
the number of instructions relative to the branch and allow operations from different loop iterations to
execute in parallel.

There are two types of loop unrolling:
e Complete loop unrolling

e Partia loop unrolling

Chapter 7 Scheduling Optimizations 151

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Complete Loop Unrolling

Complete loop unrolling eliminates the loop overhead completely by replacing the loop with copies of
the loop body.

Because complete loop unrolling removes the loop counter, it also reduces register pressure.
However, completely unrolling very large loops can result in the inefficient use of the L1 instruction
cache.

Example: Complete Loop Unrolling

In the following C code, the number of loop iterations is known at compile time and the loop body is
less than 100 instructions:

#defi ne ARRAY_LENGTH 3

int sum i, a[ARRAY_LENGTH;
sum = 0;

for (i

sum

}
To completely unroll an n-iteration loop, remove the loop control and replicate the loop body # times:

0; i < ARRAY_LENGTH; i++) {
sum + a[i];

sum = 0;

sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];

Partial Loop Unrolling

Partial loop unrolling reducestheloop overhead by duplicating the loop body several times, changing
the increment in the loop, and adding cleanup code to execute any |eftover iterations of the loop. The
number of times the loop body is duplicated is known as the unroll factor.

However, partial loop unrolling may increase register pressure.

Example: Partial Loop Unrolling

In the following C code, each element of one array is added to the corresponding element of another
array:

doubl e a] MAX_LENGTH], b[MAX_LENGTH] ;

for (i =0; i < MAX_LENGTH;, i++) {

a[i] =ali] + b[i];
}

152 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Without loop unrolling, this is the equivalent assembly-language code:

mov ecx, MAX_LENGTH ; Initialize counter.
nmov eax, OFFSET a ; Load address of array a into EAX
mov ebx, OFFSET b ; Load address of array b into EBX
add_I oop:
fld QAORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
fadd QAMORD PTR [ebx] ; Add object pointed to by EBX to ST(O0).
fstp QMORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(O0).
add eax, 8 ; Point to next elenent of array a.
add ebx, 8 ; Point to next elenent of array b.
dec ecx ; Decrenent counter.
jnz add_l oop ; If elements remain, then junp.

Therolled loop consists of seven instructions. AMD Athlon 64 and AMD Opteron processors can
decode and retire as many as three instructions per cycle, so it cannot execute faster than three
iterationsin seven cycles (3/7 of afloating-point add per cycle). However, the pipelined floating-point
adder allows one add every cycle.

3 instructions iteration X 1 FADD _ 3FADDs _ 0.429 FADDs/ cycle

cycle 7 instructions iteration 7 cycles

After partial loop unrolling using an unroll factor of two, the new code creates a potential end case
that must be handled outside the loop:

mov ecx, MAX_LENGTH ; Initialize counter.
mov eax, OFFSET a ; Load address of array a into EAX
mov ebx, OFFSET b ; Load address of array b into EBX
shr ecx, 1 ; Divide counter by 2 (the unroll factor).
jnc add_l oop ; If original counter was even, then junp.
; Handl e the end case.
fld QAORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
fadd QAMORD PTR [ebx] ; Add object pointed to by EBX to ST(O0).
fstp QMORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(O0).
add eax, 8 ; Point to next elenent of array a.
add ebx, 8 ; Point to next elenent of array b.
add_| oop:
fld QAORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
fadd QAMORD PTR [ebx] ; Add object pointed to by EBX to ST(O0).
fstp QMORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(O).
fld QAMRD PTR [eax+8] ; Repeat for next element.

fadd QAMORD PTR [ebx+8]
fstp QMORD PTR [eax+8]

add eax, 16 ; Point to next elenent of array a.
add ebx, 16 ; Point to next elenent of array b.
dec ecx ; Decrenent counter.

jnz add_l oop ; If elements remain, then junp.

Chapter 7 Scheduling Optimizations 153

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

The unrolled loop consists of 10 instructions. Based on the decode/retire bandwidth of three
instructions per cycle, thisloop goes no faster than threeiterationsin 10 cycles (which is equivalent to
6/10 of afloating-point add per cycle because there are two additions per iteration), or 1.4 times as
fast asthe origina loop.

3 instructions .1terat101.1 x,2 FADDS _ 6FADDs _ 0.600 FADDs /cycle
cycle 10 instructions iteration 10 cycles

Deriving the Loop Control for Partially Unrolled Loops

A frequently used loop construct is a counting loop. In atypical case, the loop count starts at some
lower bound (I ow), increases by some fixed, positive increment (i nc) for each iteration of the loop,
and may not exceed some upper bound (hi gh):

for (k = low, k <= high; k += inc) {
x[k] = ...
}

Thefollowing code shows how to partially unroll such aloop by an unroll factor (f act or) and how to
derive the loop control for the partially unrolled version of the loop:

for (k =low, k <= (high - (factor - 1) * inc); k += factor * inc) {
/1 Begin the series of unrolled statenents.
x[k + 0 * inc] = ...
/1 Continue the series if the unrolling factor is greater than 2.
x[k + 1 * inc] =
x[k + 2 * inc] =

/1 End the series.

x[k + (factor - 1) * inc] = ...

}

/1 Handl e the end cases.

for (k = k; k <= high; k +=inc) {
x[k] = ...

}

Related Information

For information on loop unrolling at the C-source level, see “Unrolling Small Loops’ on page 13.

154 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

7.3 Inline Functions

Optimization
Use function inlining when:

« Afunctioniscaled from just one site in the code. (For the C language, determination of this
characteristic is made easier if functions are explicitly declared st at i ¢ unless they require
externa linkage.)

* A function—once inlined—contains fewer than 25 machine instructions.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

There are advantages and disadvantages to function inlining. On the one hand, function inlining
eliminates function-call overhead and allows better register allocation and instruction scheduling at
the site of the function call. The disadvantage of functioninlining is decreased code referencelocality,
which can increase execution time due to instruction cache misses.

For functions that create fewer than 25 machine instructions once inlined, it islikely that the function-
call overhead is close to, or more than, the time spent executing the function body. In these cases,
function inlining is recommended.

Function-call overhead on the AMD Athlon 64 and AMD Opteron processors can be low because
callsand returns are executed very quickly dueto the use of prediction mechanisms. However, thereis
still overhead due to passing function arguments through memory, which creates store-to-load-
forwarding dependencies. (In 64-bit mode, this overhead is typically avoided by passing more
arguments in registers, as specified in the AMDG64 Application Binary Interface [ABI] for the
operating system.)

For longer functions, the benefits of reduced function-call overhead give diminishing returns. A
function that results in the insertion of more than 500 machine instructions at the call site should
probably not be inlined. Some larger functions might consist of multiple, relatively short paths that
are negatively affected by function overhead. In such a case, it can be advantageous to inline larger
functions. Profiling information is the best guide in determining whether to inline such large
functions.

Chapter 7 Scheduling Optimizations 155

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Additional Recommendations

In general, function inlining works best if the compiler utilizes feedback from a profiler to identify the
function calls most frequently executed. If such datais not available, a reasonable approach isto
concentrate on function callsinside loops. Do not consider as candidates for inlining any functions
that are directly recursive. However, if they are end-recursive, the compiler should convert them to an
iterative equivalent to avoid potential overflow of the processor’s return-prediction mechanism (return
stack) during deep recursion. For best results, a compiler should support function inlining across
multiple sourcefiles. In addition, a compiler should provide intrinsic functions for commonly used
library routines, such assi n, st rcnp, Or mencpy.

156 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

7.4 Address-Generation Interlocks

Optimization

Avoid address-generation interlocks by scheduling loads and stores whose addresses can be
calculated quickly ahead of loads and stores that require the resolution of along dependency chainin
order to generate their addresses.

Application

This optimization appliesto:

e 32-bit software

e 64-bit software

Address-Generation Interlocks

An address-generation interlock isacondition in which newer |oads and stores whose addresses have
aready been calculated by the processor are blocked by older loads and stores whose addresses have
not yet been calculated.

Rationale

The processor schedules instructions that access the data cache (loads and stores) in program order.
By carefully choosing the order of loads and stores, you can avoid address-generation interlocks.

Chapter 7 Scheduling Optimizations 157

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Example

Avoid code that places aload whose address takes longer to cal cul ate before aload whose address can
be determined more quickly:

add ebx, ecx ; Instruction 1

nov eax, DWORD PTR [10h] ; Instruction 2 (fast address calc.)

nov ecx, DWORD PTR [eax+ebx] ; Instruction 3 (slow address calc.)

nov edx, DWORD PTR [24h] ; This load is stalled from accessing the

data cache due to the long | atency
caused by generating the address for
instruction 3.

Where possible, reorder instructions so that loads with simpler address cal culations come before
those with more complex address calculations:

add ebx, ecx ; Instruction 1

nov eax, DWORD PTR [10h] ; Instruction 2

nov edx, DWORD PTR [24h] ; Place | oad above instruction 3 to avoid
; address-generation interlock stall.

nov ecx, DWORD PTR [eax+ebx] ; Instruction 3

158 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

7.5 MOVZX and MOVSX

Optimization

Usethe MOVZX and MOV SX instructions to zero-extend or sign-extend, respectively, an operand to
alarger size.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Typical codefor zero extension that replaces MOV ZX uses more decode and execution resources than
MOV ZX. It aso has higher latency due to the superset dependency between the XOR and the MOV,
which requires a merge operation.

Example
When zero-extending an operand (in this case, a byte), avoid code such as the following:

XOor rax, rax
mov al, nmem

Instead, use the MOV ZX instruction:

movzx rax, BYTE PTR nem

Chapter 7 Scheduling Optimizations 159

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

7.6 Pointer Arithmetic in Loops

Optimization

Minimize pointer arithmetic in loops, especialy if the loop bodies are small. Take advantage of
scaled-index addressing modes to utilize the loop counter as an index into memory arrays.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

In small loops, pointer arithmetic causes significant overhead. Using scaled-index addressing modes
has no negative impact on execution speed, but the reduced number of instructions preserves decode
bandwidth.

Example

Consider the following C code, which adds the elements of two arrays and stores them in athird
array:

int a[MAXSI ZE], b[MAXSI ZE], c[MAXSI ZE], i;

for (i =0; i < MAXSIZE, i++) {
c[i] =ali] + b[i];
}

160 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Avoid an assembly-language equivalent like this, which uses base and displacement components (for
example, [esi +a]) to compute array-element addresses, requiring additional pointer arithmetic to
increment the offsets into the forward-traversed arrays:

mov ecx, MAXSIZE ; Initialize |oop counter.

xor esi, esi ; Initialize offset into array a.

xor edi, edi ; Initialize offset into array b.

xor ebx, ebx ; Initialize offset into array c.
add_| oop:

mov eax, [esi+a] ; Get elenment from a.

mov edx, [edi+b] ; Get element fromb.

add eax, edx ;oafi] + b[i]

mov [ebx+c], eax ; Wite result to c.

add esi, 4 ; Increnent offset into a.

add edi, 4 ; Increnent offset into b.

add ebx, 4 ; Increnent offset into c.

dec ecx ; Decrenment | oop count

jnz add_l oop ; until loop count is O.

Instead, traverse the arrays in a downward direction (from higher to lower addresses), in order to take
advantage of scaled-index addressing (for example, [ecx* 4+a]), which minimizes pointer arithmetic
within the loop:

mov ecx, MAXSIZE - 1 ; Initialize index.
add_| oop:
mov eax, [ecx*4+a] ; Get elenent from a.
mov edx, [ecx*4+b] ; Get elenent fromb.
add eax, edx ;oali] + b[i]
mov [ecx*4+c], eax ; Wite result to c.
dec ecx ; Decrement index
jns add_l oop ; until index is negative.

A changein thedirection of traversal is possible only if each |oop iteration is completely independent
of the others. If you cannot change the direction of traversal for agiven array, it is till possible to
minimize pointer arithmetic by using as a base address a displacement that points to the byte past the
end of the array, and using an index that starts with a negative value and reaches zero when the loop
expires:

mov ecx, (- MAXSI ZE) ; Initialize index.

add_I oop:
nmov eax, [ecx*4+a+MAXSI ZE*4] ; Get elenment from a.
mov edx, [ecx*4+b+MAXSI ZE* 4] ; Get elenment fromb.
add eax, edx ;oafi] + b[i]
mov [ecx*4+c+MAXSI ZE*4], eax ; Wite result to c.
inc ecx ; Increnent index
jnz add_l oop ; until index is O.

Chapter 7 Scheduling Optimizations 161

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

If the base addresses of the arrays are held in registers (for example, when the base addresses are
passed as the arguments of a function), biasing the base addresses requires additional instructionsto
perform the biasing at run time, and a small amount of additional overhead isincurred.

162 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

7.7 Pushing Memory Data Directly onto the Stack

Optimization

Push memory data directly onto the stack instead of loading it into aregister first.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Pushing memory data directly onto the stack reduces register pressure and eliminates data
dependencies.

Example
Avoid code that first loads the memory datainto aregister and then pushes it onto the stack:

nmov rax, nem
push rax

Instead, push the memory data directly onto the stack:

push nem

Chapter 7 Scheduling Optimizations 163

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

164 Scheduling Optimizations Chapter 7

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 8 Integer Optimizations

The optimizations in this chapter help improve integer performance.

This chapter covers the following topics:

Topic Page
Replacing Division with Multiplication 166
Alternative Code for Multiplying by a Constant 170
Repeated String Instructions 173
Using XOR to Clear Integer Registers 175
Efficient 64-Bit Integer Arithmetic in 32-Bit Mode 176
Efficient Implementation of Population-Count Function in 32-Bit Mode 185
Efficient Binary-to-ASCII Decimal Conversion 187
Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by Constants 192

Chapter 8 Integer Optimizations 165

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

8.1 Replacing Division with Multiplication

Optimization

Replace integer division by constants with multiplication by the reciprocal.

Rationale

Because the AMD Athlon™ 64 and AMD Opteron™ processors have very fast integer multiplication
(3-8 cycles signed, 3-8 cycles unsigned) and the integer division delivers only one bit of quotient per
cycle (22-47 cycles signed, 17-41 cycles unsigned), the equivalent code is much faster. Either follow
the examplesin this chapter that illustrate the use of integer division by constants or create the
executables using the code in “Derivation of Algorithm, Multiplier, and Shift Factor for Integer
Division by Constants’ on page 192.

Multiplication by Reciprocal (Division) Utility

The code for the utilities is shown in “ Derivation of Algorithm, Multiplier, and Shift Factor for
Integer Division by Constants’ on page 192. The utilities provided in this document are for reference
only and are not supported by AMD.

Signed Division Utility

Thesdi v. exe utility finds the fastest code for signed division by a constant. The utility displays the
code after the user enters a signed constant divisor. To redirect the code to afile, type the following
command:

sdiv > exanpl e. out

Unsigned Division Utility

Theudi v. exe utility finds the fastest code for unsigned division by a constant. The utility displays
the code after the user enters an unsigned constant divisor. To redirect the code to afile, type the
following command:

udi v > exanpl e. out

166 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Unsigned Division by Multiplication of Constant

Algorithm: Divisors 1 <= d < 231, Odd d

The following code shows an unsigned division using a constant value multiplier.

a = algorithm
m= nmultiplier

s = shift factor
a==0

nov eax, m
mul divi dend

shr edx, s ; EDX = quoti ent

’a::]_

nov eax, m

mul divi dend

add eax, m

adc edx, O

shr edx, s ; EDX = quoti ent

Code for determining the algorithm (@), multiplier (m), and shift factor (s) from the divisor (d) is
found in the section “Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by
Constants” on page 192.

Algorithm: Divisors 231 <= d < 232

For divisors 231 <= ¢ < 2%, the possible quotient values are either 0 or 1. For this reason, it is easy to
establish the quotient by simple comparison of the dividend and divisor.When the dividend needs to
be preserved, consider using code like the following:

In: EAX = dividend
Qut: EDX = quotient
xor edx, edx ;0
cnp eax, d ; CF = (dividend < divisor) 2 1: 0
sbb edx, -1 ; quotient =0+ 1 - CF = (dividend < divisor) 2 0: 1

When the dividend does not need to be preserved, the division can be accomplished without the use of
an additional register, thus reducing register pressure, as shown here:

In: EAX = dividend
Qut: EDX = quotient
cnp edx, d ; CF = (dividend < divisor) 2 1: 0
nov eax, O ;0
sbb eax, -1 ; quotient =0+ 1 - CF = (dividend < divisor) 2 0: 1

Chapter 8 Integer Optimizations 167

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Simpler Code for Restricted Dividend

Integer division by a constant can be made faster if the range of the dividend is limited, which
removes a shift associated with most divisors. For example, for adivide by 10 operation, use the
following code if the dividend is |ess than 4000_0005h:

nmov eax, dividend
nov edx, 01999999Ah
mul edx

nov quotient, edx

Signed Division by Multiplication of Constant

Algorithm: Divisors 2 <= d < 231

These algorithmswork if the divisor is positive. If the divisor is negative, useabs(d) instead of d, and
append aneg edx instruction to the code. These changes make use of the fact that n/—d = <(n/d).

a = algorithm
m=nmultiplier
s = shift count
a==20

nov eax, m

i mul dividend

nmov eax, dividend

shr eax, 31

sar edx, s

add edx, eax ; Quotient in EDX

;oa == 1

nov eax, m

i mul dividend

nmov eax, dividend

add edx, eax

shr eax, 31

sar edx, s

add edx, eax ; Quotient in EDX

Code for determining the algorithm (a), multiplier (), and shift factor (s) is shown in “Derivation of
Algorithm, Multiplier, and Shift Factor for Integer Division by Constants’ on page 192.

Signed Division by 2

In: EAX = dividend

Qut: EAX = quoti ent
cnp eax, 80000000h ; CF=1if dividend >= 0.
sbb eax, -1 ; Increment dividend if it is < O.
sar eax, 1 ; Performright shift.

168 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Signed Division by 2"

; Ini EAX = dividend

; Qut: EAX = quotient

cdq ; Sign extend into EDX

and edx, (2%n - 1) ; Mask correction (use divisor - 1)
add eax, edx ; Apply correction if necessary.

sar eax, (n) ; Performright shift by |og2(divisor).

Signed Division by -2
; In: EAX = dividend
Qut: EAX = quoti ent

cnp eax, 80000000h ; CF=1if dividend >= 0.

sbb eax, -1 ; Increment dividend if it is < O.
sar eax, 1 ; Performright shift.

neg eax ; Use (x / -2) == -(x [2).

Signed Division by —(2")
; In: EAX = dividend
; Qut: EAX = quotient

cdq ; Sign extend into EDX

and edx, (2"n - 1) ; Mask correction (-divisor - 1).
add eax, edx . Apply correction if necessary.
sar eax, (n) ; Right shift by |og2(-divisor).
neg eax ; Use (x / -(2*n)) == (-(x [/ 2%"n)).

Remainder of Signed Division by 2 or -2
; Ini EAX = dividend
; Qut: EAX = renminder

cdq ; Sign extend into EDX
and eax, 1 ; Conpute renainder.
xor eax, edx ; Negate remainder if
sub eax, edx ; dividend was < O.

Remainder of Signed Division by 2" or —(2™)
In: EAX = dividend
Qut: EAX = remai nder

cdq ; Sign extend into EDX

and edx, (2%n - 1) ; Mask correction (abs(divisor) - 1)
add eax, edx ; Apply pre-correction.

and eax, (2%n - 1) ; Mask out renminder (abs(divisor) - 1)
sub eax, edx ; Apply pre-correction if necessary.

Chapter 8 Integer Optimizations 169

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

8.2 Alternative Code for Multiplying by a Constant

Optimization

Devise instruction sequences with lower latency to accomplish multiplication by certain constant
multipliers.

Rationale

A 32-hit integer multiplied by a constant has a latency of 3 cycles; a 64-bit integer multiplied by a
constant has alatency of 4 cycles. For certain constant multipliers, instruction sequences can be
devised that accomplish the multiplication with lower latency. Because the AMD Athlon 64 and
AMD Opteron processors contain only one integer multiplier but three integer execution units, the
replacement code can provide better throughput as well.

Most replacement segquences require the use of an additional temporary register, thus increasing
register pressure. If register pressure in a piece of code that performs integer multiplication with a
constant is already high, it could be better for the overall performance of that code to use the IMUL
instruction instead of the replacement code. Similarly, replacement sequences with low latency but
containing many instructions may negatively influence decode bandwidth as compared to the IMUL
instruction. In general, replacement sequences containing more than four instructions are not
recommended.

The following code samples are designed for the original source to receive the fina result. Other
sequences are possibleif theresult isin adifferent register. Sequences that do not require atemporary
register are favored over ones requiring atemporary register, even if the latency is higher. Arithmetic-
logic-unit operations are preferred over shifts to keep code size small. Similarly, both arithmetic-
logic-unit operations and shifts are favored over the LEA instruction.

There areimprovementsin the AMD Athlon 64 and AMD Opteron processors’ multiplier over that of
previous x86 processors. For this reason, when doing 32-bit multiplication, only use the aternative
sequence if the alternative sequence has a latency that is less than or equal to 2 cycles. For 64-bit
multiplication, only use the alternative sequence if the alternative sequence has alatency that isless
than or equal to 3 cycles.

Examples

by 2: add regl, regl ;1 cycle
by 3: lea regl, [regl+regi*?] ; 2 cycles
by 4: shl regi, 2 ;1 cycle
by 5: lea regl, [regl+regi*4] ; 2 cycles

170 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
by 6: lea regl, [regl+regl*?] ; 3 cycles
add regl, regl
by 7: nov reg2, regl ; 2 cycles
shl regi, 3
sub regi, reg2
by 8: shl regi, 3 ;1 cycle
by 9: lea regl, [regl+regi*8] ; 2 cycles
by 10: lea regl, [regl+regi*4] ; 3 cycles

add regl, regl

by 11: lea reg2 |[regl+regi*8] ; 3 cycles
add regl, regl
add regl, reg2

by 12: lea regl, [regl+regl*?] ; 3 cycles
shl regi, 2

by 13: lea reg2 |[regl+regl*?] ; 3 cycles
shl regi, 4
sub regi, reg2

by 14: lea reg2 [regl+regl] ; 3 cycles
shl regi, 4
sub regi, reg2

by 15: nmov reg2 regl ; 3 cycles
shl regi, 4

sub regi, reg2

by 16: shl regi, 4 ;1 cycle

by 17: mov reg2 regl ; 2 cycles
shl regi, 4
add regl, reg2

by 18: lea regl, [regl+regl*8] ; 3 cycles
add regl, regl

by 19: lea reg2 |[regl+regi*?2] ; 3 cycles
shl regi, 4
add regl, reg2

by 20: lea regl, [regl+regl*4] ; 3 cycles
shl regi, 2

by 21: lea reg2 |[regl+regi*4] ; 3 cycles
shl regi, 4

Chapter 8 Integer Optimizations 171

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
add regl, reg2
by 22: imul regi, 22 Use the I MJL instruction.
by 23: lea reg2 |[regl+regi*8] 3 cycles
shl regi, 5
sub regi, reg2
by 24: lea regl, [regl+regi*?] 3 cycles
shl regi, 3
by 25: lea reg2 |[regl+regi*8] 3 cycles
shl regi, 4
add regl, reg2
by 26: imul regi, 26 Use the I MJL instruction.
by 27: lea reg2 |[regl+regi*4] 3 cycles
shl regi, 5
sub regi, reg2
by 28: lea reg2 [REGL*4] 3 cycles
shl regi, 5
sub regi, reg2
by 29: lea reg2 |[regl+regi*?] 3 cycles
shl regi, 5
sub regi, reg2
by 30: lea reg2 [regl+regi] 3 cycles
shl regi, 5
sub regi, reg2
by 31: nmov reg2 regl 2 cycles
shl regi, 5
sub regi, reg2
by 32: shl regi, 5 1 cycle
172 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004

8.3 Repeated String Instructions

Optimization

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Avoid using the REP prefix when performing string operations, especially when copying blocks of

memory.

Rational

In general, using the REP prefix to repeatedly perform string instructionsis less optimal than other
methods, especially when copying blocks of memory. For a discussion of aternate memory-copy
methods, see “Appropriate Memory Copying Routines’ on page 117.

Latency of Repeated String Instructions

Table 7 shows the latency of repeated string instructions on the AMD Athlon 64 and AMD Opteron

processors.

Table 7 lists the latencies with the direction flag (DF) = 0 (increment) and DF = 1 (decrement). In
addition, these latencies are assumed for aligned memory operands. Note that for MOV S and STOS,
when DF = 1, the overhead portion of the latency increases significantly. However, these types are
less commonly found. The user should use the formula and round up to the nearest integer value to

determine the latency.

Table 7. Latency of Repeated String Instructions
Number of Cycles

Instruction When ECX =0 When ECX=c!, DF=0 |WhenECX=c!, DF=1
rep novs 11 15+ (1*c) 25+ (4/3 * ¢)
rep stos 11 14+ (1*c) 24+ (1*c)
rep | ods 11 15+ (2*c) 15+ (2*c)
rep scas 11 15+ (5/2*¢) 15+ (5/2 * ¢)
rep cnps 11 16 + (10/3 * ¢) 16 + (10/3 * c)
Note:

1. ¢>0

Guidelines for Repeated String Instructions

To help achieve good performance, the following sections contain guidelines for the careful
scheduling of VectorPath repeated string instructions.

Chapter 8

Integer Optimizations

173

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Use the Largest Possible Operand Size

Always move data using the largest operand size possible. For example, use REP MOvSD rather than
REP MOVSWand REP MovSWrather than REP MOVSB. Use REP STGSD rather than REP STOSW and
REP STOSwrather than REP STOSB.

In 64-bit mode, a quadword data size is available and offers better performance (for example,
REP MOvSQand REP STOSQ).

Ensure DF = 0 (Increment)

Always make sure that DF is 0 (increment) after execution of CLD forrep novs andrep st os.
DF =1 (decrement) is only needed for certain cases of overlapping rep novs (for example, source
and destination overlap).

While string instructions with DF = 1 (decrement) are slower, only the overhead part of the cycle
equation is larger and not the throughput part. See Table 7 on page 173 for additional latency
numbers.

Align Source and Destination with Operand Size

For rep novs, make sure that both the source and destination are aligned with regard to the operand
size. Handle the end case separately, if necessary. If either source or destination cannot be aligned,
make the destination aligned and the source misaligned. For rep st os, make the destination aligned.

Inline REP String with Low Counts

If the repeat count is constant and low (less than eight), expand REP string instructions into
equivalent sequences of simple AMD64 instructions. Use an inline sequence of loads and stores to
accomplish the move. Use a sequence of storesto emulater ep st os. This technique eliminates the
setup overhead of REP instructions and increases instruction throughput.

Use Loop for REP String with Low Variable Counts

If the repeated count isvariable, but islikely lessthan eight, use a simple loop to move/store the data.
This technique avoids the overhead of rep novs andrep st os.

174 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

8.4 Using XOR to Clear Integer Registers

Optimization

To clear an integer register to all zeros, use the XOR instruction to exclusive OR the register with
itself, as shown below.

Rationale

AMD Athlon 64 and AMD Opteron processors are able to avoid the false read dependency on the
XOR instruction.

Examples

Acceptable
mov reg, O

Preferred
xor reg, reg

Chapter 8 Integer Optimizations 175

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

8.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode

Optimization

The following section contains a collection of code snippets and subroutines showing the efficient
implementation of 64-bit arithmetic in 32-bit mode. Note that these are 32-bit recommendations, in
64-bit mode it is important to use 64-bit integer instructions for best performance.

Addition, subtraction, negation, and shifting are best handled by inline code. Multiplication, division,
and the computation of remainders are less common operations and are usually implemented as
subroutines. If these subroutines are used often, the programmer should consider inlining them.
Except for division and remainder calculations, the following code works for both signed and
unsigned integers. The division and remainder code shown works for unsigned integers, but can easily
be extended to handle signed integers.

64-Bit Addition

; Add ECX: EBX to EDX: EAX, and pl ace sumin EDX: EAX
add eax, ebx

adc edx, ecx

64-Bit Subtraction

; Subtract ECX: EBX from EDX: EAX and pl ace difference in EDX EAX
sub eax, ebx

sbb edx, ecx

64-Bit Negation

; Negat e EDX: EAX.

not edx

neg eax

sbb edx, -1 ; Fix: Increnment high word if | ow word was O.

64-Bit Left Shift
Shift EDX: EAX left, shift count in ECX (count
; applied nodul o 64).

shl d edx, eax, cl ; First apply shift count.

shl eax, cl ; mod 32 to EDX: EAX

test ecx, 32 ; Need to shift by another 32?
jz | shift_done ; No, done.

mov edx, eax ; Left shift EDX EAX

Xor eax, eax . by 32 bits

I shift_done:

176 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

64-Bit Right Shift

shrd
shr
t est
jz
nov
xor

eax, edx, cl ; First apply shift count

edx, cl ; mod 32 to EDX: EAX

ecx, 32 ; Need to shift by another 32?
rshift_done ; No, done

eax, edx ; Left shift EDX EAX

edx, edx ; by 32 bits

rshift_done

64-Bit Multiplication

Il
argu

I n:

Qut :
Destr

1l

nov

jnz
m
ret

tworul :

i mul
i mul
add
nm

add
ret

11l

| conputes the |l oworder half of the product of its
ments, two 64-bit integers

[ESP+8]:[ESP+4] = multiplicand
[ESP+16] : [ESP+12] = nultiplier
EDX: EAX = (multiplicand * nultiplier) % 2764

oys: EAX, ECX, EDX, EFI ags

PROC

edx, [esp+8] ; multiplicand_h

ecx, [esp+16] ; multiplier_h

edx, ecx ; One operand >= 2732?

edx, [esp+12] ; multiplier_lo

eax, [esp+4] ; multiplicand_|lo

t wonul ; Yes, need two multiplies.

edx ; multiplicand_lo * nmultiplier_lo

; Done, return to caller

edx, [esp+8] ; p3_lo = multiplicand_hi * nultiplier_lo
ecx, eax ; p2_lo = mltiplier_hi * multiplicand_lo
ecx, edx ; p2_lo + p3_lo

dword ptr [esp+12] ; pl = multiplicand_lo * nmultiplier_lo
edx, ecx ; pl + p2_lo + p3_lo = result in EDX EAX

; Done, return to caller
ENDP

64-Bit Unsigned Division

—ulld
In:

Qut :
Destr

—ulldiv

push
nov
nov

iv divides two unsigned 64-bit integers and returns the quotient.

[ESP+8] : [ESP+4] = di vi dend
[ESP+16] : [ESP+12] = di vi sor
EDX: EAX = quotient of division

oys: EAX, ECX, EDX, EFI ags
PRCC
ebx ; Save EBX as per calling convention
ecx, [esp+20] ; divisor_h
ebx, [esp+16] ; divisor_lo

Chapter 8 Integer Optimizations 177

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
mov edx, [esp+12] di vi dend_hi
nmov eax, [esp+8] di vidend_l o
test ecx, ecx divisor > (2732 - 1)?
jnz big_divisor Yes, divisor > 2732 — 1.
cnp edx, ebx Only one division needed (ECX = 0)?
jae two_divs Need two divi sions.
div ebx EAX = quotient _lo
mov edx, ecx EDX = quotient_hi = 0 (quotient in EDX EAX)
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
two_divs:
nmv ecx, eax Save dividend_|lo in ECX
nmov eax, edx Get dividend_hi.
xor edx, edx Zero-extend it into EDX EAX
div ebx quotient _hi in EAX
xchg eax, ecx ECX = quotient_hi, EAX = dividend_lo
div ebx EAX = quotient _lo
mov edx, ecx EDX = quotient_hi (quotient in EDX: EAX)
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
bi g_di vi sor:
push edi Save EDI as per calling convention.
mov edi, ecx Save divisor_hi.
shr edx, 1 Shift both divisor and dividend right
rcr eax, 1 by 1 bit.
ror edi, 1
rcr ebx, 1
bsr ecx, ecx ECX = nunber of remmining shifts
shrd ebx, edi, cl Scal e down divi sor and di vi dend
shrd eax, edx, cl such that divisor is |less than
shr edx, cl 2732 (that is, it fits in EBX).
rol edi, 1 Restore original divisor_hi.
div ebx Conput e quoti ent.
mov ebx, [esp+12] dividend_l o
nov ecx, eax Save quoti ent.
imul edi, eax quotient * divisor high word (low only)
mul dword ptr [esp+20] quotient * divisor |ow word
add edx, edi EDX: EAX = quotient * divisor
sub ebx, eax dividend_lo — (quot.*divisor)_lo
nov eax, ecx Get quotient.
mv ecx, [esp+16] di vi dend_hi
sbb ecx, edx Subtract (divisor * quot.) fromdividend.
sbb eax, O Adj ust quotient if remai nder negative.
xor edx, edx Clear high word of quot. (EAX<=FFFFFFFFh).
pop edi Restore EDI as per calling convention.
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
_ulldiv ENDP
178 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
64-Bit Signed Division
; _lldiv divides two signed 64-bit nunbers and delivers the quotient
;o In: [ESP+8] : [ESP+4] = di vi dend
; [ESP+16] : [ESP+12] = di vi sor
; Qut: EDX: EAX = quotient of division
; Destroys: EAX, ECX, E DX, EFI ags
_lldiv PROC
push ebx ; Save EBX as per calling convention.
push esi ; Save ESI as per calling convention.
push edi ; Save EDI as per calling convention.
nmov ecx, [esp+28] ; divisor_hi
mov ebx, [esp+24] ; divisor_lo
mov edx, [esp+20] ; dividend_hi
nmov eax, [esp+16] ; dividend_l o
nmov esi, ecx ; divisor_hi
xor esi, edx ; divisor_hi ~ dividend_hi
sar esi, 31 ; (quotient <0) ?-1: 0
mov edi, edx ; dividend_hi
sar edi, 31 ; (dividend <0) 2 -1: 0
xor eax, edi ; If (dividend < 0),
xor edx, edi ; conpute 1's conpl enent of dividend.
sub eax, edi ; If (dividend < 0),
sbb edx, edi ; conpute 2's conplenent of dividend.
mov edi, ecx ; divisor_hi
sar edi, 31 ; (divisor <0) ?2 -1: 0
xor ebx, edi ; If (divisor < 0),
xor ecx, edi ; conpute 1's conplenent of divisor.
sub ebx, edi ; If (divisor < 0),
sbb ecx, edi ; conpute 2's conplenent of divisor.
jnz big_divisor ; divisor > 2732 - 1
cnp edx, ebx ; Only one division needed (ECX = 0)?
jae two_divs ; Need two divisions.
div ebx ; EAX = quotient_lo
mov edx, ecx ; EDX = quotient_hi = 0 (quotient in EDX EAX)
Xor eax, esi ; If (quotient < 0),
xor edx, esi ; conpute 1's conplenent of result.
sub eax, esi If (quotient < 0),
sbb edx, esi conpute 2's conplenent of result.
pop edi Restore EDI as per calling convention.
pop esi Restore ESI as per calling convention.
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
two_divs:
nmv ecx, eax Save dividend_|lo in ECX
nmov eax, edx Get dividend_hi.
xor edx, edx Zero-extend it into EDX EAX
div ebx quotient _hi in EAX
xchg eax, ecx ECX = quotient_hi, EAX = dividend_lo
Chapter 8 Integer Optimizations 179

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
div ebx EAX = quotient _lo
mov edx, ecx EDX = quotient_hi (quotient in EDX: EAX)
jmp make_sign Make quotient signed.
bi g_di vi sor:
sub esp, 12 Create three |l ocal variables.
mov [esp], eax di vidend_l o
mov [esp+4], ebx divisor_lo
mov [esp+8], edx di vi dend_hi
mov edi, ecx Save divisor_hi.
shr edx, 1 Shift both
rcr eax, 1 di vi sor and
ror edi, 1 and di vi dend
rcr ebx, 1 right by 1 bit.
bsr ecx, ecx ECX = nunber of remaining shifts
shrd ebx, edi, cl Scal e down di vi sor and
shrd eax, edx, cl di vidend such that divisor is
shr edx, cl | ess than 2732 (that is, fits in EBX).
rol edi, 1 Restore original divisor_hi.
div ebx Conput e quoti ent.
mov ebx, [esp] di vidend_l o
nov ecx, eax Save quoti ent.
imul edi, eax quotient * divisor high word (low only)
mul DWORD PTR [esp+4] quotient * divisor |ow word
add edx, edi EDX: EAX = quotient * divisor
sub ebx, eax dividend_l o - (quot.*divisor)_lo
nov eax, ecx Get quoti ent.
mov ecx, [esp+8] di vi dend_hi
sbb ecx, edx Subtract (divisor * quot.) fromdividend
sbb eax, O Adj ust quotient if renminder is negative.
xor edx, edx Cl ear high word of quotient.
add esp, 12 Renmove | ocal vari abl es.
make_si gn:
Xor eax, esi If (quotient < 0),
xor edx, esi conpute 1's conplenent of result.
sub eax, esi If (quotient < 0),
sbb edx, esi conpute 2's conplenent of result.
pop edi Restore EDI as per calling convention.
pop esi Restore ESI as per calling convention.
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
_lldiv ENDP
64-Bit Unsigned Remainder Computation
; _ullremdivides two unsigned 64-bit integers and returns the remai nder.
;on: [ESP+8] : [ESP+4] = di vi dend
; [ESP+16] : [ESP+12] = di vi sor
;o Qut: EDX: EAX = renui nder of division
180 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Destroys: EAX, ECX, EDX, EFI ags
_ullrem PROC
push ebx Save EBX as per calling convention.
mov ecx, [esp+20] di vi sor _hi
mov ebx, [esp+16] divisor_lo
mov edx, [esp+12] di vi dend_hi
nmov eax, [esp+8] di vidend_l o
test ecx, ecx divisor > 2732 - 1?
jnz r_big_divisor Yes, divisor > 32732 - 1.
cnp edx, ebx Only one division needed (ECX = 0)?
jae r_two_divs Need two divi sions.
div ebx EAX = quotient _lo
nmov eax, edx EAX = renmninder _l o
mov edx, ecx EDX = remainder_hi = 0
pop ebx Rest ore EBX per calling convention.
ret Done, return to caller.
r_two_divs:
nmov ecx, eax Save dividend_|lo in ECX
nmov eax, edx Get dividend_hi.
xor edx, edx Zero-extend it into EDX EAX
di v ebx EAX = quotient_hi, EDX = internediate renainder
nmov eax, ecx EAX = dividend_l o
di v ebx EAX = quotient _|lo
nmov eax, edx EAX = remai nder _| o
xor edx, edx EDX = remai nder _hi = 0
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
r_big_divisor:
push edi Save EDI as per calling convention.
mov edi, ecx Save divisor_hi.
shr edx, 1 Shift both divisor and dividend right
rcr eax, 1 by 1 bit.
ror edi, 1
rcr ebx, 1
bsr ecx, ecx ECX = nunber of remmining shifts
shrd ebx, edi, cl Scal e down di vi sor and dividend such
shrd eax, edx, cl that divisor is |less than 2732
shr edx, cl (that is, it fits in EBX).
rol edi, 1 Restore original divisor (ED :ESI).
div ebx Conput e quoti ent.
mov ebx, [esp+12] di vi dend | ow word
nov ecx, eax Save quoti ent.
imul edi, eax quotient * divisor high word (low only)
mul DWORD PTR [esp+20] quotient * divisor |ow word
add edx, edi EDX: EAX = quotient * divisor
sub ebx, eax dividend_lo — (quot.*divisor)_lo
mv ecx, [esp+16] di vi dend_hi
Chapter 8 Integer Optimizations 181

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
nov eax,
sbb ecx,
sbb edx,
and eax,
and edx,
add eax,
pop edi
pop ebx
ret

_ull rem ENDP

[esp+20] ; divisor_lo

edx ; Subtract divisor * quot. from dividend.
edx ; (remminder < 0) ? OxFFFFFFFF : O

edx ; (remminder < 0) ? divisor_lo: O

[esp+24] ; (remminder < 0) ? divisor_hi : O

ebx ; remainder += (remminder < 0) ? divisor

Restore EDI as per calling convention.
Restore EBX as per calling convention.
Done, return to caller.

