
Tellegen’s Principle into Practice

A. Bostan
Laboratoire STIX
FRE CNRS 2341

École polytechnique
91128 Palaiseau, France

bostan@stix.polytechnique.fr

G. Lecerf
Laboratoire de Mathématiques

UMR CNRS 8100
Université de Versailles
St-Quentin-en-Yvelines

45, avenue des États-Unis
78035 Versailles, France

lecerf@math.uvsq.fr

É. Schost
Laboratoire STIX
FRE CNRS 2341

École polytechnique
91128 Palaiseau, France

schost@stix.polytechnique.fr

ABSTRACT
The transposition principle, also called Tellegen’s principle,
is a set of transformation rules for linear programs. Yet,
though well known, it is not used systematically, and few
practical implementations rely on it. In this article, we pro-
pose explicit transposed versions of polynomial multiplica-
tion and division but also new faster algorithms for mul-
tipoint evaluation, interpolation and their transposes. We
report on their implementation in Shoup’s NTL C++ li-
brary.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; D.4.8 [Mathematics of Com-
puting]: Mathematical Software

General Terms
Algorithm, Theory

Keywords
Computer algebra, interpolation, polynomial evaluation,
Tellegen’s principle, transposition principle

1. INTRODUCTION
The transposition principle, sometimes referred to as Tel-

legen’s principle, asserts that a linear algorithm that per-
forms a matrix-vector product can be transposed, producing
an algorithm that computes the transposed matrix-vector
product. Further, the transposed algorithm has almost the
same complexity as the original one (see Section 3 for precise
statements).

The following example illustrates this principle, using the
computation graph representation. Taking x1, x2 as input,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’03, August 3–6, 2003, Philadelphia, Pennsylvania, USA.
Copyright 2003 ACM 1-58113-641-2/03/0008 ...$5.00.

it computes y1 = ax1 + bx2, y2 = cx1 + dx2; edges perform
multiplications by the constant values a, b, c, d.

+

+a

d

b
c

x 2

x 1

y2

y1

Reversing all arrows and exchanging vertices + and • yield
the following graph:

a

d

b
c

x 2

x 1

y2

y1

+

+

Taking y1, y2 as input, it computes the transposed map x1 =
ay1 + cy2, x2 = by1 + dy2 (see [14] for details).

Such transformation techniques originate from linear cir-
cuit design and analysis [1, 3, 17, 22] and were introduced in
computer algebra in [6, 7, 11, 14]. Since then, there has been
a recurrent need for transposed algorithms [2, 5, 9, 12, 19,
20, 21, 23]. Yet, the transposition principle in itself is sel-
dom applied, and specific algorithms were often developed
to circumvent its use, with the notable exceptions of [9, 20].

Contributions. In this paper, we detail several linear al-
gorithms for univariate polynomials and their transposes:
multiplication, quotient, remainder, evaluation, interpola-
tion and exemplify a systematic use of Tellegen’s principle.

Our first contribution concerns univariate polynomial re-
maindering: we show that this problem is dual to extending
linear recurrence sequences with constant coefficients. This
clarifies the status of algorithms by Shoup [19, 21], which
were designed as alternatives to the transposition principle:
they are actually the transposes of well-known algorithms.

Our second contribution is an improvement (by a constant
factor) of the complexities of multipoint evaluation and in-
terpolation. This is done by designing a fast algorithm for
transposed evaluation, and transposing it backwards. We
also improve the complexity of performing several multi-
point evaluations at the same set of points: discarding the
costs of the precomputations, multipoint evaluation and in-
terpolation now have very similar complexities.

Finally, we demonstrate that the transposition principle
is quite practical. We propose (still experimental) NTL [18]

37

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100 120 140 160 180 200

multiplication
division

Figure 1: Transposed/direct ratios

implementations of all algorithms mentioned here and their
transposes. They show that the expected time ratio of 1
between an algorithm and its transpose is well respected in
practice. The source code can be downloaded from
http://www.math.uvsq.fr/~lecerf.

Contents. Section 2 introduces the notation used in the
rest of this article. In Section 3, we state the transposition
principle in two distinct computation models; we discuss the
memory requirement question that was raised in Kaltofen’s
Open Problem 6 in [12].

In Section 4, we transpose polynomial multiplication. This
was already done in [9], where transposed versions of Karat-
suba’s and Fast Fourier Transform (FFT) multiplications
were given. We transpose NTL Karatsuba’s multiplication,
which was optimized to treat unbalanced situations. We
also transpose plain, as well as FFT multiplication.

In Section 5, we transpose the operations of polynomial
quotient and remainder and show the duality between poly-
nomial remaindering and extending linear recurrence se-
quences.

In Section 6, we finally consider polynomial multipoint
evaluation and interpolation. We give algorithms for these
operations and their transposes that improve previously
known algorithms by constant factors.

