
Computational Mathematics

Inspired by RSA

submitted by

Nicholas A. Howgrave-Graham

for the degree of Ph.D

of the

University of Bath

1998

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Nicholas A. Howgrave-Graham

Summary

The contents of this thesis have been based on the mathematics encountered in public

key cryptography; most notably that of the RSA cryptosystem. The thesis itself is split

into �ve main parts, which are outlined below.

Part I: Chapter 1 gives an introduction to cryptography, and also introduces each of

the subsequent chapters in detail. The notation used throughout the thesis may

be found in Appendix A.

Part II: The second part of the thesis is just one chapter, but it is of a di�erent avour

to the rest of the work. It considers the study of smooth numbers in relation to

detecting torsion in a group, and shows that certain smoothness constraints make

this problem easier than may be thought.

Part III: The third section of the thesis holds the majority of the work. It starts

in Chapter 3 by giving a solid introduction to the theory of lattices, proving

numerous results. These results are then applied to �nding small solutions of

bivariate Diophantine equations in Chapters 4 and 5. The �rst to be studied are

the univariate modular equations, and a novel approach is given for their solution.

Chapter 5 then looks at the factorisation equation xy = N showing that this can

also be treated in a similar way. The method is extended to allow for factoring

over Gaussian integers, factoring of numbers with repeated factors, and analysing

factors which lie in residue classes.

Part IV: In Chapter 6 we consider Wiener-type attacks, i.e. exploiting the use of a

small private exponent in RSA cryptography. We give an overview of the problem,

and then show that if one has many public exponents all corresponding to small

private exponents modulo N , then one can improve on Wiener's original attack

considerably.

Part V: Finally, in Chapter 7, we summarise in detail the work of this thesis, showing

the original results that have been proved and highlighting the problems that

remain open.

i

Acknowledgements

Most notably I would like to thank my supervisor James Davenport for his expert

knowledge in so many areas, and his guidance throughout; it has been most kindly

appreciated.

I would also like to thank my CASE sponsors, GCHQ, for their �nancial support, and

interest in my PhD. It was an enjoyable and rewarding experience to share my work

with them, and I would particularly like to thank Cli� Cocks and Peter Covey-Crump

for their encouragement.

I was fortunate enough to spend a little time at IBM, Yorktown Heights nearing the

end of the PhD, and for this I am deeply indebted to Don Coppersmith. In fact Don

has had a large impact on this thesis, both through the work he has published, and

many private communications, and his inuence has been most warmly received.

Other people who have directly had a positive impact on the PhD or my interest in

mathematics include Marc Joye, Noel Lloyd, James McKee, S. V. Nagaraj, Richard Pinch,

Paul Terrill, Jean-Pierre Seifert, and Igor Shparlinski. Thank you all.

Of course I would have gone completely mad without my friends in the Computing

Group at the University of Bath and I would particularly like to mention Natee, Dave,

Bill, Jeremy, Nam, Jet and John.

Lastly, but perhaps mostly, I'd like to thank Samantha, who's love and general support

over the last few years has been my great source of happiness and strength.

ii

Contents

1 Introduction 2

1.1 An overview of cryptology . 2

1.2 RSA cryptology . 5

1.2.1 Other RSA type cryptosystems 7

1.2.2 Factoring large integers . 7

1.2.3 Low private exponent attacks . 8

1.2.4 Low public exponent attacks . 8

1.2.5 Implementation attacks . 9

1.3 The structure of the thesis . 10

2 Detecting group torsion 16

2.1 Smooth numbers . 16

2.2 Addition chains . 18

2.3 Detecting group torsion . 24

2.3.1 Pollard's (p� 1) factoring method 25

2.3.2 On a cryptosystem of Vanstone and Zuccherato 26

2.4 De�cient numbers . 27

2.4.1 The use of 1-de�cient numbers 30

2.4.2 The use of n-de�cient numbers 32

2.4.3 An incremental algorithm . 33

2.5 Conclusions . 34

iii

3 Lattices 37

3.1 An introduction to lattices . 38

3.2 Basic properties of lattices . 43

3.3 Lattice basis reduction . 48

3.3.1 The LLL algorithm . 50

3.3.2 Extensions . 57

3.4 The dual lattice and LLL . 58

3.5 Unitary lattices and LLL . 62

3.6 Further extensions of LLL . 66

4 Finding small roots of modular equations 68

4.1 The method . 69

4.2 A review of Coppersmith's method . 71

4.3 Examples . 73

4.3.1 Coppersmith's method . 74

4.3.2 The alternative method . 77

4.3.3 A graphical explanation of the new methods 78

4.4 The connection between the methods . 79

4.5 Slight improvements . 80

4.5.1 Removing the constant column 80

4.5.2 Including di�erent polynomials 81

4.6 Implementations and practical results 82

4.7 Algebraic univariate modular equations and general multivariate equations 85

4.7.1 Bounding an algebraic polynomial 88

4.7.2 An integral basis for the ideal . 89

4.7.3 The lattice and general result . 91

4.7.4 An example . 93

4.7.5 Conclusions . 95

iv

4.8 Applications to low exponent RSA . 95

4.8.1 One small block of unknown plaintext 95

4.8.2 Broadcast attack . 96

4.8.3 Repeated message and short pad attack 97

4.8.4 Many small blocks of unknown plaintext 98

5 Factoring 99

5.1 Coppersmith's approach . 99

5.2 An alternative method . 101

5.3 Factoring over the Gaussian integers . 103

5.3.1 An application . 104

5.4 Factoring numbers with repeated factors 106

5.4.1 The method . 106

5.5 Divisors in residue classes . 108

5.5.1 An application to RSA . 109

5.5.2 The method . 110

5.5.3 Results . 113

5.5.4 Conclusions . 116

6 Wiener-type attacks on RSA 119

6.1 Low private exponent attacks on RSA 121

6.1.1 Wiener's approach . 121

6.1.2 Guo's approach . 122

6.1.3 Boneh and Durfee's approach . 123

6.2 An extension in the presence of many small decryption exponents 123

6.2.1 Preliminaries . 124

6.2.2 RSA in the presence of 2 small decryption exponents 125

6.2.3 RSA in the presence of 3 small decryption exponents 126

6.2.4 RSA in the presence of 4 small decryption exponents 127

v

6.2.5 The general approach . 128

6.3 Practical results . 132

6.4 Open problems . 134

7 Conclusions and open problems 136

7.1 Results . 137

7.2 Open problems . 139

A Notation 141

References 142

vi

Part I:

Introduction

1

Chapter 1

Introduction

In this chapter we give an idea of where this thesis stands in the area of cryptology

and computational mathematics. To this end the �rst section gives a broad account of

cryptology whilst the second section deals with the RSA cryptosystem in particular.

Section 1.3 then details each of the subsequent chapters and their relevance to today's

cryptology.

1.1 An overview of cryptology

Before de�ning cryptology let us turn our attention to cryptography. Cryptography, par-

ticularly public key cryptography, is a fascinating area of current research, in which the

work relies heavily on computational results in pure mathematics (especially number

theory), combined with practical computing experience.

The history of cryptography is also fascinating, and a good non-technical account of this

is given in (Kahn, 1967). More up to date and technical references include

1

(Menezes

et al., 1996), (Schneier, 1996) and (Pinch, 1997) from which most of the following

information comes.

Cryptography can be de�ned to be the study of mathematical techniques to achieve

information security goals. In today's society these goals are diverse, and range from

such things as ensuring that messages are being passed without being tampered with

(data integrity), or without being understood by unauthorised parties (privacy) to

ensuring that one knows who one is talking too (authentication) and that this person

1

There are of course many more references than these, see for instance the references held within

them.

2

cannot, at a later stage, deny having sent a message they did

2

(non-repudiation).

A particular set of primitives for achieving (some of) these goals is referred to as a

cryptosystem. A cryptosystem can be measured against criteria such as the goals it

meets, the security it o�ers, its performance and the ease of its implementation.

To meet an information security goal invariably one must describe a protocol (i.e. set

of rules / distributed algorithm) that the relevant parties should follow. However one

must take in to account that there may be malicious parties either \listening in" or

editing any information being passed, and also that some of the \legitimate" members

of the protocol may also wish to undermine the information security goal.

For instance the following diagram represents the situation where one party (named

Alice) wishes to send a message m to a second party (named Bob) ensuring the secrecy

of the message, i.e. that any other party (e.g. the one named Eve) cannot recover the

message either by passively \listening in" to any exchanged information, or actively

interfering

3

with the exchanged information.

A simple protocol for secrecy (a cipher)

m 2 M; k

A

2 K

E

K

A

:M! C

E

K

A

(m) = c

Alice Bob

Eve

c
k

B

2 K

D

K

B

: C !M

D

K

B

(c) = m

In the above situation it is assumed that Alice and Bob are in possession of keys

K

A

; K

B

2 K respectively; the set K is referred to as the key space. LetM denote the

set of all possible messages; this is called the message space. Alice encrypts the message

m 2 M by applying an encryption function E

K

A

: M ! C, E

K

A

(m) = c dependent

on the key K

A

. The image, C, of the encryption function is called the ciphertext space.

Bob then decrypts the message by applying a decryption function D

K

B

: C !M which

2

i.e. it ought to be possible to prove to a third party that the second party did send the message.

3

In this simple privacy model an active attack will not help Eve read the message m though it might

be possible to prevent Bob from receiving a valid message. Also it makes no sense to assume that Bob

is malicious since we are sending him the message.

3

should satisfy

D

K

B

(E

K

A

(m)) = m for all m 2 M, (1.1)

for the particular values of K

A

and K

B

.

It is sound cryptographic practice to assume that the spaces M; C and K are public

knowledge

4

and so are the functions E

K

A

and D

K

B

for all K

A

; K

B

2 K. The security

of this protocol rests on how hard it is for Eve to deduce m 2 M from c 2 C, which is

clearly no harder than determining K

B

2 K.

In describing protocols throughout this thesis, we will keep to the use of Alice and

Bob (A and B) to signify the legitimate parties involved in a protocol, and Eve (the

eavesdropper) to denote an attacker (either passive or active).

As mentioned above, the design of protocols for achieving information security goals

is referred to as cryptography. Conversely an analysis of attacks on cryptographic

protocols is referred to as cryptanalysis, and the study of both of these �elds is called

cryptology; as in the title of this section.

The cryptanalysis of ciphers can be aimed either at determining the deciphering key

K

B

2 K or uncovering a particular message m 2 M from its ciphertext c 2 C. The

former of these (key recovery) would imply that Eve was able to read all messages sent

to Bob, and achieving this is considered to have completely \broken" the cryptosystem.

The latter (speci�c message recovery) is less disastrous, but is still of serious concern,

and one should ensure that neither of these situations can occur with non-negligible

probability.

Often in cryptanalysis one assumes that there is further information available to the

attacker, for instance one might assume that it is possible to get hold of the (possibly

physical) enciphering or deciphering algorithms without knowledge of the underlying

keys.

Even if it can be shown that it is infeasible

5

to determine the key K

B

or the message

m from its ciphertext c the protocol may still be attacked. For instance Alice may

have been fooled in to the disastrous situation of using a key K

A

corresponding to Eve

rather than Bob, or perhaps Eve observed Bob's action when a particular message was

sent and resends this ciphertext to hopefully induce the same behaviour (without ever

4

Or rather it is weak to assume this information will remain secret inde�nitely.

5

The infeasibility might be due to assuming the attacker has polynomial time computing power to

attack the cryptosystem, or that the problem is at least as hard as a well known hard mathematical

problem.

4

understanding the underlying message). To aid cryptographers prove the security of

protocols the use of formal logic on protocol analysis is suggested in (Burrows et al.,

1990).

In the cipher above we assumed that Alice and Bob were in possession of keys K

A

and K

B

such that equation 1.1 was satis�ed. However as the attack in the previous

paragraph shows, it is imperative that Alice receives the correct key K

A

corresponding

to Bob's key K

B

. Therefore a large and important part of cryptography is to do with

issues concerning key management, e.g. the distribution of keys, the updating and

storing of keys, and the certi�cation of valid keys.

There are two important branches of cryptography at present; public-key cryptography

and private-key cryptography. In public-key cryptography Bob makes public a key K

0

which is related to his secret key K

B

. For instance in the cipher example above, Alice

might use this key as her encryption key K

A

(i.e. it satis�es equation 1.1). This sets

up a one-way secure line

6

to Bob from anyone interested in sending him a message. It

must clearly be infeasible for Eve to deduce K

B

from Bob's public key K

0

. By contrast,

in private-key cryptography, one can easily determine the key K

A

from K

B

and vice

versa (in fact they are very often the same key) and thus both must remain secret.

The idea for public key cryptography was �rst given

7

in 1976 (Di�e & Hellman, 1976),

and the �rst e�ective public key cryptosystem (rather than simply a protocol for key

exchange), RSA, was then discovered in 1978 (see (Rivest et al., 1978)).

At present the challenge facing practical cryptography is to identify the required in-

formation security goals and to set in place world standards for secure and e�cient

protocols which achieve them. In this process it is useful to \build up" protocols from

the notion of underlying secure primitives.

1.2 RSA cryptology

As mentioned in Section 1.1 RSA (see (Rivest et al., 1978)) was the �rst practical public-

key cryptosystem invented after the existence of such systems had been speculated in

(Di�e & Hellman, 1976). In this section, because of the enormity of the subject, we can

only give a summary of the attacks and variations on RSA cryptography. An interested

6

Often this secure line is used to send a private key, since in practice private key cryptography is

often quicker that its public key counterpart.

7

At least this was the �rst published result available to the academic community. Readers interested

in the non-public history of public-key cryptography (alternatively named non-secret encryption) should

visit http://www.cesg.gov.uk/about/nsecret.htm

5

reader is encouraged to look at (Boneh, 1999) and (Joye, 1997) from which most of

this information directly comes.

Transmitting secure messages

Let � denote the Carmichael lambda function, i.e. �(pq) = lcm(p � 1; q � 1) for any

primes p and q. The RSA protocol is a method for setting up a one-way secure channel

to Bob from \anyone else". In order for this to work Bob must, in private, decide upon

primes p and q, and a number e, and then (still in private) he calculates N = pq and

8

d = e

�1

(mod �(N)). He then publishes the values of N and e.

Anyone wishing to send a message x to Bob, Alice say, reads Bob's public values of N

and e, and then sends y = x

e

(mod N).

Bob is able to decrypt this message by raising it to the power d modulo N , since

y

d

= x

de

= x (mod N) by an extension of Fermat's little theorem, i.e. taking d'th

powers is equivalent to taking e'th roots modulo N = pq when de = 1 (mod �(N)).

Typically Bob would choose the primes p and q to be of approximately the same size,

to make the factoring of N as hard as possible. A suitable size for N given todays

computing technology might be around 300 decimal digits, or 1024 binary digits. Of

course, the reason Bob wishes N to be hard to factor is that if anyone could �nd p and

q then they could calculate d in the same way Bob did, and thus deduce x from the

intercepted message y = x

e

(mod N).