64-Bit Signed Remainder Computation
7 _llremdivides two signed 64-bit nunbers and returns the renainder.

oIn:

; Qut:
; Destro

push
push
push
nmv

[ESP+8] : [ESP+4] = di vi dend
[ESP+16] : [ESP+12] = di vi sor

EDX: EAX = remai nder of division

ys: EAX, ECX, EDX, EFI ags

ebx ; Save EBX as per calling convention.
esi ; Save ESI as per calling convention.
edi ; Save EDI as per calling convention.
ecx, [esp+28] ; divisor-hi

ebx, [esp+24] ; divisor-lo

edx, [esp+20] ; di vi dend- hi

eax, [esp+16] ; dividend-1o

esi, edx ; sign(remai nder) == sign(dividend)
esi, 31 ; (remainder <0) ? -1: 0

edi, edx ;di vi dend- hi

edi, 31 ; (dividend < 0) 2 -1: 0

eax, edi ; If (dividend < 0),

edx, edi ; conpute 1's conpl ement of dividend.
eax, edi ; If (dividend < 0),

edx, edi ; conpute 2's conplerment of dividend.
edi, ecx ; divisor-hi

edi, 31 ; (divisor <0) ? -1: 0

ebx, edi ; If (divisor < 0),

ecx, edi ; conmpute 1's conpl emrent of divisor.
ebx, edi ; If (divisor < 0),

ecx, edi ; conmpute 2's conpl ement of divisor.
sr_bi g_di vi sor ; divisor > 2732 - 1

edx, ebx ; Only one division needed (ECX = 0)?
sr_two_divs ; No, need two divisions.

ebx ; EAX = quotient_lo

eax, edx ; EAX = remai nder_| o

edx, ecx ; EDX = remainder_lo = 0

eax, esi ; If (remainder < 0),

edx, esi ; conpute 1's conplenment of result.

25112 Rev.3.04 March 2004

Integer Optimizations

Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
sub eax, esi If (remai nder < 0),
sbb edx, esi conpute 2's conplenent of result.
pop edi Restore EDI as per calling convention.
pop esi Restore ESI as per calling convention.
pop ebx Restore EBX as per calling convention.
ret Done, return to caller.
sr_two_divs:
nmov ecx, eax Save dividend_|lo in ECX
nmov eax, edx Get dividend_hi.
xor edx, edx Zero-extend it into EDX EAX
di v ebx EAX = quotient_hi, EDX = internediate renai nder
nmov eax, ecx EAX = dividend_lo
div ebx EAX = quotient _lo
nmov eax, edx remai nder _| o
xor edx, edx remai nder_hi = 0
jmp sr_makesign Make remai nder signed.
sr_bi g_divisor:
sub esp, 16 Create three |l ocal variables.
mov [esp], eax di vidend_l o
mov [esp+4], ebx divisor_lo
mov [esp+8], edx di vi dend_hi
mov [esp+12], ecx di vi sor _hi
mov edi, ecx Save divisor_hi.
shr edx, 1 Shift both
rcr eax, 1 di vi sor and
ror edi, 1 and di vi dend
rcr ebx, 1 right by 1 bit.
bsr ecx, ecx ECX = nunber of remmining shifts
shrd ebx, edi, cl Scal e down di vi sor and
shrd eax, edx, cl di vidend such that divisor is
shr edx, cl | ess than 2732 (that is, fits in EBX).
rol edi, 1 Restore original divisor_hi.
div ebx Conput e quoti ent.
mov ebx, [esp] di vidend_l o
nov ecx, eax Save quoti ent.
imul edi, eax quotient * divisor high word (|l ow only)
mul DWORD PTR [esp+4] quotient * divisor |ow word
add edx, edi EDX: EAX = quotient * divisor
sub ebx, eax dividend_lo - (quot.*divisor)_lo
mov ecx, [esp+8] di vi dend_hi
sbb ecx, edx Subtract divisor * quot. from dividend.
sbb eax, eax remai nder < 0 ? Oxffffffff : O
mov edx, [esp+12] di vi sor _hi
and edx, eax remai nder < 0 ? divisor_hi : 0
and eax, [esp+4] remainder < 0 ? divisor_lo : 0
add eax, ebx remai nder _| o
add edx, ecx remai nder _hi
add esp, 16 Renmove | ocal vari abl es.
Chapter 8 Integer Optimizations 183

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04

Processors

sr_makesi gn:
Xor eax, esi
xor edx, esi
sub eax, esi
sbb edx, esi

If (remai nder < 0),

conpute 1's conplenent of result.
If (remai nder < 0),

conmpute 2's conpl enent of result.

March 2004

pop edi ; Restore EDI as per calling convention.
pop esi ; Restore ESI as per calling convention.
pop ebx ; Restore EBX as per calling convention.
ret ; Done, return to caller.
184 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

8.6 Efficient Implementation of Population-Count
Function in 32-Bit Mode

Population count is an operation that determines the number of set bitsin abit string. For example,
this can be used to determine the cardinality of a set. The example code in this section shows how to
efficiently implement a population count operation for 32-bit operands. The exampleiswritten for the
inline assembler of Microsoft® Visual C.

Function popcount implements a branchless computation of the population count. It is based on a
O(log(n)) algorithm that successively groups the bits into groups of 2, 4, 8, 16, and 32, while
maintaining a count of the set bitsin each group. The agorithm consists of the following steps.

1. Partition the integer into groups of two bits. Compute the popul ation count for each 2-bit group
and store the result in the 2-bit group. This calls for the following transformation to be performed
for each 2-bit group:

00b -> 00b
01b -> 01b
10b -> 01b

11b -> 10b

If the original value of a 2-bit group isv, then the new valuewill bev — (v >> 1). In order to handle
all 2-bit groups simultaneousdly, it is necessary to mask appropriately to prevent spilling from one
bit group to the next lower bit group. Thus:

w=v - ((v>> 1) & 0x55555555)

2. Add the population count of adjacent 2-bit group and store the sum to the 4-bit group resulting
from merging these adjacent 2-bit groups. To do this simultaneously to al groups, mask out the
odd numbered groups, mask out the even numbered groups, and then add the odd numbered
groups to the even numbered groups:

X = (w & 0x33333333) + ((w >> 2) & 0x33333333)
Each 4-bit field now has one of the following values. 0000b, 0001b, 0010b, 0011b, or 0100b.

3. For thefirst time, the value in each k-bit field is small enough that adding two #-bit fields results
in avaluethat till fitsin the k-bit field. Thus the following computation is performed:

y = (x + (x >> 4)) & OxOFOFOFOF

The result isfour 8-bit fields whose lower half has the desired sum and whose upper half contains
“junk” that has to be masked out. A symbolic form is as follows:

OaaaObbb0Occc0dddOeeeOf f f 0gggOhhh

X >> 4 00000aaaObbb0ccc0dddOeeeOf f f 0ggg

sum OaaaVWNAN i i i XXXXj jjj YYYYkkkkzzzz

The WWWW, XXXX, YYYY, and ZZZZ values are the interesting sums with each at most
1000b, or 8 decimal.

X

Chapter 8 Integer Optimizations 185

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

25112 Rev.3.04 March 2004

4. Thefour 4-bit sums can now be rapidly accumulated by multiplying with a so-called magic
multiplier. This can be derived from looking at the following chart of partial products:

Op0OqgOr0s * 01010101 =

: 0p0gOr Os
Op: 0qOr Os

0Op0q: Or Os

0Op0qOr: Os

000pxxww. vvuut t 0s
Herep, q,r, and s are the 4-bit sums from the previous step, and vv isthefinal interesting result.

Thefinal result is asfollows:

z = (y * 0x01010101) >> 24

Integer Version
unsi gned i nt popcount (unsigned int v)

{
unsigned int retVal;
_asm{
nov eax, [V] \Y
nov edx, eax %
shr eax, 1 v >> 1
and eax, 055555555h (v >> 1) & 0x55555555
sub edx, eax w=vVv - ((v>> 1) & 0x55555555)
nov eax, edx w
shr edx, 2 w >> 2
and eax, 033333333h w & 0x33333333
and edx, 033333333h (w>>2) & 0x33333333
add eax, edx X = (w & 0x33333333) + ((w>>2) &
0x33333333)
nov edx, eax X
shr eax, 4 X >> 4
add eax, edx X + (x >> 4)
and eax, OOFOFOFOFh y = (x + (x >> 4) & OxOFOFOFOF)
i mul eax, 001010101h y * 0x01010101
shr eax, 24 popul ati on count = (y *
0x01010101) >> 24
nov retVal, eax Store result.
}
return(retVval);
}
186 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

8.7 Efficient Binary-to-ASCIl Decimal Conversion

Fast binary-to-ASCII decimal conversion can be important to the performance of software working
with text oriented protocols like HTML, such asweb servers. The following examples show two
optimized functions for fast conversion of unsigned integers-to-ASCII decimal strings on

AMD Athlon 64 and AMD Opteron processors. The code is written for the Microsoft Visua C
compiler.

Thefunctionui nt _to_ascii _| z convertslikesprintf(sptr, "%i0u", x).Thatis, leading zeros
are retained, whereas ui nt _t o_asci i _nl z convertslikesprintf (sptr, "o", x);thatis, leading
zeros are suppressed.

This code can easily be extended to convert signed integers by isolating the sign information and
computing the absolute value as shown in Listing on page 136 before starting the conversion process.
For restricted argument ranges, construct more efficient conversion routines using the same algorithm
as used for the general case presented here.

The agorithm first splits the input argument into suitably sized blocks by dividing the input by an
appropriate power of ten and working separately on the quotient and remainder of that division. The
DIV instruction is avoided as described in “Replacing Division with Multiplication” on page 166.
Each block is then converted into a fixed-point format that consists of one (decimal) integer digit and
abinary fraction. This alows the generation of additional decimal digits by repeated multiplication of
the fraction by 10. For efficiency reasons the algorithm implements this multiplication by multiplying
by five and moving the binary point to the right by one bit for each step of the algorithm. To avoid
loop overhead and branch mispredictions, the digit generation loop is completely unrolled. In order to
maximize parallelism, the code inui nt _t o_asci i _I z splitsthe input into two equally sized blocks
each of which yields five decimal digits for the result.

Binary-to-ASCII Decimal Conversion Retaining Leading Zeros

__decl spec(naked) void __stdcall uint_to_ascii_lz(char *sptr, unsigned int Xx)
{
_asm{
push edi ; Save as per calling conventions.
push esi ; Save as per calling conventions.
push ebx ; Save as per calling conventions.
nov eax, [esp+20] ;X
nov edi, [esp+16] ;osptr
nov esi, eax ;X
nov edx, OxA7C5ACA7 ; Divide x by
mul edx ;10,000 using
add eax, OxA7C5ACA7 ; multiplication
adc edx, O ; wWith reciprocal.
shr edx, 16 ; yl = x [1eb5
nov ecx, edx oyl
i mul edx, 100000 ; (x] 1leb) * 1leb
sub esi, edx ;Y2 = X % 1e5
nmov eax, O0xD1lB71759 ; 2715/ 1led4 * 2730
mul ecx ; Divide yl1 by 1le4,

Chapter 8 Integer Optimizations 187

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
shr eax, 30 converting it into
| ea ebx, [eax+edx*4+1] 17. 15 fi xed- poi nt format
nov ecx, ebx such that 1.0 = 2715.
nov eax, OxD1B71759 27215/ le4 * 2730
mul esi Divide y2 by le4,
shr eax, 30 converting it into
lea esi, [eax+edx*4+1] 17. 15 fi xed- poi nt format
nov edx, esi such that 1.0 = 2715.
shr ecx, 15 1st digit
and ebx, 0x00007fff Fraction part
OR ecx, '0 Convert 1st digit to ASClI.
nov [edi +0], cl Store 1st digit in menory.
|l ea ecx, [ebx+ebx*4] 5 * fraction, new digit ECX 31-14]
| ea ebx, [ebx+ebx*4] 5 * fraction, new fracti on EBX] 13- 0]
shr edx, 15 6th digit
and esi, 0x00007fff Fraction part
or edx, '0' Convert 6th digit to ASClI.
nov [edi +5], dl Store 6th digit in menory.
| ea edx, [esi+esi*4] 5 * fraction, new digit EDX 31-14]
lea esi, [esi+esi*4] 5 * fraction, new fraction ESI[13-0]
shr ecx, 14 2nd digit
and ebx, 0x00003fff Fraction part
or ecx, 'O Convert 2nd digit to ASClI.
nmov [edi +1], cl Store 2nd digit in menory.
|l ea ecx, [ebx+ebx*4] 5 *f raction, new digit ECX 31-13]
| ea ebx, [ebx+ebx*4] 5 * fraction, new fracti on EBX] 12- 0]
shr edx, 14 7th digit
and esi, 0x00003fff Fraction part
or edx, '0' Convert 7th digit to ASClI.
nov [edi +6], dl Store 7th digit in menory.
| ea edx, [esi+esi*4] 5 * fraction, new digit EDX 31-13]
lea esi, [esi+esi*4] 5 * fraction, new fraction ESI[12-0]
shr ecx, 13 3rd digit
and ebx, 0x00001fff Fraction part
or ecx, 'O Convert 3rd digit to ASClI.
nmov [edi +2], cl Store 3rd digit in menory.
|l ea ecx, [ebx+ebx*4] 5 * fraction, new digit ECX 31-12]
| ea ebx, [ebx+ebx*4] 5 * fraction, new fraction EBX[11-0]
shr edx, 13 8th digit
and esi, 0x00001fff Fraction part
or edx, '0' Convert 8th digit to ASClI.
nov [edi +7], dl Store 8th digit in menory.
| ea edx, [esi+esi*4] 5 * fraction, new digit EDX 31-12]
lea esi, [esi+esi*4] 5 * fraction, new fraction ESI[11-0]
shr ecx, 12 4th digit
and ebx, 0x00000fff Fraction part
or ecx, 'O Convert 4th digit to ASClII.
nov [edi +3], cl Store 4th digit in menory.
|l ea ecx, [ebx+ebx*4] 5 * fraction, new digit ECX 31-11]
shr edx, 12 9th digit
and esi, 0x00000fff Fraction part
188 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004

or

| ea
shr
or

nov
shr
or

nov
pop
pop
pop
ret

}

edx, 'O
[edi +8], dI
edx, [esi+esi*4]
ecx, 11
ecx, '0'
[edi +4], cl
edx, 11
edx, 'O
[edi +9], dx
ebx

esi

edi

8

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Convert 9th digit to ASClI.

Store 9th digit in menory.

5 * fraction, new digit EDX 31-11]

5th digit

Convert 5th digit to ASClI.

Store 5th digit in menory.

10th digit

Convert 10th digit to ASClI.

Store 10th digit and end marker in nenory.
Restore regi ster as per calling convention.
Restore regi ster as per calling convention.
Restore regi ster as per calling convention.
Pop two DWORD argunents and return.

Binary-to-ASCIl Decimal Conversion Suppressing Leading Zeros

__decl spec(naked) void __stdcall

{
__asm{

push edi
push ebx
mov edi,
nov eax,
nov ecx,
mov edx,
mul edx
add eax,
adc edx,
shr edx,
nov eax,
nmov ebx,
i mul eax,
sub ecx,
or dl,
mov [edi]
cnp ebx,
sbb edi,
nov eax,
nmov edx,
mul edx
shr eax,
|l ea edx,
nov eax,
shr eax,
and edx,
or ebx,
or eax,
mov [edi]
|l ea eax,

[esp+12]

[esp+16]
eax
89705F41h

eax
0
29
edx
edx

1000000000
eax

Lo

, dl

1

-1

ecx
Oabcc7712h

30

[eax+4* edx+1]
edx

28

offfffffh

eax

o

, al

[edx* 4+edx]

uint_to_ascii_nlz(char *sptr, unsigned int Xx)

Save as per calling conventions.
Save as per calling conventions.
sptr
X
Save origi nal argunent.
le-9 * 2761 rounded
Divide by 1e9 by multiplying with reciprocal.
Round di vision result.
EDX[31-29] = argument / 1e9
Leadi ng decimal digit, 0...4
Leading digit
Initialize digit accunulator with
| eading digit.
Leading digit * 1le9
Subtract (leading digit * 1e9) from argunent.
Convert leading digit to ASCHI.
Store leading digit.
Any nonzero digit yet?
Yes, increnment ptr. No, keep old ptr.
Get reduced argument < 1e9.
2728 [1e8 * 2730 rounded up
Di vi de reduced
argunent < 1e9 by 1le8,
converting it into 4.28 fixed-point
format such that 1.0 = 2728.
Next digit
Fraction part
Accumul ate next digit.
Convert digit to ASClI.
Store digit in menory.
5 * fraction, new digit EAX 31-27]

Chapter 8

Integer Optimizations 189

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 26- 0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr. No, keep old ptr.
shr eax, 27 Next digit
and edx, O07ffffffh Fraction part
or ebx, eax Accunmul ate next digit.
or eax, 'O Convert digit to ASClI.
nmov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-26]
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 25-0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnment ptr. No, keep old ptr.
shr eax, 26 Next digit
and edx, 03ffffffh Fraction part
or ebx, eax Accumul ate next digit.
or eax, 'O Convert digit to ASClI.
nov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-25]
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 24- 0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnment ptr. No, keep old ptr.
shr eax, 25 Next digit
and edx, Olffffffh Fraction part
or ebx, eax Accunmul ate next digit.
or eax, 'O Convert digit to ASClI.
nov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-24]
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 23-0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr, No, keep old ptr.
shr eax, 24 Next digit
and edx, O00ffffffh Fraction part
or ebx, eax Accumul ate next digit.
or eax, 'O Convert digit to ASClI.
nmov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-23]
| ea edx, [edx*4+edx] 5 * fraction, new fraction EDX[31-23]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr. No, keep old ptr.
shr eax, 23 Next digit
and edx, 007fffffh Fraction part
or ebx, eax Accunmul ate next digit.
or eax, 'O Convert digit to ASClI.
nmov [edi], al Store digit out to menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-22]
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 22-0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr. No, keep old ptr.
shr eax, 22 Next digit
and edx, 003fffffh Fraction part
OR ebx, eax Accumul ate next digit.
190 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

or eax, 'O Convert digit to ASClI.
nmov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-21]
| ea edx, [edx*4+edx] 5 * fraction, new fracti on EDX] 21-0]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr. No, keep old ptr.
shr eax, 21 Next digit
and edx, 001fffffh Fraction part
or ebx, eax Accumul ate next digit.
or eax, 'O Convert digit to ASClI.
nmov [edi], al Store digit in menory.
|l ea eax, [edx*4+edx] 5 * fraction, new digit EAX 31-20]
cmp ebx, 1 Any nonzero digit yet?
sbb edi, -1 Yes, increnent ptr. No, keep old ptr.
shr eax, 20 Next digit
or eax, 'O Convert digit to ASClI.
nmov [edi], ax Store last digit and end marker in nenory.
pop ebx Restore regi ster as per calling convention.
pop edi Restore regi ster as per calling convention.
ret 8 Pop two DWORD argunents and return.
}
}
Chapter 8 Integer Optimizations 191

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

8.8 Derivation of Algorithm, Multiplier, and Shift
Factor for Integer Division by Constants

The following examples illustrate the derivation of algorithm, multiplier and shift factor for signed
and unsigned integer division.

Unsigned Integer Division

The utility udi v. exe was compiled from the code shown in this section. The utilities provided in this
document are for reference only and are not supported by AMD.

The following code derives the multiplier value used when performing integer division by constants.
The code works for unsigned integer division and for odd divisors between 1 and 231 — 1, inclusive.
For divisors of theform d = d'* 2n, the multiplier isthe same as for d’ and the shift factor iss + n.

Example

/* This programdeternmines the algorithm(a), multiplier (m, and
shift factor (s) to be used to acconplish *unsi gned* division by
a constant divisor. Conpile with MSVC

*/

#i ncl ude <stdio. h>

typedef unsigned __int64 U64;
typedef unsigned | ong U32;

U32 log2(U32 i)
{
U2t = 0;
=i > 1
while (i) {
=i > 1;
t++;
}
return(t);

}

U32 resl, res2;

u32d, I, s, ma r, n t;
U64 mlow, mhigh, j, k;

int main (void)

{
fprintf(stderr, "\n");
fprintf(stderr, "Unsigned division by constant\n");
fprintf(stderr, " \n\n");

192 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

fprintf(stderr, "enter divisor: ");
scanf ("% u", &d);
printf("\n");

if (d == 0) goto printed_code;

if (d >= 0x80000000UL) {
printf("; dividend: register or nenory |ocation\n");
printf("\n");
printf("Cw di vidend, 0998l Xh\n", d);
printf ("MW EDX, O\n");
printf("SBB EDX, -1\n");
printf("\n");
printf("; quotient nowin EDX\n");
goto printed_code;

/* Reduce divisor until it becones odd. */
n = 0;
t = d;
while (I(t & 1)) {
t >>= 1,
n++;
}
if (t ==1) {
if (n==20) {
printf("; dividend: register or nenory location\n");
printf("\n");
printf (" MWV EDX, dividend\n", n);
printf("\n");
printf("; quotient nowin EDX\n");
}
el se {
printf("; dividend: register or nenory location\n");
printf("\n");
printf("SHR di vidend, %\n", n);
printf("\n");
printf("; quotient replaced dividend\n");
}

goto printed_code;

}

/* Generate m s for algorithmO. Based on: Ganlund, T.; Montgonery,
P.L.: "Division by Invariant |Integers using Miltiplication."
SI GPLAN Notices, Vol. 29, June 1994, page 61.

*

/

I = 1log2(t) + 1;

Chapter 8 Integer Optimizations 193

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Jo= (((Usd) (Oxffffffff)) % ((UB4)(t)));
k (((UB4) (1)) << (32 + 1)) I ((Us4)(Oxffffffff - j));
mlow = (((U64)(1)) << (32 + 1)) [/ t;
mhigh = ((((U64) (1)) << (32 + 1)) + k) / t;
while (((mlow >> 1) < (mhigh >> 1)) && (I > 0)) {
mlow = mlow >> 1;
m_hi gh = m high >> 1;
I =1 -1

if ((mhigh > 32) == 0) {

m = ((U32) (m_high));
s = 1;
a = 0;

}

/* Generate mand s for algorithm1l. Based on: Magenheiner, D.J.; et al:
"Integer Miultiplication and Division on the HP Precision Architecture.”
| EEE Transactions on Conputers, Vol. 37, No. 8, August 1988, page 980.

*/
el se {
s = log2(t);
mlow = (((U64)(1)) << (32 + s)) / ((U64)(1));
ro= ((U32)((((U64)(1)) << (32 + 5)) % ((U64)(t))));
m=(r < ((t > 1) +1)) ? ((BY(mlow) : ((UW2)(mlow) + 1;
a = 1;
}

/* Reduce multiplier for either algorithmto smallest possible. */

while (!(m& 1)) {
m=m>> 1;
S--3

}

/* Adjust multiplier for reduction of even divisors. */
s += n;

it (a) {
printf("; dividend: register other than EAX or nenory |ocation\n");
printf("\n");
printf ("MW EAX, 0998l Xh\n", m;
printf ("ML di vi dend\ n");
printf("ADD EAX, 0998l Xh\n", m;
printf("ADC EDX, O\n");
if (s) printf("SHR EDX, %\ n", s);
printf("\n");
printf("; quotient nowin EDX\n");

}

el se {

194 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

printf("; dividend: register other than EAX or nenory |ocation\n");

printf("\n");
printf ("MW EAX, 0998l Xh\n", m;
printf ("ML di vi dend\ n");
if (s) printf("SHR EDX, %\ n", s);
printf("\n");
printf("; quotient nowin EDX\n");

}

printed_code:

fprintf(stderr, "\n");
exit(0);

return(0);

Signed Integer Division

Processors

The utility sdi v. exe was compiled using the following code. The utilities provided in this document

are for reference only and are not supported by AMD.

Example Code

/* This programdeterm nes the algorithm(a), multiplier (m, and
shift factor (s) to be used to acconplish *signed* division by
a constant divisor. Conpile with MSVC

*/

#i ncl ude <stdio. h>

typedef unsigned __int64 U64;
typedef unsigned | ong u32;

U32 log2(U32 i)

{
U2t = 0;
i =i > 1
while (i) {
=i > 1,
t++;
}
return(t);
}
|l ong e;

U32 resl, res2;
U32 oa, os, om
w32d, I, s, mar, t;
U64 mlow, mhigh, j, k;

Chapter 8 Integer Optimizations

195

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

int main(void)

25112 Rev.3.04 March 2004

{

fprintf(stderr, "\n");

fprintf(stderr, "Signed division by constant\n");

fprintf(stderr, " \n\n");

fprintf(stderr, "enter divisor: ");

scanf ("% d", &d);

fprintf(stderr, "\n");

e = d;

d = labs(d);

if (d == 0) goto printed_code;

if (e ==(-1)) {
printf("; dividend: register or nenory |ocation\n");
printf("\n");
printf("NEG di vi dend\ n");
printf("\n");
printf("; quotient replaced dividend\n");
goto printed_code;

}

if (d==2) {
printf("; dividend expected in EAX\n");
printf("\n");
printf("Cw EAX, 080000000h\n");
printf("SBB EAX, -1\n");
printf("SAR EAX, 1\n");
if (e <0) printf("NEG EAX\ n");
printf("\n");
printf("; quotient nowin EAX\n");
goto printed_code;

}

if (!1(d &(d- 1))) {
printf("; dividend expected in EAX\n");
printf("\n");
printf("CDQn");
printf("AND EDX, 0998l Xh\n", (d-1));
printf("ADD EAX, EDX\n");
if (log2(d)) printf("SAR EAX, %\ n", |og2(d));
if (e <0 printf("NEG EAX\ n");
printf("\n");
printf("; quotient nowin EAX\n");
goto printed_code;

}

196 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

/* Determine algorithm(a), multiplier (m, and shift factor (s) for 32-bit
signed integer division. Based on: Granlund, T.; Montgonery, P.L.:
"Division by Invariant Integers using Miltiplication". SIGPLAN Noti ces,
Vol . 29, June 1994, page 61.

*/

I = log2(d);

j = (((U64) (0x80000000)) % ((Us4)(d)));

k = (((UB4) (1)) << (32 + 1)) / ((Us4)(0x80000000 - j));

mlow = (((U64)(1)) << (32 + 1)) / d;
mhigh = ((((U64) (1)) << (32 + 1)) + k) / d;

while (((mlow >> 1) < (mhigh > 1)) & (I > 0)) {

mlow = mlow >> 1;
m_hi gh = m_ high >> 1;
I =1 -1

}

m = ((U32) (m_high));

s =1;

a = (mhigh >> 31) ? 1: 0;

if (a) {
printf("; dividend: nenory location or register other than EAX or EDX\n");
printf("\n");
printf ("MW EAX, 09%©8LXh\n", m;
printf ("ML di vi dend\ n");
printf ("MW EAX, dividend\n");
printf("ADD EDX, EAX\n");
if (s) printf("SAR EDX, %\ n", s);
printf("SHR EAX, 31\n");
printf("ADD EDX, EAX\n");
if (e <0) printf("NEG EDX\ n") ;
printf("\n");
printf("; quotient nowin EDX\n");

}

el se {
printf("; dividend: nenory location of register other than EAX or EDX\n");
printf("\n");
printf ("MW EAX, 09%©8LXh\n", m;
printf ("ML di vi dend\ n");
printf ("MW EAX, dividend\n");
if (s) printf("SAR EDX, %\ n", s);
printf("SHR EAX, 31\n");
printf("ADD EDX, EAX\n");
if (e <0) printf("NEG EDX\ n") ;
printf("\n");
printf("; quotient nowin EDX\n");

}

printed_code:

Chapter 8 Integer Optimizations 197

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

fprintf(stderr, "\n");
exit(0);

198 Integer Optimizations Chapter 8

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 9 Optimizing with SIMD Instructions

The 64-bit and 128-bit SIMD instructions—SSE and SSE?2 instructions—should be used to encode
floating-point and integer operation.

« The SIMD instructions use aflat register file rather than the stack register file used by x87
floating-point instructions. This allows arbitrary sequences of operations to map more efficiently
to the instruction set.

» Future processors with more or wider multipliers and adders will achieve better throughput using
SSE and SSE2 instructions. (Today’s processors implement a 128-bit-wide SSE or SSE2
operation as two 64-bit operations that are internally pipelined.)

e SSE and SSE2 instructions work well in both 32-bit and 64-bit threads.

The SIMD instructions provide a theoretical single-precision peak throughput of two additions and
two multiplications per clock cycle, whereas x87 instructions can only sustain one addition and one
multiplication per clock cycle. The SSE2 and x87 double-precision peak throughput is the same, but
SSE2 instructions provide better code density.

This chapter covers the following topics:

Topic Page
Ensure All Packed Floating-Point Data are Aligned 201
Improving Scalar SSE and SSE2 Floating-Point Performance with MOVLPD and MOVLPS 202
When Loading Data from Memory

Structuring Code with Prefetch Instructions to Hide Memory Latency 206
Avoid Moving Data Directly Between General-Purpose and MMX™ Registers 212
Use MMX™ Instructions to Construct Fast Block-Copy Routines in 32-Bit Mode 213
Passing Data between MMX™ and 3DNow!™ Instructions 214
Storing Floating-Point Data in MMX™ Registers 215
EMMS and FEMMS Usage 216
Using SIMD Instructions for Fast Square Roots and Fast Reciprocal Square Roots 217
Use XOR Operations to Negate Operands of SSE, SSE2, and 3DNow!™ Instructions 221
Clearing MMX™ and XMM Registers with XOR Instructions 222
Finding the Floating-Point Absolute Value of Operands of SSE, SSE2, and 3DNow!™ 223
Instructions

Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and 3DNow!™ 224
Instructions

Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and 3DNow!™ 224
Instructions

Chapter 9 Optimizing with SIMD Instructions 199

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

25112 Rev.3.04 March 2004

Topic Page
Complex-Number Arithmetic Using SSE, SSE2, and 3DNow!™ Instructions 227
Optimized 4 x 4 Matrix Multiplication on 4 x 1 Column Vector Routines 236

200 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.1 Ensure All Packed Floating-Point Data are Aligned

Optimization

Align all packed floating-point data on 16-byte boundaries.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Misaligned memory accesses reduce the available memory bandwidth and SSE and SSE2 instructions
have shorter latencies when operating on aligned memory operands.

Aligning data on 16-byte boundaries allows you to use the aligned load instructions (MOVAPS,
MOVAPD, and MOVDQA), which move through the floating-point unit with shorter latencies and
reduce the possihility of stalling addition or multiplication instructions that are dependent on the load
data.

Chapter 9 Optimizing with SIMD Instructions 201

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.2 Improving Scalar SSE and SSE2 Floating-Point
Performance with MOVLPD and MOVLPS When
Loading Data from Memory

Optimization

Use the MOVLPS and MOVLPD instructions to move scalar floating-point data into the XMM
registers prior to addition, multiplication, or other scalar instructions.

Application
This optimization applies to:
o 32-hit software

¢ 64-bit software

Rationale—Single Precision

The MOV SSinstruction is used to move scaar single-precision floating-point datainto the XMM
registers prior to addition (ADDSS) and multiplication (MULSS) or other scalar instructions. In
addition to loading a 32-hit floating-point value into the XMM register, the MOV SSinstruction clears
the upper 96 bits of the register. Clearing part of the XMM register is an inefficiency that you can
bypass by using the MOV LPS instruction. MOV L PS |oads two floating-point values from memory
without clearing the upper 64 bits of the XMM register.

The latency of the MOV SSinstruction is 3 cycles, whereas the latency of the MOVLPS instruction is
2 cycles. The AMD Athlon™ 64 and AMD Opteron™ processors can perform two 64-bit |oads per
clock cycle. Two 64-bit MOV LPS loads can be issued in the same cycle, assuming the datais 8-byte
aligned. Likewise, two MOV SSoads can be performed per cycle, but—unlike MOV L PS—additional
operations that interfere with the MUL SS and ADDSS instructions must be issued to clear the
register. Using MOV LPS rather than MOV SSto load single-precision scalar data from memory on
processor-limited floating-point-intensive code can result in significant performance increases.

Consider the following caveats when using the MOV LPS instruction:

* When accessing 4-byte-aligned addresses that are not 8-byte aligned, MOV LPS |oads take an
additional cycle.

e Since MOVLPS loads two floating-point values instead of one, accessing the last floating-point
value in asingle-precision array attempts to load 4 bytes of additional memory directly after the
end of the array, which may cause an access violation. To avoid an access violation, use MOV SS
to accessthe last valuein asingle-precision array or store adummy floating-point value at the end
of the array.

202 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

¢ Thestatement movl ps xmmi, ren64 marksthe lower half of XMM1 as FPS (floating-point
single-precision) but leaves the upper half of XMM1 unchanged. If XMM1 islater used in any
instruction that uses the full 128 bits of XMM 1, there can be a performance penalty if the top half
isnot also in FPS format. Examples of instructions that expect the full 128 bits of XMM1 to bein
FPS format are MOVAPS, ANDPS, ANDNPS, and ORPS. For more information on XMM-
register datatypes, see “ SSE and SSE2 Instruction and Data Types’ on page 359.

Rational—Double Precision

The MOVLPD instruction does not necessitate clearing the upper 64 bits of an XMM register, asthe
MOV SD/MOVQ instructions do, upon loading 64 bits of floating-point data into the lower 64 bits of
the XMM register. Using the MOV LPD instruction can significantly increase performance on
processor-limited SSE2 scalar floating-point-intensive code.

Consider the following caveat when using the MOV LPD instruction:

e Thestatement movl pd xmmi, ren64 marks the lower half of XMM1 as FPD (floating-point
double-precision) but leaves the upper half of XMM1 unchanged. If XMM1 islater used in any
instruction that uses the full 128 bits of XMM 1, there can be a performance penalty if the top half
isnot also in FPD format. Examples of instructions that expect the full 128 bitsof XMM1to bein
FPD format are ANDPD, ANDNPD, and ORPD. For more information on XMM-register data
types, see “ SSE and SSE2 Instruction and Data Types’ on page 359.

Chapter 9 Optimizing with SIMD Instructions 203

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.3 Use MOVLPx/MOVHPXx Instructions for Unaligned
Data Access

Optimization

When data alignment cannot be guaranteed, use MOV LPD/MOVHPD, MOVLPS/MOVHPS or
MOVLPD/MOVHPD pairsin lieu of MOVUPD, MOVUPS or MOVDQU, respectively.
Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

The MOVUPS, MOVUPD and MOVDQU instructions are VectorPath when one of the operandsisa
memory location. It is better to use one of the MOV LPx/MOVHPx or MOV Q/MOVHPD pairs. Itis
prefereable to load or store the 64-bit halves of an XMM register separately when the memory
location cannot be guaranteed to be aligned.

204 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

94 Use MOVAPD and MOVAPS Instead of MOVUPD
and MOVUPS

Optimization

For best performance use the aligned versions of these instructions when using a memory operand.

Application
This optimization applies to:
o 32-bit software

¢ 64-bit software

Rationale

Both MOVUPS and MOV UPD are VectorPath instructions when one of the operandsis a memory
location. It is better to use MOVAPS and MOVAPD since they are both DirectPath Double decode
types. Misaligned memory accesses also reduce the available memory bandwidth and SSE and SSE2
instructions have shorter |atencies when operating on aligned memory operands. Aligning dataon 16-
byte boundaries allows you to use the aigned load instructions (MOVAPS, MOVAPD, and

MOV DQA), which move through the floating-point unit with shorter latencies and reduce the
possihility of stalling addition or multiplication instructions that are dependent on the load data.

Chapter 9 Optimizing with SIMD Instructions 205

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.5 Structuring Code with Prefetch Instructions to
Hide Memory Latency

Optimization
When utilizing prefetch instructions, attend to:

* Thetime alotted (latency) for data to reach the processor between issuing a prefetch instruction
and using the data.

» Structuring the code to best take advantage of prefetching.

Application

This optimization applies to:
* 32-hit software

e 64-bit software

Rationale

Prefetch instructions bring the cache line containing a specified memory location into the processor
cache. (For more information on prefetch instructions, see “Prefetch Instructions’ on page 102.)
Prefetching hides the main memory load latency, which istypically many orders of magnitude larger
than a processor clock cycle.

There are two types of loops:

Loop type Description

Memory-limited Data can be processed and requested faster than it can be fetched from memory.

Processor-limited Data can be requested and brought into the processor before it is needed because
considerable processing occurs during each unrolled loop iteration.

The example provided below illustrates the importance of the above considerationsin an exampl e that
multiplies a double-precision 32 x 32 matrix A with another 32 x 32 transposed double-precision
matrix, BT; the resullt is returned in another 32 x 32 transposed double-precision matrix, CT. (The
transposition of B and C is performed to efficiently access their elements because matricesin the C
programming language are stored in row-major format. Doing the transposition in advance reduces
the problem of matrix multiplication to one of computing several dot-products—one for each element
of the results matrix, CT. This“dotting” operation isimplemented as the sum of pair-wise products of
the elements of two equal-length vectors.) For this example, assume the processor clock speed is

2 GHz, and the memory latency is 60 ns. In this example, the rows of matrix A are repeatedly

206 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

“dotted” with a column of BT. Once thisis done, the rows of matrix A are “dotted” with the next
column of BT, and the processis repeated through all the columns of BT.

From a performance standpoint, there are several caveats to recognize, asfollows:

e Onceall therowsof A have been multiplied with the first column of B, al therowsof A areinthe
cache, and subsequent accesses to them do not cause cache misses.

« Therowsof BT are brought into the cache by “dotting” the first four rows of A with each row of
BTinthear r ow_numfor-loop.

« Theelementsof CT arenot initialy in the cache, and every time a new set of four rows of A are

“dotted” with anew row of BT, the processor has to wait for CT to arrive in the cache before the
results can be written.

You can address the last two caveats by prefetching to improve performance. However, to efficiently
exploit prefetching, you must structure the code to issue the prefetch instructions such that:

« Enoughtimeisprovided for memory requests sent out through prefetch requests to bring datainto
the processor’s cache before the datais needed.

» Theloops containing the prefetch instructions are ordered to issue sufficient prefetch instructions
to fetch all the pertinent data.