Implementation. Our algorithms are implemented in the
C++ library NTL [18]. Figures 1 and 2 describe the behav-
ior of our implementation; the computations were done over
�/p�, with p a prime of 64 bit length, and the times were
measured on a 32 bit architecture.

Figure 1 shows the time ratios between direct and trans-
posed algorithms for polynomial multiplication and polyno-
mial remainder, for degrees up to 200.

• For multiplication, the horizontal axis gives the degree
m of the input polynomials. Multiplication in NTL
uses three different algorithms: plain multiplication for
m ≤ 19, Karatsuba’s multiplication for 20 ≤ m < 79
and FFT for larger m. The same thresholds are used
for the transposed versions. Note that Karatsuba’s
multiplication is slightly slower in its transposed ver-
sion.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100 120 140 160 180 200

evaluation
interpolation

Figure 2: Transposed/direct ratios

• The division deals with polynomials of degrees 2m and
m. NTL provides the plain remainder algorithm and a
faster one based on Sieveking-Kung’s algorithm, with
further optimizations. The threshold is 90, we used
the same value for the transposed algorithms.

Figure 2 presents the ratios between the direct and trans-
posed versions for our new fast multipoint evaluation and
interpolation algorithms, with degree on the horizontal axis
(Section 6 gives their complexity estimates).

Remark. Transposed algorithms were used for modular
multiplication and power series inversion in NTL as soon
as [20], yet only for FFT multiplication. More generally the
transposed product is used in [9] to speed up some algo-
rithms for power series.

2. DEFINITIONS AND NOTATION
Let R be a commutative ring with unity and n ≥ 0. By

R[x]n we denote the free R-module of polynomials of degree
at most n. We use the monomial basis 1, x, . . . , xn on R[x]n
to represent polynomials by vectors and linear maps by ma-
trices. It will also be convenient to consider elements of
R[x] as infinite sequences with finite support: we will write
a polynomial a as

�
i≥0 aix

i, where almost all ai vanish.

The degree of a is denoted by deg(a), with deg(0) = −∞.
For l ≥ 0 and h ≥ 0, we introduce the following maps
�.�h, �.�l, [.]hl on R[x] and the power series ring R[[x]]:

�a�h =

h−1�
i=0

aix
i, �a�l =

�
i≥0

ai+lx
i, [a]hl =

h−l−1�
i=0

ai+lx
i.

Observe that these maps satisfy the following relations:

a = �a�h + xh �a�h , [a]hl =
��a�l�h−l

=
�
�a�h

�
l
.

We define the reversal endomorphism rev(n, .) of R[x]n by
rev(n, a) =

�n
k=0 an−kxk, for all a ∈ R[x]n.

By �q� we denote the integer part of a rational q. Finally,
we use a block matrix notation: 0h,l denotes a h × l block
filled with zeros and 1h the h× h identity matrix.

38

3. TELLEGEN’S PRINCIPLE
Tellegen’s principle is usually stated using linear compu-

tation graphs [14, 22]. In this section, we first briefly recall
it in terms of linear straight-line programs. We then define
another computational model, and prove Tellegen’s princi-
ple in that setting. The first model can be thought as tak-
ing only time complexity into account, while the second one
considers both time and space.

Linear Straight-Line Programs. Linear straight-line pro-
grams can be thought as “ordinary” straight-line programs,
but with only linear operations, see [4, Chapter 13] for pre-
cise definitions. Their complexity is measured by their num-
ber of operations, the size, which reflects a time complexity.
In this model, Tellegen’s principle can be formulated as:

Proposition 1. [4, Th. 13.20] Let φ : Rn → Rm be
a linear map that can be computed by a linear straight-line
program of size L and whose matrix in the canonical bases
has no zero rows or columns. Then the transposed map φt

can be computed by a linear straight-line program of size
L− n + m.

We will use this proposition in Section 6, as the complexity
estimates used in that section are given in the linear straight-
line program model.

Another Computational Model. We now introduce a mea-
sure of space complexity. Informally speaking, our model
derives from the random access memory model by restrict-
ing to linear operations. In this context, a program P is
given by:

• A finite set D of registers, with two distinguished sub-
sets (non necessarily disjoint), I for the input and O
for the output : before execution I contains the input
values, at the end O contains the output.

• A finite sequence of instructions (φi)i∈{1,...,L} of length

L. Each instruction is a linear endomorphism of RD

of the following type, with p, q in D, a in R and f in
RD:

– p+ = q denotes the map that sends f to the
function g defined by g(r) = f(r) if r
= p and
g(p) = f(p) + f(q).

– p ∗ = a denotes the map that sends f to the
function g defined by g(r) = f(r) if r
= p and
g(p) = af(p).

– p = 0 denotes the map that sends f to the func-
tion g defined by g(r) = f(r) if r
= p and g(p) =
0.

Let I (resp. P) be the injection RI → RD (resp. the projec-
tion RD → RO). Then we say that the program P computes
the linear map Φ : RI → RO defined by P ◦φL ◦φL−1 ◦ · · · ◦
φ1 ◦ I.