In practice, Bob might wish to decrypt the message y by making use of the Chinese

remainder theorem (CRT), i.e. when forming his private information he also calculates

d

p

= d (mod p�1), d

q

= d (mod q�1) and (from the extended Euclidean algorithm)

u and v such that

u =

(

1 mod p

0 mod q;

v =

(

0 mod p

1 mod q:

Then to �nd x = y

d

(mod N) it su�ces to �nd x

p

= y

d

p

(mod p) and x

q

= y

d

q

(mod q), whereupon x = ux

p

+ vx

q

(mod N). This takes approximately a quarter

of the time of conventional exponentiation modulo N . However to use this technique

notice that Bob must keep the primes p and q, which may be a security risk in itself.

8

Actually e and d are interchangeable in the sense that Bob could choose d �rst and then calculate

the e that satis�es this property.

6

Signing messages

Bob's private information may also be used in a protocol for signing messages. If Alice

wishes Bob to sign a message x, she could send it to him as plain x, and then he returns

z = x

d

(mod N). Alice can then verify that Bob signed the message by raising it to

the (public) power e modulo N , since z

e

= x

de

= x (mod N).

1.2.1 Other RSA type cryptosystems

The basic idea behind RSA can be extended to other structures, including Lucas se-

quences (the LUC cryptosystem) and elliptic curves (the KMOV and Demytkov's cryp-

tosystems). It is not the aim of this thesis to discuss these variants, but an interested

reader may �nd details in (Joye, 1997) and (Pinch, 1997).

1.2.2 Factoring large integers

As mentioned above the RSA protocol is no more secure than factoring the integer N .

For this reason p and q are chosen to be very large and approximately the same size

(but not too close; see for example the attack in Section 5.3), since this \shape" of

factorisation seems the hardest to factor.

The most e�cient general purpose factoring algorithm presently known is the General

Number Field Sieve (GNFS), which has a running time of

exp

�

(c+ o(1))m

1=3

log

2=3

(m)

�

for some 1 < c < 2 when applied to an m-bit integer. The RSA parameters are chosen

so as to make this attack completely infeasible. However if the integer N has a special

form, e.g. (p � 1) is only comprised of small prime factors, then there may be more

e�cient factoring methods (see Section 2.3.1). One should make sure that the modulus

N is not susceptible to any of the known factoring attacks.

Very recently the 140 digit RSA challenge modulus RSA-140 was factored using the

GNFS in a time estimated to be equivalent to 2000 mips years. It did indeed have two

70 digit prime factors; see (RSA140, 1999) for details.

It is known (and shown for example in (Boneh, 1999)) that knowledge of a pair e and

d such that ed = 1 (mod �(N)) enables one to factor N . This implies that if two

parties are using the same modulus N , supposedly without knowledge of p and q (but

with knowledge of their own e

i

and d

i

), then they are able to factor N and decipher

7

each others messages.

Conversely it is an interesting theoretical question to ask whether being able to take

arbitrary e'th roots modulo N leads to a polynomial time factoring of N . It was

recently shown in (Boneh & Venkatesan, 1998) that this may not be true in general, in

particular for small e, since if it were then one could devise a general polynomial time

factoring method (and this is thought unlikely). This means, at least for small e, that

breaking RSA may not be as hard as factoring.

1.2.3 Low private exponent attacks

Let us assume that RSA is being used with the standard (i.e. non-CRT) decryption

process, and also assume that Bob has chosen a small d to speed up this process. It

was shown in (Wiener, 1990) that if jdj < N

1=4

(and assuming the likely situation that

e=n � 1) then there exists a polynomial time algorithm to �nd d, and hence to factor

N . These kinds of results are discussed in detail in Chapter 6.

1.2.4 Low public exponent attacks

In a similar vein to Section 1.2.3 Bob may wish to ensure that e is relatively small to

allow Alice, say, to encrypt information to him quickly.

Coppersmith has shown in (Coppersmith, 1996b) that the small solutions to a univari-

ate modular polynomial may be found in polynomial time using lattice basis reduction,

and he further showed in (Coppersmith, 1996a) that similar techniques could factor an

integer N given the top (1=4 + ") bits of one of its factors. Indeed these results were

the main motivation behind the work in Chapters 4 and 5.

One may use these results (and others) on low exponent RSA to discover information

in (at least) the following situations.

Partially known plaintext: If Eve can guess the plaintext of an encrypted message

apart from one block of data (at a known position in the message) then she can

discover this unknown block provided that it is su�ciently small.

Broadcast attack: If Alice wishes to send a message to many people using di�erent

RSA moduli, but uses a polynomial of low degree to hide the fact they are the

same message, the message may still be uncovered if the number of recipients is

large enough.

8

Related messages: If Alice sends Bob two messages which are related by a known

low degree polynomial relationship then both messages may be quickly deter-

mined.

Short pad attack: If Alice sends two messages to Bob which only di�er by a small

amount, say they only di�er by a small amount of random padding

9

, then the

message can still be deciphered.

Partial key exposure attack: If Eve can uncover the bottom bn=4c bits of the

decrypting exponent d then she can reconstruct the rest of the bits, and hence

factor N .

The details of these attacks are left until Chapters 4 and 6 when we will have developed

the necessary tools for their analysis.

1.2.5 Implementation attacks

Any information that Bob decrypts should be treated as secret, even if it does not seem

to make any sense at all. This is borne out of the following example due to (Davida,

1982). If Eve intercepts a message y = x

e

(mod N) to Bob and changes it (referred to

as \blinding" the message) to z = k

e

y = (kx)

e

(mod N) for some randomly chosen k,

then when Bob calculates z

d

= kx (mod N) the message (probably) makes no sense.

If he discards it in a place accessible by Eve, then all Eve must do is divide by k modulo

N to reveal the true message x.

A similar security risk is described in (Bleichenbacher, 1998) it is shown that if an

application expects the encrypted information to be a speci�c format (in this case the

(now outdated) PKCS#1 standard), and the application returns an error message if

this is not the case, then it is possible to use multiple adaptations of an intercepted

message to actually deduce the intercepted message completely. This is a clear warning

to keep all information about the decrypted message secret. This includes the situation

of signing messages. Bob should only return signed messages that he understands (and

agrees to!) since otherwise the technique of blinding can be used to get Bob's signature

for something he would not like to apply it to.

Another, more serious, instance of taking care with signing is when the CRT variant

of RSA is being employed. In this case, as observed by A. K. Lenstra, if there is a

transient fault in the decryption protocol (possibly encouraged by Eve by bombarding

9

Or perhaps a timestamp.

9

a smartcard with electromagnetic radiation, or just observed by Alice from a signature

that did not verify) then this might allow Eve or Alice to factor N . For example,

if a fault occurs during the modulo p exponentiation, but not during the modulo q

exponentiation, then the signed message z will be correct modulo p, but not modulo

q, i.e.

z = x

d

(mod p)

z 6= x

d

(mod q)

)

z

e

= x (mod p)

z

e

6= x (mod q)

) gcd (z

e

� x;N) = p:

This is very serious since it gives away the factorisation of N , so allows the discoverer

to sign fraudulently in the place of Bob. It is however possible and advisable for Bob

to take time to check that z

e

= x (mod N) before sending the signed message.

A completely di�erent type of attack was devised by Kocher in (Kocher, 1996) using

information on the speed of signing known messages to deduce the bits of the decrypting

exponent. Rivest has pointed out that this attack can be circumvented by \blinding"

the message in a similar way to Davida's attack, so that the attacker no longer knows

the messages being decrypted. More recently Kocher also showed that from the power

analysis of a smartcard one could deduce the bits of the exponent d since the power

consumption for a multi-precision multiplication is above average.

1.3 The structure of the thesis

In this section we detail the structure of the thesis, and the speci�c interest of each

chapter. Note that there is no chapter devoted to background mathematics; rather

the background is introduced where necessary. Most notably this occurs at the start

of Chapter 2 (smooth numbers, addition chains, and the detection of torsion) and

Chapter 3 (lattices). This was done to make the respective chapters more self-su�cient,

and not to arti�cially group together such di�erent areas of mathematics.

The thesis itself is split in to �ve main parts, of which this introductory chapter is the

�rst; we now describe the remaining parts.

Part II: On detecting group torsion

The second part of the thesis is just one chapter, but it is of a di�erent avour from

the rest of the work. It considers the study of smooth numbers in relation to detecting

torsion in a group.

The chapter starts by giving a brief analysis of smooth and semi-smooth numbers, and

10

the Dickman-de Bruijn distribution function.

In the following section a fairly thorough treatment of addition chains for both integers

and more importantly sets of integers is given. We start by showing their link with

powering algorithms, and show examples of the binary and factor addition chains. We

also give reference to the graph theoretical model of addition chains and state the main

theorems concerning the function l(n). We then de�ne the concept of T -reliant addition

chains to re-place the ideas of (Brickell et al., 1992) in an addition chain framework,

and discuss the consequences of this in connection to �nding e�cient addition chains

for sets of integers.

The next section is concerned with the detection of torsion. It starts by de�ning

what we mean by detecting torsion, and then details the use of this in Pollard's p � 1

factoring algorithm. The large prime variant of this algorithm is discussed, as are the

higher order \cyclotomic group" extensions. We also briey touch on the elliptic curve

factorisation method. We then show how the detection of torsion can also aid the

breaking of a cryptosystem proposed by Vanstone and Zuccherato, and highlight the

slightly di�erent nature of this problem.

The last section of the chapter introduces the notion of de�cient numbers, and shows

how to classify and produce such numbers. We then show that when arti�cial smooth-

ness constraints are placed on the size of a group, as in Vanstone and Zuccherato's

cryptosystem, the problem of detecting torsion can be speeded up with the use of an

algorithm that employs de�cient numbers. We also explore the use of parallel processors

in this problem.

Part III: Lattice methods for �nding small solutions to Diophantine

equations

This part of the thesis is by far the largest, and explores the mathematics behind the

relatively new lattice methods due to Coppersmith for �nding small solutions to various

Diophantine equations.

The work starts by explaining lattices in detail, and giving the relevant de�nitions

and theorems used in subsequent chapters. We then consider modular polynomial

equations, concentrating mostly on univariate modular equations. Finally we consider

the equation xy = N , and hence derive some interesting new results on factoring. These

chapters are discussed in more detail below.

11

Lattices

We describe the theory of lattices in some detail. This starts by touching on their roots

in linear algebra and explaining the Gram-Schmidt orthogonalisation procedure. We

then de�ne the algebraic concept of lattices via the notions ofZ-modules and quadratic

forms. We show how the use of a concrete basis allows us to move from this (rather

platonic) algebraic situation to representing lattice elements as vectors, and quadratic

forms and alternative bases as matrices.

The concept of lattice equivalence is then introduced which leads on to a second,

equivalent, notion of a lattice, and this is the one maintained throughout the thesis.

The introductory section on lattices concludes by stating some interesting problems

concerning lattices and the complexity classes of their solution, and then shows a few

of the uses of lattices in present-day computational mathematics and cryptanalysis.

The second section considers the basic properties of lattices, such as the determinant of

a lattice, and the successive minima of the quadratic form. The results achieved here

are used extensively in later sections.

In the next section we consider the problem of recognising and e�ectively producing,

a reduced basis for a lattice. We introduce the notions of a weakly reduced basis, a

KZ-reduced basis, and �nally an LLL-reduced basis.

We study in detail the implications of a LLL reduced basis, and introduce the slightly

weaker notion of an e�ectively LLL-reduced basis. We then consider the LLL reduction

algorithm in some detail and touch on some of its extensions.

We then progress by showing the connection between the LLL reduction criteria and

the concept of the dual of a lattice. This has implications on the work in Chapter 4.

The �nal sections of this chapter then deal with extending the notion of lattice reduction

to lattices over number �elds. Section 3.5 is independent work, which introduces the

notion of unitary lattices (i.e. those over the Gaussian integers), and details all the

steps (analogous to those in the integral case) for the working of the LLL algorithm over

such structures. However, as explained in Section 3.6, this problem has been previously

looked into in the general context of lattices over number �elds.

Finding small roots of modular equations

In Chapter 4 we consider the problem of �nding small solutions to modular equations;

particularly univariate modular equations.

12

Both Coppersmith's approach and an alternative method are shown to be valid tech-

niques both theoretically, and on a given example. The alternative technique is then

explained from a graphical point of view. The connection between the two methods is

actually based on the theory of dual lattices and LLL given in Section 3.6, as explained

in Section 4.4.

There are a few relatively simple improvements that can be brought to bear on the

basic algorithm, and these are discussed in Section 4.5.

The practical results achieved from an implementation of the algorithm written by

the author (in C) are then given. These show the e�ect on the running time of the

algorithm due to both an increase in the degree of the univariate polynomial, or an

increase in the size of the solutions that are being searched for (necessarily less than a

theoretical limit). It is also shown that there are optimal choices of the size of solutions

searched for, for a given polynomial. Finally the bene�ts of the small improvements to

the algorithm explained in Section 4.5 are analysed.

In the next section of the chapter, we briey turn our attention to multivariate modular

equations, and indeed general Diophantine equations. We explain the approach taken

in (Jutla, 1998), and show that a lemma from Chapter 3 slightly improves on this

result.

The chapter concludes by showing how the use of �nding small solutions to modular

polynomial equations a�ects the security of the RSA cryptosystem. This includes

attacks in the following situations:

� when there is only one small block of unknown plaintext,

� (Hastad's) broadcast message situation,

� when a message is repeated with only a small change in random padding,

� when there are many (very) small blocks of unknown plaintext.

The last of these attacks is a new result in this �eld.

Factoring

In Chapter 5 we analyse the equation xy = N in a similar way to (Coppersmith,

1996a). However we show that one can use a \modular" approach similar to that used

in Chapter 4 that has a simpler exposition, and analysis, and removes the need for

resultant calculations.

13

We then extend this factoring algorithm to one over the Gaussian integers, and show

how this helps to factor a particular class of integers which are used in a cryptosystem

by Vanstone and Zuccherato.

The following section deals with factoring numbers which have repeated divisors. We

show that the lattice techniques are particularly e�ective in this situation, and even

for N = p

2

q we have an O(N

1=8

) factoring algorithm.

The last section of this chapter consider the problem of �nding divisors of an integer N

which lie in known residue classes. One method to construct such divisors follows from

(Coppersmith, 1996a), but we extend the modular approach to give a simpler method

to analyse these divisors and bound the number of them. We compare our results with

those previously obtained by H. W. Lenstra.

Part IV: Wiener type attacks on RSA

The fourth part of the thesis considers attacks on RSA when a low decrypting exponent

is being used. We describe the general technique of Wiener, and then briey touch on

a better result recently achieved by Boneh and Durfee.