The matrix order of 32 is not a coincidence. A double-precision number consists of 8 bytes. Prefetch
instructions bring memory into the processor in chunks called cache lines consisting of 64 bytes (or
eight double-precision numbers). We need to issue four prefetch instructions to prefetch arow of BT.
Consequently, when multiplying all 32 rows of A with aparticular column of B, we want to arrange
the for-loop that cycles through the rows of A such that it is repeated four times. To achieve this, we
need to dot eight rows of A with arow of BT every time we pass through the ct r _r ow_numfor-loop.
Additionally, “dotting” eight rows of A upon arow of BT produces eight doubles of CT (that is, afull
cacheline).

Assume it takes 60 nsto retrieve data from memory; then we must ensure that at least this much time
elapses between issuing the prefetch instruction and the processor loading that datainto its registers.

The dot-product of eight rows of A with arow of BT consists of 512 floating-point operations (dotting
asingle row of A with arow of BT consists of 32 additions and 32 multiplications). The

AMD Athlon, AMD Athlon 64, and AMD Opteron processors are capable of performing amaximum
of two floating point operations per clock cycle; therefore, it takes the processor no less than

256 clock cyclesto process each ¢t r _r ow_numfor-loop.

Choosing amatrix order of 32 is convenient for these reasons:

« All threematrices A, BT, and C" can fit into the processor’s 64-K byte L1 data cache.

e OnaZ2-GHz processor running at full floating-point utilization, 128 ns elapse during the
256 clock cycles, considerably more than the 60 nsto retrieve the data from memory.

Chapter 9 Optimizing with SIMD Instructions 207

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

¢ Thesize of each row is an integer number of cachelines.

A set of eight rows of A is dotted in pairs of four with BT, and prefetches in each iteration of the
¢ r_row_numfor-loop are issued to retrieve:

« Thecacheline (or set of eight double-precision values) of CT to be processed in the next iteration
of the ¢t r _r ow_numfor-loop.

« Onequarter of the next row of BT.

Including the prefetch to the rows of BT increases performance by about 16%. Prefetching the
elements of C! increases performance by an additional 3% or so.

Follow these guidelines when working with processor-limited loops:

« Arrange your code with enough instructions between prefetches so that there is adequate time for
the data to be retrieved.

* Make sure the data that you are prefetching fitsinto the L1 data cache and does not displace other
datathat is also being operated upon. For instance, choosing alarger matrix size might displace A
if all three matrices cannot fit into the 64-Kbyte L1 data cache.

« Operate on datain chunks that are integer multiples of cache lines.

Examples

Double-Precision 32 x 32 Matrix Multiplication
//*******'k***'k*'k***
/1 This routine nultiplies a 32x32 matrix A (stored in rowmjor format) upon
/1 the transpose of a 32x32 matrix B (stored in rowmjor format) to get
/1 the transpose of the resultant 32x32 matrix C
//*******************'k*'k***
void matrix_mul tiply_32x32(doubl e *A doubl e *Btranspose, doubl e *Ctranspose) {

int Gr_8col _blck, Cr_rownum n;

/1l These 4 pointers are used to address 4 consecutive rows of matrix A

doubl e *Aptr0, *Aptrl, *Aptr2, *Aptr3;

/1 Pointers *Btr_ptr and *Ctr_ptr are used to address the colum of B upon

/1 which Ais being nultiplied and where the result Cis placed.

/1 Pointers *Bprefptr and *Cprefptr are used to address the next colum

/1 of B and the next elerments of Cto be calculated in advance

/1 using prefetch instructions.

double *Btr_ptr, *Cr_ptr, *Btr_prefptr, *Cr_prefptr;

/1 Put the address of matrices B-tranpose and C-transpose into their

/'l respective tenporary pointers.

Btr_ptr = Btranspose; Cr_ptr = Ctranspose;

/1 Shift the prefetch pointers to the next row of B-transpose and the

/1 next set of 8 elenments of C-transpose. (Each set of 8 doubles is

/1l a 64-byte cache line if the addresses Btr_ptr and Cr_ptr are aligned
/1 in menmory on 64-byte boundaries.)

208 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Btr_prefptr = Btr_ptr + 32; Ctr_prefptr = Ctr_ptr + 8;
/1 This loop cycles through the rows of the TRANSPCSED C matri x. A row
/1 of Ctranspose is calculated by the code in this |oop and then the
/1 next rowis determined in the following loop iteration. There are
/1 32 rows in C-transpose.
for (CGr_row num= 0; Cr_rownum< 32; Ctr_row numt+) {

/1 Assign pointers to 4 consecutive rows of A by using the

/! address of matrix A passed into the function:

Aptr0 = A;

Aptrl = Aptr0 + 32;

Aptr2 = Aptr0 + 64;

Aptr3 = Aptr0 + 96;

/1 This loop contains code that "dots" 8 rows of A upon the present row

/1 of B-transpose. By looping 4 tines, all 32 rows of A are multiplied
/1 upon the present columm of B-transpose.
for (Ctr_8col _blck = 0; Cr_8col _blck < 4; Ctr_8col _blck++) {
/1 This instruction prefetches 1/4 of the next columm of B-transpose
/1 upon which matrix A needs to be nultiplied. The | oop wi thin which
/1 this code resides is executed 4 tinmes, and by increnenting
/1 Btr_prefptr (the ptr to the address of B transpose to be
/1 prefetched) by 8 doubles (or 64 bytes, or 1 cache line) the entire
/1 contents of the next row of B-transpose are brought to the
/1 processor in advance when Ctr_row numin the outer loop is
/1 incremented
_mm prefetch(&Btr_prefptr[0], 2);
/1 This | oop bel ow "dots" 4 consecutive rows of A upon a row of
/! B-transpose by looping 8 tinmes through code that nmultiplies and
/1 accunul ates the products of 4 elenments of A's rows with 4
/1 elenments of B-transpose's col um.
for (n =0; n<8; nt+t) {
Cr_ptr[0] += AptrO[O0]*Btr_ptr[0]
AptrO[2] *Btr_ptr[2]
Cr_ptr[1] += Aptr1[0]*Btr_ptr[0]
Aptri1[2]*Btr_ptr[2]
Cr_ptr[2] += Aptr2[0]*Btr_ptr[0]
Aptr2[2]*Btr_ptr[2]

AptrO[1]*Btr_ptr[1] +
AptrO[3]*Btr_ptr[3];
Aptri[1]*Btr_ptr[1] +
Aptr1[3]*Btr_ptr[3];
Aptr2[1]*Btr_ptr[1] +
Aptr2[3]*Btr_ptr[3];
Cr_ptr[3] += Aptr3[0]*Btr_ptr[0] Aptr3[1]*Btr_ptr[1] +

Aptr3[2]*Btr_ptr[2] Aptr3[3]*Btr_ptr[3];
/1 Increment pointers to B transpose's colum and A's rows to
/1 the next 4 elements to be nultiplied and accunul at ed.
Btr_ptr += 4;

+ + + + + + +

+

AptrQ += 4;
Aptrl += 4,
Aptr2 += 4;
Aptr3 += 4;

}

/1 The pointer to Ctranspose is incremented by 4 doubles to

/1 address the next 4 elements of C-transpose's row to be determni ned.
Cr_ptr += 4;

/1 The pointer to B transpose points to the end of the present

/1 row. W need to subtract 32 doubles so Btr_ptr points

Chapter 9 Optimizing with SIMD Instructions 209

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04

Processors

11
11

again to t
4 rows of

Btr_ptr -= 32;
/1 The addresses Aptr0, Aptrl, Aptr2, and Aptr3 need to be
increnented to the next block of 4 rows of Ato be nultiplied

I

/1 upon B's c
/1 the n-1oo0p
/] nust be in
/1 4 rows of
Aptr0 += 96;

Aptrl += 96;

Aptr2 += 96;

Aptr3 += 96;

he top of the colum for the next dot-product of
A upon B-transpose's row vector.

olum. 4 rows of A are 128 doubles in size, and in

March 2004

above they were increnented by 32 already, so they

crenented an additional 96 to point to the next
A to be dotted.

—_mm prefetch(& r_prefptr[0], 2);
/1 This | oop bel ow "dots" 4 consecutive rows of A upon a row

11
11
I

of B-trans
mul tiplies
rows with

for (n =0; n

}
11

I
I
I
11
I

Cr_ptr[0]
Cr_ptr[1]
Cr_ptr[2]

Cr_ptr[3]

/1 Increment pointers to B transpose's colum and A's rows to

/1 the nex

Btr_ptr +=
Aptr0Q += 4;
Aptrl += 4,
Aptr2 += 4;
Aptr3 += 4;

The address

pose by looping 8 times through code that

and accunul ates the products of 4 elements of A's

4 el ements of B-transpose's colum.

< 8; n++) {

+= AptrO[O] *Btr_ptr[O0]
AptrO[2] *Btr_ptr[2]

+= Aptr1[0]*Btr_ptr[O0]
Aptri1[2]*Btr_ptr[2]

+= Aptr2[0]*Btr_ptr[O0]
Aptr2[2]*Btr_ptr[2]

+= Aptr3[0]*Btr_ptr[O0]
Aptr3[2]*Btr_ptr[2]

AptrO[1]*Btr_ptr[1] +
AptrO[3]*Btr_ptr[3];
Aptri[1]*Btr_ptr[1] +
Aptr1[3]*Btr_ptr[3];
Aptr2[1]*Btr_ptr[1] +
Aptr2[3]*Btr_ptr[3];
Aptr3[1]*Btr_ptr[1] +
Aptr3[3]*Btr_ptr[3];

+ + + + + + +

+

t 4 elenents to be nmultiplied and accumul at ed.
4;

es to prefetch in B-transpose and C-transpose

are increnented by 8 doubles, or 64 bytes, or 1 cache line.

Each | oop
new set of

of the 4 loops of Cir_8col _blck above brings in a
8 doubl es and after 4 loops the full colum of th

next columm of B and the next set of 8 elenents of Cto be

det er m ned

are al so brought into the cache.

Btr_prefptr += 8;
Cr_prefptr += 8;

I
I
11

Cr

The pointer
to address

to C-transpose is increnented by 4 doubles
the next 4 elements of C-transpose's row to be

det er m ned.

_ptr += 4;

/1 The pointer to B-transpose points to the end of the present

I
I
11

row. W ne

ed to subtract 32 doubles so Btr_ptr points again

e

to the top of the colum for the next dot-product of 4 rows of A

upon B-tra

nspose's row vector

210

Optimizing with SIMD Instructions

Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Btr_ptr -= 32;

/1 The addresses Aptr0, Aptrl, Aptr2, and Aptr3 need to be

/] incremented to the next block of 4 rows of Ato be dotted

/1 upon B's colum. 4 rows of A are 128 doubles in size, and

/1 in the n-l1oop above they were increnented by 32 already, so they
/1 must be incremented an additional 96 to point to the

/1 next 4 rows of A to be dotted.

Aptr0 += 96;
Aptrl += 96;
Aptr2 += 96;
Aptr3 += 96;

}

/1 Pointer to B-transpose is incremented by a row so as to point
/1 to the next row of B upon which matrix A needs to be nultiplied.
Btr_ptr += 32,

Chapter 9 Optimizing with SIMD Instructions 211

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.6 Avoid Moving Data Directly Between
General-Purpose and MMX™ Registers

Optimization

Avoid moving data directly between general-purpose registers and MM X ™ registers; this operation
requires the use of the MOV D instruction. If it is absolutely necessary to move data between these
two types of registers, use separate store and load instructions to move the data from the source
register to atemporary location in memory and then from memory into the destination register,
separating the store and the load by at least 10 instructions.

Application

This optimization applies to:

e 32-bit software

* 64-bit software

Rationale

The register-to-register forms of the MOV D instruction are either VectorPath or DirectPath Double
instructions. When compared with DirectPath Single instructions, VectorPath and DirectPath Double
instructions have comparatively longer execution latencies. |n addition, VectorPath instructions
prevent the processor from simultaneously decoding other insructions.

Example

Avoid code like this, which copies avalue directly from an MM X register to a general-purpose
register:

nmovd eax, mmR

If it is absolutely necessary to copy avalue from an MM X register to a general-purpose register (or
vice versa), use separate store and load instructions, separating them by at least 10 instructions:

novd DWORD PTR tenp, mmR ; Store the value in nenory.
; At least 10 other instructions appear here.

nov eax, DWORD PTR tenp ; Load the value from nenory.

212 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.7 Use MMX™ |nstructions to Construct Fast Block-
Copy Routines in 32-Bit Mode

Optimization

Use MM X instructions when moving integer datain a block-copy routine.

Application
This optimization applies to:

e 32-hit software

Rationale

MMX instructions relieve the high register pressure typical of x86 code because of the small register
file.

In addition, MM X instructions increase the available parallelism on AMD Athlon 64 and

AMD Opteron processors because they use both sides (integer and floating-point) of the execution
pipeline. For an example of how to move alarge quadword-aligned block of data using the MMX
MOVQ instruction, see "Optimizing Main Memory Performance for Large Arrays' in the

AMD Athlon™ Processor x86 Code Optimization Guide (order # 22007).

If ablock-copy routineis not used, do not move integer data through MM X registers.

Chapter 9 Optimizing with SIMD Instructions 213

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.8 Passing Data between MMX™ and 3DNow!™
Instructions

Optimization

Avoid passing data between MM X and 3DNow! ™ instructions.

Application
This optimization applies to:
o 32-bit software

¢ 64-bit software

Rational

The AMD Athlon 64 and AMD Opteron processors do not support bypassing register data between
MMX and 3DNow! instructions. One additional cycle of latency is added to a dependency chain
whenever dataiis passed between these instruction groups in either direction.

214 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.9 Storing Floating-Point Data in MMX™ Registers

Optimization

Avoid storing floating-point datain MM X registers unless using 3DNow! instructions.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Using MOVDQ2Q or MOV Q2DQ to shuffleinteger data between MM X and XMM registersis useful
to relieve register pressure; however, doing so with floating-point data can impact performance. The
impact is greater if the floating-point data is denormalized.

Chapter 9 Optimizing with SIMD Instructions 215

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.10 EMMS and FEMMS Usage

Optimization

Use FEMMS or EMM S to clean up the register file between an x87 instruction and afollowing
MMX, 3DNow!, or Enhanced 3DNow! instruction or vice versa.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Use either the FEMM S or the EMM S instruction when switching between the x87 floating-point unit
and MM X, 3DNow!, or Enhanced 3DNow! instructions. The FEMM S instruction is aliased to the
EMMSinstruction on AMD Athlon 64 and AMD Opteron processors. Both instructions convert to an
internal NOP instruction in AMD Athlon 64 and AMD Opteron processors. The FEMM S instruction
is provided to help ensure that code written for previous generations of AMD processors runs
correctly.

Thereisno penalty for switching between the x87 floating-point instructions and 3DNow! (or MM X)
instructions in the processor. The MM X, 3DNow!, and Enhanced 3DNow! instructions are designed
to be used concurrently; therefore, no delimiting cleanup operations are regquired when switching
between them. However, x87 and 3DNow!/Enhanced 3DNow!/MM X instructions share the same
architectural registers, so there is no easy way to use them concurrently without cleaning up the
register file in between by using FEMMS or EMMS. For more information, see AMDG64 Architecture
Programmer s Manual Volume 1: Application Programming, order# 24592,

216 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.11 Using SIMD Instructions for Fast Square Roots
and Fast Reciprocal Square Roots

Optimization

Use SIMD vectorized square root (SQRTPS) and reciprocation (RCCPS) instructions to calculate
square roots and reciprocal square roots of single-precision numbers.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

SIMD instructions exist for performing vectorized square root and reciprocation of single-precision
numbers. These operations are often used in multimedia applications and also can be utilized in
scientific arenas, such as molecular dynamics simulations.

Example

The following function highlights the use of both the vectorized reciprocal and square-root SSE
instructions:

reci procal _sqrt_sse(float *r, float *rcp_sqrt_r, int numpoints);

TO ASSEMBLE | NTO *. obj DO THE FOLLOWN NG
m . exe -coff -c reciprocal _sqrt_sse.asm

. 586

. K3D

. XMW

_TEXT SEGVENT

PUBLI C _reciprocal _sqrt_sse
_reciprocal _sqrt_sse PROC NEAR

| NSTRUCTI ONS BELOW SAVE THE REG STER STATE W TH WH CH THI' S ROUTI NE WAS
ENTERED.

REG STERS EAX, ECX, EDX ARE CONS| DERED VOLATILE AND ASSUMED TO BE CHANGED
WHI LE THE REG STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
push ebp
mov ebp, esp

Par anet ers passed into routine:

Chapter 9 Optimizing with SIMD Instructions 217

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

[ebp+8]
[ebp+12]
[ebp+16]

->r
->rcp_sqrt_r
num poi nts

25112 Rev.3.04 March 2004

push ebx
push esi
push edi

THE FIRST 3 ASM LI NES BELOW LOAD THE FUNCTI ON' S ARGUVENTS | NTO GENERAL- PURPOSE
REG STERS (GPRS)

esi = address of "r"'s to calculate the reciprocal square root of
edi = address of "rcp_sqrt_r"'s to store reciprocal square root to
ecx = num points

mov esi, [ebp+8] ESI = ->r

mov edi, [ebp+12] EDl = ->rcp_sqrt_r

mov ecx, [ebp+16] ECX = num points

mov edx, ecx EDX = num points

nov eax, ecx EAX = num _poi nts

shl edx, 2 EDX = 4*num poi nts

shr eax, 4 EAX = num poi nts/ 16

add edi, edx EDI = -> end of "r"

add esi, edx EAX = -> end of "rcp_sqgrt_r"

neg ecx ECX = -# quadwords of vertices to rotate
or eax, eax If numpoints/16 = 0, then skip

jz skip_recprcl_sqrt_4xl oop ;

reci procal square root.
Unroll loop by 4 to work
on 16 floats at a tine.

THI'S LOOP RECI PROCATES AND SQUARE ROOTS 16 FLOATI NG PO NT NUMBERS EACH

LOOP | TERATI ON AND WORDS W TH THOSE ELEMENTS OF “r*"

FULL CACHELI NE

THAT OCCUPY A

ALI GN 16

reci procal _sqrt_4xl oop:
prefetchnta [esi +4*ecx+256]

novaps
sqrtps
rcpps
novaps
sqrtps
rcpps
novaps
sqrtps
rcpps
novaps
sqrtps
rcpps

nmovnt ps [edi +4*ecx],

Xm0,
Xm0,
Xm0,
X,
X,
X,
xmme,
xmme,
xmme,
xmms,
xmmB,
xmmsB,

[esi +4*ecx]
Xm0

xmrD

[esi +4*ecx+16]
xmil

xmil

[esi +4*ecx+32]
xm

X

[esi +4* ecx+48]
xmB

xmB

xmD

Al'ign address of loop to a 16-byte boundary.
Prefetch the elenents "r" 4 cache lines
ahead to reciprocate and squareroot 4 |oops
from now.

XMVD=[r3,r2,r1,r0]
XMVD=[sqrtr3,sqrtr2,sqrtr0, sqrtr0]
XMVD=[1/sqrtr3,1/sqrtr2,1/sqrtr0, 1/sqrtrO0]
XMML=[r7,1r6,r5,r4]
XMML=[sqrtr7,sqrtr6,sqrtr5, sqrtr4]
XMML=[1/sqrtr7,1/sqrtr6,1/sqrtr5,1/sqrtr4]
XMve=[r11,r10,r9,r8]
XMvR=[sqrtrl11,sqrtr10,sqrtr9,sqrtr8]
XMve=[1/sqrtri1l, 1/sqrtr10,1/sqrtr9, 1/ sqrtr8]
XMve=[r15,r14,r13,r12]
XMvR=[sqrtr15,sqrtril4,sqrtri13,sqrtrl2]
XMve=[1/sqrtri15, 1/sqrtr14,1/sqrtr13, 1/sqrtrl2]
Store reciprocal square root to rcp_sqrt_r.

218

Optimizing with SIMD Instructions

Chapter 9

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Store reciprocal
Store reciprocal
Store reciprocal

square root to rcp_sqrt_r.
square root to rcp_sqrt_r.
square root to rcp_sqrt_r.

Decrenment the # of reciprocal square
roots to cal cul ate by 16.
Decrenment # of 16 float reciprocal square

root |oops to performby 1.

movnt ps [edi +4*ecx+16], xmml ;
movnt ps [edi +4*ecx+32], xm® ;
movnt ps [edi +4*ecx+48], xmB ;
add ecx, 16 ;
dec eax

jnz reci procal _sqrt_4xl oop

skip_recprcl _sqrt_4xl oop

Junp into loop to cal cul ate reciprocal
square root of floats that don't
occupy a full cache line.

THI'S LOOP RECI PROCATES AND SQUARE ROOTS 1 FLOATI NG PO NT NUMBER EACH

LOOP | TERATI ON

ALI GN 16
reci procal _sqrt_1xl oop:

movss xmmD, [esi +4*ecx]
sqgrtss xnmmD, xnmD

rcpss xmO, xmmD

movss [edi +4*ecx], xmmD
inc ecx

ski p_recprcl _sqrt_4xl oop:
or ecx, ecx

jnz reciprocal _sqrt_1xl oop

sfence

Align address of |oop to a 16-byte boundary.
XMwo=[, ,, r0]

XMVD=[,,,sqrt(r0)]

XMVD=[,,, 1/sqrt(r0)]

Store reciprocal square root to rcp_sqrt_r.
Decrenment the # of reciprocal square roots
to cal cul ate.

If ECX !'= 0, then calculate the reciprocal

square root of another float.

Finish all menory wites.

I NSTRUCTI ONS BELOW RESTORE THE REG STER STATE W TH WHI CH THI S ROUTI NE

WAS ENTERED.

REG STERS EAX, ECX, AND EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED,
VWH LE THE REG STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM

edi
esi
ebx
esp, ebp
ebp

pop
pop
pop
nov
pop

ret
_reciprocal _sqrt_sse ENDP
_TEXT ENDS
END

The preceding code illustrates the use of separate loops for optimal performance. The loop titled
reci procal _sqrt_4xl oop workswith 16 floating-point numbers in each iteration and is unrolled to
keep the processor busy by masking the latencies of the reciprocal and square-root instructions. In

Chapter 9

Optimizing with SIMD Instructions

219

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

general, unrolling loops improves performance by providing opportunities for the processor to work
on data pertaining to the next loop iteration while waiting for the result of an operation from the
previous iteration. Ther eci procal _sqrt _1xl oop loop performs the reciprocation and square root
on the remaining elements that do not form afull segment of 16 floating-point values. In this chapter,
the previous function is the only example that handles any vector stream of num poi nt s size. Thisis
done to preserve space, but all examplesin this chapter can be modified in asimilar manner and used
universally.

Additionally, the previous SSE function makes use of the PREFETCHNTA instruction to reduce
cache latency. The unrolled loop r eci procal _sqrt _4xI oop was chosen to work with 64 bytes of
data per iteration, which happens to be the size of one cache line (the term used to signify the
guantum of data brought into the processor’s cache by a memory access, if the data does not reside
there already). The prefetch causes the processor to load the floating-point operands of the reciprocal
and square root operations for the next four loop iterations. While the processor works on the next
threeiterations, the datafor the fourth iteration is sent to the processor. The processor does not have to
wait while the aligned SSE instruction MOVAPS is fetched from memory before performing
operations on the fourth iteration. Thistype of memory optimization can be very useful in gaming and
high-performance computing, in which data sets are unlikely to reside in the processor’s cache. For
example, in asimulation involving amillion vertices or atoms in which the storage for their
coordinates would require 12 bytes per vertex, the total space for the data would be more than 12
Mbytes.

220 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.12 Use XOR Operations to Negate Operands of SSE,
SSE2, and 3DNow!™ |nstructions

Optimization

For AMD Athlon, AMD Athlon 64, and AMD Opteron processors, use instructions that perform
XOR operations (PXOR, XORPS, and XORPD) instead of multiplication instructions to change the
sign bit of operands of SSE , SSE2, and 3DNow! instructions.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

On the AMD Athlon 64 and AMD Opteron processors, using XOR-type instructions allows for more
paralelism, as these instructions can execute in either the FADD or FMUL pipe of the floating-point
unit.

Single Precision

For single-precision, you can use either 3DNow! or SSE SIMD XOR operations. The latency of
multiplying by —1.0 in 3DNow! is 4 cycles, while the latency of using the PXOR instruction is only
2 cycles. Similarly, the latency of the MULPSinstructionis 5 cycles, while the latency of the XORPS
instruction is 3 cycles. The following code example illustrates how to toggle the sign bit of a number
using 3DNow! instructions:

si gnmask DQ 8000000080000000h
pxor mmD, [signmask] ; Toggle sign bits of both floats.

This example does the same thing using SSE instructions:

si gnmask DQ 8000000080000000h, 8000000080000000h
xor ps xmmD, [signmask] ; Toggle sign bits of all four floats.

Double Precision

To perform double-precision arithmetic, you can use the XORPD instruction—similar to the single-
precision example—to flip the sign of packed double-precision floating-point operands. The XORPD
instruction takes 3 cycles to execute, whereas the MULPD instruction requires 5 cycles.

si gnmask DQ 8000000000000000h, 8000000000000000h
xorpd xmmD, [signmask] ; Toggle sign bit of both doubles.

Chapter 9 Optimizing with SIMD Instructions 221

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.13 Clearing MMX™ and XMM Registers with XOR
Instructions

Optimization

Useingtructions that perform X OR operations (PXOR, XORPS, and XORPD) to clear all the bitsin
MMX and XMM registers.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

The latency of the MM X XOR instruction (PXOR) isonly 3 cycles and comparable to the 3 cycles
required to load data, assuming it isin the L1 data cache. The SSE and SSE2 XOR instructions
(XORPS and XORPD, respectively) also have latencies of 3 cycles.

Examples

The following examplesillustrate how to clear the bitsin aregister using the different exclusive-OR
instructions:

;. MWK

pxor mm®O, D ; Clear the MWD register.

; SSE

xor ps xmmD, xmmD ; Clear the XMWD register.
; SSE2

xor pd xmmD, xmmD ; Clear the XMWD register.

222 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.14 Finding the Floating-Point Absolute Value of
Operands of SSE, SSE2, and 3DNow!™
Instructions

Optimization

Useinstructions that perform AND operations (PAND, ANDPS, and ANDPD) to determine the
absolute value of floating-point operands of SSE, SSE2, and 3DNow!instructions.
Application

This optimization applies to:

o 32-hit software

¢ 64-bit software

Rationale

The MM X PAND instruction has alatency of 2 cycles, whereas the SSE and SSE2 AND instructions
(ANDPS and ANDPD, respectively) have latencies of 3 cycles. The following examplesillustrate
how to clear the sign hits:

; 3DNowi

absmask DQ 7FFFFFFF7FFFFFFFh

pand mmD, [absmask] ; Clear the sign bits of both floats in MWD.

; SSE

absmask DQ 7FFFFFFF7FFFFFFFh, 7FFFFFFF7FFFFFFFD

andps xmm0, [absnmask] ; Clear the sign bits of all four floats in XMWD.
SSE2

absmask DQ 7FFFFFFFFFFFFFFFh, 7FFFFFFFFFFFFFFFh

andpd xm0, [absmask] ; Clear the sign bits of both doubles in XMWD.

Chapter 9 Optimizing with SIMD Instructions 223

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.15 Accumulating Single-Precision Floating-Point
Numbers Using SSE, SSE2, and 3DNow!™
Instructions

Optimization

In 32-bit software, use the 3DNow! PFACC instruction to perform complex-number multiplication,
4 x 4 matrix multiplication, and dot products. For 64-bit software, careful selection of SSE
instructions based on how the data is organized can also lead to more efficient code, as shown in the
second example.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Though SSE, SSE2, and 3DNow! instrucitons are similar in the sense that they all have vectorized
multiplication and addition, 3DNow! technology supports certain specia instructions. One of theseis
the PFACC instruction. There are many instances where PFACC is useful, such as complex-number
multiplication, 4 x 4 matrix multiplication, and dot products.

Examples
The following example accumulates two floats in two MM X registers:
;accurrul at e_3dnow(fl oat *a_and_b, float *c_and_d, float *aplusb_cplusd);

; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG
m . exe -coff -c accumul at e_3dnow. asm

. 586

. K3D

. XMV

_TEXT SEGMVENT

PUBLI C _accunul at e_3dnow
_accunul at e_3dnow PROC NEAR

I NSTRUCTI ONS BELOW SAVE THE REG STER STATE W TH WHI CH THI S ROUTI NE WAS ENTERED
REG STERS (EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED)
WH LE THE REG STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM

224 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

push ebp
nov ebp, esp

Par anet ers passed into routine:

[ebp+8] = ->a_and_b
[ebp+12] = ->c_and_d
[ebp+16] = ->apl usb_cpl usd
push ebx
push es

push ed

THE 4 ASM LI NES BELON LOAD THE FUNCTI ON'S ARGUMENTS | NTO GENERAL- PURPOSE
REG STERS (GPRS)

esi = starting address of 2 floats "a_and_b"

edi = starting address of 2 floats "c_and_d"

eax = starting address of 2 floats "apl usb_cpl usd"
nmov esi, [ebp+8] ; esi = ->a_and_b
nmov edi, [ebp+12] ; edi = ->c_and_d
nov eax, [ebp+16] ; eax = ->aplusb_cpl usd

ADD a AND b TOGETHER AND ALSO ¢ AND d

ens

movg mmD, [esi] m0 = [b, a]
nmovg nmil, [edi] ;omml = [d, c]
pfacc mD, mil ; mmD = [c+d, b+a]

I NSTRUCTI ONS BELOW RESTORE THE REQ STER STATE W TH WHI CH THI S ROUTI NE
WAS ENTERED
REG STERS (EAX, ECX, EDX ARE CONSI DERED VOLATILE AND ASSUMED TO BE CHANGED)
WH LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
pop edi
pop esi
pop ebx
nov esp, ebp
pop ebp

ret

_accunul at e_3dnow ENDP
_TEXT ENDS

END

The same operation can be performed using SSE instructions, but the datain the XMM registers must
be rearranged. The next example loads four floating-point valuesinto four XMM registers, XMM4—
XMM7, and then rearranges and adds the val ues so as to accumulate the sum of each XMM register
into afloat in XMM1.

; The instructions below take the 4 floats in each XMM register bel ow

Chapter 9 Optimizing with SIMD Instructions 225

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

xmmd = [d,c,b,a]

xmb = [D,C B, A

xmb = [h,g,f,e€]

xm¥7 = [H GF,E

and arranges themto | ook I|ike:

xmmd = [E e, A a]

xmml = [F,f,B,b]

xm2 = [Gg,C c]

xmB8 = [H, h,D,d]
novaps xmB, xmmi xmB | [d,c,b,a]
novaps xmD, xmb xmD | [D, C, B, A
unpckl ps xmm, xmb xmmd | [, b, e, a]
unpckhps xm8, xmb6 xmB | [h,d,g,c]
novaps xmil, xmmid xmmil | [f, b, e, a]
novaps xme, xmB xm? | [h,d,g,c]
unpckl ps xmb, xmv xmmb | [F, B, E, Al
unpckhps xm0, xmv xmmD | [H D, G (
unpckl ps xmm, xmmb xmméd | [E e, A a]
unpckhps xmil, xmmb xmmil | [F, f, B, b]
unpckl ps xm8, xmD xmB | [Gg,C, c]
unpckhps xm®, xmmD xm®? | [H h, D, d]

Now i f we conpute the sum of
of the first

these registers,

row of Awith vector X

25112 Rev.3.04 March 2004

we get the dot-product

atb+c+d
in the | ower DAORD of the resultant XMMregister. The dot-product of the
second row is stored in the second DAORD and so on, such that:
xmmil = [V+X+Y+Z, v+x+y+z, A+B+C+D, a+b+c+d]
addps xmml, xmmd xmil | [E+F, e+f, A+B, a+b]
addps xmmB, xmmR xmB | [GtH, g+h, C+D, c+d]
addps xmml, xmmB xml | [E+F+G+H, e+f +g+h, A+B+C+D, a+b+c+d]
226 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

9.16 Complex-Number Arithmetic Using SSE, SSE2,
and 3DNow!™ [nstructions

Optimization

Use vectorizing SSE, SSE2 and 3DNow! instructions to perform complex number calculations.

Application
This optimization applies to:
o 32-bit software

¢ 64-bit software

Rationale

Complex numbers have a“real” part and an “imaginary” part (where the imaginary part is denoted by
the letter 7). For example, the complex number z7 might have areal part equal to 4 and an imaginary
part equal to 3, written as 4 + 3i. Multiplying and adding complex numbers is an integral part of
digital signal processing. Complex number addition isillustrated here using two complex numbers, z1
(4+3i)andz2 (5+ 2i):

2l +22= (4+3) + (5+ 2i) = [4+5] + [3+2]i = 9 + 5i

or:
sumreal = zl.real + z2.real
sumimag = z1.imag + z2.inmag

Complex number addition isillustrated here using the same two complex numbers:
zI +z22=(4+3)(5+2)=[4x5-3x 2] +[3x5+4x2]i=14+23i
or:

product . real
product . i mag

zl.real * z2.real - zl.imag * z2.imag
zl.real * z2.imag + z1.imag * z2.real

Complex numbers are stored as streams of two-element vectors, the two elements being the real and
imaginary parts of the complex numbers. Addition of complex numbers can be achieved using
vectorizing SSE or 3DNow!instructions, such as PFADD, ADDPS, and ADDPD. Multiplication of
complex numbers is more involved.

From the formulas for multiplication, the real and imaginary parts of one of the numbers needs to be
interchanged, and, additionally, the products must be positively or negatively accumulated depending
upon whether we are computing the imaginary or real portion of the product.

Chapter 9 Optimizing with SIMD Instructions 227

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

The following functions use SSE and 3DNow! instructionsto illustrate complex multiplication of
streams of complex numbersx[] andy[] stored in aproduct stream pr od[] . For these examples,
assumethat the sizes of x[] andy[] are even multiples of four.

Examples

Listing 25. Complex Multiplication of Streams of Complex Numbers (SSE)
;oemplx_multiply_sse(float *x, float *y, int numcnpl x_elem float *prod);

; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG

; m .exe -coff -c cnplx_multiply_sse.asm

. 586

. K3D

. XMW

_TEXT SEGVENT

PUBLI C _cnpl x_mul ti ply_sse

_cnpl x_mul tiply_sse PROC NEAR

;| NSTRUCTI ONS BELOW SAVE THE REQ STER STATE W TH WHI CH TH S ROUTI NE WAS ENTERED

; REQ STERS (EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED)

; WHI LE THE REG STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
push ebp
mov ebp, esp

; paraneters passed into routine:

; [ebp+8] = ->x

v lebp+12] = ->y

; [ebp+16] = num cnpl x_el em

; [ebp+20] = ->prod
push ebx ; preserve contents in ebx,esi, and edi on stack
push esi ;
push edi ;

; THE CODE BELOW PUTS THE FLOATI NG PO NT SI GN MASK
; [800000000000000800000000000000h]
; TO FLIP THE SI GN OF PACKED SI NGLE PRECI SI ON NUMBERS BY USI NG XORPS

nmov eax, esp ; Copy stack pointer into EAX

nmov ebx, 16

sub esp, 32 ; Subtract 32 bytes from stack pointer.
and eax, 15 ; AND ol d stack pointer address with 15 to

; determine # of bytes the address is past a
; 16-byte-aligned address.

sub ebx, eax ; EBX = # of bytes above ESP to next
; 16-byte-aligned address
nov edi, Oh ; EDI = 00000000h
nov esi, 80000000h ; EBX = 80000000h
shr ebx, 2 ; EBX = # of DWORDs past 16-byte-aligned address

228 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

mov [esp+4*ebx+12], esi Move into address esp+4*ebx the single-precision
mov [esp+4*ebx+8], edi fl oating-poi nt sign nask.
mov [esp+4*ebx+4], esi
mov [esp+4*ebx], edi
THE 4 ASM LI NES BELOW LOAD THE FUNCTI ON' s ARGUMENTS | NTO GENERAL- PURPCSE
REG STERS (GPRS)
esi = address of array "x"
edi = address of array "y"
ecx = # of cnplx products to conpute
eax = address of product to which results are stored
nov esi, [ebp+8] esi = ->Xx
nov edi, [ebp+12] edi = ->y
nov ecx, [ebp+16] ecx = numcnpl x_el em
nov eax, [ebp+20] eax = ->prod
THE 6 ASM LI NES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
THAT THEY CAN BE ACCESSED | N THE MOST EFFI Cl ENT MANNER AS | LLUSTRATED

BELOW I N THE LOOP mul t 4cnpl xnum | oop WTH THE M NI MUM NUMBER OF
ADDRESS | NCREMENTS

mov edx, ecx ; edx = num cnpl x_el em
neg ecx ; ecx = -numcnpl x_el em
shl edx, 3 ; edx = 8 * numcnplx_elem= # bytes in x[] and y[] to multiply
add esi, edx esi = ->to last element of x[] to multiply
add edi, edx edi = ->to last element of y[] to multiply
add eax, edx eax = -> end of prod[] to calculate
TH'S LOOP MULTI PLI ES 4 COMPLEX #s FROM "x[]" UPON 4 COVPLEX #s FROM "y[]"
AND RETURNS THE PRODUCT IN "prod[]".
ALI GN 16 ; Align address of loop to a 16-byte boundary.
ei ght _cnpl x_prod_I oop:
movaps xmmD, [esi+ecx*8] xm0=[x1i , x1r, x0i , x0r]
movaps xmml, [esi+ecx*8+16] xmmil=[x3i , x3r, x2i , x2r]
movaps xmmd, [edi +ecx* 8] xmmd=[yli,ylr, y0i,y0r]
movaps xmb, [edi +ecx*8+16] xmb=[y3i,y3r,y2i,y2r]
movaps xm®2, xmmD xmmR2=[x1i , x1r, x0i , x0r]
movaps xmB8, xmml xmB=[x3i , x3r, x2i , x2r]
novaps xm6, xnmm xmb6=[y1i,ylr, y0i,y0r]
nmovaps xmmv/, xmmb xm7=[y3i,y3r,y2i,y2r]
shuf ps xmm0, xm0, 10100000b xm0=[x1r, x1r, x0r, x0r]
shuf ps xmmil, xmml, 10100000b xmmil=[x3r, x3r, x2r, x2r]
shuf ps xmm2, xm®2, 11110101b xmR2=[x1i , x1i, x0i , x0i]
shuf ps xmB, xmB8, 11110101b xmB=[x3i , x3i, x2i , x2i]
xorps xmmb, [esp+4*ebx] xmb6=[-yli,ylr,-y0i, yOr]
xorps xmmv, [esp+4*ebx] xmm7=[-y3i,y3r,-y2i,y2r]
mul ps xmD, xmmd xmO=[x1r*y1i, x1r*yl1r, x0r *y0i , xOr *yOr]
mul ps xmml, xmmb xmmil=[x3r *y3i , x3r*y3r, x2r *y2i , x2r *y2r]
shuf ps xmv, xmv, 10110001b xm7=[y3r, -y3i,y2r, -y2i]

Chapter 9

Optimizing with SIMD Instructions

229

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
mul ps xm®, xmmb ;o xmmR=[x1i *y1r, - x1i *y1i, x0i *y0r, - x0i *yO0i]
mul ps xmB, xmm¥ ;o xmB=[x3i *y3r, - x3i *y3i, x2i *y2r, -x2i *y2i]
addps xmD, xmmR ;o xmO=[x1r*y1li +x1i *y1r, x1r*y1r-x1li *y1i,
; xXO0r*y0i +x0i *yOr, x0r *yOr - x0i *yO0i]
addps xmml, xmmB ;o xmmil=[x3r *y3i +x3i *y3r, x3r*y3r-x3i *y3i,
7 X2r*y2i +x2i *y2r, x2r*y2r-x2i *y2i]
nmovnt ps [eax+ecx*8], xmmD ; Stream XMWD and XMML to representative
nmovnt ps [eax+ecx*8+16], xmmil ; menory address of prod[].
add ecx, 4 ; ECX = ECX + 4
jnz ei ght _cnpl x_prod_I oop
sfence ; Finish all nenmory wites.