We can now define the transpose Pt(Dt, It,Ot) of P :

• The set of registers of Pt is still Dt = D but we let
It = O and Ot = I: input and output are swapped.

• The instructions of Pt are φt
L, φt

L−1, . . . , φ
t
1.

Let us verify that Pt is well-defined. We examine the trans-
pose of each type of instructions:

• The transpose φt of an instruction φ of type p+= q is
the instruction q += p.

• The last two instructions are symmetric maps.

The equality (φL ◦ φL−1 ◦ · · · ◦ φ1)
t = φt

1 ◦ φt
2 ◦ · · · ◦ φt

L then
shows that Pt computes the linear map Φt. This yields the
following form of Tellegen’s principle:

Proposition 2. According to the above notation, let φ :
Rn → Rm be a linear map that can be computed by a pro-
gram with D registers and L instructions. Then φt can be
computed by a program with D registers and L instructions.

As an example, consider 5 registers, x1, x2 for input, y1, y2

for output and r for temporaries. Given a, b, c, d in R, con-
sider the instructions: y1 += x1, y1 ∗= a, r += x2, r ∗= b,
y1 += r, r = 0, y2 += x1, y2 ∗= c, r += x2, r ∗= d, y2 += r.
We let the reader check that the linear map computed by
this program is the 2 × 2 matrix-vector product presented
in the introduction. The transposed program is r += y2,
r ∗= d, x2 += r, y2 ∗= c, x1 += y2, r = 0, r += y1, r ∗= b,
x2 += r, y1 ∗= a, x1 += y1.

We could have used more classical instructions such as p =
q + r and p = aq, a ∈ R. We let the reader check that such
programs can be rewritten in our model within the same
space complexity but a constant increase of time complexity.
For such programs, Tellegen’s principle would be stated with
no increase in space complexity, but a constant increase in
time complexity. This is why we use straight-line programs
for our complexity estimates in Section 6.

Open Problem 6 in [12] asks for a transposition theo-
rem without space complexity swell. The above Proposi-
tion sheds new light on this problem: In the present com-
putational model, it is immediate to observe that memory
consumption is left unchanged under transposition.

Comments. The above models compute functions of fixed
input and output size: in the sequel, we will actually write
families of programs, one for each size. We also use control
instructions as for and if, and calls to previously defined
subroutines. Last, we will consider algorithms mixing linear
and non-linear precomputations; the transposition principle
leaves the latter unchanged.

4. POLYNOMIAL MULTIPLICATION
In this section a is a fixed polynomial of degree m. For

an integer n ≥ 0, consider the multiplication map by a:

mul(a, .) : R[x]n → R[x]m+n

b
→ ab.

The transposed map is denoted by mult(n, a, .); to write our
pseudo-code, it is necessary to consider n as an argument
of the transposed function. The next subsection shows that
this map is:

mult(n, a, .) : R[x]m+n → R[x]n
c
→ [rev(m, a)c]n+m+1

m .

We adopt the following convention: if deg(c) > m + n then
mult(n, a, c) returns an error.

The above formula explains why the transposed multipli-
cation is also called the middle product [9]. Performing this
operation fast is the first task to accomplish before trans-
posing higher level algorithms. Observe that computing

39

mult(n, a, c) by multiplying rev(m, a) by c before extract-
ing the middle part requires to multiply two polynomials of
degrees m and m + n.

Tellegen’s principle implies that this transposed compu-
tation can be performed for the cost of the multiplication
of two polynomials of degrees m and n only. In what fol-
lows, we make this explicit for the plain, Karatsuba and Fast
Fourier Transform multiplications.

4.1 Plain multiplication
In the canonical monomial bases, the matrix of the linear

map mul(a, .) : Rn[x] → Rm+n[x] is the following Toeplitz
matrix T with m + n + 1 rows and n + 1 columns:

T =

�
�������������������

a0 0 . . . 0

a1 a0

. . .
...

... a1

. . . 0
...

...
. . . a0

am

...
. . . a1

0 am

. . .
...

...
. . .

. . .
...

0 . . . 0 am

	

�

.

Basically, the plain multiplication algorithm corresponds to
performing the matrix vector product c = Tb naively using
the following sequence of instructions:

c ← 0;
for i from 0 to m + n do

for j from max(0, i− n) to min(m, i) do
ci ← ci + ajbi−j ;

Reversing the computation flow, b = mult(n, a, c) is com-
puted by the following program:

b ← 0;
for i from m + n downto 0 do

for j from min(m, i) downto max(0, i− n) do
bi−j ← bi−j + ajci;

Observing that the entries of b are given by:

bi =
i+m�
j=i

aj−icj , i ∈ {0, . . . , n},

we deduce that the map mult(n, a, .) reformulates in terms
of the middle product [9] by the relation

mult(n, a, c) = [rev(m,a)c]n+m+1
m ,

as announced above.