We then consider the approach taken by Guo, in which one studies the related problem

of breaking RSA when one has knowledge of more than one encrypting exponent, each

with relatively small decrypting exponents modulo a given N . Such a position could

possibly occur if one is using di�erent exponents to sign di�erent classes of message,

but is content with just one choice of N . We improve on Guo's results and in fact

show that as the number of such exponents tends to in�nity, one can factor the integer

N when the decrypting exponents are as large as N

1�"

. However the approach is not

feasible with more than about 10 exponents.

Part V: Conclusions and open problems

Finally, in Chapter 7, we summarise in detail the work of this thesis, showing the

original results that have been proved and highlighting the problems that remain open.

Appendix A details the mathematical notations and abbreviations that are used through-

out the thesis.

14

Part II:

On Detecting Group Torsion

15

Chapter 2

Detecting group torsion

In this chapter we aim to give, in Section 2.4, a result that aids the detection of group

torsion when we have de�nite bounds on the smoothness of the group order. Before this

result can be described we must give brief overviews of the notions of smooth numbers,

addition chains and the detection of torsion; these are the subjects of Sections 2.1, 2.2

and 2.3. The work in Section 2.2 contains the novel notion of T -reliant addition chains.

2.1 Smooth numbers

In this section we de�ne the notion of smooth and semi-smooth numbers, and then

discuss the distribution of these numbers. They have been the objects of a considerable

amount of study to understand better the probabilities involved in algorithms that use

factor bases (see, for example Chapter 9, of (Cohen, 1991)) and for algorithms that

detect torsion (see Section 2.3).

The study of smooth numbers began in (de Bruijn, 1951); the criterion for being smooth

was that they were \crossed o�" during the sieve of Eratosthenes. We may state this

more precisely as the following.

De�nition 2.1.1 A number x is said to be y-smooth if all the prime divisors of x

are � y.

For detailed information on the distribution and study of smooth numbers see (Hilde-

brand, 1986), (Hildebrand & Tenenbaum, 1986), (Moree, 1993) and (Tenenbaum,

1995). However the use of smooth numbers in this chapter does not warrant exces-

sive analysis, and for this reason we only give a brief overview of this subject, based

16

mainly on a short summation in (Pinch, 1997).

Let S(x; y) denote the set of y-smooth numbers up to x (where x is not necessarily an

integer), and let (x; y) = jS(x; y)j. If we let p be the largest prime � y, then it is

clear that S(x; y) = S(x; p). For any s 2 S(x; p) it is either divisible by p or it is not;

if it is then s=p is in the set S(x=p; p) otherwise s is in the set S(x; p

0

) where p

0

is the

previous prime to p. This implies that (x; y) = (x; p

0

) + (x=p; p). By repeated use

of this idea we have for any z that

 (x; y) = (x; z) +

X

z<p�y

�(x=p; p); (2.1)

(the summation being over prime p only) which is called Buchstab's identity.

If we let u = log(x)= log(y) and u � 1 then it is clear that (x; y) = bxc. The situation

is more interesting when 1 < u � 2 in which case (placing z = x in equation 2.1 and

hence negating the summation) we obtain

 (x; y) = bxc �

X

y<p�x

�

x

p

�

� x(1� log u);

the latter approximation coming from the Prime Number Theorem.

By induction on buc it can be shown that (x; y) � x�(u) where

�(u) = �(k)�

Z

u

k

�(v � 1)

dv

v

; (2.2)

for k < u � k+1. This is called the Dickman{de Bruijn function, and it can be shown

that �(u) � u

�u

as u!1.

In plain terms this means that the fraction of y-smooth numbers less than x depends

only on u = log(x)= log(y) and is approximately u

�u

.

The idea of smooth numbers can be extended to the following types of number.

De�nition 2.1.2 A number x is said to be (y; z)-semi-smooth if each of its prime

factors is � y, and all but one are � z.

Many algorithms that make use of y-smooth numbers may be adapted slightly to use

semi-smooth numbers, and thus be speeded up signi�cantly because of the increased

likelihood of x being semi-smooth rather than just smooth (for suitably chosen x; y; z).

The adaptations to the algorithms are often referred to as large prime variants; see

Section 2.3.1 for an example.

17

One can, as above, de�ne (x; y; z) to be the number of (y; z)-semi-smooth numbers

up to x, and to try to work out the distributions for semi-smooth numbers. This has

been done in (Bach & Peralta, 1996). The formula for semi-smooth numbers is not

quite as simple as that for smooth numbers, but in both cases, due to error terms, it

is better to rely on pre-calculated tables. Below we show a few (low precision) results

from the table in (Bach & Peralta, 1996) to give an idea of the probabilities involved

(�(v; u) is the 2-dimensional equivalent of �(u)).

 (t

10

; t) = (t

10

; t; t) � �(10; 10)� 3� 10

�11

 (t

10

; t

2

; t) � �(10; 5)� 5� 10

�9

 (t

10

; t

3

; t) � �(10; 3:3)� 1� 10

�8

2.2 Addition chains

De�nition 2.2.1 An addition chain for a positive integer n is a list of integers a

0

; : : : ; a

r

such that a

0

=1, a

r

= n and a

i

= a

j

+ a

k

for some j; k < i. The length of the chain is

de�ned to be r, and l(n) denotes the smallest possible length of chain for an integer n.

Firstly note that one can make an addition chain strictly increasing, i.e. a

i+1

> a

i

by ordering them non-decreasingly and simply removing any duplicate entries. This

implies a

i+1

< 2a

i

, and therefore

l(n) � dlog

2

ne: (2.3)

For example 1; 2; 4; 8; 12; 14; 15 denotes a chain of length 6 for 15, but actually l(15) = 5,

as attained by 1; 2; 3; 5; 10; 15 or 1; 2; 3; 6; 12; 15.

An important application of an addition chain for an integer n is that it implies how

to exponentiate \some element" to the n'th power via repeated multiplication. For

instance if x 2 Z

101

say, and one wished to calculate x

15

then this could be done by 5

multiplications, e.g.

y

0

= x

y

1

= y

2

0

= x

2

y

2

= y

1

y

0

= x

3

y

3

= y

2

y

1

= x

5

y

4

= y

2

3

= x

10

18

y

5

= y

4

y

3

= x

15

where we can see y

i

= x

a

i

= x

a

j

+a

k

= x

a

j

x

a

k

= y

j

y

k

for some j; k < i. An overview of

many exponentiation methods is given in Section 14.6 of (Menezes et al., 1996). As we

will see below they themselves can conversely be associated with (generalised) addition

chains.

The binary addition chain B(n) for an integer n is de�ned to be

B(n) =

8

>

>

<

>

>

:

1 if n = 1;

B(n=2); n if n is even,

B(n � 1); n otherwise.

For instance the longest of the above addition chains for 15 is the binary addition chain

for 15. In general the length of a binary addition chain B(n) is blog

2

nc+�(n)�1 where

�(n) is the number of 1's in the binary expansion of n. This implies that the expected

length of the binary addition chain is (3=2) log

2

n and also that l(n) � 2blog

2

nc. On

comparison with equation 2.3 this shows that the binary addition chain is of length at

most 2 times longer than the length of the optimal addition chain.

Another common addition chain for an integer n is the factor addition chain F (n),

de�ned as

F (n) =

8

>

>

<

>

>

:

1 if n = 1;

F (a); a� F

0

(b) if n = ab,

F (n � 1); n otherwise,

where the list F

0

(n) is the list F (n) but with the �rst entry (i.e. 1) omitted, and

multiplication on addition chains is de�ned by

k � fa

0

; : : : ; a

r

g = fka

0

; : : : ; ka

r

g:

Notice that this addition chain implies that l(ab) � l(a) + l(b). On average, as quoted

in (Knuth, 1981), the length of the factor addition chain is less than that of the binary

addition chain.

Other examples of addition chains, a thorough analysis of the function l(n), and a graph

theoretic model of addition chains are all given in (Knuth, 1981). A nice summary of

the graph theoretical model of addition chains is also described in (Bleichenbacher,

1996) along with techniques for searching for optimal addition chains. Methods for

e�ciently �nding near optimal addition chains are described in (Brlek et al., 1991). It

19

was shown by Brauer in (Brauer, 1939) that l(n) � log

2

(n) + O(log logn).

The concept of addition chains for a positive integer n may also be extended to a set

of positive integers S = fn

1

; : : : ; n

m

g.

De�nition 2.2.2 An addition chain for a set S of positive integers is an addition

chain containing every element of S. Again we denote by l(S) the minimal length of

an addition chain for S.

It was shown (Downey et al., 1981) that �nding an optimal addition chain for a set S =

fn

1

; : : : ; n

m

g is NP-complete, and the theorem of Brauer was extended in (Yao, 1976)

to show that l(S) � log

2

(N) + c

P

m

i=1

log

2

(n)=(log

2

(log

2

(n

i

+ 2))) for some constant c,

where N = maxfn

i

g

1�i�m

.

We now introduce slightly more general de�nitions of addition chains for integers and

sets.

De�nition 2.2.3 A T -reliant addition chain for a positive integer n is a list of integers

a

1

; : : : ; a

r

such that a

r

= n and a

i

= b+c for some b; c 2 T[A

i�1

where A

i

= fa

j

g

1�j�i

and T is a set of integers. The length of a T -reliant addition chain is de�ned to be r,

and l

T

(n) denotes the smallest possible length of chain for the set S with respect to the

\stored" set T . A T -reliant addition chain for a set S of positive integers is a T -reliant

addition chain such that S � T [A

r

.

This de�nition allows us to \pre-compute" some integers (the ones in the set T), and

then form an addition chain for a set, S say, which is allowed to make use of these

\stored" values. For example if T = f1; 2; 4; 8; 16g and S = f2; 7; 10; 25g then the chain

3; 7; 10; 24; 25 is a T -reliant addition chain for the set S of length 5. Note that an

ordinary addition chain for a set S is equivalent to a f1g-reliant addition chain, with a

1 placed at the start of the chain.

Although we explicitly de�ne T -reliant addition chains for the �rst time here, they have

been implicitly studied in the context of \fast exponentiation with precomputation"

in (Brickell et al., 1992). In fact T -reliant addition chains have been de�ned here to

demonstrate the connection of this work with classical addition chains.

Two interesting question regarding T -reliant addition chains are the size of T , and the

computational cost of calculating T . The �rst of these is simply a matter of how much

storage one is prepared to use, and the second of these is analogous to the length of an

addition chain for the set T .

20

An interesting observation is that T itself could be formed by being reliant on a pre-

pre-computed set T

0

, etc.

In (Brickell et al., 1992) there is no concept of an explicit set S, the problem is rather

to form a set T such that one could form a reasonable T -reliant addition chain for any

given integer s uniformly distributed on f0; : : : ; N � 1g. Of course if we are explicitly

given the set S then the best solution is to �nd an optimal addition chain for this set

S, and there is no concept of T -reliance. However when S is large this seems a hard

problem to attack (indeed as mentioned above it is certainly NP-complete), and so the

approach taken in (Brickell et al., 1992) seems a practical way to proceed. Put another

way, the list ft

i

g; fr

i

g may be a reasonably e�cient addition chain for S, where ft

i

g is

a reasonable addition chain for T , and fr

i

g is a reasonable T -reliant addition chain for

S.

Clearly one may deem the computational cost of producing T as being signi�cant or

not, dependent on memory allowances and the (expected) size of the set S.

In (Brickell et al., 1992) they explain that if

n =

m�1

X

i=0

a

i

t

i

(2.4)

for some set T = ft

0

; : : : ; t

m�1

g and where 0 � a

i

� h, then one may �rstly

1

calculate

c

j

=

X

a

i

=j

t

i

for all 1 � j � h, and then calculate

d

k

=

k

X

j=1

c

h+1�j

= d

k�1

+ c

h+1�k

:

From which it follows that

n =

h

X

k=1

d

k

:

For instance if T = f1; 5; 10; 22; 30g and n = 7� 1 + 3� 5 + 3� 10 + 7� 22 + 2� 30,

1

Conceptually this may happen before the following stages of the algorithm, but as shown in (Brickell

et al., 1992), one can do all parts together.

21

and h = 7 then

n = 7� 23 + 3� 15 + 2� 30

= 4� 23 + 1� (23 + 15) + 2� (23 + 15 + 30); (2.5)

which we calculate by forming a T -reliant addition chain for T

0

= f15; 23; 30g and then

a T

0

-reliant addition chain for T

00

= f23; 38; 68g, and �nally a T

00

-reliant addition chain

for n. Thus the T -reliant addition chain for n is

15; 23; 38; 68; 46; 69; 92; 130; 198; 266;

of length 10, assuming e.g. 4 � 23 is simply worked out by adding 23 four times since

in general most of the coe�cients of equation 2.5 would be 1. It is true that the binary

addition chain for 266 has a shorter length, but as we will see for a good choice of set

T we may improve markedly on this.

Note that (through T

0

) the length of the T -reliant addition chain for T

00

is at most

jT j � 1 (when, as in this case, all the elements of T are used in the representation of n

so we need to add them all to form 68), and the length of the T

00

-reliant addition chain

for n is at most h � 1 (when, as in this case, the largest a

i

is equal to h). Thus the

length of the T -reliant addition chain for n is at most jT j+ h � 2.

In order to put a number n in the range f0; : : : ; N � 1g in the form of equation 2.4 the

approach taken in (Brickell et al., 1992) considers storing a set of the form

T = fjb

i

j 0 � i � blog

b

Nc; j 2 Jg:

for some set J � f�1; : : : ;�(N � 1)g. They associate with J a set D(J; h) = fjk j j 2

J; 0 � k � hg which is designed to be a basic digit set (see (Matula, 1982)) for the base

b.

Since D(J; h) is a basic digit we may use the algorithm ofMatula to �nd a representation

of n of the form

n =

m

X

i=1

a

0

i

b

i

where a

0

i

2 D(J; h);

=

m

X

i=1

a

i

j

i

b

i

for some 0 � a

i

� h and j

i

2 J;

=

m

X

i=1

a

i

t

i

for some t

i

2 T .

22

The choices of base b, set J and integer h (subject to the condition D(J; h) being a basic

digit set for the base b) a�ects the size of T , computational cost of T and computational

cost of �nding a T -reliant addition chain for a general n 2 f0; : : : ; N�1g. Good choices

for b for N = 2

160

and N = 2

512

are given in (Brickell et al., 1992) with [J; h] varying

from [f1g; b�1] to [f�1g; b(b�1)=2c] right through to [fj j 1 � j � b�1; j 6= k2

2i+1

g; 2]

and [fj j 1 � j � b� 1g; 1] (the optimal base b increases as the size of J increases).

To give an idea of the savings achieved even when using [J; h] = [f1g; b� 1] we see that

jT j = blog

b

Nc + 1, so we may �nd a T -reliant addition chain for n of length at most

blog

b

Nc + b � 2, and on average of length

b�1

b

blog

b

Nc + b � 2 assuming (1=b) of the

digits of the base b representation for n are zero. For N = 2

512

the optimal choice of b

is 26 in which case the T -reliant addition chain is of length 127:8 on average (132 worst

case) rather than the 765 on average (1022 worst case) achieved by the binary addition

chain.