I NSTRUCTI ONS BELOW RESTORE THE REG STER STATE W TH WHI CH THI S ROUTI NE WAS
ENTERED
REGQ STERS EAX, ECX, AND EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED
WHI LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM

add esp, 32

pop ed

pop es

pop ebx

mov esp, ebp

pop ebp

ret
_cnmpl x_mul tiply_sse ENDP
_TEXT ENDS
END

Listing 26. Complex Multiplication of Streams of Complex Numbers (3DNow!™ Technology)
;ocnplx_multiply_3dnowfloat *x, float *y, int numcnplx_elem float *prod);
; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG

; m . exe -coff -c cnplx_nultiply_3dnow. asm

. 586

. K3D

. XMM

_TEXT SEGMVENT

PUBLI C _cnpl x_mul ti pl y_3dnow

;empl x_mul tiply_3dnow(float *x, float *y, int numcnpl x_elem float *prod);
; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG

; m . exe -coff -c cnplx_nultiply_3dnow. asm

. 586

. K3D

. XMM

_TEXT SEGMVENT

PUBLI C _cnpl x_mul ti pl y_3dnow

230 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

mul ti pl y_3dnow PROC NEAR

cnpl x

I NSTRUCTI ONS BELOW SAVE THE REG STER STATE W TH WHI CH THI S ROUTI NE WAS ENTERED
REG STERS EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED

WH LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
push ebp

mov ebp, esp

Par anet ers passed into routine:

[ebp+8] = ->x

[ebp+12] = ->y

[ebp+16] = num cnpl x_el em

[ebp+20] = ->prod

push ebx

push esi

push edi

THE 4 ASM LI NES BELOW LOAD THE FUNCTI ON' s ARGUMENTS | NTO GENERAL- PURPCSE

REG STERS (GPRS)
esi = address of array "x"
edi = address of array "y"
ecx = # of cnplx products to conpute
eax = address of product to which results are stored
mov esi, [ebp+8] ; esi = ->X
mov edi, [ebp+12] ;oedi = ->y
mov ecx, [ebp+16] ; ecx = num.cnpl x_el em
nmov eax, [ebp+20] ; eax = ->prod
THE 6 ASM LI NES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
THAT THEY CAN BE ACCESSED | N THE MOST EFFI Cl ENT MANNER AS | LLUSTRATED

BELOW I N THE LOOP mul t 4cnpl xnum | oop WTH THE M NI MUM NUMBER OF
ADDRESS | NCREMENTS

mov edx, ecx ; edx = num cnpl x_el eni
neg ecx ; ecx = -numcnpl x_el em
i mul edx, 8 ; edx = 8 * numcnpl x_elem= # bytes in x[] and y[] to multiply
add esi, edx ; esi = ->to last element of x[] to multiply
add edi, edx ; edi = ->to last element of y[] to multiply
add eax, edx ; eax = -> end of prod[] to calculate
THI'S LOOP MULTIPLI ES 4 COMPLEX #s FROM "x[]" UPON 4 COVPLEX #s FROM "y[]"
AND RETURNS THE PRODUCT IN "prod[]".
ALI GN 16 ; Align address of loop to a 16-byte boundary.
four_cnpl x_prod_I oop: ;
novq mD, QAORD PTR [esi +ecx* 8] ; mm0=[x0i , x0r]
novq mml, QAORD PTR [esi +ecx* 8+8] ;ommil=[x1i , x1r]
novq mR2, QAORD PTR [esi +ecx*8+16] ;o mm2=[x2i , x2r]
novq mB, QAORD PTR [esi +ecx*8+24] ; mmB=[x3i, x3r]
Chapter 9 Optimizing with SIMD Instructions 231

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

pswapd mmd, QAORD PTR [esi +ecx* 8] ; mmd=[x0r, x0i]

pswapd mmb, QAORD PTR [esi +ecx*8+8] ; mb=[x1r, x1i]

pswapd mm6, QAORD PTR [esi +ecx*8+16] ;. mb=[x2r, x2i]

pswapd mmv7, QAORD PTR [esi +ecx*8+24] ; mmi7=[x3r, x3i]

pf mul m0, QAORD PTR [edi +ecx* 8] ; mm0=[x0i *yO0i , x0r *yOr]

pf mul mml, QAORD PTR [edi +ecx* 8+8] ;o= x1i *y21i, x1r*ylr]

pf mul mR2, QAORD PTR [edi +ecx* 8+16] ;o mR=[x2i *y2i, x2r*y2r]

pf mul mB, QAORD PTR [edi +ecx* 8+24] ;o mB=[x3i *y3i, x3r*y3r]

pf mul md, QAORD PTR [edi +ecx* 8] ; mmd=[x0r *yO0i , x0i *yOr]

pf mul mb, QAORD PTR [edi +ecx* 8+8] ;o mb=[x1r*yli, x1li *y1lr]

pf mul mB, QAORD PTR [edi +ecx* 8+16] ; MB=[X2r *y2i, x2i *y2r]

pf mul i/, QAORD PTR [edi +ecx* 8+24] ;o mmi7=[x3r*y3i, x3i *y3r]

pf pnacc mm0, M ; mmO=[x0r *y0i +x0i *yOr, x0r *yOr - x0i *y0i]

pf pnacc mml, mmb ;o= x1r *y1i +x1i *y1lr, x1r*ylr-x1i *y1i]

pf pnacc mm2, mmb ;o MMR=[X2r *y2i +x2i *y2r, X2r*y2r - x2i *y2i]

pf pnacc mmB, ¥ ;o mB=[x3r *y3i +x3i *y3r, x3r*y3r-x3i *y3i]

movntq [eax+ecx*8], mD ; Stream MMD-MMB to representative nenory

movntq [eax+ecx*8+8], mml ; addresses of prod[]

movntq [eax+ecx*8+16], mP
movntq [eax+ecx*8+24], mB

add ecx, 4 ; ECX = ECX + 4
jnz four_cnpl x_prod_| oop
sfence ; Finish all nenmory wites.

I NSTRUCTI ONS BELOW RESTORE THE REG STER STATE W TH WHI CH THI S ROUTI NE WAS
ENTERED

REGQ STERS EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED
VH LE THE REG STERS BELOW MJUST BE PRESERVED | F THE USER | S CHANG NG THEM
f emrs

pop
pop
pop
nov
pop

edi
esi
ebx
esp, ebp
ebp

ret

cnpl x

_TEXT
END

mul ti pl y_3dnow ENDP
ENDS

The illustrations above make use of many optimization techniques. First, the 3DNow! technology
code utilizes the PSWAPD and PFPNACC instructions, whose operations are outlined below:

PSWAPD
Suppose that MWD contains two floats: r and i.
I NPUT:

MVD

= [i,r]

QUTPUT:

ML

=[r,i]

232

Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

pswapd nmml, mmD ; MML = [r,i]

Additionally, PSWAPD can be used with a 64-bit menory | ocation. Suppose
that EDI contains the address of two floats: r and i.

| NPUT:
[EDI: EDI +8] = [b, a]
QOUTPUT:
ML = [r,i]
pswapd mml, [edi] ;o MML = [r,i]
PFPNACC

Suppose that MWD contains two floats: rl * r2 (the product of the real parts
of 2 conplex nunbers) and i1 * i2 (the product of the immginary parts

of 2 compl ex nunbers).

Al so suppose that MML contains two floats: rl1 * i2 (the product of the real
part of the first conplex nunber and the i maginary part of the second
conpl ex nunber) and i1 * r2 (the product of the inmmginary part of the
first conplex nunber and the real part of the second conpl ex nunber).

I NPUTS:

MWD = [i1*i2,r1*r2]

MML = [i1*r2,r1*i2]

QUTPUT:

MWD = [r1*i2+i 1*r2, rl*r2-i1%i2]

pf pnacc m®D, i ;o MMD = [r1*i2+i 1*r2,r1*r2-i 1*i 2]

Additionally, PSWAPD can be used with a 64-bit menory | ocation. Suppose
that EDI contains the address of two floats: rl1 * i2 (the product of the
real part of the first conplex nunber and the inmagi nary part of the
second conpl ex nunber) and i1l * r2 (the product of the inmginary part of
the first conplex and the real part of the second conpl ex nunber).

I NPUTS:

MWD = [i1*i2,r1*r2]
[EDI: EDI +8] = [i1*r2,r1*i2]

QUTPUT:

MWD = [r1*i2+i 1*r2, rl*r2-i1%i2]

pf pnacc mD, [edi] ;o MMD = [r1*i2+i 1*r2,r1*r2-i 1*i 2]

The PFPNACC instruction is specifically designed for use in complex arithmetic operations.

Chapter 9 Optimizing with SIMD Instructions 233

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Additionally, four complex numbers are concurrently multiplied in the examples using SSE and
3DNow! instructions to break up register dependencies. Loads, multiplications, and additions do not
execute with zero delay, but have a latency associated with them. The following instructions:

novq m0, QWORD PTR [esi +ecx*8] ; mmD
pswapd md, QAORD PTR [esi +ecx*8] ; m4
pf rmul m0, QAORD PTR [edi +ecx*8] ; mmD
pf rmul nmd, QAORD PTR [edi +ecx*8] ; mmi
pf pnacc MmO, 4 ;0

[x0i, x0r]

[x0r, x0i]

[x0i *y0i , xOr *yO0r]

[xOr*y0i , x0i *yO0r]

[xOr *yO0i +x0i *yOr, xOr *yO0r - x0i *yO0i]

are dependent upon one another. The move from memory (MOV Q) requires 2 cycles, PSWAPD also
requires 2 cycles, the two PFMUL instructions require 6 cycles, and PFPNACC requires 6 cycles.
The instruction flow through the processor isillustrated on a clock-cycle basis, as follows:

Instruction 0 2 4 6 8 10 12 14
MOVQ XXXXXX

PSWAPD XXXXXX

PFMUL XXXXXX XXX XXX XXX XXX

PFMUL XXX XXX XXX XXX XXX XXX

PFPNACC XXXX XXX XXX XXX XXX XXX

and takes 15 cyclesto finish. During this 15 cycles, the processor has the ability to perform 60 single-
precision floating-point operations, of which it only performs six. The majority of thetimeis spent
waiting for previousinstructionsto terminate so that argumentsto future instructions are available. By
unrolling the multiplication, working with four complex numbers per clock, there are enough

234 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

instructions that are not dependent on previous or presently executing operations so that the processor
can mask the execution latency by keeping itself busy, asillustrated bel ow:

I nstruction 0 2 4 6 8 10 12 14 16 18

MOVQ XXXXXX

MOVQ XXXXXX

MOVQ XXXXXX

MOVQ XXXXXX

PSWAPD XXXXXX

PSWAPD XXXXXX

PSWAPD XXXXXX

PSWAPD XXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX

PFMUL XXXXXXXXXXXXXXXXXX
PFPNACC XXXXXXXXXXXXXXXXXXX
PFPNACC XXXXXXXXXXXXXXXXXXX
PFPNACC XXXXXXXXXXXXXXXXXXX
PFPNACC XXXXXXXXXXXXXXXXXXX

Multiplying four complex single-precision numbers only takes 17 cycles as opposed to 14 cyclesto
multiply one complex single-precision number. The floating-point pipes are kept busy by feeding new
instructions into the floating-point pipeline each cycle. In the arrangement above, 24 floating-point
operations are performed in 17 cycles, achieving more than a 3.5x increase in performance.

The last optimization in both implementations is the use of the MOVNTQ and MOVNTPS
instructions, nontemporal writesto memory that stream data to main memory. These instructions
increase throughput to memory and make more efficient use of the bandwidth provided by the
processor and memory controller. Nontemporal writes, such as MOVNTQ, MOVNTPS, and
MOVNTDQ, should only be used on data that is not going to be accessed again in the near future.

Chapter 9 Optimizing with SIMD Instructions 235

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

9.17 Optimized 4 x 4 Matrix Multiplication on 4 x 1
Column Vector Routines

Optimization

Transpose the rotation matrix to eliminate the need to accumulate floating-point valuesin an XMM
register.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

The multiplication of a4 x 4 matrix with a4 x 1 vector is commonly used in 3-D graphics for
geometric transformation (translating, scaling, rotating, and applying perspective to 3-D points
represented in homogeneous coordinates). Efficiency in single-precision matrix multiplication can be
enhanced by use of SIMD instructions to increase throughput, but there are other general
optimizations that can be implemented to further increase performance. The first optimization isthe
transposition of the rotation matrix such that the column » of the matrix becomes the row » and the
row m becomes the column m. This optimization does not benefit 3DNow! technology code (3DNow!
technology has extended instructions that preclude the need for this optimization), but does benefit
SSE code. There are no SSE or SSE2 instructions that accumul ate the floats and doublesin asingle
XMM register; for this reason, the matrix must be transposed. If the rotation matrix is not transposed,
then the dot-product of arow of the matrix with a column vector necessitates the accumulation of the
four floating-point valuesin an XMM register. The multiplication upon the column vector is
illustrated here:

|r00 r01 r02 rO03| | r00 r10 r20 r30]| | vOI | v' O]

tr(R) x v =1tr |r10 r11 r12 r13| x v = |r01 r11 r21 r31] x |vi1] = |v'1]
| r20 r21 r22 r23| |r02 r12 r22 r32| | v2| | v' 2|
| r30 r31 r32 r33| | r03 r13 r23 r33| | v3| | v' 3|

Step O Step 1 Step 2 Step 3

| v' O] | roo x voO| [rOol x vi] + [r02 x v2| + |r03 x v3|

[vt1] =|r10 x vO| + |r11 x v1| + |r12 x v2| + |r13 x v3|

| v' 2| | r20 x voO| [r21 x vl + [r22 x v2| + |[r23 x v3|

| v' 3| | r30 x vOI [r31 x vi| + [r32 x v2| + |r33 x v3|

In each step above, the elements of the rotation matrix can be loaded into an XMM register with the
MOVAPS instruction, assuming the rotation matrix begins at a 16-byte-aligned memory location.
Transposition of the rotation matrix eliminates the need to accumul ate the floating-point valuesin an

236 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

XMM register, but it does require the duplication of the elements of the 4 x 1 column vector V in all
four floating-point values of the XMM register in each step above. Listing 27 is an SSE function that
performs 4 x 4 matrix multiplication upon a stream of num vertices_t o_r ot at e vertices.

Examples

Listing 27. 4 x 4 Matrix Multiplication (SSE)

; matrix_x_vector_sse(float *trR, float *v, int numvertices_to_rotate,
float *rotv);

; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG

; m .exe -coff -c matrix_x_vector_sse.asm

. 586

. K3D

. XMV

_TEXT SEGMVENT

PUBLI C _matrix_x_vector_sse

_matrix_x_vector_sse PROC NEAR

;| NSTRUCTI ONS BELOW SAVE THE REGQ STER STATE W TH WHI CH THI S ROUTI NE WAS

; ENTERED.

; REG STERS EAX, ECX, AND EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED,

; WH LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
push ebp
mov ebp, esp

; Paraneters passed into routine:

i [ebpt8] = ->trR
i [ebp+l1l2] = ->v
; [ebp+16] = numvertices_to_rotate
i [ebp+20] = ->rotv
push ebx
push esi
push edi

. THE 4 ASM LI NES BELOW LOAD THE FUNCTI ON s ARGUVENTS | NTO GENERAL- PURPOSE
. REG STERS (GPRS)

; esi = address of Transposed Rotation Matrix

; edi = address of vertices to rotate

; ecx = # of vertices to rotate

; eax = address of rotated vertices
mov esi, [ebp+8] ; ESI = ->trR
mov edi, [ebp+12] ; EDI = ->v
mov ecX, [ebp+16] ; ECX = numyvertices_to_rotate
nmov edx, ecx ; EDX = numyvertices_to_rotate
shl edx, 4 ; EDX = 16*numvertices_to_rotate
mov eax, [ebp+20] ; EAX = ->rotv

Chapter 9 Optimizing with SIMD Instructions 237

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

imul ec
add ed

X, 2
i, edx

add eax, edx

neg ec

X

ECX

EDI

EAX
ECX

25112 Rev.3.04 March 2004

quadwords of vertices to rotate
-> end of "v"

-> end of "rotv"

-# quadwords of vertices to rotate

THE 4 ASM LI NES BELOW LOAD THE TRANSPOSED ROTATI ON MATRI X "R' | NTO XMWD- XMVB

I'N THE FOLLON NG MANNER:

xmD = colum 0 of "R' or row O of "R' transpose
xmil = colum 1 of "R' or row 1 of "R' transpose
xm? = colum 2 of "R' or row 2 of "R' transpose
xmB = colum 3 of "R' or row 3 of "R' transpose
movaps xm0, [esi] XMVD = [R30, R20, R10, R0OO]
movaps xmml, [esi+16] XML = [R31, R21, R11, RO1]
nmovaps xmmR, [esi +32] XMV = [R32, R22, R12, R02]
movaps xmmB, [esi +48] XMMB = [R33, R23, R13, R0O3]

THI'S LOOP ROTATES "num vertices_to_rotate" VERTICES BY THE TRANSPOSED
ROTATI ON MATRI X "R" PASSED | NTO THE ROUTI NE AND STORES THE ROTATED
VERTI CES TO "rotv".

ALI GN 16

rotate_vertices_| oop:
[edi +8*ecx]
[edi +8*ecx+8]

nmovl ps
nmovl ps
unpckl p
unpckl p
nmovhl ps
nmovhl ps
mov! hps
mul ps
mov! hps
mul ps
nmov! hps
mul ps
addps

mov! hps
mul ps
addps

addps
novnt ps
add

jnz

sfence

Xmmd,
xmb,
s xnm4,
s xmb,
Xmb,
Xmn/,
Xmmé,
Xmmé,
Xmb,
Xmb,
xmb,
xmb,
Xmmé,

Xmn/,
Xmn/,
xmb,

Xmmé,

xmmd
xnmmb
xmmd
xnmmb
xmmd
xnmm0
Xmrb
xmmil
xnmmb
X
Xmrb

X/
xnmmB
Xmm/

xnmmb

[eax+8*ecx],

ecXx,

2

xmmd

rotate_vertices_|l oop

Align address of loop to a 16-byte boundary.

XMwi=[, , vl, v0]

XMvB=[, , v3, v2]

XMwd=[v1, v1, vO, vO]

XMvB=[v3, v3, v2, v2]

XMvb=[, , v1, vi]

XMwr=[, , v3, v3]

XMw4=[vO0, vO0, vO, vO]

XMwd=[R30*v0, R20*v0, R10*v0, R0O0*vO0]

XMvb=[v1, v1, vi, v1]

XMvb=[R31*v1, R21*v1, R11*v1, RO1*v1]

XMVvB=[v2, v2,Vv2, v2]

XMVB=[R32*Vv2, R22*v2, R12*v2, R02*v2]

XMw=[R30*v0+R31*v1, R20*v0+R21*v1,
R10*vO+R11*v1, RO0O*vO+R01*v1]

XMW =[v3, v3, v3, v3]

XMvB=[R33*Vv3, R23*v3, R13*v3, R03*v3]

XMVB=[R32*v2+R33*Vv3, R22*v2+R23*v3,
R12*v2+R13*v3, R02*v2+R03*v3]

XMVA=New r ot at ed vertex

Store rotated vertex to rotv.

Decrenment the # of QAORDs to rotate by 2.

Finish all menory wites.

I NSTRUCTI ONS BELOW RESTORE THE REG STER STATE W TH WHI CH THI S ROUTI NE
WAS ENTERED

238

Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

REGQ STERS EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED
WH LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
pop ed
pop es
pop ebx
nmov esp, ebp
pop ebp

ret
_matrix_x_vector_sse ENDP
_TEXT ENDS
END

To greatly enhance performance, the previous function can perform the matrix multiplication not only
upon one four-column vector, but upon many. Creating a separate function to transform a single
vertex and repeatedly calling the function is prohibitively expensive because of the overhead in
pushing and popping registers from the stack. This applies to routines that negate a single vector,
nullify a single vector, and add two vectors. Listing 28 is the 3DNow! technology counterpart to
Listing 27 on page 237.

Listing 28. 4 x 4 Matrix Multiplication (3DNow!™ Technology)

; matrix_x_vector_3dnow(float *trR, float *v, int numvertices_to_rotate,
float *rotv);

; TO ASSEMBLE | NTO *. obj DO THE FOLLOW NG

; m .exe -coff -c matrix_x_vector_3dnow. asm

. 586

. K3D

. XMV

_TEXT SEGMVENT

PUBLI C _matrix_x_vector_3dnow

_matrix_x_vector_3dnow PROC NEAR

;| NSTRUCTI ONS BELOW SAVE THE REGQ STER STATE W TH WHI CH THI S ROUTI NE WAS

; ENTERED.

; REGQ STERS EAX, ECX, AND EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED,

; WH LE THE REGQ STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM
push ebp
mov ebp, esp

; Paraneters passed into routine:

i [ebp+t8] = ->trR
i [ebp+l2] = ->v
; [ebp+16] = numvertices_to_rotate
i [ebp+20] = ->rotv
push ebx
push es
push ed

Chapter 9 Optimizing with SIMD Instructions 239

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

25112 Rev.3.04 March 2004

THE 4 ASM LI NES BELOW LOAD THE FUNCTI ON' S ARGUVENTS | NTO GENERAL- PURPOSE
REG STERS (GPRs)

eax = address of Transposed Rotation Matrix
edx = address of vertices to rotate
ecx = # of vertices to rotate
ebx = address of rotated vertices
mov eax, [ebp+8] ESI = ->R
mov edx, [ebp+12] EDl = ->v
mov ecx, [ebp+16] ECX = numvertices_to_rotate
mov ebx, [ebp+20] EAX = ->rotv
f enms Clear MW state.
Ensure optimal branch alignnent.

ALI GN 16

THI'S LOOP ROTATES "num vertices_to_rotate" VERTICES BY THE TRANSPOSED
ROTATI ON MATRI X "R" PASSED | NTO THE ROUTI NE AND STORES THE ROTATED
VERTI CES TO "rotv".

rotate_vertices_| oop:

add

nov(q

novq

add

novq

novq
punpckl dg
novq

pf mu
punpckhdq
pf mu

novq

novq

novq

pf mu

novq
punpckl dg
pf mu

novq

pf mu

pf add
novq

pf mu

pf add
nov(q
punpckhdq
pf add

pf mu

pf mu

pf add

pf add

ebx, 16
m0, [edx]
mil, [edx+8]
edx, 16

mm2, nmD
mB, [eax]
mm0, nmD
i, [eax+16]
mm8, nmD
m2,
nmmd, 2
mb, [eax+8]
m/, [eax+24]
m6, nmil

mb, D
m0, [eax+32]
i, il
v/, nm2
m2, [eax+40]
mm0, nmil

mm8, nmy
i, [eax+48]
mm2, nil

mb, mv
mil, [eax+56]
m6, nmb

mm8, nmD

nmmd, nmb

nm, nmb
mb,

mm8, nmy

Increment ->v to next vertex.
MD = [y, x]
ML = [w, 2]
Increment ->rotv to next transforned vertex.
MR = [y, x]
MVB [RO1, ROO]
MVD [x, x]
MW = [RL11, R10]
MVB [x*R0O1, x*RO0]
MR = [y,y]
M [y*R11, y*R10]
MVB [RO3, RO2]
Mz [R13, R12]
M = [w, z]
MVB [x*R03, x*R02]
MVD [R21, R20]
ML [z, z]
[y*R13, y*R12]
MR [R23, R22]
MVD [z*R21, z*R20]

=

MVB [x*RO1+y*R11, x* ROO+y* R10]

M = [R31, R30]

MR [z*R23, z*R22]

MVB [x*RO3+y*R13] , x* R0O2+y* R12]

MML = [R33, R32]

MB = [w, W]

MVB [x*RO1+y*R11+z*R21, x* ROO+y* R10+z* R20]
M = [wR31, w*R30]

ML = [wfR33, w*R32]

MVB [x*RO3+y*R13+z* R23, x* R02+y* R12+z* R22]
MB = [x*RO1l+y*Rl1+z* R21+w*R31,

240

Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors
x* RO0O+y* R10+z* R20+w* R30]
nmovnt q [ebx-16], mB ; Store | ower quadword of transforned vertex.
pf add mb, mil ;o MMB = [x*RO3+y*R13+z* R23+w* R33,
x*RO2+y* R12+z* R22+w* R32]
nmovnt q [ebx-8], mb ; Store upper QAORD of transformed vertex.
dec ecx ; Decrenent # of vertices to transform
jnz rotate_vertices_| oop
f emmrs Clear MW state.
sfence Finish all menory wites.

I NSTRUCTI ONS BELOW RESTORE THE REG STER STATE W TH WHI CH THI S ROUTI NE

WAS ENTERED.

REG STERS EAX, ECX, EDX ARE CONSI DERED VOLATI LE AND ASSUMED TO BE CHANGED
VWH LE THE REG STERS BELOW MUST BE PRESERVED | F THE USER | S CHANG NG THEM

pop ed
pop es
pop ebx
nov esp,
pop ebp

ebp

ret

_matrix_x_vector_3dnow ENDP

_TEXT ENDS
END

Chapter 9

Optimizing with SIMD Instructions 241

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

242 Optimizing with SIMD Instructions Chapter 9

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Chapter 10 x87 Floating-Point Optimizations

AMD Athlon™ 64 and AMD Opteron™ processors support multiple methods of performing
floating-point operations. They support the older x87 assembly instructionsin addition to the more
recent SIMD instructions (SSE, SSE2, and 3DNow! ™ technologies). Many of the suggestionsin this
chapter are also generally applicable to the AMD Athlon 64 and AMD Opteron processors, with the
exception of SSE2 optimizations and expanded register usage.

AMD Athlon 64 and AMD Opteron processors are 64-bit processors that are fully backwards
compatible with 32-bit code. In general, 64-bit operating systems support the x87 and 3DNow!
instructionsin 32-bit threads; however, 64-bit operating systems may not support x87 and 3DNow!
instructionsin 64-bit threads. To make it easier to later migrate from 32-bit to 64-bit code, you may
want to avoid x87 and 3DNow! instructions altogether and use only SSE and SSE2 instructions when
writing new 32-bit code.

This chapter details the methods used to optimize floating-point code to the pipelined x87 floating-
point registers.

This chapter covers the following topics:

Topic Page
Using Multiplication Rather Than Division 244
Achieving Two Floating-Point Operations per Clock Cycle 245
Floating-Point Compare Instructions 250
Using the FXCH Instruction Rather Than FST/FLD Pairs 251
Floating-Point Subexpression Elimination 252
Accumulating Precision-Sensitive Quantities in x87 Registers 253
Avoiding Extended-Precision Data 254

Chapter 10 x87 Floating-Point Optimizations 243

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

10.1 Using Multiplication Rather Than Division

Optimization

If accuracy requirements allow, convert floating-point division by a constant to multiplication by the
reciprocal.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

Divisorsthat are powers of two—and their reciprocals—are exactly representable, and therefore do
not cause an accuracy issue, except for the rare case in which the reciprocal overflows or underflows.
Unless such an overflow or underflow occurs, always convert adivision by a power of two for
multiplication. Although the AMD Athlon 64 and AMD Opteron processors have high-performance
division, multiplication is significantly faster than division.

244 x87 Floating-Point Optimizations Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

10.2 Achieving Two Floating-Point Operations per
Clock Cycle

Optimization

Pay specia attention to the order and packing of the operations to sustain up to two floating-point
operations per clock cycle.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

The floating-point unit in the AMD Athlon, AMD Athlon 64, and AMD Opteron processors can
sustain up to two floating-point operations per clock cycle. However, to achieve this, you must pay
specia attention to the order and packing of the operations. For example, consider multiplying a
30 x 30 double-precision matrix A by atransposed 30 x 30 double-precision matrix B, the result of
whichiscalled C.

Use Efficient Addressing of FPU Data When Loading and Storing

Therows of A are 240 bytes wide, as are the columns of B. There are eight x87 floating-point
registers [ST(0)-ST(7)], and in this example, six rows of A are concurrently multiplied by asingle
column of B. The address of the first element of the first row of A (A[Q]) is presumed to be stored in
the EDI register, while the address of the first element of the first column of B (B[0]) is stored in ESI.

This addressing scheme might seem like agood idea, but it is not. Only 128 bytes can be addressed
forward of A[Q] with 8-bit offsets, meaning the size of the instructions are only 3 bytes (2 bytes for
the instruction and 1 byte for the offset to the address stored in the general-purpose register). Upon
offsetting more than 128 bytes from the address in the general-purpose register, the size of the
instruction increases from 3 bytesto 6 bytes (offsets larger than 128 bytes are represented by 32 bits
rather than 8 bits). Large instruction sizes reduce the number of decoded operations to be executed
within the pipes of the floating-point unit, and as such prevent us from achieving two floating-point
operations per clock cycle. To alleviate this, the general-purpose registers EDI and ESI are offset by
128 bytes such that they contain the addresses of A[15] and B[15]. Thisis beneficial because data
within 128 bytes (16 double-precision numbers) before or after these two locations can now be
accessed with instructions that are 2-3 bytesin size. The next five rows of A can be efficiently
addressed in terms of the first row. Storing the size of asingle row of A (240 bytes) in the EAX

Chapter 10 x87 Floating-Point Optimizations 245

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

register, the size of three rows (720 bytes) in EBX, and the size of five rows (1200 bytes) in ECX, the
first element of rows 0-5 of A can be addressed as follows:

fld QAORD PTR [edi - 128] . Load Ali,0].

fl d QWORD PTR [edi +eax- 128] . Load Ali+1,0].
fld QAORD PTR [edi +eax*2-128] ; Load A[i+2,0].
fl d QWORD PTR [edi +ebx- 128] . Load Ali+3,0].
fld QAORD PTR [edi +eax*4-128] ; Load A[i+4,0].
fl d QWORD PTR [edi +ecx- 128] . Load Ali+5,0].

This addressing scheme reduces the size of al loads from memory to 3 bytes; additionally, to address
rows 6-11 of A, you only need to add 240*6 to EDI.

Avoid Register Dependencies by Spacing Apart Instructions that Accumulate Results
in a Register

The second general optimization to consider is spacing out register dependencies. Operations
internally in the floating-point unit have an execution latency (normally 3—4 cycles for x87
operations). Consider this instruction sequence:

fldz ; Push 0.0 onto floating-point stack.

fld QARD PTR [edi-128] ; Push A[i,0] onto stack.

frul QAORD PTR [esi-128] ; Multiply Ali,O0] by B[O,j].

faddp st(1l), st(0) ; Accunul ate contribution to dot product of
; Asrowi and B's colum j.

fld QARD PTR [edi-120] ; Push A[i,1] onto stack.

frul QAMORD PTR [esi-120] ; Multiply Ali,1] by B[1,j].

faddp st(1l), st(0) ; Accunul ate contribution to dot product of
; Asrowi and B's colum j.

fld QAMRD PTR [edi-112] ; Push A[i, 2] onto stack.

frul QAORD PTR [esi-112] ; Multiply Ali,2] by B[2,j].

faddp st(1l), st(0) ; Accunul ate contribution to dot product of

A's rowi and B s colum j.

The second statement loads A[Q] into ST(0), and the third statement multipliesit by B[0]. The
subsequent line adds this product to ST(1), where the dot product of row 0 of matrix A and column 0
of matrix B is accumulated. Each of the subsequent groups of three instructions adds the contribution
of the remaining 29 elements to the dot product. This code is poor because all the addition operations
depend upon the contents of asingle register, ST(1). The AMD Athlon, AMD Athlon 64 and

AMD Opteron processors have out-of-order-execution floating-point units, but none of the addition
operations can be performed out of order because the result of each addition operation depends on the
outcome of the previous addition operation. Instruction scheduling based on this code greatly limits
the throughput of the floating-point unit. To alleviate this, space out operations that are dependent on
one another. In this case, work with six rows of A rather than one at atime, as follows:

Ml tiply first element of each of six rows of A by first elenent of

B's colum j.
fldz ; Push 0.0 six times onto floating-point stack.
fldz

246 x87 Floating-Point Optimizations Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

fldz

fldz

fldz

fldz

fld QAORD PTR [esi-128] ; Push B[0,j] onto stack.

fld QAORD PTR [edi-128] ; Push A[i,0] onto stack.

frmul st(0), st(1l) ; Multiply Ali,O0] by B[O,j].

faddp st(7), st(0) ; Accunul ate contribution to dot product of

A's rowi and B's colum j.

fld QAORD PTR [edi +eax- 128] ; Push A[i+1,0] onto stack.
frmul st(0), st(1) ; Multiply Ali+1,0] by B[O,j].
faddp st(6), st(0) ; Accunul ate contribution to dot product of

A's rowi+l and B's colum j.

fld QAORD PTR [edi +eax*2-128] ; Push A[i+2,0] onto stack.
frul st(0), st(1) ; Multiply Ali+2,0] by B[O,j].
faddp st(5), st(0) ; Accunul ate contribution to dot product of

A's rowi+2 and B's colum j.

fld QAMORD PTR [edi +ebx-128] ; Push A[i+3,0] onto stack.
frmul st(0), st(1) ; Multiply A[i+3,0] by B[O,j].
faddp st(4), st(0) ; Accunul ate contribution to dot product of

A's rowi+3 and B's colum j.

fld QAORD PTR [edi +eax*4-128] ; Push A[i+4,0] onto stack.
frul st(0), st(1) ; Multiply Ali+4,0] by B[O,j].
faddp st(3), st(0) ; Accunul ate contribution to dot product of

A's rowi+4 and B's colum j.

frul QMORD PTR [edi +ecx- 128] ; Multiply Ali+5,0] by B[O,j].
faddp st(1l), st(0) ; Accunul ate contribution to dot product of
A's rowi+5 and B's colum j.

The processor can execute the instructionsin this code sequence out of order because the instructions
are independent. Even though the loads and multiplies are performed sequentialy, the floating-point
scheduler can execute the FLD and FM UL instructions out of order in addition to the FADD
instruction so as to keep the multiplier and adder pipes of the floating-point unit busy. B[Q] isinitialy
loaded into an x87 register and multiplied by the loaded elements of each row withthe reg, reg
form of FMUL to minimize the number of load operations that need to be performed. Additionally,
the first element from the sixth row of A isnot loaded but simply multiplied from memory by the
loaded element of B[0]. This eliminates an FLD instruction and decreases the number of instructions
in the instruction cache and the workload on the processor’s decoder. To achieve two floating-point
operations per clock cycle, the number of floating-point operations should be twice the number of
|oad-store operations. In the example above, there are 12 floating-point operations and seven
operations requiring loads from memory, so nearly two floating-point operations can be performed
per clock cycle.

Chapter 10 x87 Floating-Point Optimizations 247

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Align and Pack DirectPath x87 Instructions

25112 Rev.3.04 March 2004

The last optimization to be performed is code packing and alignment. Having an abundance of
operationsin the decoder keeps the processor’s schedulers well fed in circumstances where
instructions cannot be immediately provided to the decoders. Floating-point x87 code can be aligned
to 8-byte boundaries asillustrated here, which is optimal on AMD Athlon, AMD Athlon 64, and

AMD Opteron processors:

;lnstruction Address

L
o
o
o
[¢]

I nstruction

00000360
00000361
00000363
00000364
00000366

00000368
0000036A
0000036D
0000036E

00000370
00000372
00000375
00000376

00000378
0000037A
0000037D
0000037E

00000380
00000382
00000385
00000386

00000388
0000038A
0000038D
0000038E

06

07

cr
04 38

04 47

04 3B

04 87

0C 39

R38R B38R B38R B3BR B38M 88383
2)

c1

DB
fld
DB
fld
fmu

faddp
fld
DB
fmu

faddp
fld
DB
frmu

faddp
fld
DB
fmu

faddp
fld
DB
fmu

faddp
f mul
DB
faddp

066h

QNORD PTR [esi]
066h

QAORD PTR [edi]
st(0), st(1)

st(7), st(0)

QAORD PTR [edi +eax]
066h

st(0), st(1)

st(6), st(0)

QAORD PTR [edi +eax* 2]
066h

st(0), st(1)

st(5), st(0)

QAORD PTR [edi +ebx]
066h

st(0), st(1)

st(4), st(0)

QAORD PTR [edi +eax* 4]
066h

st(0), st(1)

st(3), st(0)

QAORD PTR [edi +ecx]
066h

st(1l), st(0)

The instruction address specifies the address (in hexadecimal) of the instruction to the right.

Typically three DirectPath instructions occupy 7 bytes. Maintaining 8-byte alignment for the next
group of three instructions requires the addition of asingle byte. A 1-byte padding can easily be
achieved using the single-byte NOP instruction (opcode 90h), as recommended in “ Code Padding
with Operand-Size Override and NOP” on page 87. However, for the special case of x87 instructions,

248

x87 Floating-Point Optimizations

Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

the operand-size override (66h) serves as a high-performance NOP instruction and is the
recommended choice for padding an x87 instruction without altering its behavior, as shown here:

DB 066h ; Operand-size override used as hi gh-performance NOP instruction

This usage of the operand-size override aone as afiller byte (without an accompanying NOP
instruction) is permitted only for x87 instructions. This usage of the operand-size override can be
applied to al but four of the x87 instructions. The FLDENV, FRSTOR, FSTENV, and FSAVE
instructions and their no-wait forms behave differently when associated with an operand-size
override; therefore, these should not be padded with the operand-size override.

Chapter 10 x87 Floating-Point Optimizations 249

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

10.3 Floating-Point Compare Instructions

Optimization

For branches that are dependent on floating-point comparisons, use the FCOMI, FCOMIP, FUCOMI,
and FUCOMIP instructions:

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

The FCOMI, FCOMIP, FUCOMI, and FUCOMI P instructions are much faster than the classical
approach using FSTSW. When FSTSW cannot be avoided (for example, backward compatibility of
code with older processors), no floating-point instruction should occur between an FCOM, FCOMP,
FCOMPPR, FICOM, FICOMP, FUCOM, FUCOMP, FUCOMPRP, or FTST instruction and a dependent
FSTSW instruction. This optimization allows the use of afast-forwarding mechanism for the floating-
point condition codes internal to the processor’s floating-point unit and increases performance.

250 x87 Floating-Point Optimizations Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

10.4 Using the FXCH Instruction Rather Than FST/FLD
Pairs

Optimization

Increase parallelism by breaking up dependency chains or by evaluating multiple dependency chains
simultaneously by explicitly switching execution between them.

Application
This optimization appliesto:
e 32-bit software

e 64-hit software

Rationale

Although the AMD Athlon 64 and AMD Opteron processor’s floating-point unit has a deep
scheduler, which in most cases can extract sufficient parallelism from existing code, long dependency
chains can stall the scheduler while issue slots are still available. The maximum dependency chain
length that the scheduler can absorb is about six four-cycle instructions.