4.2 Karatsuba’s algorithm
The next paragraphs are devoted to the transposition of

Karatsuba’s multiplication algorithm. Concretely, we con-
sider the NTL implementation and present the transpose
version we made of it. Figures 3 and 4 describe Karat-
suba’s algorithm and its transpose. As for the mult func-
tion, the transposed Karatsuba multiplication takes n as an
additional argument.

In order to prepare the proof of Algorithm TKarMul we
first decompose Algorithm KarMul into linear maps. Follow-
ing Algorithm KarMul we enter the procedure with polyno-
mials a of degree m and b of degree n. We let µ = �m/2�+1,

Figure 3: KarMul(a, b)

m ← deg(a);
n ← deg(b);
if n = 0 then return b0a;
if m ≤ 0 then return a0b;
µ ← �m/2�+ 1;
ν ← �n/2�+ 1;
if µ > n then

u ← KarMul(�a�µ , b);
v ← KarMul(�a�µ , b);

return u + xµv;
if ν > m then

u ← KarMul(a, �b�ν);
v ← KarMul(a, �b�ν);
return u + xνv;

h ← max(µ, ν);

r ← KarMul(�a�h , �b�h);
s ← KarMul(�a�h , �b�h);

t ← KarMul(�a�h + �a�h , �b�h + �b�h);
return r + xh(t− s− r) + x2hs;

ν = �n/2� + 1 and h = max(µ, ν) and distinguish three ex-
clusive cases:
Normal case: (m < n and ν ≤ m) or (m ≥ n and µ ≤
n). Note that deg(�a�h) = m − h, let ρ = deg(�a�h) and

λ = deg(�a�h + �a�h). Let Ml : R[x]h−1 → R[x]ρ+h−1, Mh :
R[x]n−h → R[x]m+n−2h and Mf : R[x]h−1 → R[x]λ+h−1 be

the linear maps of multiplication by resp. �a�h, �a�h and

�a�h + �a�h. Noticing that n− h ≤ h− 1, we construct the
following block matrix M , where we take r = m + n and
q = ρ + h:

M =

�
�����

Ml 0q,n−h+1

0r−2h+1,h Mh

Mf ·
�

1h
1n−h+1

02h−n−1,n−h+1

	

� .

Remark that (r, s, t) = Mb, when considering that r ∈
R[x]ρ+h−1, s ∈ R[x]m+n−2h and t ∈ R[x]λ+h−1. In or-
der to recover the product c = ab it remains to compute
c = (N+ −N−)(r, s, t), with

N+ =

�
� 1ρ+h

0r+1−q,q

02h,r−2h+1

1r−2h+1

0h,λ+h

1λ+h

0r+1−λ−2h,λ+h

	
� ,

N− =

�
� 0h,ρ+h

1ρ+h

0r−ρ−2h+1,ρ+h

0h,r−2h+1

1r−2h+1

0h,r−2h+1

0r+1,λ+h

	
� .

Degenerate case 1: µ > n. We let ρ = deg(�a�µ) and
consider u ∈ R[x]ρ+n, v ∈ R[x]m+n−µ so that we have
ab = N1(u, v), where N1 is:

N1 =

�
1ρ+n+1

0m−ρ,ρ+n+1

0µ,r−µ+1

1r−µ+1

.

Degenerate case 2: ν > m. We consider u ∈ R[x]m+ν−1,

40

Figure 4: TKarMul(n, a, c)

m ← deg(a);
if deg(c) > m + n then Error;
if n = 0 then return

�m
k=0 akck;

if m ≤ 0 then return a0c;
µ ← �m/2�+ 1;
ν ← �n/2�+ 1;

ρ ← deg(�a�h);
if µ > n then

u ← TKarMul(n, �a�µ , �c�n+ρ);
v ← TKarMul(n, �a�µ , �c�µ);
return u + v;

if ν > m then
u ← TKarMul(ν − 1, a, �c�m+ν);
v ← TKarMul(n − ν, a, �c�ν);
return u + v;

h ← max(µ, ν);

λ ← deg(�a�h + �a�h);

r ← TKarMul(h− 1, �a�h , �c�ρ+h − [c]ρ+2h
h);

s ← TKarMul(n− h, �a�h , �c�2h − [c]m+n−h+1
h);

t ← TKarMul(h− 1, �a�h + �a�h , [c]λ+2h
h);

return r + t + xh(s + �t�n−h+1);

v ∈ R[x]m+n−ν so that we have ab = N2(u, v), with

N2 =

�
1m+ν

0n−ν+1,m+ν

0ν,r−ν+1

1r−ν+1

.

Proposition 3. Algorithm TKarMul is correct.

Proof. We use the notation of Figure 4 and distinguish the
same three cases. The normal case follows from the equali-
ties

N t
+c = (�c�ρ+h , �c�2h , [c]λ+2h

h),

N t
−c = ([c]ρ+2h

h , [c]m+n−h+1
h , 0).