In (Brickell et al., 1992) they also explain how this process can be parallelised for a given

n 2 f0; 1; : : : ; N � 1g. From the point of view taken in this section one could therefore

de�ne the concept of parallel (T -reliant) addition chains, and express the results in this

framework. However we leave this as an exercise for the reader and simply state that

with O(logN= log logN) processors the expected time for the necessary additions (i.e.

probably the concept of the expected length of parallel addition chains) is O(log logN).

Thus far we have ignored the cost of computing the set T . If T = fb

i

g

0�i�k

where k =

blog

b

Nc, then we may �rstly �nd an optimal addition chain for b and then repeatedly

use this (akin to the factor addition chain) to produce higher powers of b. The cost

of this is small and, as mentioned before, almost de�nitely better than the binary

addition chain for N with expected length (3=2) log

2

N . When J is larger than simply

f1g we could �nd a good addition chain for J and use this (again akin to the factor

addition chain) to produce jb

i

for each i 2 f0; : : : ; kg and j 2 J . Of course this second

stage could be parallelised by treating each b

i

separately. The most costly case when

J = f1; : : : ; b�1g would entail (b�1)(k+1)�1 additions (the cost of producing the b

i

being reduced to just one extra addition) which could be reduced to an expected time

equivalent to at most (b� 2) + (3=2) log

2

N additions when using k + 1 processors.

Let us end by summing up the total cost for the two important cases J = f1g and

J = f1; : : : ; b� 1g:

� With J = f1g and for some base b we would expect to form an addition chain

for a set S of length at most (3=2) log

2

N + v(

b�1

b

blog

b

Nc + b � 2) when S has

v entries uniformly distributed on f1; : : : ; Ng. The number of values that would

23

be needed to be stored is blog

b

Nc+ 1.

� With J = f1; : : : ; b � 1g for some base b we would expect to form an addition

chain for a set S of length at most (b�1)(blog

b

Nc+1)�1+v(

b

b�1

blog

b

Nc) when

S has v entries uniformly distributed on f1; : : : ; Ng. The number of values that

would be needed to be stored is (b� 1)(blog

b

Nc+ 1).

For example with N = 10

45

(which is relevant to the discussion in Section 2.4.1) the

optimum choice of b for J = f1g is b = 12 in which case the addition chain for S

will be of length approximately 48:2v + 224:3. Since log

2

N � 149:5 this will be an

improvement on �nding optimal addition chains for each s 2 S whenever v � 3.

For the case J = f1; : : : ; b� 1g the optimum value of b is O(v= log v) i.e. dependent on

the size of the set S. This implies the length of the addition chain is O(v log

v

N). If

the storage requirement of O(b log

b

N) exceeds a practical upper limit one can simply

maximise b with regards to this restriction. For instance with v = 2:7 � 10

14

and

b = 10

5

(again relevant to the discussion in Section 2.4.1) then the addition chain for S

will be of length approximately v log

b

N � 9v which is over 5 times shorter than using

J = f1g, and almost 17 times shorter than �nding optimal addition chains for each

s 2 S.

It is worth remarking that when one has a large set S and many processors it is more

e�cient to split S amongst the processors rather than making use of the processors in

parallel exponentiation methods.

2.3 Detecting group torsion

De�nition 2.3.1 An algorithm A is said to detect torsion in the (multiplicative) group

G if given any element g 2 G and n 2Z, it can determine if g

n

is the identity element

of the group.

This may seem a curious notion, because if one has a group, then it might seem easy

to raise it to the power n, using perhaps the addition chain techniques of Section 2.2,

and verify if g

n

is indeed the identity element. However this assumes that one has a

representation of the group in which it is possible to apply the group operation and

also to check for the identity of the group.

24

2.3.1 Pollard's (p� 1) factoring method

Pollard was the �rst to use the detection of torsion to aid the factoring of an integer,

N = pq say. He considered the group (Z

�

p

;�) (where p is prime) and represented the

elements (non-uniquely) as elements of Z

�

N

. One is able to apply the group operation

since multiplication in Z

�

N

respects multiplication in Z

�

p

. Further one is able to detect

a representation x 2 Z

�

N

as the identity element in Z

�

p

since it is either 1 2 Z

�

N

or

gcd(x � 1; N) = p. Therefore, in this group, detection of torsion almost always leads

to �nding a non-trivial factor of N .

One can pick a random element in x 2Z

�

p

by picking a random element in Z

�

N

, but how

is one to know what n will be a multiple of the order of x? To answer this Pollard noted

that the order of Z

�

p

is (p� 1) and he assumed that this was a B-smooth number (i.e.

its largest prime factor is less than or equal to B; see Section 2.1). He also assumed

a maximum bound w on the size of the highest prime power dividing (p � 1). Under

these assumptions he suggested using

n =

Y

d2P

B

d

e

d

(2.6)

where P

B

is the set of primes � B, and d

e

d

� w < d

e

d

+1

. By the Prime Number

Theorem we have v = jP

B

j � B= logB.

It is clear that the order of any element x 2 Z

�

p

must divide (p � 1) which must

divide n under the given assumptions. Therefore by picking a random x 2 Z

�

N

(as a

representation for a random element of Z

�

p

) then an algorithm which detects torsion

will discover p unless we have the extremely unlikely situation that x

n

= 1 2 Z

�

N

(in

which case one should choose a di�erent initial x, and repeat the algorithm).

If we assume that w = B =

p

p (and that (p � 1) is as likely to be as smooth as

any other number of the same magnitude), then n � w

v

�

p

p

p

p= log

p

p

, and therefore

using addition chains we will need approximately logn �

p

p multiplications to detect

torsion. The probability of the smoothness assumption being correct is approximately

1� log 2 ' 0:3, and as we will see in Section 2.4 the condition on w is likely to be true.

We will now briey describe an extension to the algorithm so that, without much

computational e�ort, it can detect torsion if the group order is (B

0

; B)-semi-smooth

rather than requiring it to be B-smooth; the extension is called the large prime variant

of Pollard's (p � 1) method. One �rstly calculates h = g

n

as before, and now one is

(hopefully) in the position that h

m

0

= 1 for one prime power m

0

� B

0

. In fact normally

B

0

< B

2

in which case m

0

is actually a prime � B

0

(rather than a prime power). Let

25

�(x) denote the di�erence between the prime above x and x itself, then by calculating

g

n

� g

�(n)

� g

�(n+�(n))

� : : : (in that order) we shall eventually �nd m

0

. The saving is

made from the fact that the di�erence between the primes around P are much smaller

(i.e. around logP) than P itself, and also that the common values of g

�(x)

may be

stored and reused.

A problem with Pollard's technique is that (p � 1) may not be smooth at all, indeed

it might be the case that p � 1 = 2q where q is prime. In this case the method, as

stated, will not work. However one may use the general technique of detecting torsion

on groups other than just Z

�

p

.

For instance if one uses the group of elements of GF (p

2

) of norm 1; this has order

(p + 1) and if this is smooth one may �nd the factor p along similar reasoning to the

above. Higher order extensions allow one to generalise this approach to whenever �

d

(p)

is smooth, where �

d

is the d'th cyclotomic polynomial. However as the degree of �

d

increases, so the size of �

d

(p) increases, and hence it becomes less likely that �

d

(p) is

smooth.

Far more usefully, H. W. Lenstra suggested in (Lenstra, 1987) using the elliptic curve

groups E

a;b

(Z

p

), which have order p + 1 � t, where jtj � 2

p

p depends on a; b 2 Z

p

.

Thus by trying many a; b 2 Z

p

it is reasonable to assume that a typically smooth (if

not better) group order will be attained. The distribution of the order of E

a;b

(Z

p

)

for a; b 2 Z

p

is dependent on the class number of t

2

� 4p as explained for example

in (Silverman, 1986), and empirical information about this distribution for practical

parameter values has been given in (McKee, 1990).

2.3.2 On a cryptosystem of Vanstone and Zuccherato

In (Vanstone & Zuccherato, 1997) they proposed a cryptosystem in which an elliptic

curve E

a;b

(Z

N

) is chosen such that N = pq for two primes p and q, where the number

of points on both E

a;b

(Z

p

) and E

a;b

(Z

q

) are both B-smooth. It was suggested that

B = 10

16

when p and q were both approximately 10

75

. Without going in to the details

of this cryptosystem we will show in the subsequent sections that having a known

ceiling

2

on the smoothness of group elements allows one to employ a technique (akin

to the large prime variant) that speeds up the detection of torsion.

2

This is opposed to the situation in Pollard's (p�1) factoring method say, in which we simply make

plausible assumptions as to the smoothness of group elements.

26

2.4 De�cient numbers

In this section we introduce the notion of de�cient numbers, and show how they can

help the detection of torsion when one has a known bound on the smoothness of a

group element, as in Section 2.3.2. In the following let w be an upper bound on the

size of the order of the group element; the situation when such a bound is not known

in advance is examined in Section 2.4.3.

De�nition 2.4.1 Let

p

(k) denote the highest exponent of the prime p such that p

p

(k)

divides k. A natural number m is called (w;B)-n-de�cient if for any B-smooth number

s � w there are at most n primes p

i

� B for which

p

i

(m) <

p

i

(s). When w and B

are implicitly de�ned we will refer to such numbers simply as n-de�cient. The number

m is called minimally (w;B)-n-de�cient if this is the least such n with this property

(i.e. for some B-smooth number s � w there are exactly n primes p

i

� B for which

p

i

(m) <

p

i

(s)).

For instance the number m = 2

2

� 3 � 5 � 7 is (500; 7)-2-de�cient (as shown in Ex-

ample 2.1 below) and the number in equation 2.6 is (w;B)-0-de�cient. The de�cient

numbers are related to detecting torsion (with known bounds) in the following way: if

one has a 0-de�cient number m then one can simply detect torsion by raising the group

element g to the power m, but if m is a 2-de�cient number say, then after calculating

h = g

m

one only knows that h

p

a

q

b

= 1 for some primes p; q � B and natural numbers

a; b.

We are able to classify the (minimally) de�cient numbers exactly.

Theorem 2.4.2 A natural number m is minimally (w;B)-n-de�cient if and only if

1.

Q

n+1

i=1

p

p

i

(m)+1

i

> w for all possible prime (n+ 1)-tuples p

1

; : : : ; p

n+1

� B, and

2. there exist n primes q

1

; : : : ; q

n

� B such that

Q

n

i=1

q

q

i

(m)+1

i

� w.

The �rst part classi�es exactly the (w;B)-n-de�cient numbers, whilst the second part

ensures minimality.

Proof: Assume m is (w;B)-n-de�cient. If there were n+ 1 primes p

1

; : : : ; p

n+1

� B

such that r =

Q

n+1

i=1

p

p

i

(m)+1

i

� w then m would be at least (n+1)-de�cient (since r is

B-smooth and � w), which shows that the �rst condition must be true. If we further

assume that m is minimally (w;B)-n-de�cient this implies that there is a B-smooth

27

number s � w and n primes q

1

; : : : ; q

n

� B such that

q

i

(m) <

q

i

(s). Therefore

Q

n

i=1

q

q

i

(m)+1

i

�

Q

n

i=1

q

q

i

(s)

i

� w shows that the second condition must also be true.

Conversely we now assume the �rst condition is true. If w were not (w;B)-n-de�cient

then there would exist a B-smooth number s � w and at least n + 1 primes p

i

� B

such that

p

i

(m) �

p

i

(s), so r =

Q

n+1

i=1

p

p

i

(m)+1

i

�

Q

n+1

i=1

p

p

i

(s)

i

� w. This contradicts

the �rst condition, so w must be (w;B)-n-de�cient. If we further assume the second

condition then this implies that s =

Q

n

i=1

q

q

i

(m)

+1

i

is a B-smooth number � w which

has

q

i

(m) <

q

i

(s) for all 1 � i � n, so m must be minimally (w;B)-n-de�cient. 2

Example 2.1 Let w = 500 and B = 7, then the B-smooth numbers � w are given by

8

>

>

>

>

>

<

>

>

>

>

>

:

2

e

2

3

e

3

5

e

5

7

e

7

� 500

0 � e

2

� 8

0 � e

3

� 5

0 � e

5

� 3

0 � e

7

� 3

9

>

>

>

>

>

=

>

>

>

>

>

;

:

The number 1260 = 2

2

� 3� 5� 7 can be shown to (500; 7)-2-de�cient, by considering

the following

�

4

3

�

products:

2

3

� 3

2

� 5

2

= 1800

2

3

� 5

2

� 7

2

= 9800

3

2

� 5

2

� 7

2

= 11025

2

3

� 3

2

� 7

2

= 1764

9

>

>

>

>

>

=

>

>

>

>

>

;

all more than 500.

The size of them above 500 might suggest that 2520 is (500; 7)-1-de�cient, but this is

shown not to be the case by

2

3

� 3

2

= 72 < 500:

More e�ciently we only need to �nd the (n+ 1) smallest values of p

p

(m)+1

and verify

that the product of all of them is more than w whilst the product of the smallest n is

� w.

Thus we are now in a position to identify a (minimally) (w;B)-n-de�cient number. Let

us turn our attention to how to e�ciently produce one.

Theorem 2.4.3 Let �

p

(w) denote the largest power of p such that p

�

p

(w)

� w. The

number m will be minimally (w;B)-n-de�cient whenever the following two conditions

hold.

28

1. For all primes p 2 P

B

we have

p

(m) �

�

p

(w) + 1

n + 1

� 1;

2. For at least n primes p 2 P

B

we have

p

(m) �

�

p

(w)

n

� 1:

The �rst condition ensures that m is (w;B)-n-de�cient whilst the second condition

ensures minimality (although neither of these conditions are necessary for m to be

minimally (w;B)-n-de�cient).

Proof: We make use of Theorem 2.4.2. For any prime (n+1)-tuple p

1

; : : : ; p

n+1

� B

we have

n+1

Y

i=1

p

p

i

(m)+1

i

�

n+1

Y

i=1

p

�

p

i

(w)+1

n+1

i

>

n+1

Y

i=1

w

1

n+1

= w;

which shows that m is at least (w;B)-n-de�cient. The second condition implies there

are n primes q

1

; : : : ; q

n

� B such that

n

Y

i=1

q

q

i

(m)+1

i

�

n

Y

i=1

p

�

q

i

(w)

n

i

�

n

Y

i=1

w

1

n

= w;

which shows that m is minimally (w;B)-n-de�cient. 2

This theorem implies that one can create a (w;B)-n-de�cient number of size less than

the (n + 1)'th root of the size of the least (w;B)-0-de�cient number.