To switch execution between dependency chains, use of the FXCH instruction is recommended
because it has an apparent latency of zero cycles and generates only one micro-op. The floating-point
unit of the AMD Athlon 64 and AMD Opteron processors contains special hardware to handle up to
three FXCH instructions per cycle. Using FXCH is preferred over the use of FST/FLD pairs, even if
the FST/FLD pair works on aregister. An FST/FLD pair adds two cycles of latency and consists of
two macro-ops.

Chapter 10 x87 Floating-Point Optimizations 251

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

10.5 Floating-Point Subexpression Elimination

Optimization

Reduce the number of superfluous FXCH instructions by putting the shared source operand at the top
of the stack to eliminate subexpressions.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

There are cases that do not require an FXCH instruction after every instruction to allow access to two
new stack entries. In the cases where two instructions share a source operand, an FXCH is not
required between the two instructions. When there is an opportunity for subexpression elimination,
reduce the number of superfluous FXCH instructions by putting the shared source operand at the top
of the stack—for example:

Examples

Listing 29. Avoid

func((x*y), (x+z))

f1d

X X
fld y y X
fld X Xy X
fld z Z XYy X
faddp st(1), st X+z y X
fxch st(2) Xy X+z
frul p st(1), st X*y X+z
Listing 30. Preferred

fld z ;z

fld y y z
fld X Xy z
frmul st(1l), st ;X X*y z
faddp st(2), st ;o X*y x+z

252 x87 Floating-Point Optimizations Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

10.6 Accumulating Precision-Sensitive Quantities in
x87 Registers

Optimization

Accumulate resultsin the x87 registers rather than the SSE and SSE2 XMM registers, if more than
64 bits of accuracy are required.

Application

This optimization appliesto:

o 32-bit software

e 64-hit software

Rationale

More than 64 bits of accuracy may be required, as when accumulating aresult (for example, during
the calculation of dot product). The precision of floating-point operationsin the x87 registers ST(0)—
ST(7) is 80 bitsinternally, whereas the precision of operations using SIMD instructionsis only

64 bits.

Chapter 10 x87 Floating-Point Optimizations 253

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

10.7 Avoiding Extended-Precision Data

Optimization

Store floating-point datain single-precision or double-precision format.

Application
This optimization appliesto:
e 32-bit software

¢ 64-hit software

Rationale

Loading and storing extended-precision datais significantly slower than storing single- or double-
precision data.

254 x87 Floating-Point Optimizations Chapter 10

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Appendix A Microarchitecture for
AMD Athlon™ 64 and
AMD Opteron™ Processors

When discussing processor design, it isimportant to understand the terms architecture,
microarchitecture, and design implementation.

The architecture consists of the instruction set and those features of a processor that are visible to
software programs running on the processor. The architecture determines what software the processor
can run. The AMDG64 architecture of the AMD Athlon™ 64 and AMD Opteron™ processorsis
compatible with the industry-standard x86 instruction set.

Theterm microarchitecture refersto the design features used to reach the target cost, performance,
and functionality goals of the processor. The AMD64 architecture employs a decoupled
decode/execution design approach. In other words, decoders and execution units essentially operate
independently; the execution core uses a small number of instructions and simplified circuit design
for fast single-cycle execution and fast operating frequencies.

The design implementation refersto a particular combination of physical logic and circuit elements
that comprise a processor that meets the microarchitecture specifications.

This appendix covers the following topics:

Topic Page
Key Microarchitecture Features 256
Microarchitecture forAMD Athlon™ 64 and AMD Opteron™ Processors 257
Superscalar Processor 257
Processor Block Diagram 257
L1 Instruction Cache 258
Branch-Prediction Table 259
Fetch-Decode Unit 259
Instruction Control Unit 260
Translation-Lookaside Buffer 260
L1 Data Cache 261
Integer Scheduler 262
Integer Execution Unit 262
Floating-Point Scheduler 263
Floating-Point Execution Unit 264

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 255

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Topic Page
Load-Store Unit 265
L2 Cache 266
Write-combining 266
Buses for AMD Athlon™ 64 and AMD Opteron™ Processor 267
Integrated Memory Controller 267
HyperTransport™ Technology Interface 267

A.1 Key Microarchitecture Features

The AMD Athlon 64 and AMD Opteron processors include many features designed to improve
software performance. The internal design, or microarchitecture, of these processors provides the
following key features:

* Integrated DDR memory controller

e 64-Kbyte L1 instruction cache and 64-Kbyte L1 data cache

e On-chip L2 cache

¢ Instruction predecode and branch prediction during cache-line fills
« Decoupled decode/execution core

e Three-way AMD®64 instruction decoding

» Dynamic scheduling and specul ative execution

e Three-way integer execution

¢ Three-way address generation

e Three-way floating-point execution

* 3DNow!™ technology, MMX™, SSE, and SSE2 single-instruction multiple-data (SIMD)
instruction extensions

e Superforwarding
» Deep out-of-order integer and floating-point execution

* In 64-bit mode, eight additional XMM registers (for use with SSE and SSE2 instructions) and
eight additional general-purpose registers (GPRS)

e HyperTransport™ technology

256 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

A.2 Microarchitecture for AMD Athlon™ 64 and
AMD Opteron™ Processors

The AMD Athlon 64 and AMD Opteron processors implement the AMD64 instruction set by means
of micro-ops—simple fixed-length operations designed to include direct support for AMD64
instructions and adhere to the high-performance principles of fixed-length encoding, regularized
instruction fields, and alarge register set. The enhanced microarchitecture enables higher processor
core performance and promotes straightforward extensibility for future designs.

A.3 Superscalar Processor

The AMD Athlon 64 and AMD Opteron processors are aggressive, out-of-order, three-way
superscalar AMD64 processors. They can fetch, decode, and issue up to three AMD64 instructions
per cycle with a centralized instruction control unit (ICU) and two independent instruction
schedulers—an integer scheduler and a floating-point scheduler. These two schedulers can
simultaneously issue up to nine micro-ops to the three general-purpose integer execution units
(ALUs), three address-generation units (AGUSs), and three floating-point execution units. The
processors move integer instructions down the integer execution pipeline, which consists of the
integer scheduler and the ALUs, as shown in Figure 5 on page 258. Floating-point instructions are
handled by the floating-point execution pipeline, which consists of the floating-point scheduler and
the floating-point execution units.

A.4 Processor Block Diagram

A block diagram of the AMD Athlon 64 and AMD Opteron processors is shown in Figure 5 on
page 258.

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 257

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

25112 Rev.3.04 March 2004

I T

Memory Controler

and
Hypertransport™

| Instruction Level 1 Instruction Cache Branch Selectors
TLB (4K)
Level 2 | Fetch 2 Transit I 16K 2-bit
Cache - Global History
ﬁé Counters
Target Array
Decode 1 Decode 1 Decode 1 (2K Targets)
Decode 2 Decode 2 Decode 2 and
L2 ECC T ‘T Return Address
L2 Tags Stack
Pack Pack Pack i
(12 Entries)
L2 Tag ECC 1 1
I
System Request
Queue (SRQ)
36-Ent
Scheduler
Cross Bar
(XBAR)

Technology

11

Figure 5. AMD Athlon™ 64 and AMD Opteron™ Processors Block Diagram

A.5

L1 Instruction Cache

The out-of-order execution engine of the AMD Athlon 64 and AMD Opteron processors contains a
very large L1 instruction cache. Each linein this cache is 64 byteslong. Functions associated with the
L1 instruction cache are instruction loads, instruction prefetching, instruction predecoding, and
branch prediction. Requests that missin the L1 instruction cache are fetched from the L2 cache or,
subsequently, from the local memory using the integrated memory controller.

The L1 instruction cache generates fetches on the naturally aligned 64 bytes containing the
instructions and the next sequential line of 64 bytes (a prefetch). The principle of program-spatial
locality makes code prefetching very effective and avoids or reduces execution stalls caused by the
amount of time required to read the necessary code. Cache-line replacement is based on a least-

recently-used replacement algorithm.

258

Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Table 8 provides specifications on the L1 instruction cache for various AMD processors.

Table 8. L1 Instruction Cache Specifications by Processor

Processor name Family | Model | Associativity Size (Kbytes)
AMD Athlon™ XP 6 6 2 ways 64

processor

AMD Athlon™ 64 15 0 2 ways 64

processor

AMD Opteron™ 15 1 2 ways 64

processor

Predecoding begins asthe L1 instruction cache isfilled. Predecode information is generated and
stored alongside the instruction cache. Thisinformation is used to help efficiently identify the
boundaries between variable length AMD64 instructions.

A.6 Branch-Prediction Table

The fetch logic accesses the branch prediction table in parallel with the L1 instruction cache. The
information stored in the branch prediction table is used to predict the direction of branch
instructions. When instruction cache lines are evicted to the L 2 cache, branch selectors and predecode
information are also stored in the L2 cache.

The AMD Athlon 64 and AMD Opteron processors employ combinations of a branch target address
buffer (BTB), aglobal history bimodal counter (GHBC) table, and a return address stack (RAS) to
predict and accel erate branches. Predicted-taken branches incur only a single-cycle delay to redirect
the instruction fetcher to the target instruction. In the event of a misprediction, the minimum penalty
is10 cycles.

The BTB isa2048-entry table that cachesin each entry the predicted target address of abranch. The
16384-entry GHBC table contains 2-bit saturating counters used to predict whether a conditional
branch is taken. The GHBC table isindexed using the outcome (taken or not taken) of the last eight
conditional branches and 4 bits of the branch address. The GHBC table allows the processors to
predict branch patterns of up to eight branches.

In addition, the processors implement a 12-entry return address stack to predict return addresses from
anear or far call. Ascals arefetched, the next rlP is pushed onto the return stack. Subsequent returns
pop a predicted return address off the top of the stack.

A.7 Fetch-Decode Unit

The fetch-decode unit performs early decoding of AM D64 instructions into macro-ops. The outputs
of the early decoders keep all (DirectPath or VectorPath) instructions in program order. Early
decoding produces three macro-ops per cycle from either path. The outputs of both decoders are

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 259

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

multiplexed together and passed to the next stage in the pipeline, the instruction control unit.
Decoding a VectorPath instruction may prevent simultaneously decoding of a DirectPath instruction.

When the target 16-byte instruction window is obtained from the L 1 instruction cache, the instruction
bytes are examined to determine whether the type of basic decode to occur is DirectPath or
VectorPath.

A.8 Instruction Control Unit

The instruction control unit (ICU) isthe control center for the AMD Athlon 64 and AMD Opteron
processors. It controls the centralized in-flight reorder buffer, the integer scheduler, and the floating-
point scheduler. In turn, the ICU is responsible for the following functions: macro-op dispatch,
macro-op retirement, register and flag dependency resolution and renaming, execution resource
management, interrupts, exceptions, and branch mispredictions.

The instruction control unit takes the three macro-ops per cycle from the early decoders and places
them in a centralized, fixed-issue reorder buffer. This buffer is organized into 24 lines of three macro-
ops each. The reorder buffer allows the instruction control unit to track and monitor up to 72 in-flight
macro-ops (whether integer or floating-point) for maximum instruction throughput. The instruction
control unit can simultaneously dispatch multiple macro-ops from the reorder buffer to both the
integer and floating-point schedulers for final decode, issue, and execution as micro-ops. In addition,
the instruction control unit handles exceptions and manages the retirement of macro-ops.

A.9 Translation-Lookaside Buffer

A translation-lookaside buffer (TLB) is a special on-chip cache that holds a table that matches the
most-recently-used virtual addressesto their physical addresses.

The AMD Athlon 64 and AMD Opteron processors utilize atwo-level TLB structure. A flush filter—
new on the AMD Athlon 64 and AMD Opteron processors—eliminates unnecessary TLB flushes
when loading the CR3 register.

L1 Instruction TLB Specifications

Table provides the specifications of the L1 instruction TLB for various AMD processors.

Table 9. L1 Instruction TLB Specifications

Number of Entries

Processor Name Family | Model | Associativity 2-Mbyte Pages® |4-Kbyte Pages
AMD Athlon™ XP Processor 6 6 Full 8 16
Note:

1. The number of entries available for 4-Mbyte pages is one-half this value (4-Mbyte pages require two 2-Mbyte
entries).

260 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Table 9. L1 Instruction TLB Specifications

Number of Entries
Processor Name Family | Model | Associativity 2-Mbyte Pages® |4-Kbyte Pages
AMD Athlon™ 64 Processor 15 4 Full 8 32
AMD Opteron™ Processor 15 5 Full 8 32
Note:
1. The number of entries available for 4-Mbyte pages is one-half this value (4-Mbyte pages require two 2-Mbyte
entries).

L1 Data TLB Specifications
Table 10 provides the specifications of the L1 data TLB for various AMD processors.
Table 10. L1 Data TLB Spcifications

Number of Entries

Processor Name Family | Model | Associativity 2-Mbyte pages* 4-Kbyte pages
AMD Athlon™ XP Processor | 6 6 Full 8 32
AMD Athlon™ 64 Processor |15 4 Full 8 32
AMD Opteron™ Processor 15 5 Full 8 32
Note:

1. The number of entries available for 4-Mbyte pages is one-half this value (4-Mbyte pages require two 2-Mbyte

entries).

L2 TLB Specifications
Table 11 provides the specifications on the L2 TLB for various AMD processors.

Table 11. L2 TLB Specifications by Processor

Processor Name Family | Model | Associativity Number of Entries (4-Kbyte Pages)
AMD Athlon™ XP Processor 6 6 4 ways 256
AMD Athlon™ 64 Processor 15 4 4 ways 512
AMD Opteron™ Processor 15 5 4 ways 512

A.10 L1 Data Cache

The L1 data cache contains two 64-bit ports. It is awrite-allocate and writeback cache that usesa
|east-recently-used replacement policy. It is divided into eight banks, each eight byteswide. In
addition, the L1 cache supports the MOESI (Modified, Owner, Exclusive, Shared, and Invalid) cache-
coherency protocol and data parity.

Table 12 provides specifications on the L1 data cache for various AMD processors.

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 261

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 12. L1 Data Cache Specifications by Processor

Processor name Family | Model | Associativity Size (Kbytes)
AMD Athlon™ XP 6 6 2 ways 64

Processor

AMD Athlon™ 64 15 4 2 ways 64

Processor

AMD Opteron™ 15 5 2 ways 64

Processor

A.11 Integer Scheduler

The integer scheduler is based on athree-wide queuing system (also known as a reservation station)
that feeds three integer execution positions or pipes. The reservation stations are eight entries deep,

for atotal queuing system of 24 integer macro-ops. Each reservation station divides the macro-ops

into integer and address generation micro-ops, as required.

A.12 Integer Execution Unit

The integer execution pipeline consists of three identical pipes—0, 1, and 2. Each integer pipe
consists of an integer execution unit—or arithmetic-logic unit (AL U)—and an address generation unit
(AGU). Theinteger execution pipeline is organized to match the three macro-op dispatch pipesin the
ICU as shown in Figure 6.

‘ Instruction Control Unit

Scheduler 0 Scheduler 1 Scheduler 2
(8 entries) (8 entries) (8 entries)

! ! Micro-ops

ALU 2 AGU 2

Integer Multiplier

Figure 6. Integer Execution Pipeline

Macro-ops are broken down into micro-ops in the schedulers. Micro-ops issue when their operands
are available either from the register file or result buses. Micro-ops are executed when their operands
are available. Micro-ops from a single operation can execute out-of-order. In addition, a particular

262 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

integer pipe can execute two micro-ops from different macro-ops (oneinthe ALU and one in the
AGU) at the same time. See Figure 7 on page 263.

’ Instruction Control Unit I
Scheduler 0 Scheduler 1 Scheduler 2
(8 entries) (8 entries) (8 entries)

ALU 2 AGU 2

Integer Multiplier

Figure 7. Integer Execution Unit

Each of the three ALUs performs general purpose logic functions, arithmetic functions, conditional
functions, divide step functions, status flag multiplexing, and branch resolutions. The AGUs calculate
thelogical addresses for loads, stores, and LEAs. A load and store unit reads and writes data to and
from the L1 data cache. The integer scheduler sends a completion status to the ICU when the
outstanding micro-ops for a given macro-op are executed.

All integer operations can be handled within any of the three ALUs with the exception of multiplies.
Multiplies are handled by a pipelined multiplier that is attached to the pipeline at pipe 0, as shown in
Figure 7. Multiplies aways issue to integer pipe 0, and the issue logic creates results bus bubbles for
the multiplier in integer pipes 0 and 1 by preventing non-multiply micro-ops from issuing at the
appropriate time.

A.13 Floating-Point Scheduler

The floating-point logic of the AMD Athlon 64 and AMD Opteron processors is a high-performance,
fully pipelined, superscalar, out-of-order execution unit. It is capable of accepting three macro-ops
per cycle from any mixture of the following types of instructions:

e x87 floating-point

« 3DNow! technology
* MMX technology
 SSE

» SSE2

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 263

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

The floating-point scheduler handles register renaming and has a dedicated 36-entry scheduler buffer
organized as 12 lines of three macro-ops each. It also performs data superforwarding, micro-op issue,
and out-of-order execution. The floating-point scheduler communicates with the ICU to retire a
macro-op, to manage comparison results from the FCOMI instruction, and to back out results from a
branch misprediction.

Superforwarding is a performance optimization. It allows a floating point operation having a
dependency on aregister to be scheduled sooner when that register is waiting to be filled by a pure
load from memory. Instead of waiting for the first instruction to write its load-data to the register and
then waiting for the second instruction to read it, the |oad-data can be provided directly to the
dependent instruction, much like regular forwarding between FPU-only operations. The result from
the load is said to be "superforwarded" to the floating-point operation. In the following example, the
FADD can be scheduled to execute as soon as the load operation fetchesits data rather than having to
wait and read it out of the register file.

fld [somef | oat] ;Load a floating point
;value fromnenory into ST(O0)
f add st(0),st(1) ; The data fromthe load will be

;forwarded directly to this instruction,
;no need to read the register file

A.14 Floating-Point Execution Unit

The floating-point execution unit (FPU) isimplemented as a coprocessor having its own out-of-order
control in addition to the data path. The FPU handles all register operations for x87 instructions, all
3DNow! technology operations, all MMX operations, and all SSE and SSE2 operations. The FPU
consists of a stack renaming unit, aregister renaming unit, a scheduler, aregister file, and three
parallel execution units. Figure 8 shows a block diagram of the dataflow through the FPU.

264 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Instruction Control Unit

>
d

Stack Map

«

Register Rename

Scheduler (36-entry)
FPU Register File (120-entry)
FADD FMUL FSTORE
* SSE and SSE2 ALU * SSE and SSE2 ALU and multiplier
* 3DNow!™ technology ALU] | « 3DNow! technology ALU and multipler
e MMX™ ALU * MMX ALU and multiplier
* x87 adder * x87 multiplier
| | |

Figure 8. Floating-Point Unit

As shown in Figure 8, the floating-point logic uses three separate execution positions or pipes. The
first of the three pipesis generally known as the adder pipe (FADD), and it contains an MM X

AL U/shifter and floating-point add execution units. The second pipe is known as the multiplier
(FMUL). It contains the floating-point multiplier/divider/sguare root unit and also an MM X ALU.
Thethird pipe is known as the floating-point load/store (FSTORE), which handles floating-point
stores and many micro-op primitives used in VectorPath sequences.

A.15 Load-Store Unit

The load-store unit (LSU) is shown in Figure 9. It manages dataload and store accessesto the L1 data
cache and, if required, to the L2 cache or system memory. The 44-entry L SU provides adatainterface
for both the integer scheduler and the floating-point scheduler. It consists of two queues—a 12-entry
queuefor L1 cache load and store accesses and a 32-entry queue for L2 cache or system memory load
and store accesses. The 12-entry queue can reguest a maximum of two L1 cache operations (and mix
of loads and stores) per cycle. Up to two 64-bit stores can be performed per cycle. In other words,

16 bytes per clock is the maximum rate at which the processor can move data. The 32-entry queue
effectively holds requests that missed in the L1 cache probe by the 12-entry queue. Finally, the LSU
helps ensure that the architectural load and store ordering rules are preserved (a requirement for
AMDG64 architecture compatibility).

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 265

AMDAO1

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Operand
Buses

L

Result Buses

from ||
Core Data
Cache
) 44|—_Esrl1Jtr 2-Way
Y 64 Kbytes

ot

Store Data
to BIU

Figure 9. Load-Store Unit

A.16 L2 Cache

The AMD Athlon 64 and AMD Opteron processors each contain an integrated L2 cache. This full-
speed on-die L 2 cache features an exclusive cache architecture. The L2 cache contains only victim or
copy-back cache blocks that are to be written back to the memory subsystem as aresult of a conflict
miss. These terms, victim or copy-back, refer to cache blocks that were previously held inthe L1
cache but had to be overwritten (evicted) to make room for newer data. The victim buffer contains
data evicted from the L1 cache.

The L2 cacheinthe AMD Athlon XP, AMD Athlon™ 64, and AMD Opteron processorsis 16-way
associative.
A.17 Write-combining

See Appendix B, “Implementation of Write-Combining,” on page 269 for detailed information about
write-combining.

266 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

A.18 Buses for AMD Athlon™ 64 and AMD Opteron™
Processor

AMD Athlon 64 and AMD Opteron processors feature an integrated memory controller and
HyperTransport technology for interfacing to I/O devices. These integrated features, along with other
logic, bring the Northbridge functionality onto the processor.

A.19 Integrated Memory Controller

AMD Athlon 64 and AMD Opteron processors provide an integrated low-latency, high-bandwidth
DDR memory controller.

The memory controller supports:

* DRAM devicesthat are 4, 8, and 16 bits wide.

* Interleaving memory within DIMMs.

« ECC checking with double-bit detection and single-bit correction.

The memory controller may be configured for 32-byte or 64-byte burst lengths.

For specifications on a certain processor’'s memory controller, see the data sheet for that processor.
For information on how to program the memory controller, see the BIOS and Kernel Developer s
Guide for AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094.

A.20 HyperTransport™ Technology Interface

HyperTransport technology is a scalable, high-speed, low-latency, point-to-point, packetized link
that:

« Enables chipsto transfer data at rates up to 12.8 Gbytes/s (6.4 Ghytes/sin each direction
simultaneously with a 32-bit link).

« Simplifies connectivity by replacing legacy buses and bridges.

¢ Reduces latencies and bottlenecks within systems.

When compared with traditional technologies, HyperTransport technology allows much faster data-
transfer rates. A 16-bit HyperTransport 1/0 link, for example, provides a maximum aggregate transfer
rate of 6.4 Ghytes/s—48 times the peak transfer rate of a 33-MHz PCI bus. For more information on

HyperTransport technology, see the HyperTransport I/0 Link Specification, available at
WWW.hypertransport.org.

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 267

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

HyperTransport™ Technology

On AMD Athlon 64 and AMD Opteron processors, Hyper Transport technology providesthe link to
1/0 devices. Some processor models—for example, those designed for use in multiprocessing
systems—al so utilize HyperTransport technology to connect to other processors. Table 13 lists the
HyperTransport specifications of different AMD Athlon™ 64 and AMD Opteron™ processors.

Table 13. HyperTransport™ Specifications by Processor

Transfer Rate | Width of Memory
Number of Number of .)
. . Per Link (in Data Bus
Processor Name | Family | Model | HyperTransport™ | Bits Per :
h . each (includes ECC
Links Link - . .
direction) bits)
AMD Athlon™ 64 | 15 4 2t 8 1.6 Gbytes/s 72
Processor
AMD Opteron™ 15 5 3 16 3.2 Ghytes/s 144
Processor
Note:
1. These two links can also be configured as a single 16-bit link providing 3.2 Gbytes/s in each direction.

268 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Appendix B Implementation of
Write-Combining

This appendix describes the memory write-combining feature implemented in the AMD Athlon™ 64
and AMD Opteron™ processors. Write-combining is the merging of multiple memory write cycles
that target locations within the address range of awrite buffer.

The AMD Athlon 64 and AMD Opteron processors support the memory type and range register
(MTRR) and the page attribute table (PAT) extensions, which allow software to define ranges of
memory as either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC), or
write-combining (WC).

Defining the memory type for arange of memory asWC or WT allows the processor to conditionally
combine data from multiple write cycles that are addressed within this range into a merge buffer.
Merging multiple write cyclesinto a single write cycle reduces processor bus utilization and
processor stalls.

This appendix covers the following topics:

Topic Page
Write-Combining Definitions and Abbreviations 269
Programming Details 270
Write-combining Operations 270
Sending Write-Buffer Data to the System 272

B.1 Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations:
« MTRR—Memory type and range register

e PAT—Page attribute table

e UC—Uncacheable memory type

e WC—Write-combining memory type

e WT—Writethrough memory type

e WP—Write-protected memory type

« WB—Writeback memory type

« OneByte—8 bits

Appendix B Implementation of Write-Combining 269

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

* One Word—16 bits

* Doubleword—32 bits

¢ Quadword—64 hits or 2 doublewords

e Octaword—128 bits or 2 quadwords

e Cache Block—64 bytes or 4 octawords or 8 quadwords

B.2 Programming Details

The steps required for programming write-combining on the AMD Athlon 64 and AMD Opteron
processors are as follows:

1. Verify the presence of an AMD Athlon™ 64 or AMD Opteron processor by using the CPUID
instruction to check for the instruction family code and vendor identification of the processor.
Standard function 0 on AMD processors returns a vendor identification string of
“AuthenticAMD” in registers EBX, EDX, and ECX. Standard function 1 returns the processor
signature in register EAX, where EAX[11:8] contains the instruction family code. For the
AMD Athlon 64 and AMD Opteron processors, the instruction family codeis Fh.

2. Verify the presence of the MTRRs and the PAT extensions. The presence of the MTRRsis
indicated by bit 12 and the presence of the PAT extensionsisindicated by bit 16 of the extended
features bits returned in the EDX register by CPUID function 8000_0001h. See the AMD
Processor Recognition Application Note, order# 20734, for more details on the CPUID
instruction.

3. Enable write-combiningwrite-combining. Write-combining is controlled by the MTRRs and PAT
extensions. Write-combining should be enabled for the appropriate memory ranges. For more
information on the MTRRs and the PAT extensions, see volume 2 of the AMD64 Architecture
Programmer s Manual, order# 24593.

B.3 Write-combining Operations

In order to improve system performance, the AMD Athlon 64 and AMD Opteron processors
aggressively combine multiple memory-write cycles of any data size that address locations within a
64-byte write buffer that is aligned to a cache-line boundary. The processor continues to combine
writes to this buffer without writing the data to the system, aslong as certain rules apply (see Table 14
on page 271 for more information). The data sizes can be bytes, words, doublewords, or quadwords.

* WC memory type writes can be combined in any order up to afull 64-byte write buffer.

* WT memory type writes can only be combined up to afully aligned quadword in the 64-byte
buffer, and must be combined contiguously in ascending order. Combining may be opened at any

270 Implementation of Write-Combining Appendix B

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

byte boundary in a quadword, but is closed by awrite that is either not “contiguous and

ascending” or fillsbyte 7.

< All other memory types for stores that go through the write buffer (UC and WP) cannot be

combined.

Combining is able to continue until interrupted by one of the conditions listed in Table 14 on
page 271. When combining is interrupted, one or more bus commands are issued to the system for
that write buffer, as described in “ Sending Write-Buffer Data to the System” on page 272.

Table 14. Write-Combining Completion Events

Event

Comment

Non-WB write outside of current
buffer

The first non-WB write to a different cache block address closes
combining for previous writes. WB writes do not affect write-
combining. Only one line-sized buffer can be open for write-
combining at a time. Once a buffer is closed for write-combining, it
cannot be reopened for write-combining.

1/0 Read or Write

Any IN/INS or OUT/OUTS instruction closes combining. The implied
memory type for all IN/OUT instructions is UC, which cannot be
combined.

Serializing instructions

Any serializing instruction closes combining. These instructions
include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD,
LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions

Any flush instruction causes the WC to complete.

Locks

Any instruction or processor operation that requires a cache or bus
lock closes write-combining before starting the lock. Writes within a
lock can be combined.

Uncacheable Read

A UC read closes write-combining. A WC read closes combining
only if a cache block address match occurs between the WC read
and a write in the write buffer.

Different memory type

Any WT write while write-combining for WC memory or any WC write
while write-combining for WT memory closes write-combining.

Buffer full

Write-combining is closed if all 64 bytes of the write buffer are valid.

WT time-out

If 16 processor clocks have passed since the most recent write for
WT write-combining, write-combining is closed. There is no time-out
for WC write-combining.

WT write fills byte 7

Write-combining is closed if a write fills the most significant byte of a
qguadword, which includes writes that are misaligned across a
guadword boundary. In the misaligned case, combining is closed by
the LS part of the misaligned write and combining is opened by the
MS part of the misaligned store.

WT Nonsequential

If a subsequent WT write is not in ascending sequential order, the
write-combining completes. WC writes have no addressing
constraints within the 64-byte line being combined.

Appendix B

Implementation of Write-Combining 271

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 14. Write-Combining Completion Events (Continued)

Event Comment

TLB AD bit set Write-combining is closed whenever a TLB reload sets the accessed
[A] or dirty [D] bits of a Pde or Pte.

B.4 Sending Write-Buffer Data to the System

The maximum write combined throughput is achieved when all quadwords or doublewords are valid
and the AMD Athlon 64 and AMD Opteron processors can use one efficient 64-byte memory write
instead of multiple 8-byte memory writes.

272 Implementation of Write-Combining Appendix B

AMDAQ

25112 Rev.3.04 March 2004

Appendix C Instruction Latencies

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

This appendix provides acomplete listing of all AMD®64 instructions, along with their encodings,
decode types, and execution latencies. For more information on these instructions, see volumes 3, 4,
and 5 of the AMDG64 Architecture Programmer s Manual (order# 24594, 26568, and 26569).

Note: Some prior AMD documents referred to one group of instructions as MMX™ technology
extensions Those instructions are still supported by the AMD Athlon™ 64 and
AMD Opteron™ processors, but are documented with the SSE instructions in this guide. (The

MMX™ technology instructions remain a separate group.)

Theinstruction entriesin this appendix are grouped into categories as indicated in the following table

and are presented within each category in aphabetica order by mnemonic:

Topic Page
Understanding Instruction Entries 274
Integer Instructions 277
MMX™ Technology Instructions 307
x87 Floating-Point Instructions 311
3DNow!™ Technology Instructions 318
3DNow!™ Technology Extensions 320
SSE Instructions 321
SSE2 Instructions 330

Appendix C

Instruction Latencies

273

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004

Processors

C.1 Understanding Instruction Entries

To use the information in this appendix effectively, you need to understand how the entry for an
instruction is organized and how to interpret certain items.

Example: Instruction Entry

The entry for an instruction begins with its syntax. Subsequent columns provide additional
information about the instruction.

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
ADD mreg8, reg8 00h 11-xxx-xxx | DirectPath |1

Parts of the Instruction Entry

This table describes the columns that are common to each instruction entry in this appendix.

Column Description

Syntax Shows the syntax for the instruction—the permitted arrangement of its parts. ltems in
italics are placeholders for operands that you must provide. For information on how to
interpret the placeholders, see “Interpreting Placeholders” on page 275

Encoding Shows how the assembler translates the instruction into machine language.

Subcolumns show the individual bytes of the encoding.

Decode type

Shows the method that the processor uses to decode the instruction—either DirectPath
Single (DirectPath), DirectPath Double (Double), or VectorPath.

Latency Shows the static execution latency for the instruction. For details on how to interpret the
latency information, see “Interpreting Latencies” on page 276.
Throughput This value indicates the maximum theoretical rate of execution of that instruction. For

example, a value of 1/2 means that one such instruction executes every two clocks, or
two such instructions in four clocks and so on. A value of 3/1 indicates that three such
instructions can be executed every clock, but fewer than three such instructions would
still take one clock.

The entries for floating-point, MM X, SSE, and SSE2, and 3DNow! ™ instructions have an additional
column [FPU Pipe(s)] that lists the possible floating-point unit (FPU) pipelines available for use by
any particular DirectPath or Double decoded operation. For example, the floating point multiplier is
represented by FMUL . Because VectorPath instructions cannot be executed concurrently with any
other instruction, their pipeline usage isirrelevant, but the information is listed where it is available.

274

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Interpreting Placeholders

The Syntax column for an instruction entry shows the mnemonic for the instruction followed by any
operands. Itemsin italics are placeholders for operands that you must provide. A placeholder
indicates the size and type of operand that is allowed.

This operand Is a placeholder for

disp8 A byte (8-bit) displacement value

disp16/32 A word (16-bit) or doubleword (32-bit) displacement value

disp32/48 A doubleword (32-bit) or 48-bit displacement value

imm8 A byte (8-bit) immediate value

imm16 A word (16-bit) immediate value

imm32 A doubleword (32-bit) immediate value

mem§8 A byte (8-bit) memory location

mem16/32/64 A memory location that contains a word, doubleword, or quadword

mem16/32&mem16/32 | A memory location that contains a pair of words or doublewords

mem32/48 A doubleword (32-bit) or 48-bit memory location

mem48 A 48-bit memory location

mem64 A quadword (64-bit) memory location

mem128 A double quadword (128-bit) memory location

mem32real A memory location that contains a single-precision (32-bit) floating-point value

memé64real A memory location that contains a double-precision (64-bit) floating-point value

mem80real A memory location that contains a double-extended-precision (80-bit) floating-point
value

mmreg An MMX™ register

mmregl An MMX register defined by bits 5, 4, and 3 of the ModRM byte

mmreg2 An MMX register defined by bits 2, 1, and 0 of the ModRM byte

mreg8 A byte general-purpose register defined by the r/m field (bits 2, 1, and 0) of the
ModRM byte

mreg16/32/64 A word, doubleword, or quadword general-purpose register defined by the r/m field
(bits 2, 1, and 0) of the ModRM byte

reg8 A byte general-purpose register defined by instruction byte(s) or the reg field (bits 5,
4, and 3) of the ModRM byte

regl6/32/64 A word, doubleword, or quadword general-purpose register defined by instruction
byte(s) or the reg field (bits 5, 4, and 3) of the ModRM byte

sreg A segment register (always 16 bits wide)

xmmreg An XMM register

xmmregl An XMM register defined by bits 5, 4, and 3 of the ModRM byte

xmmreg2 An XMM register defined by bits 2, 1, and 0 of the ModRM byte

Appendix C

Instruction Latencies 275

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Interpreting Latencies

25112 Rev.3.04 March 2004

The Latency column for an instruction entry shows the static execution latency for the instruction.
The static execution latency is the number of clock cyclesit takes to execute the serially dependent
sequence of micro-ops that comprise the instruction.

The latenciesin this appendix are estimates and are subject to change. They assume that:

e Theinstruction isan L1-cache hit that has already been fetched and decoded, with the operations
loaded into the scheduler.

e Memory operands are assumed to be in the L 1 data cache.

* Thereisno contention for execution resources or load-store unit resources.

The following formats are used to indicate the static execution latency:

Latency format Description Example

X The latency is the indicated value. 3

X=y The latency is a value greater than or equal to x and less than or 31-73
equaltoy.

xlylz The latency differs according to the size of the operands. The values | 26/42/74
X, Y, and z are the 16-, 32-, and 64-bit latencies, respectively.

X (y) The latency depends on whether an error condition exists. When 68 (108)
there is no error condition, x is the latency. When an error condition
exists, y is the latency.

~ The latency is unavailable.

276 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

C.2 Integer Instructions

Table 15. Integer Instructions

Encoding

Syntax First | Second | ModRM 3epceode Latency | Note

byte | byte byte
AAA 37h VectorPath |5
AAD (or directly coded D5 ib, where ib is a byte | D5h | 0Ah VectorPath |5
value other than OAh)
AAM (or directly coded D4 ib, where ib is a D4h | OAh VectorPath | 15
byte value other than 0OAh)
AAS 3Fh VectorPath |5
ADC mreg8, reg8 10h 11-xxx-xxx | DirectPath |1
ADC mem8, reg8 10h mm-xxx-xxx | DirectPath |4
ADC mreg16/32/64, reg16/32/64 11h 11-xxx-xxx | DirectPath |1
ADC mem16/32/64, regl6/32/64 11h mm-xxx-xxx | DirectPath |4
ADC reg8, mreg8 12h 11-xxx-xxx | DirectPath |1
ADC reg8, mem8 12h mm-xxx-xxx | DirectPath |4
ADC regl16/32/64, mreg16/32/64 13h 11-xxx-xxx | DirectPath |1
ADC reg16/32/64, mem16/32/64 13h mm-xxx-xxx | DirectPath |4
ADC AL, imm8 14h DirectPath |1
ADC AX, imm16 15h DirectPath |1
ADC EAX, imm32 15h DirectPath |1
ADC RAX, imm32 (sign extended) 15h DirectPath |1
ADC mreg8, imm8 80h 11-010-xxx | DirectPath |1
ADC mem8, imm8 80h mm-010-xxx | DirectPath |4
ADC mreg16/32/64, imm16/32 81h 11-010-xxx | DirectPath |1
ADC mem16/32/64, imm16/32 81h mm-010-xxx | DirectPath |4
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.