In Degenerate cases 1 and 2, we respectively compute

N t
1c = (�c�n+ρ , �c�µ) and N t

2c = (�c�m+ν , �c�ν).

�

Some refinements may be done when implementing Al-
gorithm TKarMul. First observe that it saves memory to
compute �c�m+n−h+1 − �c�h in order to deduce r and −s
and then one propagates this change of sign by returning
r+ t+xh(�t�n−h+1−s). Another observation is that Karat-
suba’s multiplication can be done in a different manner using
the identity �a�h �b�h + �a�h �b�h = �a�h �b�h + �a�h �b�h −
(�a�h − �a�h)(�b�h − �b�h). When transposing this slightly
different version, we obtain the middle product algorithm
presented in [9].

4.3 The Fast Fourier Transform
Multiplication algorithms using the Fast Fourier Trans-

form are quite easy to transpose since the matrices involved
are symmetric. We only give a brief presentation and refer
to [8] for more details about the discrete Fourier transform.

Let l ∈ � such that m + n + 1 ≤ 2l and that R con-
tains a primitive 2l-th root ω of unity. The discrete Fourier
transform DFT(ω, a) of the polynomial a is the vector�

a(1), a(ω), . . . , a
�
ω2l−1

�� ∈ R2l

.

Let DFT−1(ω, .) : R2l → R[x]2l−1 be the inverse map of
DFT(ω, .) and H the diagonal matrix of diagonal DFT(ω, a).
Then we have the equality

ab = DFT−1(ω, H DFT(ω, b)).

Since DFT(ω, .) and H are symmetric, we deduce that:

mult(n, a, c) =
�
DFT(ω, H DFT−1(ω, c))

�n+1
,

for any polynomial c of degree at most m+n. Letting �H be
the diagonal DFT(ω, rev(m, a)) matrix and using

DFT−1(ω, .) =
1

2l
DFT(ω−1, .),

we deduce the equalities

mult(n, a, c) =
�
DFT−1(ω, ω−m �H DFT(ω, c))

�n+1

=
�
DFT−1(ω, �H DFT(ω, c))

�m+n+1

m
,

which can also be obtained from the middle product formu-
lation.

5. POLYNOMIAL DIVISION
We come now to the transposition of the Euclidean di-

vision. In this section we are given a polynomial a
= 0 of
degree m whose leading coefficient am is invertible. For a
polynomial b, we write the division of b by a as b = aq + r
with deg(r) < m and define the maps

quo(a, .) : R[x]n → R[x]n−m

b
→ q,

rem(a, .) : R[x]n → R[x]m−1

b
→ r,

quorem(a, .) : R[x]n → R[x]n−m ×R[x]m−1

b
→ (q, r).

The transposed operations are written quoremt(n, a, q, r),
quot(n, a, q) and remt(n, a, r), with the convention that
these functions return an error if deg(r) ≥ deg(a) or
deg(q) > n− deg(a).

The next paragraphs are devoted to transpose the quorem
map through the plain and Sieveking-Kung’s division algo-
rithms. We will prove that the transposed remainder is given
by:

remt(n, a, .) : Rm → Rn+1

(r0, . . . , rm−1)
→ (b0, . . . , bn),

where the bj are defined by the linear recurrence

(∗) bj = − 1

am

�
am−1bj−1 + · · ·+ a0bj−m

�
, m ≤ j

with initial conditions bj = rj , j ∈ {0, . . . , m− 1}, so that
linear recurrence sequence extension is dual to remainder
computation.

41

5.1 Plain division
We enter the plain division procedure with the two poly-

nomials a and b and compute q and r by

q ← 0;
r ← b;
for i from 0 to n−m do

q ← xq + rn−i/am;
r ← r − rn−i/amxn−m−ia;

To transpose this algorithm we introduce the sequences

q{i} ∈ R[x]i−1, r{i} ∈ R[x]n−i i = 0, . . . , n−m + 1.

They are defined by q{0} = 0, r{0} = b and for i ≥ 1

q{i+1} = xq{i} + r
{i}
n−i/am,

r{i+1} = r{i} − r
{i}
n−i/amxn−m−ia,

so that the relation b = axn−m+1−iq{i} + r{i} holds. For
i = n−m + 1, we have q = q{n−m+1} and r = r{n−m+1}.

In order to formulate the algorithm in terms of linear maps
we introduce v{i} = (q{i}, r{i}) ∈ Rn+1. Then we have

v{i+1} = Mv{i}, where

M =

�
������

01,n 1/am

1n

0n−m,1

−a0/am

...
−am−1/am

	

� .

Now reverse the flow of calculation: we start with a
vector v{n−m+1} = (q{n−m+1}, r{n−m+1}) ∈ Rn+1 with

q{n−m+1} ∈ R[x]n−m and r{n−m+1} ∈ R[x]m−1. Then we

compute v{i} = M tv{i+1} by the formulae

q{i} =
�
q{i+1}

�
1
,

r{i} = r{i+1} +
1

am
xn−i

�
q
{i+1}
0 −

m−1�
j=0

am−1−jr
{i+1}
n−i−j−1

�
.