Example 2.2 Suppose w = 3000 and B = 13 and we wish to �nd a (w;B)-2-de�cient

number. Notice that �

p

(w) = 11; 7; 4; 4; 3; 3 for p = 2; 3; 5; 7; 11; 13, so 2

11

� 3

7

�

5

4

� 7

4

� 11

3

� 13

3

= 19654365366155520000 is the smallest (w;B)-0-de�cient num-

ber. Using Theorem 2.4.3 we form the number m with

p

(m) = 3; 2; 1; 1; 1; 1 for

p = 2; 3; 5; 7; 11; 13, i.e. m = 2

3

� 3

2

� 5� 7� 11� 13 = 360360.

29

This is not the only method to create a (w;B)-n-de�cient number, but a fairly natural

approach. Notice that in this case there are many smaller (w;B)-2-de�cient numbers,

e.g. m=13 (seen because 2

4

�5

2

�13 > 3000). For this reason one might consider de�ning

the concept of a reduced (w;B)-n-de�cient number in which none of the prime exponents

can be reduced while the number still remains being only n-de�cient, or perhaps one

might devise an algorithm to �nd the very least (w;B)-n-de�cient number. However for

the practical purposes of the following sections the types of (w;B)-n-de�cient numbers

that Theorem 2.4.3 produces are completely adequate.

2.4.1 The use of 1-de�cient numbers

Suppose we have known upper bounds on the size and smoothness of a group element

g and we wish to detect torsion (as in the cryptosystem mentioned in Section 2.3.2).

We now show how the use of 1-de�cient numbers can aid this process.

Algorithm 2.4.4 Torsion detection using (w;B)-1-de�cient numbers.

1. Given w and B form a (w;B)-1-de�cient number m (as from Theorem 2.4.3).

2. Calculate h = g

m

using a standard (near-optimal) addition chain.

3. Let S = fp

�

p

(w)�

p

(m)

j p 2 P

B

g, and form h

s

for each s 2 S by calculating a

T -reliant addition chain for S (as shown in Section 2.2).

The correctness of this algorithm follows since, by the de�nition of 1-de�ciency, h

(p

a

)

is the identity element for some prime p 2 P

B

and natural number a � �

p

(w)�

p

(m)

(due to fact that the the element order is assumed to be � w).

This algorithm approximately halves the time needed to detect torsion using the clas-

sical approach with a (w;B)-0-de�cient number m

0

say (as in equation 2.6). To see

this note that the size of m

0

is approximately w

v

where v � B= logB by the Prime

Number Theorem, and so the normal addition chain would be of length about v logw.

However the (w;B)-1-de�cient number m is approximately the square root of this, and

hence has an addition chain of approximately half the length. The remaining part is

to �nd an e�cient addition chain for the set S which has v entries around the size of

p

w. If one was to calculate each of these by ordinary (near optimal) addition chains

this too would take about (1=2)v logw multiplications, but we may use the techniques

of Section 2.2 to speed this up considerably. For instance assuming that this can be

done 10 times faster, means that torsion can be detected in about 0:55 of the time of

30

the classical (w;B)-0-de�cient approach. The third stage may also make use of parallel

processors to move this ratio nearer to 0:5.

Example 2.3 Let w = 10

75

and B = 10

16

as is suggested in the cryptosystem in

Section 2.3.2, and suppose we want to detect the torsion of a group element g. The

smallest (w;B)-0-de�cient number is

m

0

= 2

249

� 3

157

� : : :� 9999999999999937

4

;

so we form the (w;B)-1-de�cient number

m

1

= 2

124

� 3

78

� : : :� 9999999999999937

2

:

We then form h = g

m

1

using a standard addition chain, which should take approxi-

mately half the time of calculating g

m

0

.

If torsion still has to be detected then it remains to check

h

(2

125

)

; h

(3

79

)

; : : : ; h

(9999999999999937

2

)

:

Let S be the set of these exponents, i.e.

f 42535295865117307932921825928971026432;

49269609804781974438694403402127765867;

.

.

.

999999999999967000000000000362999999999998669

.

.

.

99999999999998740000000000003969 g

so v = jSj � 2:7� 10

14

, and the largest element of S is approximately 10

45

.

Let us assume we can store 10

6

group elements, then we choose a base of b = 10

5

with J = f1; : : : ; b � 1g and store the set of group elements h

t

where t 2 T and T =

fjb

i

j j 2 J; 0 � i � 8g. This entails 9� 10

5

group multiplications (negligible compared

to computing the set S below), and storing 9 � 10

5

group elements (deliberately made

to be near the storage bound).

By using the set T as shown in Section 2.2 each element of s can now be calculated

in 9 multiplications, and thus all the h

s

for each s 2 S in 2:4 � 10

15

multiplications.

Although this is extremely large (hence its use in cryptography), it is small compared to

calculating g

m

1

. To see this note that to calculate g

m

0

we need about v log

2

w � 6:7�10

16

31

multiplications, so g

m

1

needs about half of these at 3:3� 10

16

.

We now explain the connection between the 1-de�cient algorithm and the large prime

variant algorithm given in Section 2.3.1 . Both have two stages; the �rst stage forms

h = g

n

1

from which one knows that h

n

2

is the group identity for some n

2

from a �xed

set of integers. In the large prime variant this set is the set of primes (and their powers

if applicable) between B

1

and B

2

, whilst in the 1-de�cient algorithm it is the set of

(speci�c powers of the) primes up to B. This also explains why the two techniques

cannot be used together; there would be 2 \missing primes" which would e�ectively

make the situation akin to a 2-de�cient problem. We study general n-de�cient numbers

in the next section.

2.4.2 The use of n-de�cient numbers

The technique of the previous section can be extended to general n-de�cient numbers

thus.

Algorithm 2.4.5 Torsion detection using (w;B)-n-de�cient numbers.

1. Given w and B form a (w;B)-n-de�cient number m (as from Theorem 2.4.3).

2. Calculate h = g

m

using a standard (near-optimal) addition chain.

3. Let S = f

Q

n

i=1

p

�

p

i

(w)�

p

i

(m)

i

j for all prime n-tuples p

1

; : : : ; p

n

� Bg, and form

h

s

for each s 2 S by calculating a T -reliant addition chain for S (as shown in

Section 2.2).

Again the correctness of this algorithm follows from the de�nition of n-de�ciency. The

second stage is now done in 1=(n+ 1)'th of the time needed for the classical (w;B)-0-

de�cient method, but it is the third stage that becomes a problem. This is because the

set S has grown exponentially (compared to the (w;B)-1-de�cient algorithm) to be of

size

�

v

n

�

with entries about w

n=(n+1)

. Even with n = 2 we have jSj =

�

v

2

�

� B

2

=(2 log

2

B)

and so the third stage would take time approximately

2B

2

logw

3c log

2

B

;

where c is the speed up from the techniques of Section 2.2. The increase in the size

of S cannot be outweighed by assuming c � 10 again; this would lead to a third stage

32

of the algorithm that is far more expensive than the entire classical (w;B)-0-de�cient

approach. However the (w;B)-n-de�cient approach does allows for the third stage to

be attacked with multiple processors (e.g. by splitting S amongst them), and if the

number of processors exceeds B= logB then the second stage of the algorithm will

become dominant and the entire algorithm will take approximately 1=3 of the time of

the classical method.

In general the n-de�cient approach only becomes feasible with the use ofO((B= logB)

n�1

)

processors, and implies an algorithm which takes 1=(n+1)'th of the time taken by the

classical approach. Compared with the number of processors this speed up is very

small, but there may be cases (e.g. under the given assumptions, and when nothing

can be gained from trying another group element g) in which this is the only way to

proceed. It is not unreasonable to imagine a parallel architecture that could cope with

n = 2 and B � 10

6

.

2.4.3 An incremental algorithm

In the above analysis we have assumed we have an upper bound w on the size of the

order of the group element g. In this section we briey examine the situation when

one does not know such a bound, but instead knows w = 10

a

for some a uniformly

distributed on f2; : : : ; 20g say.

The (w;B)-0-de�cient approach can cope with this altered problem with little change.

One would simply assume that w is maximal, i.e. w = 10

20

in our case, and then

as usual calculate g

m

where m =

Q

p2P

B

p

�

p

(w)

. The only di�erence that care should

be taken during the creation of g

m

to ensure that each prime power is approximately

equal (to take advantage of a smaller w). We will refer to this as the modi�ed (w;B)-

0-de�cient method.

It is less easy to use the extend the (w;B)-1-de�cient approach, though still possible if

the range on a is small enough. Assume for some w

0

one had calculated the (w

0

; B)-

0-de�cient number m

0

and the group element h = g

m

0

. We could then use the idea of

Algorithm 2.4.4 to \look forward" and detect torsion whenever w � w

2

0

. However if

it were the case that w > w

2

0

then this \check' (and the associated time) would have

been wasted; we cannot, in general, reuse this information.

One can use this approach several times during the modi�ed (w;B)-0-de�cient ap-

proach, as the following table demonstrates. Here we assumeB = 7 and 10

2

� w � 10

20

and we \look ahead" (i.e. calculate the set S) whenever w has grown by a power of

3=2. We also assume that t

1

, the time to create the set S, is 1=10 of the time t

2

, the

33

time to calculate g

m

0

, and further we assume t

2

= log

2

m

0

. The time t

3

is the total

time using this scheme (i.e. t

3

= t

1

+ t

2

+ \all the previous (wasted) t

2

's").

w

0

m

0

t

1

w

2

0

S t

2

t

3

10

2

2

6

� 3

4

� 5

2

� 7

2

22:6 10

4

f2

6

; 3

4

; 5

2

; 7

2

g 2:3 24:9

10

3

2

9

� 3

6

� 5

4

� 7

3

36:2 10

6

f2

9

; 3

6

; 5

4

; 7

3

g 3:6 42:1

10

4:5

2

14

� 3

9

� 5

6

� 7

5

56:2 10

9

f2

14

; 3

9

; 5

6

; 7

5

g 5:6 67:7

10

6:75

2

22

� 3

14

� 5

9

� 7

7

84:7 10

13:5

f2

22

; 3

14

; 5

9

; 7

7

g 8:5 104:7

10

10:125

2

33

� 3

21

� 5

14

� 7

11

129:7 10

20:25

f2

33

; 3

21

; 5

14

; 7

11

g 13:0 162:7

With this scheme it turns out we would detect torsion, on average, in 0:78 of the time of

the modi�ed (w;B)-0-de�cient approach when w = 10

a

and a is uniformly distributed

on f2; : : : ; 20g. No e�ort has been made to optimise the frequency of calculating the

set S, which should clearly be increased the cheaper \looking ahead" is, i.e. the smaller

the ratio t

2

=t

1

.

Finally note that if there is no upper limit on the size of w (or the range of a is just

very large) then the (w;B)-1-de�cient approach becomes useless; we simply waste too

much time looking ahead.

2.5 Conclusions

In Section 2.2 we introduced the concept of reliant addition chains and showed that

this is a generalisation of the standard model of addition chains which allows for pre-

computation. We then showed how this idea can be used to �nd an addition chain for

a set of natural numbers S using results from (Brickell et al., 1992). We also suggested

(though omitted the �ne details) that the same kind of model might be useful when

describing parallel addition chains.

In Section 2.4 we then de�ned and classi�ed the (w;B)-n-de�cient numbers, and showed

their use in detecting torsion when one has a known upper bound on the smoothness of

a group element. Although this situation is rather unlikely to happen naturally, it may

well be arti�cially ensured, as is the case for the cryptosystem described in (Vanstone &

Zuccherato, 1997). In particular we showed that the (w;B)-1-de�cient approach given

by Algorithm 2.4.4 approximately halves the time needed to attack this cryptosystem.

We also examined the associated (w;B)-n-de�cient algorithms in general in Section 2.4.2,

and showed that with many processors they may also be used usefully. However the

34

number of processors grows exponentially for a relatively small increase in speed, so

these approaches can only used for (very) small n, and should only be considered when

there is no better way to proceed (e.g. one cannot gain anything by trying another

group element g etc.).

35

Part III:

Lattice methods for �nding small

solutions to various bivariate

Diophantine equations

36

Chapter 3

Lattices

In this chapter we introduce the concept of lattices, and give a concrete matrix repre-

sentation for them that we shall maintain throughout the thesis. We then outline some

of their more elementary properties.

Much of the work in the subsequent chapters is based on �nding a su�ciently small

element of a lattice, and this is achieved through the LLL reduction procedure (see

(Lenstra et al., 1982)). This is an algorithm to \reduce" an entire basis of a lattice, but

certain properties ensure that a relatively short vector is found also. This algorithm is

analysed in detail in Section 3.3.

The original work in this chapter starts in Section 3.4 with an interesting property

of the LLL reduction algorithm when applied to a basis of a given lattice or its dual.

This result has a large impact on the thesis, implying a new way to look at results in

(Coppersmith, 1996b), and inuencing all the work in Chapters 4 and 5.

In Section 3.5 the LLL algorithm is shown to extend to structures that we name unitary

lattices. This work was done completely independently, but similar results were shown

in (Fieker & Pohst, 1996). As is shown in Section 5.3 this also has implications on a

cryptosystem proposed by Vanstone and Zuccherato.

In Section 3.6 we outline the natural progression of extending LLL to unitary lattices

and discuss the direction of current research.

A word of warning is that although every e�ort has been made to make this chapter easy

to read, with examples wherever possible, some of the lattice results may be considered

a little theoretical without �rst examining their applications in the subsequent chapters.

37

3.1 An introduction to lattices

The theory of lattices was �rst built up from the 2-dimensional (see (Gauss, 1801)) and

via the concept of quadratic forms (see (Lagrange, 1773), (Hermite, 1850), (Korkine

& Zolotarev, 1873). A thorough treatment of the algebra of general lattices was later

given by Cassels in (Cassels, 1971). However it was not until relatively recently that

a large amount of interest has been generated in lattices, primarily via computational

number-theoretic problems and the suggested use of knapsack-based cryptosystems.

In the last few years this interest has been heightened by Coppersmith's novel use of

lattices in �nding small solutions to bivariate integer equations. For a good introduction

to lattices and/or attacks on knapsack-based cryptosystems see (Joux & Stern, 1998),

(Joux, 1993), (Cohen, 1991). It is one of the aims of later chapters of this thesis to

discuss the ways in which Coppersmith uses lattices.

Before going any further it should be noted that for a good understanding of lattices

one must have a good understanding of basic linear algebra

1

. The Gram-Schmidt

orthogonalisation procedure plays a central rôle in this chapter, and for this reason it is

introduced here, before the concept of lattices. All the de�nitions and theorems below

have been taken (with little or no changes) from (Cohen, 1991) where the necessary

proofs may be found.