9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 277

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
ADC mreg16/32/64, imm8 (sign extended) 83h 11-010-xxx | DirectPath |1
ADC mem16/32/64, imm8 (sign extended) 83h mm-010-xxx | DirectPath |4
ADD mreg8, reg8 00h 11-xxx-xxx | DirectPath |1
ADD mem8, reg8 00h mm-xxx-xxx | DirectPath |4
ADD mreg16/32/64, reg16/32/64 01h 11-xxx-xxx | DirectPath |1
ADD mem16/32/64, reg16/32/64 01h mm-xxx-xxx | DirectPath |4
ADD reg8, mreg8 02h 11-xxx-xxx | DirectPath |1
ADD reg8, mem8 02h mm-xxx-xxx | DirectPath |4
ADD reg16/32/64, mreg16/32/64 03h 11-xxx-xxx | DirectPath |1
ADD reg16/32/64, mem16/32/64 03h mm-xxx-xxx | DirectPath |4
ADD AL, imm8 04h DirectPath |1
ADD AX, imm16 05h DirectPath |1
ADD EAX, imm32 05h DirectPath |1
ADD RAX, imm32 (sign extended) 05h DirectPath |1
ADD mreg8, imm8 80h 11-000-xxx | DirectPath |1
ADD mem8, imm8 80h mm-000-xxx | DirectPath |4
ADD mreg16/32/64, imm16/32 81h 11-000-xxx | DirectPath |1
ADD mem16/32/64, imm16/32 81h mm-000-xxx | DirectPath |4
ADD mreg16/32/64, imm8 (sign extended) 83h 11-000-xxx | DirectPath |1
ADD mem16/32/64, imm8 (sign extended) 83h mm-000-xxx | DirectPath |4
AND mreg8, reg8 20h 11-xxx-xxx | DirectPath |1
AND mem8, reg8 20h mm-xxx-xxx | DirectPath |4
AND mreg16/32/64, reg16/32/64 21h 11-xxx-xxx | DirectPath |1
AND mem16/32/64, reg16/32/64 21h mm-xxx-xxx | DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

278

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
AND reg8, mreg8 22h 11-xxx-xxx | DirectPath |1
AND reg8, mem8 22h mm-xxx-xxx | DirectPath |4
AND reg16/32/64, mreg16/32/64 23h 11-xxx-xxx | DirectPath |1
AND reg16/32/64, mem16/32/64 23h mm-xxx-xxx | DirectPath |4
AND AL, imm8 24h DirectPath |1
AND AX, imm16 25h DirectPath |1
AND EAX, imm32 25h DirectPath |1
AND RAX, imm32 (sign extended) 25h DirectPath |1
AND mreg8, imm8 80h 11-100-xxx | DirectPath |1
AND mem8, imm8 80h mm-100-xxx | DirectPath |4
AND mreg16/32/64, imm16/32 81h 11-100-xxx | DirectPath |1
AND mem16/32/64, imm16/32 81h mm-100-xxx | DirectPath |4
AND mreg16/32/64, imm8 (sign extended) 83h 11-100-xxx | DirectPath |1
AND mem16/32/64, imm8 (sign extended) 83h mm-100-xxx | DirectPath |4
ARPL mreg16, reg16 63h 11-xxx-xxx | VectorPath | 13
ARPL mem16, regl16 63h mm-xxx-xxx | VectorPath | 18
BOUND reg16/32, mem16/32&mem16/32 62h mm-xxx-xxx | VectorPath | 6
BSF reg16/32/64, mreg16/32/64 OFh | BCh 11-xxx-xxx | VectorPath | 8/8/9
BSF reg16/32/64, mem16/32/64 OFh | BCh mm-xxx-xxx | VectorPath | 10/11/
12
BSR reg16/32/64, mreg16/32/64 OFh | BDh 11-xxx-xxx | VectorPath | 11
BSR reg16/32/64, mem16/32/64 OFh | BDh mm-xxxX-xxx | VectorPath | 14/13/
13
BSWAP EAX/RAX/R8 OFh | C8h DirectPath |1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 279

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
BSWAP EBP/RBP/R13 OFh | CDh DirectPath |1
BSWAP EBX/RBX/R11 OFh | CBh DirectPath |1
BSWAP ECX/RCX/R9 OFh | C9h DirectPath |1
BSWAP EDI/RDI/R15 OFh | CFh DirectPath |1
BSWAP EDX/RDX/R10 OFh | CAh DirectPath |1
BSWAP ESI/RSI/R14 OFh | CEh DirectPath |1
BSWAP ESP/RSP/R12 OFh | CCh DirectPath |1
BT mregl16/32/64, reg16/32/64 OFh | A3h 11-xxx-xxx | DirectPath |1
BT mem16/32/64, reg16/32/64 OFh | A3h mm-xxx-xxx | VectorPath | 8
BT mreg16/32/64, imm8 OFh | BAh 11-100-xxx | DirectPath |1
BT mem16/32/64, imm8 OFh | BAh mm-100-xxx | DirectPath |4
BTC mregl16/32/64, reg16/32/64 OFh | BBh 11-xxx-xxx | Double 2
BTC mem16/32/64, reg16/32/64 OFh | BBh mm-xxx-xxx | VectorPath | 9
BTC mreg16/32/64, imm8 OFh | BAh 11-111-xxx | Double 2
BTC mem16/32/64, imm8 OFh | BAh mm-111-xxx | VectorPath |5
BTR mreg16/32/64, reg16/32/64 OFh | B3h 11-xxx-xxx | Double 2
BTR mem16/32/64, reg16/32/64 OFh | B3h mm-xxx-xxx | VectorPath | 9
BTR mreg16/32/64, imm8 OFh | BAh 11-110-xxx | Double 2
BTR mem16/32/64, imm8 OFh | BAh mm-110-xxx | VectorPath |5
BTS mreg16/32/64, reg16/32/64 OFh | ABh 11-xxx-xxx | Double 2
BTS mem16/32/64, reg16/32/64 OFh | ABh mm-xxx-xxx | VectorPath | 9
BTS mreg16/32/64, imm8 OFh | BAh 11-101-xxx | Double 2
BTS mem16/32/64, imm8 OFh | BAh mm-101-xxx | VectorPath |5
CALL disp16/32 (near, displacement) E8h VectorPath |3 2
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

280

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
CALL mem16/32/64 (near, indirect) FFh mm-010-xxx | VectorPath |4
CALL mregl16/32/64 (near, indirect) FFh 11-010-xxx | VectorPath |4
CALL mem16:16/32 (far, indirect) FFh 11-011-xxx | VectorPath |~
CALL pntrl6:16/32 (far, direct, no CPL 9Ah VectorPath | 33
change)
CALL pntrl6:16/32 (far, direct, CPL change) 9Ah VectorPath | 150
CBW/CWDE/CDQE 98h DirectPath |1
CLC F8h DirectPath |1
CLD FCh DirectPath |1
CLFLUSH OFh | AEh mm-111-xx | DirectPath |~
CLI FAh VectorPath | 4
CLTS OFh | 06h VectorPath | 10
CcMC F5h DirectPath |1
CMOVA/CMOVNBE reg16/32/64, OFh |47h mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVA/CMOVNBE reg16/32/64, reg16/32/64 | OFh |47h 11-xxx-xxx | DirectPath |1
CMOVAE/CMOVNB/CMOVNC reg16/32/64, OFh |43h mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVAE/CMOVNB/CMOVNC reg16/32/64, OFh |43h 11-xxx-xxx | DirectPath |1
regl6/32/64
CMOVB/CMOVC/CMOVNAE reg16/32/64, OFh | 42h mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVB/CMOVC/CMOVNAE reg16/32/64, OFh |42h 11-xxx-xxx | DirectPath |1
reg16/32/64

Notes:
1. Static timing assumes a predicted branch.

latency.

page 173.

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

Appendix C

Instruction Latencies

281

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
CMOVBE/CMOVNA reg16/32/64, OFh |46h mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVBE/CMOVNA reg16/32/64, reg16/32/64 | OFh |46h 11-xxx-xxx | DirectPath |1
CMOVE/CMOVZ reg16/32/64, mem16/32/64 | OFh |44h mm-xxx-xxx | DirectPath |4
CMOVE/CMOVZ reg16/32/64, reg16/32/64 OFh |44h 11-xxx-xxx | DirectPath |1
CMOVG/CMOVNLE reg16/32/64, OFh | 4Fh mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVG/CMOVNLE reg16/32/64, reg16/32/64 | OFh | 4Fh 11-xxx-xxx | DirectPath
CMOVGE/CMOVNL reg16/32/64, OFh | 4Dh mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVGE/CMOVNL reg16/32/64, reg16/32/64 | OFh |4Dh 11-xxx-xxx | DirectPath |1
CMOVL/CMOVNGE reg16/32/64, OFh | 4Ch mm-xxx-xxx | DirectPath
mem16/32/64
CMOVL/CMOVNGE reg16/32/64, reg16/32/64 | OFh |4Ch 11-xxx-xxx | DirectPath |1
CMOVLE/CMOVNG regl16/32/64, OFh | 4Eh mm-xxx-xxx | DirectPath
mem16/32/64
CMOVLE/CMOVNG reg16/32/64, reg16/32/64 | OFh |4Eh 11-xxx-xxx | DirectPath
CMOVNE/CMOVNZ reg16/32/64, OFh | 45h mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVNE/CMOVNZ reg16/32/64, reg16/32/64 | OFh |45h 11-xxx-xxx | DirectPath |1
CMOVNO reg16/32/64, mem16/32/64 OFh |41h mm-xxx-xxx | DirectPath |4
CMOVNO reg16/32/64, reg16/32/64 OFh |41h 11-xxx-xxx | DirectPath |1
CMOVNP/CMOVPO reg16/32/64, OFh | 4Bh mm-xxx-xxx | DirectPath |4
mem16/32/64
CMOVNP/CMOVPO reg16/32/64, reg16/32/64 | OFh | 4Bh 11-xxx-xxx | DirectPath |1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

282

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
CMOVNS reg16/32/64, mem16/32/64 OFh |49h mm-xxx-xxx | DirectPath |4
CMOVNS reg16/32/64, reg16/32/64 OFh |49h 11-xxx-xxx | DirectPath |1
CMOVO reg16/32/64, mem16/32/64 OFh | 40h mm-xxx-xxx | DirectPath |4
CMOVO regl6/32/64, reg16/32/64 OFh |40h 11-xxx-xxx | DirectPath |1
CMOVP/CMOVPE reg16/32/64, mem16/32/64 | OFh | 4Ah mm-xxx-xxx | DirectPath |4
CMOVP/CMOVPE regl16/32/64, reg16/32/64 OFh |4Ah 11-xxx-xxx | DirectPath |1
CMOVS reg16/32/64, mem16/32/64 OFh |48h mm-xxx-xxx | DirectPath |4
CMOVS regl16/32/64, reg16/32/64 OFh |48h 11-xxx-xxx | DirectPath |1
CMP mem8, reg8 38h mm-xxx-xxx | DirectPath |4
CMP mreg8, reg8 38h 11-xxx-xxx | DirectPath |1
CMP mem16/32/64, reg16/32/64 39h mm-xxx-xxx | DirectPath |4
CMP mreg16/32/64, reg16/32/64 39h 11-xxx-xxx | DirectPath |1
CMP reg8, mem8 3Ah mm-xxx-xxx | DirectPath |4
CMP reg8, mreg8 3Ah 11-xxx-xxx | DirectPath |1
CMP reg16/32/64, mem16/32/64 3Bh mm-xxx-xxx | DirectPath |4
CMP reg16/32/64, mreg16/32/64 3Bh 11-xxx-xxx | DirectPath |1
CMP AL, imm8 3Ch DirectPath |1
CMP AX/EAX, imm16/32 3Dh DirectPath |1
CMP RAX, imm32 (sign extended) 3Dh DirectPath |1
CMP mem8, imm8 80h mm-111-xxx | DirectPath |4
CMP mreg8, imm8 80h 11-111-xxx | DirectPath |1
CMP mem16/32/64, imm16/32 81h mm-111-xxx | DirectPath |4
CMP mreg16/32/64, imm16/32 81h 11-111-xxx | DirectPath |1
CMP mem16/32/64, imm8 (sign extended) 83h mm-111-xxx | DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 283

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Table 15. Integer Instructions (Continued)
Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
CMP mreg16/32/64, imm8 (sign extended) 83h 11-111-xxx | DirectPath |1
CMPS mem8, mem8 A6h VectorPath | 6 7
CMPS mem16/32/64, mem16/32/64 A7h VectorPath | 6 7
CMPSB A6h VectorPath | 6 7
CMPSD A7h VectorPath | 6 7
CMPSQ A7 VectorPath | 6 7
CMPSW A7h VectorPath | 6 7
CMPXCHG mem8, reg8 OFh | BOh mm-xxx-xxx | VectorPath |5
CMPXCHG mreg8, reg8 OFh | BOh 11-xxx-xxx | VectorPath | 3
CMPXCHG mem16/32/64, reg16/32/64 OFh |Blh mm-xxx-xxx | VectorPath |5
CMPXCHG mreg16/32/64, reg16/32/64 OFh |Blh 11-xxx-xxx | VectorPath |3
CMPXCHG8B mem64 OFh | C7h mm-xxx-xxx | VectorPath | 10
CPUID (function 0) OFh | A2h VectorPath | 36
CPUID (function 1) OFh | A2h VectorPath | 152
CPUID (function 2) OFh |A2h VectorPath | 38
CPUID (function 8000_0001h) OFh | A2h VectorPath
CPUID (function 8000_0002h) OFh | A2h VectorPath
CPUID (function 8000_0003h) OFh | A2h VectorPath
CPUID (function 8000_0004h) OFh | A2h VectorPath
CPUID (function 8000_0007h) OFh | A2h VectorPath
CPUID (function 8000_0008h) OFh |A2h VectorPath
CWD/CDQ/CQO 9%h DirectPath |1
DAA 27h VectorPath
DAS 2Fh VectorPath | 7
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

284

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte

DEC AX/EAX 48h DirectPath |1 9
DEC BP/EBP 4Dh DirectPath |1 9
DEC BX/EBX 4Bh DirectPath |1 9
DEC CX/ECX 49h DirectPath |1 9
DEC DI/EDI 4Fh DirectPath |1 9
DEC DX/EDX 4Ah DirectPath |1 9
DEC SI/ESI 4Eh DirectPath |1 9
DEC SP/ESP 4Ch DirectPath |1 9
DEC mem8 FEh mm-001-xxx | DirectPath |4
DEC mreg8 FEh 11-001-xxx | DirectPath |1
DEC mem16/32/64 FFh mm-001-xxx | DirectPath |4
DEC mreg16/32/64 FFh 11-001-xxx | DirectPath |1
DIV mem8 F6h mm-110-xxx | VectorPath | 16
DIV mreg8 F6h 11-110-xxx | VectorPath | 16
DIV mem16/32/64 F7h mm-110-xxx | VectorPath | 23/39/

71
DIV mreg16/32/64 F7h 11-110-xxx | VectorPath | 23/39/

71
ENTER C8h VectorPath | 14/17/ |5

19/21
IDIV mreg8 F6h 11-111-xxx | VectorPath |18
IDIV mem8 F6h mm-111-xxx | VectorPath | 19
IDIV mreg16/32/64 F7h 11-111-xxx | VectorPath | 26/42/

74

Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

285

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
IDIV mem16/32/64 F7h mm-111-xxx | VectorPath | 27/43/
75
IMUL reg16, imm16 69h 11-xxx-xxx | VectorPath |4
IMUL reg32/64, imm32/(32 sign extended) 69h 11-xxx-xxx | DirectPath | 3/4
IMUL reg16, mreg16, imm16 69h 11-xxx-xxx | VectorPath |4
IMUL reg32/64, mreg32/64, imm32/(32 sign 69h 11-xxx-xxx | DirectPath | 3/4
extended)
IMUL reg16/32/64, mem16/32/64, 69h mm-xxxX-xxx | VectorPath | 7/7/8
imm16/32/(32 sign extended)
IMUL reg16/32/64, imm8 (sign extended) 6Bh 11-xxx-xxx | VectorPath | 4/3/4
IMUL reg16/32/64, mreg16/32/64, imm8 6Bh 11-xxx-xxx | VectorPath | 4/3/4
(signed)
IMUL reg16/32/64, mem16/32/64, imm8 6Bh mm-xxxX-xxx | VectorPath | 7/7/8
(signed)
IMUL mreg8 F6h 11-101-xxx | DirectPath
IMUL mem8 F6h mm-101-xxx | DirectPath
IMUL mreg16 F7h 11-101-xxx | VectorPath
IMUL mreg32/64 F7h 11-101-xxx | Double 3/5
IMUL mem16 F7h mm-101-xxx | VectorPath | 7
IMUL mem32/64 F7h mm-101-xxx | Double 6/8
IMUL reg16/32/64, mreg16/32/64 OFh | AFh 11-xxx-xxx | DirectPath | 3/3/4
IMUL reg16/32/64, mem16/32/64 OFh | AFh mm-xxx-xxx | DirectPath | 6/6/7
IN AL, imm8 E4h VectorPath | 184
IN AX, imm8 E5h VectorPath | 184
IN EAX, imm8 E5h VectorPath | 184
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.
286 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
IN AL, DX ECh VectorPath | 179
IN AX, DX EDh VectorPath | 179
IN EAX, DX EDh VectorPath | 181
INC AX, EAX 40h DirectPath |1 9
INC CX, ECX 41h DirectPath |1 9
INC DX, EDX 42h DirectPath |1 9
INC BX, EBX 43h DirectPath |1 9
INC SP, ESP 44h DirectPath |1 9
INC BP, EBP 45h DirectPath |1 9
INC SI, ESI 46h DirectPath |1 9
INC DI, EDI 47h DirectPath |1 9
INC mreg8 FEh 11-000-xxx | DirectPath |1
INC mem8 FEh mm-000-xxx | DirectPath |4
INC mreg16/32/64 FFh 11-000-xxx | DirectPath |1
INC mem16/32/64 FFh mm-000-xxx | DirectPath |4
INSB/INS mem8, DX 6Ch VectorPath | 184
INSD/INS mem32, DX 6Dh VectorPath | 185
INSW/INS mem16, DX 6Dh VectorPath | 186
INT imm8 (no CPL change) CDh VectorPath | 87-109
INT imm8 (CPL change) CDh VectorPath | 91-112
INVD OFh | 08h VectorPath | 247
INVLPG OFh |01h mm-111-xxx | VectorPath | 101/80 |8
IRET, IRETD, IRETQ (from 64-bit to 64-bit) CFh VectorPath | 91
IRET, IRETD, IRETQ (from 64-bit to 32-bit) CFh VectorPath | 111

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate

of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.

9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies

287

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

2.

Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
JA/INBE disp8 77h DirectPath |1 1
JA/INBE disp16/32 OFh |87h DirectPath |1 1
JAE/INB/INC disp8 73h DirectPath |1 1
JAE/INB/JINC disp16/32 OFh |83h DirectPath |1 1
JB/JC/INAE disp8 72h DirectPath |1 1
JB/JC/INAE disp16/32 OFh |82h DirectPath |1 1
JBE/JNA disp8 76h DirectPath |1 1
JBE/JINA disp16/32 OFh | 86h DirectPath |1 1
JCXZ/JECXZIJRCXZ disp8 E3h DirectPath |2 1
JE/JZ disp8 74h DirectPath |1 1
JE/JZ disp16/32 OFh | 84h DirectPath |1 1
JG/INLE disp8 7Fh DirectPath |1 1
JG/INLE disp16/32 OFh | 8Fh DirectPath |1 1
JGE/JNL disp8 7Dh DirectPath |1 1
JGE/JINL disp16/32 OFh |8Dh DirectPath |1 1
JL/INGE disp8 7Ch DirectPath |1 1
JL/INGE disp16/32 OFh |8Ch DirectPath |1 1
JLE/ING disp8 7Eh DirectPath |1 1
JLE/ING disp16/32 OFh | 8Eh DirectPath |1 1
JMP disp8 (short) EBh DirectPath |1
JMP disp16/32 (near, displacement) E9h DirectPath |1
JMP mem16/32/64 (near, indirect) FFh mm-100-xxx | DirectPath |4
JMP mreg16/32/64 (near, indirect) FFh 11-100-xxx | DirectPath |1
JMP mem16:16/32 (far, indirect, no call gate) | FFh mm-101-xxx | VectorPath | 34
Notes:
1. Static timing assumes a predicted branch.

Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.

The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
Execution latencies for nesting levels 0/1/2/3.

These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.

The first latency value is for 32-bit mode. The second is for 64-bit mode.

This opcode is used as a REX prefix in 64-bit mode.

288

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
JMP mem16:16/32 (far, indirect, call gate) FFh mm-101-xxx | VectorPath | 123
JMP pntrl6:16/32 (far, direct, no call gate) EAh VectorPath | 31
JMP pntrl6:16/32 (far, direct, call gate) EAh VectorPath | 120
JNE/INZ disp8 75h DirectPath |1 1
JNE/INZ disp16/32 OFh |85h DirectPath |1 1
JNO disp8 71h DirectPath |1 1
JNO disp16/32 OFh |81h DirectPath |1 1
JNP/IPO disp8 7Bh DirectPath |1 1
JNP/JPO disp16/32 OFh |8Bh DirectPath |1 1
JNS disp8 79h DirectPath |1 1
JINS disp16/32 OFh |89h DirectPath |1 1
JO disp8 70h DirectPath |1 1
JO disp16/32 OFh | 80h DirectPath |1 1
JP/JPE disp8 7Ah DirectPath |1 1
JP/JPE disp16/32 OFh | 8Ah DirectPath |1 1
JS disp8 78h DirectPath |1 1
JS disp16/32 OFh |88h DirectPath |1 1
LAHF 9Fh VectorPath |3
LAR reg16/32/64, mreg16/32/64 OFh |02h 11-xxx-xxx | VectorPath | 22
LAR reg16/32/64, mem16/32/64 OFh | 02h mm-xxx-xxx | VectorPath | 24
LDS reg16/32, mem16:16/32 C5h mm-xxx-xxx | VectorPath | ~
LEA regl6, mem16/32/64 8Dh mm-xxx-xxx | VectorPath | 3 4
LEA reg32/64, mem16/32/64 8Dh mm-xxx-xxx | DirectPath |2 4
LEAVE (16 bit stack size) C9h VectorPath |3

Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more

information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate

of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

289

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
LEAVE (32 or 64 bit stack size) C%h Double 3
LES reg16/32, mem32/48 C4ah mm-xxx-xxx | VectorPath | ~
LFS reg16/32, mem32/48 OFh | B4h VectorPath | ~
LGDT mem16:32 OFh |01h mm-010-xxx | VectorPath | 37
LGDT mem16:64 OFh |01h mm-010-xxx | VectorPath | ~
LGS regl16/32, mem32/48 OFh |B5h VectorPath | ~
LIDT mem16:32 OFh |01h mm-011-xxx | VectorPath | 148
LIDT mem16:64 OFh |01h mm-011-xxx | VectorPath | ~
LLDT mreg16 OFh | 00Oh 11-010-xxx | VectorPath | 34
LLDT mem16 OFh | 00h mm-010-xxx | VectorPath | 35
LMSW mregl6 OFh |01h 11-100-xxx | VectorPath |11
LMSW mem16 OFh |01h mm-100-xxx | VectorPath | 12
LODS/LODSB mem8 ACh VectorPath |5 7
LODS/LODSW mem16 ADh VectorPath | 5 7
LODS/LODSD mem32 ADh VectorPath |4 7
LODS/LODSQ mem64 ADh VectorPath | ~ 7
LOOP disp8 E2h VectorPath | 9/8 8
LOOPE/LOOPZ disp8 Elh VectorPath | 9/8 8
LOOPNE/LOOPNZ disp8 EOh VectorPath | 9/8 8
LSL reg16/32/64, mreg16/32 OFh |03h 11-xxx-xxx | VectorPath | 21
LSL reg16/32/64, mem16/32 OFh | 03h mm-xxx-xxx | VectorPath | 23
LSS reg16/32/64, mem16:16/32 OFh | B2h mm-xxx-xxx | VectorPath | ~
LTR mreg16 OFh | 00h 11-011-xxx | VectorPath |~
LTR mem16 OFh | 00h mm-011-xxx | VectorPath | ~
Notes:

1. Static timing assumes a predicted branch.

latency.

page 173.

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

290

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
MFENCE OFh | AEh 11-110-000 | VectorPath |~
MOV mreg8, reg8 88h 11-xxx-xxx | DirectPath |1
MOV mem8, reg8 88h mm-xxx-xxx | DirectPath |3
MOV mreg16/32/64, reg16/32/64 89h 11-xxx-xxx | DirectPath |1
MOV mem16/32/64, reg16/32/64 89h mm-xxx-xxx | DirectPath |3
MOV reg8, mreg8 8Ah 11-xxx-xxx | DirectPath |1
MOV reg8, mem8 8Ah mm-xxx-xxx | DirectPath |4
MOV reg16/32/64, mreg16/32/64 8Bh 11-xxx-xxx | DirectPath |1
MOV regl6, mem16 8Bh mm-xxx-xxx | DirectPath |4
MOV reg32/64, mem32/64 8Bh mm-xxx-xxx | DirectPath |3
MOV mreg16/32/64, sreg 8Ch 11-xxx-xxx | DirectPath | 4/3 8
MOV mem16, sreg 8Ch mm-xxx-xxx | Double 4
MOV sreg, mreg16/32/64 8Eh 11-xxx-xxx | VectorPath | 8
MOV sreg, mem16 8Eh mm-xxx-xxx | VectorPath | 10
MOV AL, mem8 AOh DirectPath |4
MOV AX/EAX/RAX, mem16/32/64 Alh DirectPath | 4/3/3
MOV mem8, AL A2h DirectPath |3
MOV mem16/32/64, AXIEAX/IRAX A3h DirectPath |3
MOV AL, imm8 BOh DirectPath |1
MOV CL, imm8 Blh DirectPath |1
MOV DL, imm8 B2h DirectPath |1
MOV BL, imm8 B3h DirectPath |1
MOV AH, imm8 B4h DirectPath |1
MOV CH, imm8 B5h DirectPath |1
Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more

information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate

of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

291

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
MOV DH, imm8 B6h DirectPath |1
MOV BH, imm8 B7h DirectPath |1
MOV AX/EAX/RAXIR8, imm16/32/64 B8h DirectPath |1
MOV CX/ECX/RCX/R9, imm16/32/64 B9h DirectPath |1
MOV DX/EDX/RDX/R10, imm16/32/64 BAh DirectPath |1
MOV BX/EBX/RBX/R11, imm16/32/64 BBh DirectPath |1
MOV SP/ESP/RSP/R12, imm16/32/64 BCh DirectPath |1
MOV BP/EBP/RBP/R13, imm16/32/64 BDh DirectPath |1
MOV SI/ESI/RSI/R14, imm16/32/64 BEh DirectPath |1
MOV DI/EDI/RDI/R15, imm16/32/64 BFh DirectPath |1
MOV mreg8, imm8 C6h 11-000-xxx | DirectPath |1
MOV mem8, imm8 C6h mm-000-xxx | DirectPath |3
MOV mreg16/32/64, imm16/32 C7h 11-000-xxx | DirectPath |1
MOV mem16/32/64, imm16/32 C7h mm-000-xxx | DirectPath |3
MOVSB/MOVS mem8, mem8 Adh VectorPath |5 7
MOVSD/MOVS mem16, mem16 A5h VectorPath |5 7
MOVSW/MOVS mem32, mem32 A5h VectorPath |5 7
MOVSQ/MOVS mem64, mem64 A5h VectorPath | ~ 7
MOVSX reg16/32/64, mreg8 OFh | BEh 11-xxx-xxx | DirectPath |1
MOVSX reg16/32/64, mem8 OFh | BEh mm-xxx-xxx | DirectPath |4
MOVSX reg32/64, mregl16 OFh | BFh 11-xxx-xxx | DirectPath |1
MOVSX reg32/64, mem16 OFh | BFh mm-xxx-xxx | DirectPath |4
MOVSXD reg64, mreg32 63h DirectPath |1
MOVSXD reg64, mem32 63h DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

292 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
MOVZX reg16/32/64, mreg8 OFh | B6h 11-xxx-xxx | DirectPath |1
MOVZX reg16/32/64, mem8 OFh | B6h mm-xxx-xxx | DirectPath |4
MOVZX reg32/64, mregl6 OFh |B7h 11-xxx-xxx | DirectPath |1
MOVZX reg32/64, mem16 OFh |B7h mm-xxx-xxx | DirectPath |4
MUL mreg8 F6h 11-100-xxx | DirectPath |3
MUL AL, mem8 F6h mm-100-xx | DirectPath |6
MUL mregl6 F7h 11-100-xxx | VectorPath |4
MUL mem16 F7h mm-100-xxx | VectorPath | 7
MUL mreg32 F7h 11-100-xxx | Double 3
MUL mem32 F7h mm-100-xx | Double 6
MUL mreg64 F7h 11-100-xxx | Double 5
MUL mem64 F7h mm-100-xx | Double 8
NEG mreg8 F6h 11-011-xxx | DirectPath |1
NEG mem8 F6h mm-011-xxx | DirectPath |4
NEG mreg16/32/64 F7h 11-011-xxx | DirectPath |1
NEG mem16/32/64 F7h mm-011-xx | DirectPath |4
NOP (XCHG EAX, EAX) 90h DirectPath | ~0 6
NOT mreg8 F6h 11-010-xxx | DirectPath |1
NOT mem8 F6h mm-010-xx | DirectPath |4
NOT mreg16/32/64 F7h 11-010-xxx | DirectPath |1
NOT mem16/32/64 F7h mm-010-xx | DirectPath |4
OR mreg8, reg8 08h 11-xxx-xxx | DirectPath |1
OR mem8, reg8 08h mm-xxx-xxx | DirectPath |4
OR mreg16/32/64, reg16/32/64 09h 11-xxx-xxx | DirectPath |1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 293

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
OR mem16/32/64, reg16/32/64 09h mm-xxx-xxx | DirectPath |4
OR reg8, mreg8 0Ah 11-xxx-xxx | DirectPath |1
OR reg8, mem8 0Ah mm-xxx-xxx | DirectPath |4
OR reg16/32/64, mregl16/32/64 0Bh 11-xxx-xxx | DirectPath |1
OR reg16/32/64, mem16/32/64 0Bh mm-xxx-xxx | DirectPath |4
OR AL, imm8 0Ch DirectPath |1
OR AX, imm16 0Dh DirectPath |1
OR EAX, imm32 0Dh DirectPath |1
OR RAX, imm32 (sign extended) 0Dh DirectPath |1
OR mreg8, imm8 80h 11-001-xxx | DirectPath |1
OR mem8, imm8 80h mm-001-xxx | DirectPath |4
OR mreg16/32/64, imm16/32 81h 11-001-xxx | DirectPath |1
OR mem16/32/64, imm16/32 81h mm-001-xxx | DirectPath |4
OR mreg16/32/64, imm8 (sign extended) 83h 11-001-xxx | DirectPath |1
OR mem16/32/64, imm8 (sign extended) 83h mm-001-xxx | DirectPath |4
OUT imm8, AL E6h VectorPath | ~
OUT imm8, AX E7h VectorPath |~
OUT imm8, EAX E7h VectorPath | ~
OUT DX, AL EEh VectorPath | 165
OUT DX, AX EFh VectorPath | 165
OUT DX, EAX EFh VectorPath | 165
POP ES 07h VectorPath | 10
POP SS 17h VectorPath | 31
POP DS 1Fh VectorPath | 10
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.
294 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
POP FS OFh |Alh VectorPath | 10
POP GS OFh | A9h VectorPath | 10
POP AX/EAX/RAX/(R8) 58h Double 3
POP CX/ECX/RCX/(R9) 59h Double 3
POP DX/EDX/RDX/(R10) 5Ah Double 3
POP BX/EBX/RBX/(R11) 5Bh Double 3
POP SP/ESP/RSP/(R12) 5Ch Double 3
POP BP/EBP/RBP/(R13) 5Dh Double 3
POP SI/ESI/RSI/(R14) 5Eh Double 3
POP DI/EDI/RDI/(R15) 5Fh Double 3
POP mreg 16/32/64 8Fh 11-000-xxx | VectorPath |3
POP mem 16/32/64 8Fh mm-000-xxx | VectorPath | 3
POPA/POPAD 61h VectorPath | 6
POPF/POPFD/POPFQ 9Dh VectorPath | 15
PUSH ES 06h VectorPath |3 2
PUSH CS OEh VectorPath |3
PUSH FS OFh | AOh VectorPath |3
PUSH GS OFh | A8h VectorPath |3
PUSH SS 16h VectorPath |3
PUSH DS 1Eh VectorPath |3 2
PUSH AX/EAX/RAX/(R8) 50h DirectPath |3 2
PUSH CX/ECX/RCX/(R9) 51h DirectPath |3 2
PUSH DX/EDX/RDX/(R10) 52h DirectPath |3 2
PUSH BX/EBX/RBX/(R11) 53h DirectPath |3 2

Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

page 173.

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.

9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C

Instruction Latencies

295

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte

PUSH SP/ESP/RSP/(R12) 54h DirectPath |3 2
PUSH BP/EBP/RBP/(R13) 55h DirectPath |3 2
PUSH SI/ESI/RSI/(R14) 56h DirectPath |3 2
PUSH DI/EDI/RDI/(R15) 57h DirectPath |3 2
PUSH imm8 6Ah DirectPath |3 2
PUSH imm16/32 68h DirectPath |3 2
PUSH mreg16/32/64 FFh 11-110-xxx | DirectPath |3
PUSH mem16/32/64 FFh mm-110-xxx | Double 3 2
PUSHA/PUSHAD 60h VectorPath | 6
PUSHF/PUSHFD/PUSHFQ 9Ch VectorPath |4
RCL mreg8, imm8 COh 11-010-xxx | VectorPath |7
RCL mem8, imm8 COh mm-010-xxx | VectorPath | 8
RCL mreg16/32/64, imm8 Cih 11-010-xxx | VectorPath |7
RCL mem16/32/64, imm8 Cih mm-010-xxx | VectorPath | 8
RCL mreg8, 1 DOh 11-010-xxx | DirectPath |1
RCL mems, 1 DOh mm-010-xxx | DirectPath |4
RCL mreg16/32/64, 1 Dih 11-010-xxx | DirectPath |1
RCL mem16/32/64, 1 D1h mm-010-xxx | DirectPath |4
RCL mreg8, CL D2h 11-010-xxx | VectorPath | 6
RCL mem8, CL D2h mm-010-xxx | VectorPath | 7
RCL mreg16/32/64, CL D3h 11-010-xxx | VectorPath | 6
RCL mem16/32/64, CL D3h mm-010-xxx | VectorPath | 7
RCR mreg8, imm8 COh 11-011-xxx | VectorPath |5
RCR mem8, imm8 COh mm-011-xxx | VectorPath | 6
Notes:

1. Static timing assumes a predicted branch.

2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. '?rtfa ((::I)c/)ck count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more

information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
Execution latencies for nesting levels 0/1/2/3.

These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

page 173.

The first latency value is for 32-bit mode. The second is for 64-bit mode.

This opcode is used as a REX prefix in 64-bit mode.

296

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte
RCR mreg16/32/64, imm8 Cilh 11-011-xxx | VectorPath |5
RCR mem16/32/64, imm8 Cih mm-011-xxx | VectorPath |6
RCR mreg8, 1 DOh 11-011-xxx | DirectPath |1
RCR mem8, 1 DOh mm-011-xxx | DirectPath |4
RCR mreg16/32/64, 1 Dih 11-011-xxx | DirectPath |1
RCR mem16/32/64, 1 D1h mm-011-xxx | DirectPath |4
RCR mreg8, CL D2h 11-011-xxx | VectorPath |4
RCR mem8, CL D2h mm-011-xxx | VectorPath | 6
RCR mreg16/32/64, CL D3h 11-011-xxx | VectorPath |4
RCR mem16/32/64, CL D3h mm-011-xxx | VectorPath | 6
RDMSR OFh |32h VectorPath | 87
RDPMC OFh |33h VectorPath | ~
RDTSC OFh |31h VectorPath | 12
RET near imm16 C2h VectorPath | 5
RET near C3h Double 5
RET far imm16 (no CPL change) CAh VectorPath | 31-44
RET far imm16 (CPL change) CAh VectorPath | 57-72
RET far (no CPL change) CBh VectorPath | 31-44
RET far (CPL change) CBh VectorPath | 57-72
ROL mreg8, imm8 COh 11-000-xxx | DirectPath |1 3
ROL mem8, imm8 COh mm-000-xxx | DirectPath |4 3
ROL mreg16/32/64, imm8 Cilh 11-000-xxx | DirectPath |1 3
ROL mem16/32/64, imm8 Cih mm-000-xxx | DirectPath |4 3
ROL mreg8, 1 DOh 11-000-xxx | DirectPath |1
Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.

4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.

5. Execution latencies for nesting levels 0/1/2/3.

6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.