We deduce the following transposed algorithm for comput-
ing b = quoremt(n, a, q, r):

b ← r;
for i from m to n do

bi ←
�
qi−m −�m−1

j=0 am−1−jbi−j−1

�
/am;

The maps quo(a, .) and rem(a, .) can be obtained by com-
posing a projection after quorem(a, .) but in practice it is
better to implement specific optimized procedures for each.
It is easy to implement these optimizations; we refer to our
NTL implementation for details.

Since b = remt(n, a, r) = quoremt(n, a, 0, r), the coeffi-
cients of b satisfy the linear recurrence relation with constant
coefficients (∗), as announced above.

5.2 Sieveking-Kung’s division
Sieveking-Kung’s algorithm is based on the formula

rev(n, b) = rev(n−m, q)rev(m,a) + xn−m+1rev(m− 1, r),

see [8] for details. This yields

q = rev(n−m,
�
mul(α, �rev(n, b)�n−m+1)

�n−m+1
),

where α =
�
rev(m,a)−1

�n−m+1
. Then we deduce r from q

using r = b− aq.

Transposing these equalities, we see that for q ∈ R[x]n−m

quot(n, a, q) = rev(n, mult(n−m, α, rev(n−m, q))).

For r ∈ R[x]m−1, it follows:

remt(n, a, r) = r − quot(n, a, mult(n−m, a, r)).

Let s = remt(n, a, r) and p = mult(n −m,a, r). Using the
middle product formula to express this last quot expression
yields

s = r − rev(n, [rev(n−m, α)rev(n−m, p)]2(n−m)+1
n−m),

which simplifies to

s = r − rev(n, rev(n−m, �αp�n−m+1)).

Last we obtain

remt(n, a, r) = r − xm
�
αmult(n−m, a, r)

�n−m+1
,

which can also be rewritten this way, using the middle prod-
uct formula again:

remt(n, a, r) = r − xm
�
α [rev(m, a)r]n+1

m

�n−m+1
.

This actually coincides with the algorithm given in [19] for
extending linear recurrence sequences.

Remark. More generally, the following formula holds:

quoremt(n, a, q, r) = r−xm �
α([rev(m,a)r]n+1

m − q)
�n−m+1

.

5.3 Modular multiplication
As a byproduct, our algorithms enable to transpose the

modular multiplication. Given a monic polynomial a of de-
gree m with invertible leading coefficient and a polynomial
b of degree at most m− 1, consider the composed map

R[x]m−1 → R[x]2m−2 → R[x]m−1

c
→ bc
→ bc mod a.

An ad hoc algorithm for the transpose map is detailed in [21].
Using our remark on the transpose of polynomial remainder-
ing, it is seen to essentially coincide with the one obtained
by composing the algorithms for transposed multiplication
and transposed remainder. A constant factor is lost in [21],
as no middle product algorithm is used to transpose the first
map; this was already pointed out in [9].

6. TRANSPOSED VANDERMONDE
We now focus on algorithms for Vandermonde matrices;

we assume that R = k is a field and consider m+1 pairwise
distinct elements a0, . . . , am in k. Even if not required by
the algorithms, we take m = 2l − 1, with l ∈ �, in order to
simplify the complexity estimates.

The Vandermonde matrix Va is the square matrix:

Va =

�
����

1 a0 a2
0 . . . am

0

1 a1 a2
1 . . . am

1

...
...

...
...

1 am a2
m . . . am

m

	

� .

If b is in k[x]m then Vab is the vector (b(a0), . . . , b(am)). This
computation is commonly referred to as multipoint evalua-
tion. The inverse problem is interpolation: for c ∈ km+1,

42

V −1
a c corresponds to the polynomial b ∈ k[x]m satisfying

b(ai) = ci for i ∈ {0, . . . , m}.
We first recall the notion of subproduct tree and refer to [8,
§10.1] for details and historical notes. Then we design a
fast algorithm for transposed evaluation. We transpose it
backwards to obtain an improved evaluation algorithm, and
deduce similar improvements for interpolation and its trans-
pose.

For complexity analysis we use the straight-line program
model [4, Chapter 4]. The function M(n) denotes the com-
plexity of multiplying a polynomial of degree less than n by
a fixed polynomial of degree less than n, restricting to linear
straight-line programs only. This way Proposition 1 implies
that M(n) is also the complexity of the transpose of this
multiplication. Restricting to linear straight-line programs
is actually not embarrassing since all known multiplication
algorithms [8] for the straight-line program model fit into
this setting.

As in [8, §8.3] we assume that M(n1 + n2) ≥ M(n1) +
M(n2) for any positive integers n1 and n2. For the sake of
simplicity we also assume that n log(n) ∈ O(M(n)).