Theorem 3.1.1 Given a basis fb

1

; : : : ; b

n

g of the Euclidean space R

n

, one may form

an orthogonal basis fb

�

1

; : : : ; b

�

n

g where

b

�

i

= b

i

�

i�1

X

j=1

�

i;j

b

�

j

; (3.1)

and �

i;j

= (b

i

� b

�

j

)=kb

j

k

2

. Moreover this new basis satis�es

spanfb

�

1

; : : : ; b

�

i

g = spanfb

1

; : : : ; b

i

g

for all 1 � i � n.

One should observe that by dividing the orthogonal vectors by their Euclidean length

upon their formation one may also produce an orthonormal basis of R

n

with the same

span over R.

The mathematical de�nitions of a quadratic form and a lattice are shown below, but

1

Having said this I would have thought it perfectly reasonable, and rather rewarding, to learn the

two hand in hand.

38

�rst we state a general theorem about general Z-modules, to have a context in which

to place lattices.

Theorem 3.1.2 Let V be a �nitely generated Z-module (i.e. Abelian group)

1. If V

tors

is the torsion subgroup of V , i.e. the set of elements of v 2 V such that

there exists m 2Znf0g with mv = 0, then V

tors

is a �nite group, and there exists

a non-negative integer n and an isomorphism

V ' V

tors

�Z

n

(the number n is called the rank of V).

2. If V is a free Z-module (i.e. if V 'Z

n

, or equivalently by (1) if V

tors

= f0g), then

any submodule of V is also free of rank less than or equal to that of V .

3. If V is a �nite Z-module (i.e. by (1) is V is of zero rank), then there exists n and

a submodule L of Z

n

(which is free by (2)) such that V 'Z

n

=L.

De�nition 3.1.3 Let K be a �eld of characteristic di�erent from 2, and let V be a

K-vector space. We say that a map q : V ! K is a quadratic form if the following two

conditions are satis�ed:

1. For every � 2 K and x 2 V we have

q(� � x) = �

2

q(x)

2. If we set b(x; y) = (1=2)(q(x+ y)� q(x)� q(y)) then b is a (symmetric) bilinear

form, i.e. b(x+ x

0

; y) = b(x; y) + b(x

0

; y) and b(� � x; y) = �b(x; y) for all � 2 K,

x, x

0

and y in V (the similar conditions on the second variable follow from the

fact that b(y; x) = b(x; y)).

De�nition 3.1.4 A lattice is a pair (L; q) where L is a free Z-module of �nite rank

and q is a positive de�nite quadratic form on L
 R.

The above theory has treated lattices rather platonically, i.e. as objects that satisfy

certain axioms. They may be treated far more concretely by the introduction of a

basis for (L; q), which can imply representations for lattice elements, for alternative

bases, and for the quadratic form q.

39

In the following lemma we have put a bias on row vectors, and on rows of matrices,

rather than their column counterparts. This is to better �t in with the uses of lattices

developed in the subsequent chapters (and for no deeper reason).

Lemma 3.1.5 Given a basis (b

i

)

1�i�n

of a lattice (L; q), where b denotes the symmet-

ric bilinear form associated to q, then

1. An element x 2 L may be represented by an integer (row) vector X 2 V

n

(Z) where

x =

P

X

i

b

i

. The vector X is often referred to as the coordinate vector of x with

respect to the basis (b

i

)

1�i�n

.

2. An alternative basis (b

0

i

)

1�i�n

may be represented by an integer matrix H 2

GL

n

(Z) whose rows are the coordinate vectors of the b

0

i

in terms of the b

i

. It

follows that the determinant of this matrix must be �1 (i.e. H 2 GL

n

(Z)) if and

only if (b

0

i

)

1�i�n

is indeed a basis for (L; q).

3. It is relatively easily checked that the properties of the quadratic form imply

q(x) =

X

1�i;j�n

q

i;j

x

i

x

j

;

where q

i;j

= b(b

i

; b

j

). This means the quadratic form may be represented by the

real positive de�nite symmetric matrix Q = (q

i;j

)

1�i;j�n

, and that the associated

bilinear form satis�es

b(x; y) = Y QX

t

;

where X and Y are the (integer) coordinate vectors of x and y respectively. Notice

that this means q(x) = b(x; x) = XQX

t

.

De�nition 3.1.6 We say that two lattices (L; q) and (L

0

; q

0

) are equivalent if there is

a Z-module isomorphism between L and L

0

sending q to q

0

.

Considered as Z-modules L and L

0

will be isomorphic if and only if a basis of L maps

via an invertible integer matrix (i.e. H 2 GL

n

(Z)) to a basis of L

0

. For this to map

q on to q

0

means that Q

0

= HQH

t

by Lemma 3.1.5(3). The matrix Q thus gives

a representation of a lattice that is unique modulo the equivalence relation � where

Q � Q

0

if and only if Q

0

= HQH

t

for some H 2 GL

n

(Z).

The matrix Q is not the only way to represent a lattice as explained now. Given a

40

positive de�nite symmetric matrix Q we may perform the Cholesky decomposition

2

algorithm to �nd a matrix B 2 GL

n

(R) such that BB

t

= Q. In fact the decomposition

ensures that B is the unique (lower) triangular matrix that satis�es this property. It

now follows that the lattice L

0

= fy = xB j x 2 Z

n

g with the Euclidean quadratic

norm q

0

(y) =

P

y

2

i

is isomorphic to (L; q). Before we show this let us stress what we

have done: We have moved from the situation of having elements of the lattice that are

represented by integer vectors, and a complicated quadratic form function (e�ectively

holding the \lattice information") to the situation where this information is now held

within the representation of the lattice points (real entried vectors) and the quadratic

form is simply Euclidean.

With lattices again being written as the pair (L;Q) but now with L;Q being the matrix

representations of their algebraic counterparts, we wish to show that

(fy = xB j x 2Z

n

g; I

n

) ' (Z

n

; BB

t

): (3.2)

On consideration this follows immediately from the fact that the application of the

quadratic forms to the basis elements coincide.

The above theory gives a justi�cation for the following second de�nition of a lattice.

De�nition 3.1.7 For a given basis fb

1

; : : : ; b

n

g of R

m

which form the rows of a (n)� (m)

matrix B, a lattice L is de�ned to be the set of points

L = fy = xB j x 2Z

n

g ;

together with an associated Euclidean quadratic form

P

m

i=1

y

2

i

.

This is the de�nition of a lattice (with the matrix B being the implied representation)

that we shall be using throughout the thesis. When we refer to the size or more

accurately norm of a lattice point x 2 L we shall mean the square root of the Euclidean

quadratic form and denote it kxk. Note that this de�nition does not imply that the

basis matrix B is triangular, or even that the basis vectors are of dimension equal to

the rank of the lattice (though the rank is obviously a lower bound). However one may

clearly enforce these situations by �nding the Cholesky decomposition of BB

t

.

This representation of a lattice is not unique. One many change the basis, i.e. multiply

on the left by any H 2 GL

n

(Z), and also one may right multiply by an orthonormal

2

Cholesky decomposition of a matrixMM

t

is akin to the Gram-Schmidt orthogonalisation procedure

on M (see (Cohen, 1991) for more details). The matrix MM

t

is often called the Gram matrix.

41

matrix N , i.e. N

t

= N

�1

since this will not a�ect Q = BB

t

(geometrically this is

equivalent to twisting the axes). However the absolute value of the determinant of

Q remains unchanged by either of these modi�cations, and thus is a lattice invariant.

Its positive square root (the absolute value of the determinant of B if it is square) is

referred to as the determinant � of the lattice (L; q).

�

(L;q)

= j det(B)j = det(Q)

1=2

:

We shall frequently denote a lattice simply by L, when it will be considered a subset of

R

n

with the Euclidean quadratic form. There are many interesting problems associated

with lattices, for instance those described below. Finding the complexity classes of

algorithms to solve these problems is also very interesting, and for a thorough discussion

of NP-completeness and related matters, see for example (Aho et al., 1974).

The shortest vector problem: This is the problem of �nding a (non-zero) lattice

point with least norm, or in a more generalised form the problem of �nding a

vector that has a norm that is within some multiple of the smallest one. As we

will see in Section 3.3 we may �nd a vector that has a norm within 2

(n�1)=2

of

the smallest one in polynomial time, but the problem of deciding whether a given

vector has minimal norm is known to be NP-complete (see for instance (Ajtai,

1998a)).

The closest vector problem: Rather than �nd the smallest point of a lattice (i.e.

the closest non-zero vector to zero), it is also interesting to consider the problem

of �nding a lattice point which is nearest to some other given point in R

n

. As

above, the problem can be generalised to �nding a vector whose distance from

the required point in R

n

is less than some multiple of a closest vector (although

the zero vector is allowed as a solution to this problem).

The shortest independent vectors problem: The problem here is to �nd m

linearly independent vectors v

1

; : : : ; v

m

of the lattice whose length (de�ned as the

norm of the largest one of them) is minimal. Again, one can generalise this to

being within a multiple of the shortest length possible for m linearly independent

vectors.

The shortest basis problem: The problem here is to �nd a basis b

1

; : : : ; b

n

for the

lattice that is (within some multiple) the shortest possible (with the length of

the basis being de�ned as the norm of the largest one of them). Note that this

42

is not the same as the shortest independent vectors problem with m = n since n

linearly independent vectors do not necessarily generate the lattice.

The complexity issues of these lattice problems has become an active area of research

recently, heightened since the publication of (Ajtai, 1998b). This is because it was

shown that if one could prove that certain instances of them are NP-hard (in the worst

case) it would imply that �nding a short element of a lattice from a certain class of

lattices was also NP-hard, even in the average case. For a good overview of this area

see (Bl�omer & Seifert, 1999).

The theory of lattices is potentially useful whenever linear dependencies occur. The

following list gives a rough, though incomplete, idea of the variety of problems in which

lattices have been found to be useful:

Factoring univariate integer polynomials: This is the area that the original LLL

paper, (Lenstra et al., 1982), was applied to.

Knapsack-based cryptosystems: Much work has been done on lattice attacks on

Knapsack-based cryptosystems, see for example (Joux & Stern, 1998).

Search for linear dependencies: In cryptography one way of attacking a cryptosys-

tem is to make use of unexpected linear dependencies, and the LLL algorithm

can be used to spot these, again see (Joux & Stern, 1998).

Minimal polynomials: With an approximation to an algebraic number, one can

use the LLL algorithm to guess its minimal polynomial; see (Cohen, 1991) and

(Joux & Stern, 1998).

Finding small solutions to bivariate Diophantine equations: This is really

what the rest of the thesis is based on. In fact the methods can be used heuris-

tically to �nd solutions to Diophantine equations in more than 2 variables, but

the guaranteed proofs of success fail when applied to these situations.

3.2 Basic properties of lattices

As shown in the previous section, the �rst and simplest property of a lattice is that

it has an invariant determinant. In this section we describe some other basic lattice

properties.

In (Cassels, 1971) the important notion of the successive minima of k � k

2

on lattice

points was de�ned, which we state precisely below.

43

De�nition 3.2.1 The i'th successive minimum �

i

of a lattice L is the smallest real

number r such that there are i linearly independent vectors in L with k � k

2

at most r.

We start by showing that there is a maximum bound on �

1

, which depends only on

the determinant of the lattice.

Lemma 3.2.2 There exists a positive constant

n

such that in any lattice (L; q) with

determinant � there is an element x 2 L such that q(x) �

n

�

2=n

.

Proof: We will actually prove this result constructively (under the assumption of

the existence of a least element) by showing

n

� (4=3)

(n�1)=2

. Let us �rst assume

we have a two dimensional basis B representing the lattice (L; q), and that � = �

1

=

min

x2Z

n

fkxBk

2

g. The following diagram shows the steps necessary to show

2

�

p

4=3

(an empty box 2 denotes an unspeci�ed entry).

B =

2 2

2 2

!

HBN

t

=

�!

0

@

p

� 0

2

detB

p

�

1

A

H

0

HBN

t

=

�!

0

@

p

� 0

<

1

2

p

�

detB

p

�

1

A

The above diagram is representing the following situation: Let h

1

2 Z

n

be such that

� = kh

1

Bk

2

is minimal, and let H be any matrix such that H 2 GL

n

(Z) and H has h

1

as its �rst row, then we have that B

0

= HB also represents the lattice (L; q). We now

�nd the orthonormal basis of B

0

(via the Gram-Schmidt orthogonalisation procedure)

which we call N , and then HBN

t

is yet another representation our lattice, which is

triangular and has top-left entry equal to

p

�. One may now perform a second change

of basis to ensure that the bottom left entry has absolute size at most (1=2)

p

�.

From the assumption that � corresponds to the the lattice element of minimum size,

then we must have

� � (1=4)�+

det(B)

2

�

; so

� �

r

4

3

detB; which proves that

2

�

p

4=3:

We show how to extend this result to n dimensions after briey showing the argument

for 3 dimensions:

0

B

B

@

p

� 0 0

2

2

detB

p

�

1

C

C

A

�!

0

B

B

B

@

p

� 0 0

<

1

2

p

� <

q

p

4=3

detB

p

�

2 2 2

1

C

C

C

A

44

The above diagram represents the situation for a 3-dimensional basis B where we again

manage to put

p

� in the top left corner, but now use the above 2-dimensional result to

show that we may �nd a 2-dimensional lattice point of size at most (2 detB=

p

3�)

1=2

from the sub-lattice of determinant detB=

p

�. From the minimality of � we now have

� �

1

4

� +

r

4

3

detB

p

�

; i.e.

� �

4

3

detB

3=2

; so

3

� 4=3:

The general pattern is unfolded by induction; if we assume that

�

n

�

�

4

3

�

(n�1)=2

�

2=n

;

then following the above procedure we can form the equation

�

n+1

�

1

4

�

n+1

+

�

4

3

�

(n�1)=2

�

p

�

n+1

!

2=n

; which implies

�

n+1

�

�

4

3

�

n=2

�

2=(n+1)

;

and thus our induction hypothesis is correct and

n

� (4=3)

(n�1)=2

. 2

The optimum values of

n

are only known for n � 8 and are

1

= 1;

2

2

=

4

3

;

3

3

= 2;

4

4

= 4;

5

5

= 8;

6

6

=

64

3

;

7

7

= 64;

8

8

= 256;

whilst a table for the best known bounds are given in (Conway & Sloane, 1988) for all

n � 24.

The above analysis has put an upper bound on the size of �

1

; we now switch our atten-

tion to calculating a lower bound for �

1

. Towards this aim let fb

1

; : : : ; b

n

g be a basis

of (L; q), and let us consider some properties of the Gram-Schmidt orthogonalisation

procedure. From equation 3.1 we know that kb

�

i

k � kb

i

k and that b

j

� b

�

j

= kb

�

j

k

2

. The

�rst of these properties shows that

� =

n

Y

i=1

kb

�

i

k �

n

Y

i=1

kb

i

k; (3.3)

45

whilst the second property may be used to show that for r

i

6= 0

0

@

i

X

j=1

r

j

b

�

j

=

i

X

j=1

s

j

b

j

1

A

) (r

i

= s

i

) : (3.4)

If we consider a lattice point with minimal norm, v

1

= xB = x

0

B

�

, i.e. kv

1

k

2

= �

1

,

then although the general entries of x

0

2 V

n

(R) are real we know, from equation 3.4,

that the last non-zero entry is the same as the last non-zero entry of x, i.e. an integer.