7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

297

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
ROL mems, 1 DOh mm-000-xxx | DirectPath |4
ROL mregl16/32/64, 1 Dih 11-000-xxx | DirectPath |1
ROL mem16/32/64, 1 D1h mm-000-xxx | DirectPath |4
ROL mreg8, CL D2h 11-000-xxx | DirectPath |1 3
ROL mem8, CL D2h mm-000-xxx | DirectPath |4 3
ROL mregl16/32/64, CL D3h 11-000-xxx | DirectPath |1 3
ROL mem16/32/64, CL D3h mm-000-xxx | DirectPath |4 3
ROR mreg8, imm8 COh 11-001-xxx | DirectPath |1 3
ROR mem8, imm8 COh mm-001-xxx | DirectPath |4 3
ROR mreg16/32/64, imm8 Cilh 11-001-xxx | DirectPath |1 3
ROR mem16/32/64, imm8 Cilh mm-001-xxx | DirectPath |4 3
ROR mreg8, 1 DOh 11-001-xxx | DirectPath |1
ROR mems, 1 DOh mm-001-xxx | DirectPath |4
ROR mreg16/32/64, 1 Dih 11-001-xxx | DirectPath |1
ROR mem16/32/64, 1 D1h mm-001-xxx | DirectPath |4
ROR mreg8, CL D2h 11-001-xxx | DirectPath |1 3
ROR mem8, CL D2h mm-001-xxx | DirectPath |4 3
ROR mreg16/32/64, CL D3h 11-001-xxx | DirectPath |1 3
ROR mem16/32/64, CL D3h mm-001-xxx | DirectPath |4 3
SAHF 9Eh DirectPath |1
SAR mreg8, imm8 COh 11-111-xxx | DirectPath |1 3
SAR mem8, imm8 COh mm-111-xxx | DirectPath |4 3
SAR mreg16/32/64, imm8 Cilh 11-111-xxx | DirectPath |1 3
SAR mem16/32/64, imm8 Cilh mm-111-xxx | DirectPath |4 3
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

298 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
SAR mreg8, 1 DOh 11-111-xxx | DirectPath |1
SAR mem8, 1 DOh mm-111-xxx | DirectPath |4
SAR mreg16/32/64, 1 D1h 11-111-xxx | DirectPath |1
SAR mem16/32/64, 1 Dih mm-111-xxx | DirectPath |4
SAR mreg8, CL D2h 11-111-xxx | DirectPath |1 3
SAR mem8, CL D2h mm-111-xxx | DirectPath |4 3
SAR mreg16/32/64, CL D3h 11-111-xxx | DirectPath |1 3
SAR mem16/32/64, CL D3h mm-111-xxx | DirectPath |4 3
SBB mreg8, reg8 18h 11-xxx-xxx | DirectPath |1
SBB mem8, reg8 18h mm-xxx-xxx | DirectPath |4
SBB mreg16/32/64, reg16/32/64 19h 11-xxx-xxx | DirectPath |1
SBB mem16/32/64, reg16/32/64 19h mm-xxx-xxx | DirectPath |4
SBB reg8, mreg8 1Ah 11-xxx-xxx | DirectPath |1
SBB reg8, mem8 1Ah mm-xxx-xxx | DirectPath |4
SBB reg16/32/64, mregl16/32/64 1Bh 11-xxx-xxx | DirectPath |1
SBB reg16/32/64, mem16/32/64 1Bh mm-xxx-xxx | DirectPath |4
SBB AL, imm8 1Ch DirectPath |1
SBB AX, imm16 1Dh DirectPath |1
SBB EAX, imm32 1Dh DirectPath |1
SBB RAX, imm32 (sign extended) 1Dh DirectPath |1
SBB mreg8, imm8 80h 11-011-xxx | DirectPath |1
SBB mem8, imm8 80h mm-011-xxx | DirectPath |4
SBB mreg16/32/64, imm16/32 81h 11-011-xxx | DirectPath |1
SBB mem16/32/64, imm16/32 81h mm-011-xxx | DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 299

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
SBB mreg16/32/64, imm8 (sign extended) 83h 11-011-xxx | DirectPath |1
SBB mem16/32/64, imm8 (sign extended) 83h mm-011-xxx | DirectPath |4
SCASB/SCAS mem8 AEh VectorPath | 4 7
SCASD/SCAS mem32 AFh VectorPath | 4 7
SCASQ/SCAS mem64 AFh VectorPath | 4 7
SCASW/SCAS mem16 AFh VectorPath | 4 7
SETA/SETNBE mem8 OFh |97h mm-xxx-xxx | DirectPath |3
SETA/SETNBE mreg8 OFh |97h 11-xxx-xxx | DirectPath |1
SETAE/SETNB/SETNC mem8 OFh |93h mm-xxx-xxx | DirectPath |3
SETAE/SETNB/SETNC mreg8 OFh |93h 11-xxx-xxx | DirectPath |1
SETB/SETC/SETNAE mem8 OFh |92h mm-xxx-xxx | DirectPath |3
SETB/SETC/SETNAE mreg8 OFh | 92h 11-xxx-xxx | DirectPath |1
SETBE/SETNA mem8 OFh |96h mm-xxx-xxx | DirectPath |3
SETBE/SETNA mreg8 OFh | 96h 11-xxx-xxx | DirectPath |1
SETE/SETZ mem8 OFh | 94h mm-xxx-xxx | DirectPath |3
SETE/SETZ mreg8 OFh |94h 11-xxx-xxx | DirectPath |1
SETG/SETNLE mem8 OFh | 9Fh mm-xxx-xxx | DirectPath |3
SETG/SETNLE mreg8 OFh | 9Fh 11-xxx-xxx | DirectPath |1
SETGE/SETNL mem8 OFh | 9Dh mm-xxx-xxx | DirectPath |3
SETGE/SETNL mreg8 OFh | 9Dh 11-xxx-xxx | DirectPath |1
SETL/SETNGE mem8 OFh |9Ch mm-xxx-xxx | DirectPath |3
SETL/SETNGE mreg8 OFh | 9Ch 11-xxx-xxx | DirectPath |1
SETLE/SETNG mem8 OFh | 9Eh mm-xxx-xxx | DirectPath |3
SETLE/SETNG mreg8 OFh | 9Eh 11-xxx-xxx | DirectPath |1
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

300

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
SETNE/SETNZ mem8 OFh | 95h mm-xxx-xxx | DirectPath |3
SETNE/SETNZ mreg8 OFh | 95h 11-xxx-xxx | DirectPath |1
SETNO mem8 OFh |91h mm-xxx-xxx | DirectPath |3
SETNO mreg8 OFh |91h 11-xxx-xxx | DirectPath |1
SETNP/SETPO mem8 OFh | 9Bh mm-xxx-xxx | DirectPath |3
SETNP/SETPO mreg8 OFh | 9Bh 11-xxx-xxx | DirectPath |1
SETNS mem8 OFh |9%9h mm-xxx-xxx | DirectPath |3
SETNS mreg8 OFh |99h 11-xxx-xxx | DirectPath |1
SETO mem8 OFh | 90h mm-xxx-xxx | DirectPath |3
SETO mreg8 OFh | 90h 11-xxx-xxx | DirectPath |1
SETP/SETPE mem8 OFh | 9Ah mm-xxx-xxx | DirectPath |3
SETP/SETPE mreg8 OFh |9Ah 11-xxx-xxx | DirectPath |1
SETS mem8 OFh |98h mm-xxx-xxx | DirectPath |3
SETS mreg8 OFh |98h 11-xxx-xxx | DirectPath |1
SGDT mem48 OFh |01h mm-000-xxx | VectorPath | 17/18 8
SIDT mem48 OFh |01h mm-001-xxx | VectorPath | 17/18 8
SHL/SAL mreg8, imm8 COh 11-100-xxx | DirectPath |1 3
SHL/SAL mem8, imm8 COh mm-100-xxx | DirectPath |4 3
SHL/SAL mreg16/32/64, imm8 Cilh 11-100-xxx | DirectPath |1 3
SHL/SAL mem16/32/64, imm8 Cilh mm-100-xxx | DirectPath |4 3
SHL/SAL mreg8, 1 DOh 11-100-xxx | DirectPath |1
SHL/SAL mem8, 1 DOh mm-100-xxx | DirectPath |4
SHL/SAL mreg16/32/64, 1 Dih 11-100-xxx | DirectPath |1
SHL/SAL mem16/32/64, 1 D1h mm-100-xxx | DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

Appendix C Instruction Latencies 301

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
SHL/SAL mreg8, CL D2h 11-100-xxx | DirectPath |1 3
SHL/SAL mem8, CL D2h mm-100-xxx | DirectPath |4 3
SHL/SAL mreg16/32/64, CL D3h 11-100-xxx | DirectPath |1 3
SHL/SAL mem16/32/64, CL D3h mm-100-xxx | DirectPath |4 3
SHLD mreg16/32/64, reg16/32/64, imm8 OFh | Adh 11-xxx-xxx | VectorPath |4 3
SHLD mem16/32/64, reg16/32/64, imm8 OFh | Adh mm-xxx-xxx | VectorPath | 6 3
SHLD mreg16/32/64, reg16/32/64, CL OFh | A5h 11-xxx-xxx | VectorPath |4 3
SHLD mem16/32/64, reg16/32/64, CL OFh | A5h mm-xxx-xxx | VectorPath | 6 3
SHR mreg8, imm8 COh 11-101-xxx | DirectPath |1 3
SHR mem8, imm8 COh mm-101-xxx | DirectPath |4 3
SHR mreg16/32/64, imm8 Cilh 11-101-xxx | DirectPath |1 3
SHR mem16/32/64, imm8 Cih mm-101-xxx | DirectPath |4 3
SHR mreg8, 1 DOh 11-101-xxx | DirectPath |1
SHR mems8, 1 DOh mm-101-xxx | DirectPath |4
SHR mreg16/32/64, 1 D1h 11-101-xxx | DirectPath |1
SHR mem16/32/64, 1 Dih mm-101-xxx | DirectPath |4
SHR mreg8, CL D2h 11-101-xxx | DirectPath |1 3
SHR mem8, CL D2h mm-101-xxx | DirectPath |4 3
SHR mreg16/32/64, CL D3h 11-101-xxx | DirectPath |1 3
SHR mem16/32/64, CL D3h mm-101-xxx | DirectPath |4 3
SHRD mreg16/32/64, reg16/32/64, imm8 OFh | ACh 11-xxx-xxx | VectorPath |4 3
SHRD mem16/32/64, reg16/32/64, imm8 OFh | ACh mm-xxx-xxx | VectorPath | 6 3
SHRD mreg16/32/64, reg16/32/64, CL OFh | ADh 11-xxx-xxx | VectorPath |4 3
SHRD mem16/32/64, reg16/32/64, CL OFh | ADh mm-xxx-xxx | VectorPath | 6 3
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

302 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte

SLDT mregl6/32/64 OFh | 00h 11-000-xxx | VectorPath |5

SLDT mem16/32/64 OFh | 00h mm-000-xxx | VectorPath |5

SMSW mreg16/32/64 OFh |01h 11-100-xxx | VectorPath | 4

SMSW mem16 OFh |01h mm-100-xxx | VectorPath | 3

STC F9h DirectPath |1

STD FDh Double 2

STI FBh VectorPath |4
STOSB/STOS mem8 AAh VectorPath |4 7
STOSW/STOS mem16 ABh VectorPath | 4 7
STOSD/STOS mem32 ABh VectorPath |4 7
STOSQ/STOS mem64 ABh VectorPath | 4 7
STR mregl16/32/64 OFh | 00h 11-001-xxx | VectorPath |5

STR mem16 OFh | 00h mm-001-xxx | VectorPath |5

SUB mreg8, reg8 28h 11-xxx-xxx | DirectPath |1

SUB mem8, reg8 28h mm-xxx-xxx | DirectPath |4

SUB mreg16/32/64, reg16/32/64 29h 11-xxx-xxx | DirectPath |1

SUB mem16/32/64, reg16/32/64 29h mm-xxx-xxx | DirectPath |4

SUB reg8, mreg8 2Ah 11-xxx-xxx | DirectPath |1

SUB reg8, mem8 2Ah mm-xxx-xxx | DirectPath |4

SUB reg16/32/64, mreg16/32/64 2Bh 11-xxx-xxx | DirectPath |1

SUB reg16/32/64, mem16/32/64 2Bh mm-xxx-xxx | DirectPath |4

SUB AL, imm8 2Ch DirectPath |1

SUB AX, imm16 2Dh DirectPath |1

SUB EAX, imm32 2Dh DirectPath |1

Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more

information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate

of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

303

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
SUB RAX, imm32 (sign extended) 2Dh DirectPath |1
SUB mreg8, imm8 80h 11-101-xxx | DirectPath |1
SUB mem8, imm8 80h mm-101-xxx | DirectPath |4
SUB mreg16/32/64, imm16/32 81h 11-101-xxx | DirectPath |1
SUB mem16/32/64, imm16/32 81h mm-101-xxx | DirectPath |4
SUB mreg16/32/64, imm8 (sign extended) 83h 11-101-xxx | DirectPath |1
SUB mem16/32/64, imm8 (sign extended) 83h mm-101-xxx | DirectPath |4
SYSCALL OFh | 05h VectorPath | 27
SYSENTER OFh | 34h VectorPath | ~
SYSEXIT OFh | 35h VectorPath | ~
SYSRET OFh |07h VectorPath | 35
TEST mreg8, reg8 84h 11-xxx-xxx | DirectPath |1
TEST mem8, reg8 84h mm-xxx-xxx | DirectPath |4
TEST mregl16/32/64, reg16/32/64 85h 11-xxx-xxx | DirectPath |1
TEST mem16/32/64, reg16/32/64 85h mm-xxx-xxx | DirectPath |4
TEST AL, imm8 A8h DirectPath |1
TEST AX/EAX/RAX, imm16/32 A9h DirectPath |1
TEST mreg8, imm8 Féh 11-000-xxx | DirectPath |1
TEST mem8, imm8 F6h mm-000-xxx | DirectPath |4
TEST mregl16/32/64, imm16/32 F7h 11-000-xxx | DirectPath |1
TEST mem16/32/64, imm16/32 F7h mm-000-xxx | DirectPath |4
VERR mregl16 OFh | 00h 11-100-xxx | VectorPath |11
VERR mem16 OFh | 00h mm-100-xxx | VectorPath | 11
VERW mreg16 OFh | 00h 11-101-xxx | VectorPath |11
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

304

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 15. Integer Instructions (Continued)
Encoding
Syntax First | Second | ModRM glep(;ode Latency | Note
byte | byte byte

VERW mem16 OFh | 00h mm-101-xxx | VectorPath | 11

WAIT 9Bh DirectPath | ~0 6
WBINVD OFh | 09h VectorPath | 9796/ 8

9474

WRMSR OFh |30h VectorPath | 134

XADD mreg8, reg8 OFh | COh 11-100-xxx | VectorPath |2

XADD memS8, reg8 OFh | COh mm-100-xxx | VectorPath |5

XADD mreg16/32/64, reg16/32/64 OFh | C1h 11-101-xxx | VectorPath |2

XADD mem16/32/64, reg16/32/64 OFh | C1h mm-101-xxx | VectorPath |5

XCHG reg8, mreg8 86h 11-xxx-xxx | VectorPath | 2

XCHG mreg8, reg8 86h 11-xxx-xxx | VectorPath | 2

XCHG reg8, mem8 86h mm-xxx-xxx | VectorPath | 16

XCHG mem8, reg8 86h mm-xxx-xxx | VectorPath | 16

XCHG regl6/32/64, mreg16/32/64 87h 11-xxx-xxx | VectorPath

XCHG mreg16/32/64, reg16/32/64 87h 11-xxx-xxx | VectorPath

XCHG reg16/32/64, mem16/32/64 87h mm-xxx-xxx | VectorPath | 16

XCHG mem16/32/64, reg16/32/64 87h mm-xxx-xxx | VectorPath | 16

XCHG AX/EAXIRAX, AXIEAX/RAXI(R8) 90h DirectPath |~0 6
(NOP)

XCHG AX/EAX/RAX, CX/ECX/RCX/(R9) 91h VectorPath | 2

XCHG AX/EAX/RAX, DX/EDX/RDX/(R10) 92h VectorPath |2

XCHG AX/EAX/IRAX, BX/EBX/RBX/(R11) 93h VectorPath |2

XCHG AX/EAX/RAX, SP/ESP/RSP/(R12) 94h VectorPath | 2

XCHG AX/EAX/RAX, BP/EBP/RBP/(R13) 95h VectorPath |2

Notes:

latency.

page 173.

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.

3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more

information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate

of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on

Appendix C

Instruction Latencies

305

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 15. Integer Instructions (Continued)

Encoding
Decode
Syntax First | Second | ModRM type Latency | Note
byte | byte byte
XCHG AX/EAX/RAX, SI/ESI/RSI/(R14) 96h VectorPath |2
XCHG AX/EAX/RAX, DI/EDI/RDI/(R15) 97h VectorPath |2
XLATB/XLAT mem8 D7h VectorPath |5
XOR mreg8, reg8 30h 11-xxx-xxx | DirectPath |1
XOR mem8, reg8 30h mm-xxx-xxx | DirectPath |4
XOR mreg16/32/64, reg16/32/64 31h 11-xxx-xxx | DirectPath |1
XOR mem16/32/64, reg16/32/64 31h mm-xxx-xxx | DirectPath |4
XOR reg8, mreg8 32h 11-xxx-xxx | DirectPath |1
XOR reg8, mem8 32h mm-xxx-xxx | DirectPath |4
XOR reg16/32/64, mreg16/32/64 33h 11-xxx-xxx | DirectPath |1
XOR reg16/32/64, mem16/32/64 33h mm-xxx-xxx | DirectPath |4
XOR AL, imm8 34h DirectPath |1
XOR AX, imm16 35h DirectPath |1
XOR EAX, imm32 35h DirectPath |1
XOR RAX, imm32 (sign extended) 35h DirectPath |1
XOR mreg8, imm8 80h 11-110-xxx | DirectPath |1
XOR mems8, v 80h mm-110-xxx | DirectPath |4
XOR mreg16/32/64, imm16/32 81h 11-110-xxx | DirectPath |1
XOR mem16/32/64, imm16/32 81h mm-110-xxx | DirectPath |4
XOR mreg16/32/64, imm8 (sign extended) 83h 11-110-xxx | DirectPath |1
XOR mem16/32/64, imm8 (sign extended) 83h mm-110-xxx | DirectPath |4
Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified
latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more
information on the use of this instruction, see “32/64-Bit vs. 16-Bit Forms of the LEA Instruction” on page 77.
5. Execution latencies for nesting levels 0/1/2/3.
6. These instructions have an effective latency as shown. They map to internal NOPs that can be executed at a rate
of three per cycle and do not occupy execution resources.
7. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 173.
8. The first latency value is for 32-bit mode. The second is for 64-bit mode.
9. This opcode is used as a REX prefix in 64-bit mode.
306 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
C.3 MMX™ Technology Instructions
Table 16. MMX™ Technology Instructions
Encoding Decod
ecode .
Syntax E;f;'x Elyrtset ModRM byte type FPU pipe(s) |Latency | Note
EMMS OFh 77h DirectPath | FADD/FMUL/ | 6 2
FSTORE
MOVD mmreg, reg32 OFh 6Eh | 11-XXX-XXX Double - 9
MOVD mmreg, reg64 OFh 6Eh | 11-XXX-XXX Double -
MOVD mmreg, mem32 OFh 6Eh | mm-xxx-xxx | DirectPath | FADD/FMUL/
FSTORE
MOVD mmreg, mem64 OFh 6Eh | mm-xxx-xxx | DirectPath | FADD/FMUL/ | 4 2
FSTORE
MOVD reg32, mmreg OFh 7Eh | 11-XXX-XXX Double - 4
MOVD reg64, mmreg OFh 7Eh | 11-XXX-XXX Double - 4
MOVD mem32, mmreg OFh 7Eh | mm-xxx-xxx | DirectPath | FSTORE 2
MOVD mem64, mmreg OFh 7Eh | mm-xxx-xxx | DirectPath | FSTORE 2
MOVQ mmregl, mmreg2 OFh 6Fh | 11-XXX-XXX DirectPath | FADD/FMUL |2
MOVQ mmreg, mem64 OFh 6Fh | mm-xxx-xxx | DirectPath | FADD/FMUL/ | 4 2
FSTORE
MOVQ mmreg2, mmregl OFh 7Fh | 11-XXX-XXX DirectPath | FADD/FMUL |2
MOVQ mem64, mmreg OFh 7Fh | mm-xxx-xxx | DirectPath | FSTORE 2
PACKSSDW mmregl, mmreg2 | OFh 6Bh | 11-XXX-XXX DirectPath | FADD/FMUL |2
PACKSSDW mmreg, mem64 OFh 6Bh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PACKSSWB mmregl, mmreg2 | OFh 63h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PACKSSWB mmreg, mem64 OFh 63h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PACKUSWB mmregl, mmreg2 | OFh 67h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PACKUSWB mmreg, mem64 OFh 67h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDB mmregl, mmreg2 OFh FCh | 11-xxx-xxx DirectPath | FADD/FMUL |2
PADDB mmreg, mem64 OFh FCh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDD mmregl, mmreg2 OFh FEh | 11-xXX-XXX DirectPath | FADD/FMUL |2
PADDD mmreg, mem64 OFh FEh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDSB mmregl, mmreg2 OFh ECh | 11-XXX-XXX DirectPath | FADD/FMUL |2
PADDSB mmreg, mem64 OFh ECh | mm-xxx-xxx | DirectPath | FADD/FMUL |4

Notes:

1. Bits 2, 1, and 0 of the ModRM byte select the integer register.

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

Appendix C

Instruction Latencies

307

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 16. MMX™ Technology Instructions (Continued)

25112 Rev.3.04 March 2004

Encoding Decod
ecode .
Syntax E;fgx Elyrtset ModRM byte type FPU pipe(s) |Latency | Note
PADDSW mmregl, mmreg2 OFh EDh | 11-xxx-Xxxx DirectPath | FADD/FMUL |2
PADDSW mmreg, mem64 OFh EDh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDUSB mmregl, mmreg2 OFh DCh | 11-xxX-XxX DirectPath | FADD/FMUL |2
PADDUSB mmreg, mem64 OFh DCh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDUSW mmregl, mmreg2 OFh DDh | 11-xxx-Xxxx DirectPath | FADD/FMUL |2
PADDUSW mmreg, mem64 OFh DDh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PADDW mmregl, mmreg2 OFh FDh | 11-xxx-xxx DirectPath | FADD/FMUL |2
PADDW mmreg, mem64 OFh FDh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PAND mmregl, mmreg2 OFh DBh | 11-XXX-XXX DirectPath | FADD/FMUL |2
PAND mmreg, mem64 OFh DBh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PANDN mmregl1, mmreg2 OFh DFh | 11-xxx-xxx DirectPath | FADD/FMUL |2
PANDN mmreg, mem64 OFh DFh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPEQB mmregl, mmreg2 OFh 74h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PCMPEQB mmreg, mem64 OFh 74h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPEQD mmregl, mmreg2 OFh 76h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PCMPEQD mmreg, mem64 OFh 76h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPEQW mmregl, mmreg2 | OFh 75h | 11-Xxx-XXX DirectPath | FADD/FMUL |2
PCMPEQW mmreg, mem64 OFh 75h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPGTB mmregl, mmreg2 OFh 64h | 11-xxx-Xxx DirectPath | FADD/FMUL |2
PCMPGTB mmreg, mem64 OFh 64h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPGTD mmregl, mmreg2 OFh 66h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PCMPGTD mmreg, mem64 OFh 66h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PCMPGTW mmregl, mmreg2 | OFh 65h | 11-xxx-XXX DirectPath | FADD/FMUL |2
PCMPGTW mmreg, mem64 OFh 65h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PMADDWD mmregl, mmreg2 | OFh F5h | 11-xxx-xxx DirectPath | FMUL 3
PMADDWD mmreg, mem64 OFh F5h | mm-xxx-xxx | DirectPath | FMUL 5
PMULHW mmregl, mmreg2 OFh E5h | 11-xXX-XXX DirectPath | FMUL 3
PMULHW mmreg, mem64 OFh E5h | mm-xxx-xxx | DirectPath | FMUL 5
PMULLW mmregl, mmreg2 OFh D5h | 11-xxX-Xxx DirectPath | FMUL 3
PMULLW mmreg, mem64 OFh D5h | mm-xxx-xxx | DirectPath | FMUL 5

Notes:

1. Bits 2, 1, and 0 of the ModRM byte select the integer register.

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

308

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 16. MMX™ Technology Instructions (Continued)
Encoding Decod
ecode .
Syntax E;fgx Elyrtset ModRM byte type FPU pipe(s) |Latency | Note
POR mmregl, mmreg2 OFh EBh | 11-xxx-xxx DirectPath | FADD/FMUL |2
POR mmreg, mem64 OFh EBh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSLLD mmregl, mmreg2 OFh F2h | 11-xxX-XxX DirectPath | FADD/FMUL |2
PSLLD mmreg, mem64 OFh F2h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSLLD mmreg, imm8 OFh 72h | 11-110-xxx DirectPath | FADD/FMUL |2
PSLLQ mmregl, mmreg2 OFh F3h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSLLQ mmreg, mem64 OFh F3h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSLLQ mmreg, imm8 OFh 73h | 11-110-xxx DirectPath | FADD/FMUL |2
PSLLW mmregl, mmreg2 OFh F1h | 11-XxxX-XXx DirectPath | FADD/FMUL |2
PSLLW mmreg, mem64 OFh F1h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSLLW mmreg, imm8 OFh 71h | 11-110-xxx DirectPath | FADD/FMUL |2
PSRAD mmregl, mmreg2 OFh E2h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSRAD mmreg, mem64 OFh E2h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSRAD mmreg, imm8 OFh 72h | 11-100-xxx DirectPath | FADD/FMUL |2
PSRAW mmregl, mmreg2 OFh Elh | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSRAW mmreg, mem64 OFh Elh | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSRAW mmreg, imm8 OFh 71h | 11-100-xxx DirectPath | FADD/FMUL |2
PSRLD mmregl, mmreg2 OFh D2h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSRLD mmreg, mem64 OFh D2h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSRLD mmreg, imm8 OFh 72h | 11-010-xxx DirectPath | FADD/FMUL |2
PSRLQ mmregl, mmreg2 OFh D3h | 11-XxxX-XXX DirectPath | FADD/FMUL |2
PSRLQ mmreg, mem64 OFh D3h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSRLQ mmreg, imm8 OFh 73h | 11-010-xxx DirectPath | FADD/FMUL |2
PSRLW mmregl, mmreg2 OFh Di1h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSRLW mmreg, mem64 OFh D1h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSRLW mmreg, imm8 OFh 71h | 11-010-xxx DirectPath | FADD/FMUL |2
PSUBB mmregl, mmreg2 OFh F8h | 11-XxxX-Xxx DirectPath | FADD/FMUL |2
PSUBB mmreg, mem64 OFh F8h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSUBD mmregl, mmreg2 OFh FAh | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSUBD mmreg, mem64 OFh FAh | mm-xxx-xxx | DirectPath | FADD/FMUL |4

Notes:

1. Bits 2, 1, and 0 of the ModRM byte select the integer register.

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

Appendix C

Instruction Latencies

309

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 16. MMX™ Technology Instructions (Continued)

25112 Rev.3.04 March 2004

Encoding Decod
ecode .

Syntax E;fgx Elyrtset ModRM byte type FPU pipe(s) |Latency | Note
PSUBSB mmregl, mmreg2 OFh E8h | 11-xxx-xxx DirectPath | FADD/FMUL |2
PSUBSB mmreg, mem64 OFh E8h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSUBSW mmregl, mmreg2 OFh E9h | 11-XXX-XXX DirectPath | FADD/FMUL |2
PSUBSW mmreg, mem64 OFh E9h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSUBUSB mmregl, mmreg2 OFh D8h | 11-xxx-Xxxx DirectPath | FADD/FMUL |2
PSUBUSB mmreg, mem64 OFh D8h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSUBUSW mmregl, mmreg2 | OFh D9h | 11-xxx-xxx DirectPath | FADD/FMUL |2
PSUBUSW mmreg, mem64 OFh D9h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PSUBW mmregl, mmreg2 OFh F9h | 11-xXX-XXX DirectPath | FADD/FMUL |2
PSUBW mmreg, mem64 OFh F9h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PUNPCKHBW mmreg1, OFh 68h | 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PUNPCKHBW mmreg, mem64 | OFh 68h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PUNPCKHDQ mmreg1, OFh 6Ah | 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PUNPCKHDQ mmreg, mem64 | OFh 6Ah | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PUNPCKHWD mmregl, OFh 69h | 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PUNPCKHWD mmreg, mem64 | OFh 69h | mm-xxx-xxx | DirectPath | FADD/FMUL
PUNPCKLBW mmreg1, OFh 60h | 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PUNPCKLBW mmreg, mem64 | OFh 60h | mm-xxx-xxx | DirectPath | FADD/FMUL
PUNPCKLDQ mmreg1, OFh 62h | 11-xxx-Xxx DirectPath | FADD/FMUL |2
mmreg2
PUNPCKLDQ mmreg, mem64 | OFh 62h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PUNPCKLWD mmreg1, OFh 61h | 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PUNPCKLWD mmreg, mem64 | OFh 61h | mm-xxx-xxx | DirectPath | FADD/FMUL |4
PXOR mmregl, mmreg2 OFh EFh | 11-xxx-xxx DirectPath | FADD/FMUL |2
PXOR mmreg, mem64 OFh EFh | mm-xxx-xxx | DirectPath | FADD/FMUL

Notes:

1. Bits 2, 1, and 0 of the ModRM byte select the integer register.

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

310

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
C.4 x87 Floating-Point Instructions
Table 17. x87 Floating-Point Instructions
Encoding
Syntax First [Second [o o giiode Eiilé(s) Latency | Note
byte | byte
F2XM1 D9h 11-110-000 | VectorPath | - 65
FABS D9h 11-100-001 | DirectPath | FMUL 2
FADD ST, ST(i) D8h 11-000-xxx DirectPath | FADD 4 1
FADD [mem32real] D8h mm-000-xxx | DirectPath | FADD 6
FADD ST(i), ST DCh 11-000-xxx DirectPath | FADD 4 1
FADD [mem64real] DCh mm-000-xxx | DirectPath | FADD 6
FADDP ST(i), ST DEh 11-000-xxx DirectPath | FADD 4 1
FBLD [mem80] DFh mm-100-xxx | VectorPath | - 87
FBSTP [mem80] DFh mm-110-xxx | VectorPath | - 172
FCHS D9h 11-100-000 | DirectPath | FMUL 2
FCLEX DBh | E2h 11-100-010 | VectorPath | - ~
FCMOVB ST(0), ST(i) DAh 11-000-xxx VectorPath | - 15 5
FCMOVBE ST(0), ST(i) DAh 11-010-xxx VectorPath | - 15 5
FCMOVE ST(0), ST(i) DAh 11-001-xxx VectorPath | - 15 5
FCMOVNB ST(0), ST(i) DBh 11-000-xxx VectorPath | - 15 5
FCMOVNBE ST(0), ST(i) DBh 11-010-xxx VectorPath | - 15 5
FCMOVNE ST(0), ST(i) DBh 11-001-xxx VectorPath | - 15 5
FCMOVNU ST(0), ST(i) DBh 11-011-xxx VectorPath | - 15 5
FCMOVU ST(0), ST(i) DAh 11-011-xxx VectorPath | - 15 5
FCOM ST(i) D8h 11-010-xxx DirectPath | FADD 2 1
FCOM [mem32real] D8h mm-010-xxx | DirectPath | FADD 4
FCOM [memé64real] DCh mm-010-xxx | DirectPath | FADD 4
FCOMI ST, ST(i) DBh 11-110-xxx VectorPath | FADD 3 3

Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.
3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <=n <= 32).
5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

Appendix C

Instruction Latencies

311

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 17. x87 Floating-Point Instructions (Continued)

Encoding
Decode FPU
Syntax ; . Latency | Note
y First | Second ModRM byte type pipe(s) y
byte | byte

FCOMIP ST, ST(i) DFh 11-110-xxx VectorPath | FADD 3 3

FCOMP ST(i) D8h 11-011-xxx DirectPath | FADD 2

FCOMP [mem32real] D8h mm-011-xxx | DirectPath | FADD 4

FCOMP [mem64real] DCh mm-011-xxx | DirectPath | FADD 4

FCOMPP DEh 11-011-001 DirectPath | FADD 2

FCOS D9h 11-111-111 VectorPath | - 92

FDECSTP D9h 11-110-110 DirectPath | FADD/FMUL/ | 2

FSTORE

FDIV ST, ST(i) D8h 11-110-xxX DirectPath | FMUL 16/20 1,6
124

FDIV ST(i), ST DCh 11-111-xxx DirectPath | FMUL 16/20 1,6
124

FDIV [mem32real] D8h mm-110-xxx | DirectPath | FMUL 18/22 6
126

FDIV [memé64real] DCh mm-110-xxx | DirectPath | FMUL 18/22 6
126

FDIVP ST(i), ST DEh 11-111-xxx DirectPath | FMUL 16/20 1,6
124

FDIVR ST, ST(i) D8h 11-110-xxx DirectPath | FMUL 16/20 1,6
124

FDIVR ST(i), ST DCh 11-111-xxx DirectPath | FMUL 16/20 1,6
124

FDIVR [mem32real] D8h mm-111-xxx | DirectPath | FMUL 18/22 6
126

FDIVR [mem64real] DCh mm-111-xxx | DirectPath | FMUL 18/22 6
126

FDIVRP DEh 11-110-001 DirectPath | FMUL 16/20 6
124

Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

312

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 17. x87 Floating-Point Instructions (Continued)
Encoding
Syntax First [Second [o gt;c;ode Ei';lé(s) Latency | Note
byte | byte
FDIVRP ST(i), ST DEh 11-110-xxx DirectPath | FMUL 16/20 1,6
124
FFREE ST(i) DDh 11-000-xxx DirectPath | FADD/FMUL/ | 2 1,2
FSTORE
FIADD [mem32int] DAh mm-000-xxx | Double - 11
FIADD [mem16int] DEh mm-000-xxx | Double - 11
FICOM [mem32int] DAh mm-010-xxx | Double -
FICOM [mem16int] DEh mm-010-xxx | Double -
FICOMP [mem32int] DAh mm-011-xxx | Double -
FICOMP [mem16int] DEh mm-011-xxx | Double -
FIDIV [mem32int] DAh mm-110-xxx | Double - 18
FIDIV [mem16int] DEh mm-110-xxx | Double - 18
FIDIVR [mem32int] DAh mm-111-xxx | Double - 18
FIDIVR [mem16int] DEh mm-111-xxx | Double - 18
FILD [mem16int] DFh mm-000-xxx | DirectPath | FSTORE
FILD [mem32int] DBh mm-000-xxx | DirectPath | FSTORE
FILD [mem64int] DFh mm-101-xxx | DirectPath | FSTORE
FIMUL [mem32int] DAh mm-001-xxx | Double - 11
FIMUL [mem16int] DEh mm-001-xxx | Double - 11
FINCSTP D9h 11-110-111 DirectPath | FADD/FMUL/ | 2 2
FSTORE
FINIT DBh 11-100-011 VectorPath | - ~
FIST [mem16int] DFh mm-010-xxx | DirectPath | FSTORE 4
FIST [mem32int] DBh mm-010-xxx | DirectPath | FSTORE 4
FISTP [mem16int] DFh mm-011-xxx | DirectPath | FSTORE 4
FISTP [mem32int] DBh mm-011-xxx | DirectPath | FSTORE 4

Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

Appendix C

Instruction Latencies

313

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 17. x87 Floating-Point Instructions (Continued)

Encoding
Decode FPU
Syntax ; . Latency | Note
y First | Second ModRM byte type pipe(s) y
byte | byte
FISTP [mem64int] DFh mm-111-xxx | DirectPath | FSTORE 4
FISUB [mem32int] DAh mm-100-xxx | Double - 11
FISUB [mem16int] DEh mm-100-xxx | Double - 11
FISUBR [mem32int] DAh mm-101-xxx | Double - 11
FISUBR [mem16int] DEh mm-101-xxx | Double - 11
FLD ST(i) D9h 11-000-xxx DirectPath | FADD/FMUL |2 1
FLD [mem32real] D9h mm-000-xxx | DirectPath | FADD/FMUL/ | 4
FSTORE
FLD [mem64real] DDh mm-000-xxx | DirectPath | FADD/FMUL/ | 4
FSTORE
FLD [mem80real] DBh mm-101-xxx | VectorPath | - 13
FLD1 D9%h 11-101-000 DirectPath | FSTORE 4
FLDCW [mem16] D9h mm-101-xxx | VectorPath | - 11
FLDENV [mem14byte] D9h mm-100-xxx | VectorPath | - 129
FLDENV [mem28byte] D9h mm-100-xxx | VectorPath | - 129
FLDL2E D9h 11-101-010 DirectPath | FSTORE 4
FLDL2T D9h 11-101-001 DirectPath | FSTORE 4
FLDLG2 D9h 11-101-100 DirectPath | FSTORE 4
FLDLNZ2 D9h 11-101-101 DirectPath | FSTORE 4
FLDPI D9h 11-101-011 DirectPath | FSTORE 4
FLDZ D9h 11-101-110 DirectPath | FSTORE 4
FMUL ST, ST(i) D8h 11-001-xxx DirectPath | FMUL 4
FMUL ST(i), ST DCh 11-001-xxx DirectPath | FMUL 4
FMUL [mem32real] D8h mm-001-xxx | DirectPath | FMUL 6
FMUL [mem64real] DCh mm-001-xxx | DirectPath | FMUL 6
FMULP ST(i), ST DEh 11-001-xxx DirectPath | FMUL 4 1
Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <=n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

314

Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 17. x87 Floating-Point Instructions (Continued)
Encoding
Syntax First [Second [o gt;c;ode Ei';lé(s) Latency | Note
byte | byte

FNCLEX DBh | E2h VectorPath 16
FNINIT DBh | E3h VectorPath 89
FNOP D9h 11-010-000 DirectPath | FADD/FMUL/ | 2 2

FSTORE
FPATAN D9h 11-110-011 VectorPath | - 136
FPREM D9h 11-111-000 | DirectPath | FMUL 9+e+n |4
FPREM1 D9h 11-110-101 DirectPath | FMUL 9+e+n 4
FPTAN D9h 11-110-010 VectorPath | - 107
FRNDINT D9h 11-111-100 | VectorPath | - 10
FRSTOR [mem94byte] DDh mm-100-xxx | VectorPath | - 138
FRSTOR [mem108byte] DDh mm-100-xxx | VectorPath | - 138
FSAVE [mem94byte] DDh mm-110-xxx | VectorPath | - 159
FSAVE [mem108byte] DDh mm-110-xxx | VectorPath | - 159
FSCALE D9h 11-111-101 VectorPath | - 9
FSIN D9h 11-111-110 | VectorPath | - 93
FSINCOS D9h 11-111-011 VectorPath | - 104
FSQRT D9h 11-111-010 DirectPath | FMUL 35
FST [mem32real] D9h mm-010-xxx | DirectPath | FSTORE
FST [mem64real] DDh mm-010-xxx | DirectPath | FSTORE
FST ST(i) DDh 11-010xxx DirectPath | FADD/FMUL
FSTCW [mem16] D9h mm-111-xxx | VectorPath | -
FSTENV [mem14byte] D9h mm-110-xxx | VectorPath | - 89
FSTENV [mem28byte] D9h mm-110-xxx | VectorPath | - 89
FSTP [mem32real] D9h mm-011-xxx | DirectPath | FADD/FMUL
FSTP [mem64real] DDh mm-011-xxx | DirectPath | FADD/FMUL

Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <=n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

Appendix C

Instruction Latencies

315

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Table 17. x87 Floating-Point Instructions (Continued)
Encoding
Syntax First [Second [o gt;c;ode Ei';lé(s) Latency | Note
byte | byte
FSTP [mem80real] D9h mm-111-xxx | VectorPath | -
FSTP ST(i) DDh 11-011-xxx DirectPath | FADD/FMUL |2
FSTSW AX DFh 11-100-000 VectorPath | - 12
FSTSW [mem16] DDh mm-111-xxx | VectorPath | FSTORE 8 3
FSUB [mem32real] D8h mm-100-xxx | DirectPath | FADD 6
FSUB [mem64real] DCh mm-100-xxx | DirectPath | FADD 6
FSUB ST, ST(i) D8h 11-100-xxx DirectPath | FADD 4 1
FSUB ST(i), ST DCh 11-101-xxx DirectPath | FADD 4 1
FSUBP ST(i), ST DEh 11-101-xxx DirectPath | FADD 4 1
FSUBR [mem32real] D8h mm-101-xxx | DirectPath | FADD 6
FSUBR [mem64real] DCh mm-101-xxx | DirectPath | FADD 6
FSUBR ST, ST(i) D8h 11-100-xxx DirectPath | FADD 4 1
FSUBR ST(i), ST DCh 11-101-xxx DirectPath | FADD 4 1
FSUBRP ST(i), ST DEh 11-100-xxx DirectPath | FADD 4 1
FTST D9h 11-100-100 DirectPath | FADD 2
FUCOM DDh 11-100-xxx DirectPath | FADD 2
FUCOMI ST, ST(i) DBh 11-101-xxx VectorPath | FADD 3 3
FUCOMIP ST, ST(i) DFh 11-101-xxx VectorPath | FADD 3 3
FUCOMP DDh 11-101-xxx DirectPath | FADD 2
FUCOMPP DAh 11-101-001 | DirectPath | FADD 2
FWAIT 9Bh DirectPath | - 0
FXAM D9h 11-100-101 | VectorPath | - 2
FXCH D9h 11-001-xxx DirectPath | FADD/FMUL/ | 2 2
FSTORE
FXRSTOR [mem512byte] OFh | AEh mm-001-xxx | VectorPath | - 68 (108)

Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <=n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double
precision, and extended precision, respectively.

316

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 17. x87 Floating-Point Instructions (Continued)

Encoding
Decode FPU
Syntax ; . Latency | Note
y First | Second ModRM byte type pipe(s) y
byte | byte
FXSAVE [mem512byte] OFh | AEh mm-000-xxx | VectorPath | - 31 (79)
FXTRACT D9h 11-110-100 VectorPath | - 9
FYL2X D9h 11-110-001 | VectorPath | - ~
FYL2XP1 D9h 11-111-001 VectorPath | - 113
Notes:

1. The last three bits of the ModRM byte select the stack entry ST(i).

2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP
with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).

4. There is additional latency associated with this instruction. “e” represents the difference between the exponents
of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.

6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.