6.1 Going up the subproduct tree
A common piece of the following algorithms is the com-

putation of the subproduct tree T with leaves x − a0, x −
a1, . . . , x − am. It is defined recursively, together with the
sequence of integers mi, by

T0,j = x− aj , for j ∈ {0, . . . , m}, m0 = m + 1,

and for i ≥ 1 by

Ti,j = Ti−1,�j/2�Ti−1,�j/2�+1, for j < hi = �mi/2� .
If mi = 2hi + 1 we let Ti,hi = Ti−1,mi−1 and mi+1 = hi + 1,
otherwise we just let mi+1 = hi. Let d be the smallest inte-
ger such that md = 1; we get Td,0 =

�m
j=0(x−aj). By [8, Ex-

ercise 10.3], T can be computed within 1/2M(m) log(m) +
O(m log(m)) operations.

The following algorithm describes our basic use of T . On
input c = (c0, . . . , cm), it computes the polynomial b =�m

j=0 cj
Td,0
x−aj

.

UpTree(c)
b ← c;
for i ← 0 to d− 1 do

for j ← 0 to hi − 1 do
bj ← Ti,2j+1b2j + Ti,2jb2j+1;

if mi = 2hi + 1 then bhi ← bmi−1;
return b0;

We deduce its transpose as follows:

TUpTree(b)
c0 ← b;
for i ← d− 1 downto 0 do

if mi = 2hi + 1 then cmi−1 ← chi ;
for j ← hi − 1 downto 0 do

n ← deg(Ti+1,j)− 1;
c2j+1 ← mult(n, Ti,2j , cj);
c2j ← mult(n, Ti,2j+1, cj);

return c;

On input b ∈ k[x]m, it outputs the coefficients of xm in the

polynomial products rev(m, b)
Td,0
x−aj

, for j = 0, . . . , m.

Once T is computed, using Proposition 1 and [8, Th.
10.10], both algorithms require M(m) log(m)+O(m log(m))
operations.

6.2 Multipoint evaluation
We first treat the transposed problem. Let c0, . . . , cm be

in k. A direct computation shows that the entries of b = V t
a c

are the first m + 1 coefficients of the Taylor expansion of
S(x) =

m�
j=0

cj

1− ajx
=

1

rev(m + 1, Td,0)

m�
j=0

cjrev(m + 1, Td,0)

1− ajx
.

The last sum is obtained by computing UpTree(c) and re-
versing the result. Computing the Taylor expansion of S
requires one additional power series inversion and one mul-
tiplication.

α ← 1/rev(m + 1, Td,0) mod xm+1;
s ← UpTree(c);
t ← rev(m,s);
b ← mul(α, t) mod xm+1;

We deduce the following algorithm for evaluating a polyno-
mial b:

α ← 1/rev(m + 1, Td,0) mod xm+1;
t ← mult(m,α, b);
s ← rev(m, t);
c ← TUpTree(s);

By the above complexity results, these algorithms require
3/2M(m) log(m)+O(M(m)) operations, since the additional
operations have negligible cost. We gain a constant factor on
the usual algorithm of repeated remaindering, of complexity
7/2M(m) log(m) + O(M(m)), see [16] or [8, Exercise 10.9].
We also gain on 13/6M(m) log(m)+O(M(m)) given in [16,
§3.7] for base fields k allowing Fast Fourier Transform in
k[x].

Moreover, if many evaluations at the same set of points ai

have to be performed, then all data depending only on the
evaluation points (the tree T and α) may be precomputed
and stored, and the cost of evaluation drops to essentially
M(m) log(m)+O(M(m)). This improves [8, Exercise 10.11]
by a factor of 2.

As a remark, our interpretation of the transposed remain-
der shows that the algorithm in [19] for transposed evalu-
ation is the exact transposition of the classical evaluation
algorithm as given in [8, §10.1], so ours is faster. The algo-
rithm of [5] is still slower by a constant factor, since it uses
an interpolation routine.

6.3 Interpolation
The fast interpolation algorithm c = V −1

a b proceeds this
way, see [8, §10.2]:
p ← dTd,0/dx;
z ← (p(a0), . . . , p(am));
c ← (b0/z0, . . . , bm/zm);
c ← UpTree(c);

Here, z is computed using fast multipoint evaluation. At
the end, c contains the interpolating polynomial. Reversing
the computation flow, we get the transposed algorithm for
computing b = (V −1

a)tc:

43

p ← dTd,0/dx;
z ← (p(a0), . . . , p(am));
b ← TUpTree(c);
b ← (b0/z0, . . . , bm/zm);

Using the results given above, these algorithms require
5/2M(m) log(m) + O(M(m)) operations. This improves
again the complexity results of [8].

The algorithm of [13] for transposed interpolation does
the same precomputation as ours, but the call to TUpTree
is replaced by (mainly) a multipoint evaluation. Using pre-
computations and our result on evaluation, that algorithm
also has complexity 5/2M(m) log(m) + O(M(m)).