This means that for some 1 � i � n we have

�

1

� kb

�

i

k

2

: (3.5)

We now extend these results in three di�erent ways, which are stated now as Lemmas.

The last of these appears not to be in the current literature.

Lemma 3.2.3 Let fb

1

; : : : ; b

n

g be a basis for a lattice L, and let fb

�

1

; : : : ; b

�

n

g be the

orthogonal vectors achieved from the Gram-Schmidt orthogonalisation procedure, then

for any vector v 2 L we have

v = �

1

b

1

+ : : :+ �

n

b

n

= �

1

b

�

1

+ : : :+ �

n

b

�

n

where

�

i

= �

i

+

n

X

j=i+1

�

j;i

�

j

Proof: Simply take the dot product of v with b

�

i

, and rearrange. 2

This Lemma shows that although the �

i

are real numbers; they are not arbitrary, but

rather integer linear combinations of the �

j;i

for i + 1 � j � n. This fact is used in

Section 3.3.2.

Lemma 3.2.4 For any given lattice L, and any given basis fb

1

; : : : ; b

n

g of L the i

th

successive minima satis�es

�

i

� kb

�

j

k

2

for some i � j � n.

Proof: Let kv

k

k

2

= �

k

, we know �

k

� kb

�

j

k

2

where b

�

j

is the largest non-zero coe�cient

46

of v

k

written as a linear combination of the orthogonal vectors. If we have that j < i

for all fv

k

g

1�k�i

then this would contradict the linear independence of the fv

k

g. 2

This Lemma is useful when putting upper bounds on the kb

�

i

k in Section 3.3.1.

Lemma 3.2.5 For any given lattice L, and any given basis fb

1

; : : : ; b

n

g of L the suc-

cessive minima satisfy

k

Y

j=1

�

j

�

k

Y

j=1

kb

�

i

j

k

2

for all 1 � k � n, and some unique integers 1 � i

j

� n.

Proof: Let fv

j

g

1�j�k

be a set of k linearly independent vectors that attain the �

j

,

i.e. kv

j

k

2

= �

j

for all 1 � j � k. Further let S = fi

1

: : : i

k

g be the set of k largest

indices i such that the projections of the vectors fv

j

g

1�j�k

are linearly independent in

the space generated by fb

�

i

g

i2S

. Such a set must exists otherwise the vectors fv

j

g

1�j�k

would be linearly dependent. Let

v

j

= v

0

j

+

k

X

h=1

�

h;i

j

b

�

i

j

for j = 1 : : :k, which we write in the matrix form

0

B

B

B

@

v

1

.

.

.

v

k

1

C

C

C

A

=

0

B

B

B

@

v

0

1

.

.

.

v

0

k

1

C

C

C

A

+

0

B

B

B

@

�

1;i

1

: : : �

1;i

k

.

.

.

.

.

.

�

k;i

1

: : : �

k;i

k

1

C

C

C

A

0

B

B

B

@

b

�

i

1

.

.

.

b

�

i

k

1

C

C

C

A

:

We now examine the sub-lattice L

0

of L generated by the vectors fv

j

g

1�j�k

, and trans-

form the basis fv

j

g

1�j�k

of L

0

to fw

j

g

1�j�k

where

0

B

B

B

B

B

@

w

1

w

2

.

.

.

w

k

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

w

0

1

w

0

2

.

.

.

w

0

k

1

C

C

C

C

C

A

+

0

B

B

B

B

B

@

�

1;i

1

0

�

2;i

1

�

2;i

2

.

.

.

.

.

.

�

k;i

1

�

k;i

2

: : : �

k;i

k

1

C

C

C

C

C

A

0

B

B

B

B

B

@

b

�

i

1

b

�

i

2

.

.

.

b

�

i

k

1

C

C

C

C

C

A

: (3.6)

Such a transformation is possible since the �

j;i

k

are all integers (by equation 3.4) and

thus we can perform integer row operations to leave only one non-zero entry in this

column, i.e. �

k;i

k

. Having done this the rightmost entries of the new rows are also all

47

integers, since they too correspond to lattice points, and so we can repeat the process

until we have the triangular matrix above.

From equation 3.6 it is clear that w

1

is such that kw

1

k � kb

�

i

1

k since �

1;i

1

2 Znf0g.

From the Gram-Schmidt orthogonalisation procedure we also have that

w

�

j

= w

j

�

j�1

X

h=1

�

j;h

w

�

j

= �

j;i

j

b

�

i

j

+ : : :

so kw

�

j

k � kb

�

i

j

k which implies the following

k

Y

j=1

�

j

=

k

Y

j=1

kv

j

k

2

� �

2

L

0

=

k

Y

j=1

kw

�

j

k

2

�

k

Y

j=1

kb

�

i

j

k

2

which completes the proof. 2

Corollary 3.2.6 Let �

1

; : : : ; �

n

be the non-decreasing values of fkb

�

i

k

2

g

1�i�n

for a

given basis fb

1

; : : : ; b

n

g of a lattice L. Then the successive minima �

i

satisfy

m

Y

i=1

�

i

�

m

Y

i=1

�

i

:

This corollary is useful because one may �nd lower bounds for

Q

k

j=1

�

j

from any basis

of L. In the next section the concept of a reduced basis is given, but this result holds

for any basis e.g. the original basis that describes the lattice. This fact is used in

equation 3.19 to �nd upper bounds for the sizes of the vectors in a reduced basis.

It should be noted that if one is given a lattice in triangular form (e.g. from the

Cholesky decomposition) one can read o�, from the diagonal entries, values for kb

�

i

k

(for this particular basis).

3.3 Lattice basis reduction

As was explained in Section 3.1 there are many bases of a lattice (L; q) all equivalent via

an invertible integer matrix H 2 GL

n

(Z). It has been a long-standing mathematical

problem to say which of these bases should be considered \reduced".

Na��vely one may think that a basis should be considered reduced if and only if it is

comprised of vectors that attain the values �

i

for 1 � i � n. However, as this example

from (Joux, 1993) shows, it is not as simple as this. If one considers the lattice below

48

generated by the rows of the matrix on the left, it can be noticed that �

i

= 2 for all

1 � i � 5, however there is no way to attain �ve linearly independent vectors that all

have size 2, and that span this lattice. The lattice is certainly not equivalent to the one

generated by the rows of the matrix on the right for example (they even have di�ering

determinants).

0

B

B

B

B

B

B

B

@

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

1 1 1 1 1

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

1

C

C

C

C

C

C

C

A

The notions of reduction are strongly linked to the Gram-Schmidt orthogonalisation

procedure, and so we shall maintain the notation b

�

i

for the orthogonal vectors resulting

from this procedure, and �

i;j

= (b

i

� b

�

j

)=kb

j

k

2

. It may be helpful to keep the following

diagram in mind.

b

1

= b

�

1

b

2

= �

2;1

b

�

1

+ b

�

2

b

3

= �

3;1

b

�

1

+ �

3;2

b

�

2

+ b

�

3

(3.7)

b

4

= �

4;1

b

�

1

+ �

4;2

b

�

2

+ �

4;3

b

�

3

+ b

�

4

.

.

.

.

.

.

Perhaps the easiest sense of a reduced basis is that j�

i;j

j � 1=2 for all 1 � j < i � n,

and a basis that satis�es this property will be referred to as weakly reduced.

To produce a weakly reduced basis notice that by changing the basis by b

i

 b

i

�mb

j

this changes �

i;j

in the following way

�

i;j

((b

i

�mb

j

) � b

j

�

kb

j

k

2

=

b

i

� b

j

�

kb

j

k

2

�m = �

i;j

�m:

In such a way we can ensure that j�

i;j

j � 1=2. However by changing b

i

we may

have changed all the �

k;j

for k < i, so they must then be modi�ed in the same way.

E�ectively this is simply the Gram-Schmidt orthogonalisation procedure, but we are

limiting ourselves to integral changes of base.

Another, far stronger, notion of a reduced basis was introduced by Korkine and Zolotarev

49

in (Korkine & Zolotarev, 1873), which is stated below.

De�nition 3.3.1 A basis fb

1

; : : : ; b

n

g of L is said to be KZ-reduced if, were the Gram-

Schmidt orthogonalisation procedure applied to it, the following conditions would hold.

1. j�

i;j

j � 1=2 for all 1 � j < i � n (i.e. it is a weakly reduced basis), and

2. b

�

i

is the shortest non-zero vector in the lattice generated by f�

i

(b

i

); : : : ; �

i

(b

n

)g

where �

i

(b

j

) is the projection of b

j

on to the space (Rb

1

+ : : :+ Rb

i�1

)

?

.

In terms of the Gram-Schmidt algorithm and looking at the set of equations 3.7 this de�-

nition means that b

�

1

= b

1

is the shortest vector of the lattice generated by fb

1

; : : : ; b

n

g,

then, blocking o� all the �

i;1

b

�

1

terms, b

�

2

must be the shortest vector in the lattice

generated by fb

�

2

; �

3;2

b

�

2

+ b

�

3

; �

4;2

b

�

2

+ �

4;3

b

�

3

+ b

�

4

; : : :g, and so on.

One can produce a KZ-reduced basis if one can �nd a shortest vector of any given

lattice. To do this, one would �rstly �nd the shortest vector of the lattice generated by

fb

1

; : : : ; b

n

g, and rearrange the basis so that this was b

1

. Then one would consider the

lattice generated by fb

�

2

; �

3;2

b

�

2

+ b

�

3

; �

4;2

b

�

2

+�

4;3

b

�

3

+ b

�

4

; : : :g, �nd the smallest element,

and change the basis so that this corresponded to b

2

, etc.

The problem with a KZ-reduced basis is that it is too hard to produce. As mentioned

before �nding the shortest vector in a lattice is an NP-complete problem, and thus so

is the production of an KZ-reduced basis. In the next section we examine a notion of

reduction which has proved far more computationally useful.

3.3.1 The LLL algorithm

The landmark paper of (Lenstra et al., 1982) gave a de�nition of an LLL-reduced basis

of L, and more importantly an e�ective way of computing one in polynomial time.

De�nition 3.3.2 A basis fb

1

; : : : ; b

n

g of L is said to be LLL-reduced if, were the

Gram-Schmidt orthogonalisation procedure applied to it, the following conditions would

hold.

j�

i;j

j � 1=2 8 1 � j < i � n; (3.8)

kb

�

i

+ �

i;i�1

b

�

i�1

k

2

� (3=4)kb

�

i�1

k

2

: (3.9)

The second condition is known as the Lov�asz condition, whilst the �rst will be referred

to as the weakly-reduced condition. As explained in (Lenstra et al., 1982) the 3=4

50

in the Lov�asz condition may actually be replaced with any constant c in the range,

1=4 < c < 1, though for simplicity we will state all results with respect to c = 3=4.

In Section 3.2 we showed that there exists a positive constant

n

such that in any

lattice (L; q) with determinant � there is an element x 2 L such that q(x) �

n

�

2=n

,

and that

n

� (4=3)

(n�1)=2

. In the following analysis we will show an alternative proof

of this statement, with the (slightly weaker) bound of

n

� 2

(n�1)=2

, but it is shown in

Section 3.3.1 that not only does such a lattice element exists, but we can actually �nd

it in polynomial time.

Implications

Before showing how to produce an LLL-reduced basis we �rst examine the implications

of its de�nition. Let us start by relaxing the LLL weakly reduced condition to

j�

i;i�1

j � 1=2 8 2 � i � n: (3.10)

We call a basis that satis�es conditions 3.10 and 3.9 an e�ectively LLL-reduced basis.

This is the only coe�cient condition that has an impact on the Lov�asz condition,

and it is unchanged by the algorithm (equivalent to Gram-Schmidt) needed to weakly

reduced the remainder of the basis. For this reason one can transform an e�ectively

LLL-reduced basis in to a fully LLL-reduced basis very easily, by simply performing

the weak reduction algorithm.

The e�ectively LLL-reduced conditions imply that

kb

�

i�1

k

2

� 2kb

�

i

k

2

; (3.11)

or using this fact repeatedly that kb

�

i

k

2

� 2

j�i

kb

�

j

k

2

for all i < j. Restricting ourselves

to i = 1 we have that for all 1 � j � n,

kb

1

k

2

� 2

j�1

kb

�

j

k

2

; (3.12)

so from equation 3.5, and assuming the worst case (and unlikely) situation that b

�

n

is

the smallest orthogonal vector, we have

kb

1

k

2

� 2

n�1

�

1

: (3.13)

Thus we have shown that if ever one could satisfy the (e�ectively) LLL-reduced condi-

tions, the vector b

1

would not be \much" larger than a shortest vector of the lattice.

51

Again considering equation 3.12 but now taking the product with j ranging from 1 up

to n we �nd

kb

1

k � 2

(n�1)=4

�

1=n

; (3.14)

which means that, again assuming one could satisfy the (e�ectively) LLL-reduced con-

ditions, the vector b

1

would be proof that

n

� 2

(n�1)=2

. However note that we have

yet to show that the LLL-reduced conditions are actually achievable; this is left to the

following sub-section.

In a similar way to the formation of equation 3.14, one may use the inequality in

equation 3.11 the other way around to show that

kb

�

n

k � 2

�(n�1)=4

�

1=n

: (3.15)

which is relevant to the discussion in Section 4.2.

Now let us consider the implications of the full LLL-reduced conditions (equations 3.8

and 3.9) These, together with equation 3.1, allow us to show

kb

i

k

2

�

1 + 2

i�1

2

kb

�

i

k

2

� 2

i�1

kb

�

i

k

2

; (3.16)

and so

� �

Q

n

i=1

kb

i

k � 2

n(n�1)=4

�; (3.17)

and then making use of Lemma 3.2.4 for the right hand inequality one can prove

2

1�i

�

i

� kb

�

i

k

2

� kb

i

k

2

� 2

n�1

�

i

: (3.18)

Equation 3.18 shows that the vector b

i

of an LLL-reduced basis is relatively close to

attaining �

i

.

In a similar way to the formation of equation 3.14, we may put the following upper

bound on the kb

i

k for i � 1.

kb

i

k � 2

n(n�1)=(4(n+1�i))

�

2

(i�1)(i�2)=2

Q

i�1

j=1

kb

�

j

k

!