Appendix C Instruction Latencies 317

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

C.5 3DNow!™ Technology Instructions

Table 18. 3DNow!™ Technology Instructions

Encoding
Decode FPU
Syntax Prefix imma ModRM type pipe(s) Latency | Note
byte(s) byte
FEMMS OFh OEh DirectPath | FADD/FMUL/ | 2 2

FSTORE

PAVGUSB mmregl, mmreg2 | OFh, OFh | BFh | 11-xxx-xxx | DirectPath | FADD/FMUL

PAVGUSB mmreg, mem64 OFh, OFh | BFh | mm-xxx-xxx | DirectPath | FADD/FMUL

PF2ID mmregl, mmreg2 OFh, OFh | 1Dh 11-xxx-xxx | DirectPath | FADD
PF2ID mmreg, mem64 OFh, OFh | 1Dh | mm-xxx-xxx | DirectPath | FADD
PFACC mmregl, mmreg2 OFh, OFh | AEh | 11-xxx-xxx | DirectPath | FADD
PFACC mmreg, mem64 OFh, OFh | AEh | mm-xxx-xxx | DirectPath | FADD
PFADD mmregl, mmreg2 OFh, OFh | 9Eh | 11-xxx-xxx | DirectPath | FADD
PFADD mmreg, mem64 OFh, OFh | 9Eh | mm-xxx-xxx | DirectPath | FADD

PFCMPEQ mmregl, mmreg2 | OFh, OFh | BOh 11-xxx-xxx | DirectPath | FADD

PFCMPEQ mmreg, mem64 OFh, OFh | BOh | mm-xxx-xxx | DirectPath | FADD

PFCMPGE mmregl, mmreg2 | OFh, OFh | 90h 11-xxx-xxx | DirectPath | FADD

PFCMPGE mmreg, mem64 OFh, OFh | 90h mm-xxx-xxx | DirectPath | FADD

PFCMPGT mmregl, mmreg2 | OFh, OFh | AOh | 11-xxx-xxx | DirectPath | FADD

PFCMPGT mmreg, mem64 OFh, OFh | AOh | mm-xxx-xxx | DirectPath | FADD

PFMAX mmregl, mmreg2 OFh, OFh | Adh 11-xxx-xxx | DirectPath | FADD

PFMAX mmreg, mem64 OFh, OFh | Adh | mm-xxx-xxx | DirectPath | FADD
PFMIN mmregl, mmreg2 OFh, OFh | 94h 11-xxx-xxx | DirectPath | FADD
PFMIN mmreg, mem64 OFh, OFh | 94h mm-xxx-xxx | DirectPath | FADD
PFMUL mmregl1, mmreg2 OFh, OFh | B4h | 11-xxx-xxx | DirectPath | FMUL
PFMUL mmreg, mem64 OFh, OFh | B4h | mm-xxx-xxx | DirectPath | FMUL
PFRCP mmregl, mmreg2 OFh, OFh | 96h 11-xxx-xxx | DirectPath | FMUL
PFRCP mmreg, mem64 OFh, OFh | 96h mm-xxx-xxx | DirectPath | FMUL

PFRCPIT1 mmregl, mmreg2 | OFh, OFh | A6h | 11-xxx-xxx | DirectPath | FMUL

PFRCPIT1 mmreg, mem64 OFh, OFh | A6h mm-xxx-xxx | DirectPath | FMUL

PFRCPIT2 mmregl, mmreg2 | OFh, OFh | B6h | 11-xxx-xxx | DirectPath | FMUL

PFRCPIT2 mmreg, mem64 OFh, OFh | B6h | mm-xxx-xxx | DirectPath | FMUL

RO ORI AOWIO|R|BAIN|IBINIBIDNBANBENOOPLP OB DN

PFRSQIT1 mmregl, mmreg2 | OFh, OFh | A7h 11-xxx-xxx | DirectPath | FMUL

Notes:
1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line to
be prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.

318 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 18. 3DNow!™ Technology Instructions (Continued)
Encoding
Syntax Prefix e ModRM gic;ode E::)Lé(s) Latency | Note
byte(s) byte

PFRSQIT1 mmreg, mem64 OFh, OFh | A7h | mm-xxx-xxx | DirectPath | FMUL 6

PFRSQRT mmregl, mmreg2 | OFh, OFh | 97h 11-xxx-xxx | DirectPath | FMUL 3

PFRSQRT mmreg, mem64 OFh, OFh | 97h mm-xxx-xxx | DirectPath | FMUL 5

PFSUB mmregl, mmreg2 OFh, OFh | 9Ah | 11-xxx-xxx | DirectPath | FADD 4

PFSUB mmreg, mem64 OFh, OFh | 9Ah | mm-xxx-xxx | DirectPath | FADD 6

PFSUBR mmregl, mmreg2 OFh, OFh | AAh | 11-xxx-xxx | DirectPath | FADD 4

PFSUBR mmreg, mem64 OFh, OFh | AAh | mm-xxx-xxx | DirectPath | FADD 6

PI2FD mmregl, mmreg2 OFh, OFh | ODh | 11-xxx-xxx | DirectPath | FADD 4

PI12FD mmreg, mem64 OFh, OFh | ODh mm-xxx-xxx | DirectPath | FADD 6

PMULHRW mmregl, mmreg2 | OFh, OFh | B7h | 11-xxx-xxx | DirectPath | FMUL 3

PMULHRW mmregl, mem64 | OFh, OFh | B7h | mm-xxx-xxx | DirectPath | FMUL 5

PREFETCH mem8 OFh 0Dh mm-000-xxx | DirectPath | - ~ 1,2
PREFETCHW mem8 OFh 0Dh | mm-001-xxx | DirectPath | - ~ 1,2

Notes:

be prefetched.

2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.

1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line to

Appendix C

Instruction Latencies

319

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors

C.6 3DNow!™ Technology Extensions

Table 19. 3DNow!™ Technology Extensions

Encoding
Syntax Prefix |- ModRM tDe?de Fiplé(s) Latency
bytes) | ™8 | byte P PP

PF2IW mmregl, mmreg2 OFh, OFh | 1Ch 11-xxx-xxx | DirectPath | FADD 4
PF2IW mmreg, mem64 OFh, OFh | 1Ch | mm-xxx-xxx | DirectPath | FADD 6
PFNACC mmregl, mmreg2 OFh, OFh | 8Ah | 11-xxx-xxx | DirectPath | FADD 4
PFNACC mmreg, mem64 OFh, OFh | 8Ah mm-xxx-xxx | DirectPath | FADD 6
PFPNACC mmregl, mmreg2 OFh, OFh | 8Eh | 11-xxx-xxx | DirectPath | FADD 4
PFPNACC mmreg, mem64 OFh, OFh | 8Eh | mm-xxx-xxx | DirectPath | FADD 6
PI2FW mmregl, mmreg2 OFh, OFh | OCh 11-xxx-xxx | DirectPath | FADD 4
PI2FW mmreg, mem64 OFh, OFh | OCh | mm-xxx-xxx | DirectPath | FADD 6
PSWAPD mmregl, mmreg2 OFh, OFh | BBh | 11-xxx-xxx | DirectPath | FADD/FMUL |2
PSWAPD mmreg, mem64 OFh, OFh | BBh mm-xxx-xxx | DirectPath | FADD/FMUL |4

320

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
C.7 SSE Instructions
Table 20. SSE Instructions
Encoding
Decode .
Syntax Prefix | First | 2nd type FPU pipe(s) |Latency | Note
ModRM byte
byte |byte |byte
ADDPS xmmreg1, OFh 58h 11-XXX-XXX Double FADD 5 1
xmmreg2
ADDPS xmmreg, OFh 58h Mm-xxx-xxx | Double FADD 7 1
mem128
ADDSS xmmregl, F3h OFh | 58h | 11-XXX-XXX DirectPath | FADD 4
xmmreg2
ADDSS xmmreg, F3h OFh | 58h | mm-xxx-xxx | DirectPath | FADD 6
mem128
ANDNPS xmmregl, OFh 55h 11-XXX-XXX Double FMUL 3 1
xmmreg2
ANDNPS xmmreg, OFh 55h mm-xxx-xxx | Double FMUL 5 1
mem128
ANDPS xmmreg1, OFh 54h 11-XXX-XXX Double FMUL 3 1
xmmreg2
ANDPS xmmreg, OFh 54h mm-xxx-xxx | Double FMUL 5 1
mem128
CMPPS xmmreg1, OFh C2h 11-XXX-XXX Double FADD 3 1
xmmreg2, imm8
CMPPS xmmreg, OFh C2h Mm-xxx-xxx | Double FADD 5 1
mem128, imm8
CMPSS xmmreg1, F3h OFh | C2h | 11-xxX-XxX DirectPath | FADD 2
xmmreg2, imm8
CMPSS xmmreg, F3h OFh | C2h | mm-xxx-xxx | DirectPath | FADD 4
mem32, imm8
COMISS xmmregl, OFh 2Fh 11-XXX-XXX VectorPath 4
xmmreg2

Notes:

prefetched.

1. The low half of the result is available one cycle earlier than listed.

2. The second latency value indicates when the low half of the result becomes available.

3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

321

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

Table 20. SSE Instructions (Continued)

Encoding
Syntax Prefix | First | 2nd ?ecode FPU pipe(s) |Latency | Note
ModRM byte | YP€
byte |byte |byte
COMISS xmmreg, OFh 2Fh mm-xxx-xxx | VectorPath 6
mem32
CVTPI2PS xmmreg, OFh 2Ah 11-XXX-XXX DirectPath 4
mmreg
CVTPI2PS xmmreg, OFh 2Ah mm-xxx-xxx | DirectPath 6
mem64
CVTPS2PI mmreg, OFh 2Dh 12-XXX-XXX DirectPath 4
xmmreg
CVTPS2PI mmreg, OFh 2Dh mm-xxx-xxx | DirectPath 6
mem128
CVTSI2SS xmmreg, F3h OFh | 2Ah | 11-XXX-XXX VectorPath 14
reg32/64
CVTSI2SS xmmreg, F3h OFh |2Ah | mm-xxx-xxx | Double 9
mem32/64
CVTSS2SI reg32, F3h OFh | 2Dh | 11-xXX-XXX Double 9
xmmreg
CVTSS2SI reg32, F3h OFh | 2Dh | mm-xxx-xxx | VectorPath 10
mem32
CVTTPS2PI mmreg, OFh 2Ch 12-XXX-XXX DirectPath 4
xmmreg
CVTTPS2PI mmreg, OFh 2Ch mm-xxx-xxx | DirectPath 6
mem128
CVTTSS2SI reg32, F3h OFh | 2Ch | 11-XXX-XXX Double 9
xmmreg
CVTTSS2SI reg32, F3h OFh [2Ch | mm-xxx-xxx | VectorPath 10
mem32
DIVPS xmmreg1, OFh 5Eh 11-XXX-XXX Double FMUL 33
xmmreg2
Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.
5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be
prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

322 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 20. SSE Instructions (Continued)
Encoding
Syntax Prefix | First | 2nd ?ecode FPU pipe(s) |Latency | Note
ModRM byte | YP€
byte |byte |byte
DIVPS xmmreg, OFh 5Eh mm-xxx-xxx | Double FMUL 35
mem128
DIVSS xmmreg1, F3h OFh |5Eh | 11-xxX-xxx DirectPath | FMUL 16
xmmreg2
DIVSS xmmreg, mem32 | F3h OFh |5Eh | mm-xxx-xxx | DirectPath | FMUL 18
LDMXCSR mem32 OFh AEh mm-010-xxx | VectorPath 13 4
MASKMOVQ mmregl, |OFh F7h 11-XXX-XXX VectorPath | FADD/FMUL/ | 29
mmreg2 FSTORE
MAXPS xmmreg1, OFh 5Fh 11-XXX-XXX Double FADD 3 1
xmmreg2
MAXPS xmmreg, OFh 5Fh mm-xxx-xxx | Double FADD 5 1
mem128
MAXSS xmmregl, F3h OFh [5Fh | 121-xxX-Xxxx DirectPath | FADD 2
xmmreg2
MAXSS xmmreg, F3h OFh |5Fh | mm-xxx-xxx | DirectPath | FADD 4
mema32
MINPS xmmreg1, OFh 5Dh 12-XXX-XXX Double FADD 3 1
xmmreg2
MINPS xmmreg, OFh 5Dh mMm-xxx-xxx | Double FADD 5 1
mem128
MINSS xmmregl, F3h OFh |5Dh | 11-XXX-XXX DirectPath | FADD 2
xmmreg2
MINSS xmmreg, F3h OFh |5Dh | mm-xxx-xxx | DirectPath | FADD 4
mem32
MOVAPS xmmreg1, OFh 28h 11-XXX-XXX Double 2
xmmreg2
MOVAPS xmmreg, OFh 28h mMm-xxx-xxx | Double 2
mem128
Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.
5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be
prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies 323

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
Table 20. SSE Instructions (Continued)
Encoding
Syntax Prefix | First | 2nd Decode FPU pipe(s) |Latency | Note
ModRM byte | tYP€
byte |byte |byte
MOVAPS xmmreg1, OFh 29h 12-XXX-XXX Double 2
xmmreg2
MOVAPS mem128, OFh 29h mm-XXX-xxx | Double 3 1
xmmreg
MOVHLPS xmmreg1, OFh 12h 11-XXX-XXX DirectPath 2
xmmreg2
MOVHPS xmmreg, OFh 16h mm-xxx-xxx | DirectPath 2
mem64
MOVHPS memé64, OFh 17h mm-xxx-xxx | DirectPath 2
xmmreg
MOVLHPS xmmreg1, OFh 16h 11-XXX-XXX DirectPath 2
xmmreg2
MOVLPS xmmreg, OFh 12h mm-xxx-xxx | DirectPath 2
mem64
MOVLPS mem64, OFh 13h mm-xxx-xxx | DirectPath 2
xmmreg
MOVMSKPS reg32, OFh 50h 11-XXX-XXX VectorPath 3
xmmreg
MOVNTPS mem128, OFh 2Bh mm-XxX-xxx | Double 3 7
xmmreg
MOVNTQ mem64, OFh E7h mm-xxx-xxx | DirectPath | FSTORE 2 7
mmreg
MOVSS xmmreg1, F3h OFh | 10h | 11-XXX-XXX DirectPath 2
xmmreg2
MOVSS xmmreg, F3h OFh |10h | mm-xxx-xxx | Double 3
mema32
MOVSS xmmreg1, F3h OFh |[11h | 12-XXX-XXX DirectPath 2
xmmreg2
Notes:

prefetched.

1. The low half of the result is available one cycle earlier than listed.

2. The second latency value indicates when the low half of the result becomes available.

3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

324

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 20. SSE Instructions (Continued)
Encoding
Syntax Prefix | First | 2nd Decode FPU pipe(s) |Latency | Note
ModRM byte | tYP€
byte |byte |byte
MOVSS mem32, F3h OFh |11h | mm-xxx-xxx | DirectPath 2
xmmreg
MOVUPS xmmreg1, OFh 10h 11-XXX-XXX Double 2
xmmreg2
MOVUPS xmmreg, OFh 10h mm-xxx-xxx | VectorPath 7
mem128
MOVUPS xmmregl, OFh 11h 12-XXX-XXX Double 2
xmmreg2
MOVUPS mem128, OFh 11h mm-Xxx-xxx | VectorPath 4
xmmreg
MULPS xmmregl, OFh 59h 11-XXX-XXX Double FMUL 5 1
xmmreg2
MULPS xmmreg, OFh 59h mm-xxx-xxx | Double FMUL 7 1
mem128
MULSS xmmreg1, F3h OFh [59h | 11-XxxX-XXX DirectPath | FMUL 4
xmmreg2
MULSS xmmreg, F3h OFh [59h | mm-xxx-xxx | DirectPath | FMUL 6
mem32
ORPS xmmreg1, OFh 56h 12-XXX-XXX Double FMUL 3 1
xmmreg2
ORPS xmmreg, OFh 56h mm-xxx-xxx | Double FMUL 5 1
mem128
PAVGB mmreg1, OFh EOh 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PAVGB mmreg, mem64 | OFh EOh mm-xxx-xxx | DirectPath | FADD/FMUL
PAVGW mmregl, OFh E3h 12-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PAVGW mmreg, mem64 | OFh E3h mm-xxx-xxx | DirectPath | FADD/FMUL |4

Notes:

1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

325

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
Table 20. SSE Instructions (Continued)
Encoding
Syntax Prefix | First | 2nd Decode FPU pipe(s) |Latency | Note
ModRM byte | tYP€
byte |byte |byte
PEXTRW reg32/64, OFh C5h Double - 4 4
mmreg, imm8
PINSRW mmreg, OFh Cah Double - 9 4
reg32/64, imm8
PINSRW mmreg, OFh C4h DirectPath | - 4 4
mem16, imm8
PMAXSW mmreg1, OFh EEh 12-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PMAXSW mmreg, OFh EEh mm-xxx-xxx | DirectPath | FADD/FMUL |4
mem64
PMAXUB mmreg1, OFh DEh 11-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PMAXUB mmreg, OFh DEh mm-xxx-xxx | DirectPath | FADD/FMUL |4
mem64
PMINSW mmreg1, OFh EAh 12-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PMINSW mmreg, OFh EAh mm-xxx-xxx | DirectPath | FADD/FMUL |4
mem64
PMINUB mmreg1, OFh DAh 12-XXX-XXX DirectPath | FADD/FMUL |2
mmreg2
PMINUB mmreg, OFh DAh mm-xxx-xxx | DirectPath | FADD/FMUL |4
mem64
PMOVMSKB reg32/64, | OFh D7h VectorPath | - 3 4
mmreg
PMULHUW mmreg1l, OFh E4h 12-XXX-XXX DirectPath | FMUL 3
mmreg2
PMULHUW mmreg, OFh E4h mm-xxx-xxx | DirectPath | FMUL 5
mem64
PREFETCHNTA mem8 | OFh 18h mm-000-xxx | DirectPath |~ ~ 5

Notes:

prefetched.

1. The low half of the result is available one cycle earlier than listed.

2. The second latency value indicates when the low half of the result becomes available.

3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

326

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004 Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Table 20. SSE Instructions (Continued)

Encoding
Syntax Prefix | First | 2nd ?ecode FPU pipe(s) |Latency | Note
ModRM byte | YP€
byte |byte |byte
PREFETCHTO mem8 OFh 18h mm-001-xxx | DirectPath |~ ~
PREFETCHT1 mem8 OFh 18h mm-010-xxx | DirectPath |~ ~
PREFETCHT2 mem8 OFh 18h mm-011-xxx | DirectPath |~ ~
PSADBW mmregl, OFh F6h 12-XXX-XXX DirectPath | FADD 3
mmreg2
PSADBW mmreg, OFh F6h mm-xxx-xxx | DirectPath | FADD 5
mem64
PSHUFW mmregl, OFh 70h DirectPath | FADD/FMUL |2
mmreg2, imm8
PSHUFW mmreg, OFh 70h DirectPath | FADD/FMUL |4
mem64, imm8
RCPPS xmmregl, OFh 53h 11-XXX-XXX Double FMUL 4 1
xmmreg2
RCPPS xmmreg, OFh 53h mm-Xxx-xxx | Double FMUL 6 1
mem128
RCPSS xmmreg1, F3h OFh [53h | 11-xxx-Xxxx DirectPath | FMUL 3
xmmreg2
RCPSS xmmreg, F3h OFh [53h | mm-xxx-xxx | DirectPath | FMUL 5
mema32
RSQRTPS xmmregl, OFh 52h 11-XXX-XXX Double FMUL 4 1
xmmreg2
RSQRTPS xmmreg, OFh 52h mm-xxx-xxx | Double FMUL 6 1
mem128
RSQRTSS xmmreg1, F3h OFh [52h | 11-XxxX-XXX DirectPath | FMUL 3
xmmreg2
RSQRTSS xmmreg, F3h OFh [52h | mm-xxx-xxx | DirectPath | FMUL 5
mema32
SFENCE OFh AEh 11-111-000 VectorPath 2/8 6
Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.
5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be
prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C Instruction Latencies 327

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
Table 20. SSE Instructions (Continued)
Encoding
Syntax Prefix | First | 2nd Decode FPU pipe(s) |Latency | Note
ModRM byte | tYP€
byte |byte |byte
SHUFPS xmmregl, OFh C6h 12-XXX-XXX VectorPath | FMUL 4 1
xmmreg2, imm8
SHUFPS xmmreg, OFh C6h mm-xxx-xxx | VectorPath | FMUL 6 2
mem128, imm8
SQRTPS xmmregl, OFh 51h 11-XXX-XXX Double FMUL 39
xmmreg2
SQRTPS xmmreg, OFh 51h mm-xxx-xxx | Double FMUL 41
mem128
SQRTSS xmmregl, F3h OFh |51h | 11-XxxX-XXX DirectPath | FMUL 19
xmmreg2
SQRTSS xmmreg, F3h OFh | 51h | mm-xxx-xxx | DirectPath | FMUL 21
mema32
STMXCSR mem32 OFh AEh mm-011-xxx | VectorPath 11 4
SUBPS xmmregl, OFh 5Ch 11-XXX-XXX Double FADD 5 1
xmmreg2
SUBPS xmmreg, OFh 5Ch mm-Xxx-xxx | Double FADD 7 1
mem128
SUBSS xmmregl, F3h OFh [5Ch | 11-xxx-xxx DirectPath | FADD 4
xmmreg2
SUBSS xmmreg, F3h OFh |5Ch | mm-xxx-xxx | DirectPath | FADD 6
mema32
UCOMISS xmmregl, OFh 2Eh 11-XXX-XXX VectorPath 4
xmmreg2
UCOMISS xmmreg, OFh 2Eh mm-xxx-xxx | VectorPath 6
mema32
UNPCKHPS xmmregl, |OFh 15h 12-XXX-XXX Double FMUL 3 1
xmmreg2
UNPCKHPS xmmreg, OFh 15h mm-xxx-xxx | Double FMUL 5 1
mem128

Notes:

prefetched.

1. The low half of the result is available one cycle earlier than listed.

2. The second latency value indicates when the low half of the result becomes available.

3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

328

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 20. SSE Instructions (Continued)

Encoding

Decode .
Syntax Prefix | First | 2nd type FPU pipe(s) |Latency | Note
ModRM byte
byte |byte |byte

UNPCKLPS xmmregl, |OFh 14h 12-XXX-XXX Double FMUL 3 3
xmmreg2
UNPCKLPS xmmreg, OFh 14h mm-xxx-xxx | Double FMUL 5 3
mem128
XORPS xmmregl, OFh 57h 11-XXX-XXX Double FMUL 3 1
xmmreg2
XORPS xmmreg, OFh 57h mm-xxx-xxx | Double FMUL 5 1
mem128
Notes:

prefetched.

1. The low half of the result is available one cycle earlier than listed.

2. The second latency value indicates when the low half of the result becomes available.

3. The high half of the result is available one cycle earlier than listed.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal
pipeline conditions.

5. For the PREFETCHNTA/TO/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is
visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

329

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors

C.8 SSE2 Instructions

Table 21. SSE2 Instructions

Encoding =
Q.
Decode FPU > <
Syntax ; ; . o © Note
y Prefix | First | 2nd ModRM byte type pipe(s) s 3
byte |byte |byte = =
- [
ADDPD xmmreg1, 66h OFh |58h Double FADD 5 1/2
xmmreg2
ADDPD xmmreg, 66h OFh | 58h Double FADD 7 1/2
mem128
ADDSD xmmreg1, F2h OFh | 58h DirectPath | FADD 4 1/1
xmmreg2
ADDSD xmmreg, F2h OFh | 58h DirectPath | FADD 6 1/1
mem64
ANDNPD xmmreg1, 66h OFh | 55h Double FMUL 3 1/2
xmmreg2
ANDNPD xmmreg, 66h OFh | 55h Double FMUL 5 1/2
mem128
ANDPD xmmreg1, 66h OFh | 54h Double FMUL 3 1/2
xmmreg2
ANDPD xmmreg, 66h OFh | 54h Double FMUL 5 1/2
mem128
CMPPD xmmregl, 66h OFh | C2h Double FADD 3 1/2
xmmreg2, imm8
CMPPD xmmreg, 66h OFh | C2h Double FADD 5 1/2
mem128, imm8
CMPSD xmmregl, F2h OFh | C2h DirectPath | FADD 2 1/1
xmmreg2, imm8
CMPSD xmmreg, F2h OFh |C2h DirectPath | FADD 4 1/1
mem64, imm8
COMISD xmmreg1, 66h OFh | 2Fh VectorPath | FADD 4 1
xmmreg2
COMISD xmmreg, 66h OFh | 2Fh VectorPath | FADD 5 1
mem64
CVTDQ2PD xmmregl, |F3h OFh | E6h Double FSTORE |5 1/2
xmmreg2
CVTDQ2PD xmmreg, F3h OFh | E6h Double FSTORE |7 1/2
mem64
Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

330 Instruction Latencies Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax ; ; . o =y Note
y Prefix | First | 2nd ModRM byte type pipe(s) 8 g
byte |byte | byte = =
| [
CVTDQ2PS xmmregl, |OFh 5Bh Double FSTORE |5 1/2
xmmreg2
CVTDQ2PS xmmreg, OFh 5Bh Double FSTORE |7 1/2
mem128
CVTPD2DQ xmmregl, |F2h OFh | E6h VectorPath |~ 8
xmmreg2
CVTPD2DQ xmmreg, F2h OFh | E6h VectorPath |~ 10
mem128
CVTPD2PI mmreg, 66h OFh |2Dh VectorPath |~ 8 1/2
xmmreg
CVTPD2PI mmreg, 66h OFh |2Dh VectorPath |~ 10 1/2
mem128
CVTPD2PS xmmregl, |66h OFh | 5Ah VectorPath | ~ 8
xmmreg2
CVTPD2PS xmmreg, 66h OFh | 5Ah VectorPath |~ 10
mem128
CVTPI2PD xmmreg, 66H | OFH | 2Ah Double FSTORE |5 1/2
mmreg
CVTPI2PD xmmreg, 66H | OFH | 2Ah Double FSTORE |7 1/2
mem64
CVTPS2DQ xmmregl, |66h OFh |5Bh Double FSTORE |5 1/2
xmmreg2
CVTPS2DQ xmmreg, 66h OFh | 5Bh Double FSTORE |7 1/2
mem128
CVTPS2PD xmmregl, |OFh 5Ah Double ~ 3 1/2
xmmreg2
CVTPS2PD xmmreg, OFh 5Ah Double ~ 5 1/2
mem64
CVTSD2SI reg32/64, F2h OFh | 2Dh Double FSTORE |9 1/1
xmmreg
CVTSD2SI reg32/64, F2h OFh | 2Dh VectorPath | FADD/ 10 |11
mem64 FMUL/
FSTORE
CVTSD2SS xmmregl, F2h OFh | 5Ah VectorPath | FSTORE 12
xmmreg2

Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

331

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 21. SSEZ2 Instructions (Continued)

25112 Rev.3.04 March 2004

Encoding 5
Q.
Decode FPU > <
Syntax Prefix | First | 2nd i & |5 [|Note
type pipe(s) S 3
byte |byte |byte ModRM byte % E
| [
CVTSD2SS xmmreg, F2h OFh | 5Ah Double FSTORE |9
mem64
CVTSI2SD xmmreg, F2h OFh | 2Ah Double FSTORE |11 1/1
reg32/64
CVTSI2SD xmmreg, F2h OFh | 2Ah DirectPath | FSTORE |6 1/1
mem32/64
CVTSS2SD xmmregl, |F3h OFh | 5Ah DirectPath | FSTORE |2 1/1
xmmreg2
CVTSS2SD xmmreg, F3h OFh | 5Ah DirectPath | FSTORE |4 1/1
mem32
CVTSS2SI reg32/64, F3h OFh | 2Dh Double FSTORE |9
xmmreg
CVTSS2SI reg32/64, F3h OFh | 2Dh VectorPath |~ 10
mema32
CVTTPD2DQ xmmreg1l, | 66h OFh | E6h VectorPath | ~ 8
xmmreg2
CVTTPD2DQ xmmreg, |66h OFh | E6h VectorPath |~ 10
mem128
CVTTPD2PI mmreg, 66h OFh |2Ch VectorPath | ~ 8 1/2
xmmreg
CVTTPD2PI mmreg, 66h OFh |2Ch VectorPath |~ 10 1/2
mem128
CVTTPS2DQ xmmregl, | F3h OFh | 5Bh Double FSTORE |5 1/2
xmmreg2
CVTTPS2DQ xmmreg, | F3h OFh | 5Bh Double FSTORE |7 1/2
mem128
CVTTSD2SI reg32/64, |F2h OFh | 2Ch Double FSTORE |9 1/1
xmmreg
CVTTSD2SI reg32/64, | F2h OFh | 2Ch VectorPath | FADD/ 10 |11
mem64 FMUL/
FSTORE
CVTTSS2SI reg32/64, |F3h OFh | 2Ch Double FSTORE |9
xmmreg
CVTTSS2SI reg32/64, |F3h OFh | 2Ch VectorPath |~ 10
mema32

Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

332

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors

Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax Prefix | First | 2nd ' e |3 |[Note
type pipe(s) S 3
ModRM byte o
byte |byte | byte y % =
| [
DIVPD xmmregl, 66h OFh |5Eh Double FMUL 37 1/34
xmmreg2
DIVPD xmmreg, 66h OFh |5Eh Double FMUL 39 1/34
mem128
DIVSD xmmreg1, F2h OFh | 5Eh DirectPath | FMUL 20 |1/7
xmmreg2
DIVSD xmmreg, F2h OFh | 5Eh DirectPath | FMUL 22 1/17
mem64
MASKMOVDQU 66h OFh | F7h VectorPath |~ 43
xmmregl, xmmreg2
MAXPD xmmreg1, 66h OFh | 5Fh Double FADD 3 1/2
xmmreg2
MAXPD xmmreg, 66h OFh | 5Fh Double FADD 5 1/2
mem128
MAXSD xmmreg1, F2h OFh | 5Fh DirectPath | FADD 2 1/1
xmmreg2
MAXSD xmmreg, F2h OFh | 5Fh DirectPath | FADD 4 1/1
mem64
MINPD xmmregl, 66h OFh |5Dh Double FADD 3 1/2
xmmreg2
MINPD xmmreg, 66h OFh |5Dh Double FADD 5 1/2
mem128
MINSD xmmregl, F2h OFh |5Dh DirectPath | FADD 2 1/1
xmmreg2
MINSD xmmreg, F2h OFh | 5Dh DirectPath | FADD 4 1/1
mem64
MOVAPD xmmreg1, 66h OFh | 28h Double FADD/ 2
xmmreg2 FMUL
MOVAPD xmmreg, 66h OFh | 28h Double FADD/ 2
mem128 FMUL/
FSTORE
MOVAPD xmmreg1, 66h OFh | 29h Double FADD/ 2
xmmreg2 FMUL
MOVAPD mem128, 66h OFh |29h Double FSTORE |3
xmmreg

Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

333

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

25112 Rev.3.04 March 2004

Processors
Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax Prefix | First | 2nd ' e |3 |[Note
type pipe(s) S 3
byte |byte |byte ModRM byte % E
| [
MOVD xmmreg, reg32 | 66h OFh | 6Eh VectorPath | ~ 9
MOVD xmmreg, mem32 | 66h OFh | 6Eh Double FADD/ 4
FMUL/
FSTORE
MOVD reg32, xmmreg | 66h OFh | 7Eh Double FSTORE (4
MOVD mem32, xmmreg | 66h OFh | 7Eh DirectPath | FSTORE |2
MOVD xmmreg, regé4 | 66h OFh | 6Eh VectorPath | ~ 9
MOVD xmmreg, mem64 | 66h OFh | 6Eh Double FADD/ 4
FMUL/
FSTORE
MOVD reg64, xmmreg | 66h OFh | 7Eh Double FSTORE (4
MOVD memé64, xmmreg | 66h OFh | 7Eh DirectPath | FSTORE |2
MOVDQ2Q mmreg, F2h OFh | D6h DirectPath | FADD/ 2
xmmreg FMUL
MOVDQA xmmregl, 66h OFh | 6Fh Double FADD/ 2
xmmreg2 FMUL
MOVDQA xmmreg, 66h OFh | 6Fh Double FADD/ 2
mem128 FMUL/
FSTORE
MOVDQA xmmregl, 66h OFh | 7Fh Double FADD/ 2
xmmreg2 FMUL
MOVDQA mem128, 66h OFh | 7Fh Double FSTORE |3
xmmreg
MOVDQU xmmreg1, F3h OFh | 6Fh Double FADD/ 2
xmmreg2 FMUL
MOVDQU xmmreg, F3h OFh | 6Fh VectorPath |~ 7
mem128
MOVDQU xmmreg1, F3h OFh | 7Fh Double FADD/ 2
xmmreg2 FMUL
MOVDQU mem128, F3h OFh | 7Fh VectorPath | FSTORE |4
xmmreg
MOVHPD xmmreg, 66h OFh | 16h DirectPath | FADD/ 4
mem64 FMUL/
FSTORE

Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

334

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax ; ; . o =y Note
y Prefix | First | 2nd ModRM byte type pipe(s) 8 g
byte |byte | byte = =
| [
MOVHPD mem64, 66h OFh |16h DirectPath | FSTORE |2
xmmreg
MOVLPD xmmreg, 66h OFh |12h DirectPath | FADD/ 4
mem64 FMUL/
FSTORE
MOVLPD mem64, 66h OFh |13h DirectPath | FSTORE |2
xmmreg
MOVMSKPD reg32/64, | 66h OFh | 50h VectorPath | FADD 3 1/1
xmmreg
MOVNTDQ mem128, 66h OFh |E7h Double FSTORE |3 2
xmmreg
MOVNTI mem32/64, OFh | C3h | mm-xxx-xxx | DirectPath | FSTORE |~
reg32/64
MOVNTPD mem128, 66h OFh | 2Bh Double FSTORE |3 2
xmmreg
MOVQ xmmreg1, F3h OFh | 7Eh Double FADD/ 2
xmmreg2 FMUL
MOVQ xmmreg, mem64 | F3h OFh | 7Eh Double FADD/ 4
FMUL/
FSTORE
MOVQ xmmreg1, 66h OFh | D6h Double FADD/ 2
xmmreg2 FMUL
MOVQ mem64, xmmreg | 66h OFh | D6h DirectPath | FSTORE
MOVQ2DQ xmmreg, F3h OFh | D6h Double FADD/ 2
mmreg FMUL
MOVSD xmmregl, F2h OFh | 10h DirectPath | FADD/ 2
xmmreg2 FMUL
MOVSD xmmreg, F2h OFh | 10h Double FADD/ 3 1
mem64 FMUL/
FSTORE
MOVSD xmmregl, F2h OFh |11h DirectPath | FADD/ 2
xmmreg2 FMUL
MOVSD memé64, F2h OFh |11h DirectPath | FSTORE |2
xmmreg
Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

335

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors

Table 21. SSEZ2 Instructions (Continued)

25112 Rev.3.04 March 2004

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Encoding 5
Q.
Decode FPU > <
Syntax ; ; . o =y Note
y Prefix | First | 2nd ModRM byte type pipe(s) 8 g
byte |byte |byte = =
| [
MOVUPD xmmreg1, 66h OFh | 10h Double FADD/ 2
xmmreg2 FMUL
MOVUPD xmmreg, 66h OFh | 10h VectorPath | FADD/ 7
mem128 FMUL/
FSTORE
MOVUPD xmmreg1, 66h OFh |11h Double FADD/ 2
xmmreg2 FMUL
MOVUPD mem128, 66h OFh |11h VectorPath | FSTORE |4
xmmreg
MULPD xmmregl, 66h OFh |59h Double FMUL 5 1/2
xmmreg2
MULPD xmmreg, 66h OFh |59h Double FMUL 7 1/2
mem128
MULSD xmmreg1, F2h OFh | 59h DirectPath | FMUL 4 1/1
xmmreg2
MULSD xmmreg, F2h OFh | 59h DirectPath | FMUL 6 1/1
mem64
ORPD xmmreg1, 66h OFh | 56h Double FMUL 3 1/2
xmmreg2
ORPD xmmreg, 66h OFh | 56h Double FMUL 5 1/2
mem128
PACKSSDW xmmregl, |66h OFh |6Bh VectorPath |~ 4
xmmreg2
PACKSSDW xmmreg, 66h OFh | 6Bh VectorPath |~ 6
mem128
PACKSSWB xmmregl, |66h OFh | 63h VectorPath | ~ 4
xmmreg2
PACKSSWB xmmreg, 66h OFh | 63h VectorPath | ~ 6
mem128
PACKUSWB xmmregl, |66h OFh |67h VectorPath |~ 4
xmmreg2
PACKUSWB xmmreg, 66h OFh | 67h VectorPath | ~ 6
mem128
PADDB xmmregl, 66h OFh | FCh Double FADD/ 2 1/1
xmmreg2 FMUL
Notes:

336

Instruction Latencies

Appendix C

AMDAQ

25112 Rev.3.04 March 2004

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™

Processors
Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax Prefix | First | 2nd i & |5 [|Note
type pipe(s) S 3
byte |byte |byte ModRM byte % E
| [
PADDB xmmreg, 66h OFh | FCh Double FADD/ 4 1/1
mem128 FMUL
PADDD xmmreg1, 66h OFh | FEh Double FADD/ 2 1/1
xmmreg2 FMUL
PADDD xmmreg, 66h OFh | FEh Double FADD/ 4 1/1
mem128 FMUL
PADDQ mmregl, OFh D4h DirectPath | FADD/ 2 1/1
mmreg2 FMUL
PADDQ mmreg, mem64 | OFh D4h DirectPath | FADD/ 4 1/1
FMUL
PADDQ xmmreg1, 66h OFh | D4h Double FADD/ 2 1/1
xmmreg2 FMUL
PADDQ xmmreg, 66h OFh | D4h Double FADD/ 4 1/1
mem128 FMUL
PADDSB xmmregl, 66h OFh | ECh Double FADD/ 2 11
xmmreg2 FMUL
PADDSB xmmreg, 66h OFh | ECh Double FADD/ 4 1/1
mem128 FMUL
PADDSW xmmreg1, 66h OFh | EDh Double FADD/ 2 1/1
xmmreg2 FMUL
PADDSW xmmreg, 66h OFh | EDh Double FADD/ 4 11
mem128 FMUL
PADDUSB xmmreg1, 66h OFh | DCh Double FADD/ 2 1/1
xmmreg2 FMUL
PADDUSB xmmreg, 66h OFh | DCh Double FADD/ 4 1/1
mem128 FMUL
PADDUSW xmmregl, 66h OFh | DDh Double FADD/ 2 1/1
xmmreg2 FMUL
PADDUSW xmmreg, 66h OFh | DDh Double FADD/ 4 1/1
mem128 FMUL
PADDW xmmreg1, 66h OFh | FDh Double FADD/ 2 1/1
xmmreg2 FMUL
PADDW xmmreg, 66h OFh | FDh Double FADD/ 4 1/1
mem128 FMUL
Notes:

1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory
speed and the hardware implementation.

Appendix C

Instruction Latencies

337

AMDAQl

Software Optimization Guide for AMD Athlon™ 64 and AMD Opteron™ 25112 Rev.3.04 March 2004
Processors
Table 21. SSEZ2 Instructions (Continued)
Encoding 5
d FPU > =
Decode
Syntax Prefix | First | 2nd ' e |3 |[Note
type pipe(s) S 3
byte |byte |byte ModRM byte % E
| [
PAND xmmreg1, 66h OFh | DBh Double FADD/ 2 1/1
xmmreg2 FMUL
PAND xmmreg, 66h OFh | DBh Double FADD/ 4 1/1
mem128 FMUL
PANDN xmmreg1, 66h OFh | DFh Double FADD/ 2 1/1
xmmreg2 FMUL
PANDN xmmreg, 66h OFh | DFh Double FADD/ 4 1/1
mem128 FMUL
PAVGB xmmreg1, 66h OFh | EOh Double FADD/ 2 1/1
xmmreg2 FMUL
PAVGB xmmreg, 66h OFh | EOh Double FADD/ 4 1/1
mem128 FMUL
PAVGW xmmreg1, 66h OFh | E3h Double FADD/ 2 1/1
xmmreg2 FMUL
PAVGW xmmreg, 66h O