7. CONCLUSION, FUTURE WORK
A first implementation of our improved evaluation algo-

rithm gains a factor of about 1.2 to 1.5 over the classical
one [8, §10.1], for degrees about 10000. But let us mention
that the crossover point between repeating Horner’s rule and
the classical fast evaluation we have implemented is about
32. In consequence, it seems interesting to explore the con-
stant factors hidden behind the above quantities O(M(m)).

Our results of Section 6 can be generalized to solve the
simultaneous modular reduction and the Chinese remainder
problems faster than in [8, Chapter 10]. Theoretical and
practical developments related to these problems are work
in progress.

Transposed computations with Vandermonde matrices are
the basis of fast multiplication algorithms for sparse and
dense multivariate polynomials [2, 5, 23] and power se-
ries [10, 15]. Up to logarithmic factors, over a base field
of characteristic zero, these multiplications have linear com-
plexities in the size of the output. Their implementation is
the subject of future work.

Acknowledgments. We thank G. Hanrot, M. Quercia and
P. Zimmermann for useful discussions and the anonymous
referees for their constructive remarks.

8. REFERENCES
[1] A. Antoniou. Digital Filters: Analysis and Design.

McGraw-Hill Book Co., 1979.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm
for sparse multivariate polynomial interpolation. In
20th Annual ACM Symposium on the Theory of
Computing, pages 301–309, 1988.

[3] J. L. Bordewijk. Inter-reciprocity applied to electrical
networks. Appl. Sci. Res. B., 6:1–74, 1956.

[4] P. Bürgisser, M. Clausen, and A. Shokrollahi.
Algebraic Complexity Theory. Springer, 1997.

[5] J. Canny, E. Kaltofen, and L. Yagati. Solving systems
of non-linear polynomial equations faster. In
Proceedings of ISSAC’89, pages 121–128. ACM, 1989.

[6] C. M. Fiduccia. On obtaining upper bounds on the
complexity of matrix multiplication. In Complexity of
computer computations (Proc. Sympos., IBM Thomas
J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 31–40. Plenum, New York, 1972.

[7] C. M. Fiduccia. On the algebraic complexity of matrix
multiplication. PhD thesis, Brown Univ., Providence,
RI, Center Comput. Inform. Sci., Div. Engin., 1973.

[8] J. von zur Gathen and J. Gerhard. Modern computer
algebra. Cambridge University Press, 1999.

[9] G. Hanrot, M. Quercia, and P. Zimmermann. The
middle product algorithm, I. Speeding up the division
and square root of power series. Technical report, RR
INRIA 4664, 2002.

[10] J. van der Hoeven. Relax, but don’t be too lazy.
Journal of Symbolic Computation, 34(9):479 – 542,
2002.

[11] J. Hopcroft and J. Musinski. Duality applied to the
complexity of matrix multiplication and other bilinear
forms. SIAM Journal on Computing, 2:159–173, 1973.

[12] E. Kaltofen. Challenges of symbolic computation: my
favorite open problems. Journal of Symbolic
Computation, 29(6):891–919, 2000.

[13] E. Kaltofen and L. Yagati. Improved sparse
multivariate polynomial interpolation algorithms. In
P. Gianni, editor, Proceedings of ISSAC’88, volume
358 of LNCS, pages 467–474. Springer Verlag, 1989.

[14] M. Kaminski, D. Kirkpatrick, and N. Bshouty.
Addition requirements for matrix and transposed
matrix products. Journal of Algorithms, 9(3):354–364,
1988.

[15] G. Lecerf and É. Schost. Fast multivariate power
series multiplication in characteristic zero. SADIO
Electronic Journal on Informatics and Operations
Research. To appear, manuscript of December 2002.

[16] P. L. Montgomery. An FFT extension of the elliptic
curve method of factorization. PhD thesis, University
of California, Los Angeles CA, 1992.

[17] P. Penfield, Jr., R. Spencer, and S. Duinker. Tellegen’s
theorem and electrical networks. The M.I.T. Press,
Cambridge, Mass.-London, 1970.

[18] V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net.

[19] V. Shoup. A fast deterministic algorithm for factoring
polynomials over finite fields of small characteristic. In
Proceedings of ISSAC’91, pages 14–21. ACM, 1991.

[20] V. Shoup. A new polynomial factorization algorithm
and its implementation. Journal of Symbolic
Computation, 20(4):363–397, 1995.

[21] V. Shoup. Efficient computation of minimal
polynomials in algebraic extensions of finite fields. In
Proceedings of ISSAC’99, pages 53–58. ACM, 1999.

[22] B. Tellegen. A general network theorem, with
applications. Philips Research Reports, 7:259–269,
1952.

[23] R. Zippel. Interpolating polynomials from their values.
Journal of Symbolic Computation, 9(3):375–403, 1990.

44