1=(n+1�i)

� 2

n(n�1)=(4(n+1�i))

0

B

@

�

�

Q

i�1

j=1

�

j

�

1=2

1

C

A

1=(n+1�i)

52

� 2

n(n�1)=(4(n+1�i))

0

B

@

�

�

Q

i�1

j=1

�

j

�

1=2

1

C

A

1=(n+1�i)

; (3.19)

where �

1

� �

2

� : : : � �

i�1

are the smallest k � k

2

of the orthogonal vectors w.r.t.

any basis of the lattice L (using Lemma 3.2.5). Normally one would be given L w.r.t.

some basis, and this result would be used with this basis in mind (and if the basis were

triangular then the �

i

are just the squares of the smallest diagonal entries). This result

is an extension of one found in (Jutla, 1998), and is made use of in Section 4.7.

It should be mentioned that all the bounds achieved above are only the best that can

be proven theoretically; in practice far better bounds are often achieved. For instance

if one was actually given an LLL-reduced lattice one could work out from the smallest

b

�

i

how much smaller the smallest vector could be (for instance if b

�

1

were the smallest

then b

1

would actually attain �

1

).

We now give a brief summation of these reduction criteria.

 *
 i i

 *
i–1 i–1

b b

b = b

–2

–1

1

2

–1 –0.5 0.5 1

The LLL reduction conditions Figure 3.3.3 This diagram represents the real

plane which is spanned by the projections of b

i�1

and b

i

on to the space (Rb

1

+ : : :+Rb

i�2

)

?

. It is

scaled to the size of 1 : proj(b

i�1

), but the pro-

jections (proj) will be just assumed from now on,

i.e. in the diagram and text below. The radius

of the circle is

p

3=2. For the vector b

i

to satisfy

the (full or e�ective) LLL conditions it must lie

in the shaded area (which tends to in�nity above

and below).

The full LLL conditions ensure that the vectors

b

i

are fairly orthogonal, i.e. they are fairly close

to the b

�

i

, and thus the product of their sizes

approximates the determinant of the lattice.

The e�ective LLL conditions simply mean that

the b

�

i

are not decreasing in size very much, so

that b

�

1

= b

1

is relatively small (and b

�

n

is rela-

tively large) w.r.t. the determinant of the lattice.

53

The reduction algorithm

To show that there is an e�ective algorithm to �nd an LLL-reduced basis we will �rstly

show that for a lattice (L; q) with basis fb

1

; : : : ; b

n

g, then the following quantity is lower

bounded by a bound dependent only on the lattice itself (not on the particular choice

of basis).

D =

�

kb

�

1

k

2

�

n

�

kb

�

2

k

2

�

n�1

: : :

�

kb

�

n�1

k

2

�

2

�

kb

�

n

k

2

�

To see this consider the lattices L

i

generated by fb

1

; b

2

; : : : ; b

i

g with determinants �

i

and �rst minima �

1;i

for 1 � i � n. Then, by Lemma 3.2.2 for each i we have that

�

2

i

=

i

Y

j=1

kb

�

j

k

2

� (�

1;i

)

i

�i

i

� (�

1;n

)

i

�i

i

so writing �

1;n

just as �

1

, and noticing D =

Q

n

k=1

�

2

i

implies

D � (�

1

)

n(n+1)=2

n

Y

i=1

i

i

!

�1

which is only dependent on the lattice itself (not any basis of it).

As shown above we can ensure that the basis is weakly reduced very easily, so the only

problem in ensuring that the LLL-reduced conditions hold is ensuring that the Lov�asz

condition (equation 3.9) holds for all 2 � i � n. Let us assume that it does not hold

between b

�

j�1

and b

�

j

, i.e. b

�

j

is somewhere inside the circle and the lines of Figure 3.3.3.

In this situation we would change the lattice basis by swapping b

j�1

and b

j

. If we were

to apply the Gram-Schmidt algorithm to this new basis only the vectors b

�

j�1

and b

�

j

would change, since all the other vectors b

�

i

would still satisfy the orthogonality and

spanning properties of the Gram-Schmidt algorithm. Let us call the new vectors d

�

j�1

and d

�

j

.

Firstly let us note that kd

�

j�1

kkd

�

j

k must equal kb

�

j�1

kkb

�

j

k since the determinant of the

lattice (the product of the sizes of the orthogonal vectors) is invariant.

Visually we can show this swap by the following diagram, which like Figure 3.3.3 is

supposed to represent the projections of the relevant vectors in the space (Rb

1

+ : : :+

Rb

i�2

)

?

.

54

Figure 3.3.4 The e�ect of swapping adjacent vectors

*

d

d

b = b*

b* b = *d d
j j

j-1 j-1

j-1

j

j

j-1

If we let D

0

denote the new value of D then

D

0

=

�

kd

�

j�1

k

2

�

n+2�j

�

kb

�

j

k

2

�

n+1�j

�

kb

�

j�1

k

2

�

n+2�j

�

kd

�

j

k

2

�

n+1�j

D

=

kd

�

j�1

k

2

kb

�

j�1

k

2

D

�

3

4

D

We are now in a position to give a polynomial time algorithm to reduce the basis b

i

: We

could weakly reduce the basis, �nd the lowest i for which the Lov�asz condition is not

satis�ed, swap them, and then repeat this whole process. We could not do this forever

since each time we swap, then quantity D falls by 3=4 and it is lower bounded, thus

the algorithm must terminate. Having said this the following ow chart demonstrates

a far more e�cient algorithm.

55

Figure 3.3.5 A ow chart of the LLL algorithm

Lovasz
condition
satisfied?

µi,i-1

If i>2 then
 i=i-1

|| b ||i
* 2

*
i-1|| b ||

 2 µi,j

Swap b and bii-1 so change

 and relevant
All the vectors have been examined?

Weakly
reduce
basis

i=i+1

µi,j || b i
* ||

2

Change basis to ensure

set i=2

1/2

START

END

yesno

no

yes

the values of

Perform the Gram-Schmidt algorithm, store

and for 1 j < i n

Notice that the Lov�asz condition is equivalent to

kb

�

i

k

2

�

�

3

4

� �

2

i;i�1

�

kb

�

i�1

k

2

;

so can be computed just from the kb

�

i

k

2

and �

i;i�1

. In fact notice that we only store the

kb

�

i

k

2

and the �

i;j

, and not any of the vectors b

i

or b

�

i

. Of course if one wants to have

a matrix representation for the reduced basis one can store and update the vectors b

i

throughout the algorithm. Alternatively one might want to have a representation of

the reduced basis in terms of the original basis, in which case one can store and update

a matrix H 2 GL

n

(Z) throughout the algorithm.

It can be seen, from looking at Figure 3.3.4, that the necessary changes to kb

�

j�1

k

2

; kb

�

j

k

2

,

and �

2

j;j�1

when b

j�1

and b

j

are swapped are

kd

�

j�1

k

2

= kb

�

j

k

2

+ �

2

j;j�1

kb

j�1

k

2

;

kd

�

j

k

2

=

kb

�

j�1

k

2

kb

�

j

k

2

kd

�

j�1

k

2

;

�

0

j;j�1

=

kb

�

j�1

k

2

kd

�

j�1

k

2

�

j;j�1

;

where, as above, kd

�

j�1

k

2

; kd

�

j

k

2

; �

0

j;j�1

denote the new values of kb

�

j�1

k

2

; kb

�

j

k

2

and

56

�

j;j�1

respectively.

The remaining �'s that need to be changed are �

j�1;k

, �

j;k

for 1 � k � j � 2 and

�

k;j�1

, �

k;i

for j + 1 � k � n. The �

j�1;k

and �

j;k

simply need to be swapped for

1 � k � j � 2. The latter adjustments are slightly more complicated, but again by

considering Figure 3.3.4 (picking an arbitrary point for the projection of b

k

in to this

space, and considering similar triangles) one can show:

�

0

k;j

= �

k;j�1

� �

j;j�1

�

k;j

;

�

0

k;j�1

= �

k;j

+ �

0

j;j�1

�

0

k;j

;

for j + 1 � k � n.

This algorithm will be referred to as the LLL algorithm for lattice reduction. It is

slightly di�erent from the versions given in (Lenstra et al., 1982) and (Cohen, 1991)

because the weak reduction is done in one block at the end, rather than throughout the

algorithm, which seems slightly more e�cient, although there may be some coe�cient

explosion with the �

i;j

when j 6= i� 1 (the e�ect of this has not be analysed, but for

simplicity of exposition the above algorithm is preferred).

When it is applied to an integer basis b

i

2Z

n

, 1 � i � n, it can be shown (see (Lenstra

et al., 1982)) to have complexity O(n

6

log

3

R) where n is the dimension of the basis,

and R = max

1�i�n

fkb

i

k

2

g. This complexity however, is typically quite pessimistic,

and faster times are often achieved in practice. If the entries of the basis are rational,

then one can clear denominators before applying the LLL algorithm.

3.3.2 Extensions

When the LLL algorithm is applied to a basis with integral entries, one can ensure,

at little expense, that all calculations are done with integers (see for example (Co-

hen, 1991)). However it is almost always preferable to use LLL with oating point

approximations; see (Schnorr, 1988).

A problem with the LLL algorithm, is because the counter i works its way up from 2 to

n, the algorithm is sensitive to the order of the initial basis. To combat this problem it

was suggested in (Schnorr & Euchner, 1991) that one use \deep insertions", e�ectively

scanning ahead (past b

i

) to see which vectors will cancel \nicely" with b

i�1

.

Although the LLL algorithm frequently �nds a shortest element of a lattice (indeed it

must if the next shortest linearly independent vector is more than 2

(n�1)=4

times larger)

it is not immediately clear how to prove that this is the shortest vector, or �nd the

57

shortest vector if it is not. An answer to this problem was given in (Kannan, 1983),

and is sketched below.

For v = �

1

b

1

+ : : :�

n

b

n

= �

1

b

�

1

+ : : :+ �

n

b

�

n

to be the smallest vector we must have

that it is not larger that b

1

, i.e.

�

2

n

kb

�

n

k

2

� kvk

2

� kb

1

k

2

� 2

n�1

kb

�

n

k

2

so �

n

2Zis in the range �2

(n�1)=2

: : :2

(n�1)=2

, and we know that �

n

= �

n

.

We can continue this idea and show that j�

n�1

j � 2

(n�2)=2

, but �

n�1

is not typically an

integer so it is not immediately obvious that this limits �

n�1

to a �nite search, however

this is true from Lemma 3.2.3, which shows that �

n�1

= �

n�1

+ �

n;n�1

�

n

, and thus

�

n�1

is an integer in the range �2

(n�2)=2

� �

n;n�1

�

n

: : :2

(n�2)=2

� �

n;n�1

�

n

. Working

backwards like this one can �nd, in the worst case, the smallest vector of a lattice after

a linear search of 2

(n�1)(n�2)=4+1

values for the �

i

's.

Another interesting extension of the LLL algorithm was given in (Schnorr, 1987) which

mixes the ideas of LLL-reduction, and KZ-reduction, and the above idea of Kannan.

The resulting (hierarchy of) algorithms are named blockwise Korkine-Zolotarev algo-

rithms, because of the introduction of the concept of reduced \blocks" of vectors.

Schnorr improves on the e�ciency of �nding shorter vectors in the lattice.

3.4 The dual lattice and LLL

The dual (or polar) lattice, as given in (Cassels, 1971), is de�ned as the following.

De�nition 3.4.1 If fb

1

; : : : ; b

n

g is a basis for a lattice L, then there do exist vectors

fd

1

; : : : ; d

n

g such that

d

j

� b

i

=

(

1 if i = j,

0 otherwise.

(3.20)

The lattice which is spanned by the basis fd

1

; : : : ; d

n

g is called the dual lattice of L.

In terms of matrices, if the rows of B form a basis for a lattice L, then the rows of

(B

�1

)

t

form a basis (the dual basis) for the dual lattice of L. In (Cassels, 1971) the

notation L

�

and B

�

are used for the dual lattice and basis respectively, however to

avoid confusion with the Gram-Schmidt procedure we shall adopt the notation L

�t

58

and B

�t

for these concepts. Notice B

�t

= (B

�1

)

t

= (B

t

)

�1

. We now give a theorem

linking the dual lattice and the LLL algorithm which is made use of in Section 4.4.

Theorem 3.4.2 Let the rows of an (n) � (n) matrix A form a basis for a lattice L,

and let B be an e�ectively LLL reduced basis for this lattice. Further let A

�t

denote

the inverse transpose of A, i.e. A

�t

= (A

�1

)

t

= (A

t

)

�1

, and A

r

denote the matrix A

with the rows reversed. Then the rows of the matrix

D =

�

B

�t

�

r

(3.21)

form an e�ectively LLL reduced basis for the dual lattice L

�t

generated by the rows of

A

�t

.

Moreover, if fb

1

; : : : ; b

n

g and fd

1

; : : : ; d

n

g denote the rows of B and D respectively,

then the following relationships hold for all 1 � i � n;

b

�

i

=

d

�

n+1�i

kd

�

n+1�i

k

2

; (3.22)

and

b

i

� b

�

i�1

kb

�

i�1

k

2

=

d

n+2�i

� d

�

n+1�i

kd

�

n+1�i

k

2

: (3.23)

Proof: To show the rows of D are a basis for L

�t

at all, let B = HA where

H 2 GL

n

(Z); thus

D =

�

(HA)

�t

�

r

=

�

H

�t

A

�t

�

r

=

�

H

�t

�

r

A

�t

;

and

�

H

�t

�

r

2 GL

n

(Z) as required.

From the de�nition of the dual lattice we have

b

i

� d

j

=

(

1 if i+ j = n + 1,

0 otherwise.

By induction on j we have b

i

� d

�

j

= 0 for all j � n � i, and b

i

� d

n+1�i

= 1. Further,

since b

1

= b

�

1

=

P

�

1;i

d

�

i

with �

1;i

= (b

1

� d

�

i

)=kd

�

i

k

2

this gives b

�

1

= d

�

n

=kd

�

n

k

2

.

59

Now we assume b

�

i

= d

�

n+1�i

=kd

�

n+1�i

k

2

and induct on i. Thus we write b

�

i+1

=

P

�

i+1;j

d

�

j

where

kd

�

j

k

2

�

i+1;j

= b

�

i+1

� d

�

j

=

b

i+1

�

i

X

k=1

�

i+1;k

b

�

k

!

� d

�

j

= b

i+1

� d

�

j

�

i

X

k=1

�

i+1;k

b

�

k

� d

�

j

:

If j < n � i then both terms on the right hand side are 0, so �

i+1;j

= 0. If j = n � i

then b

i+1

� d

�

j

= 1 and the terms in the sum are 0, so �

i+1;n�i

= 1=kd

n�i

k

2

. Finally

if j > n � i then d

�

j

= kd

�

j

kb

�

n+1�j

by the inductive hypothesis (since (n+ 1� j) � i)

which implies �

i+1;j

= 0. Thus only �

i+1;n�i

is non-zero, and so equation 3.22 is true.

With this result we have

d

n+2�i

� d

�

n+1�i

kd

�

n+1�i

k

2

= d

n+2�i

� b

�

i

= d

�

n+2�i

� b

�

i

= d

�

n+2�i

� b

i

=

b

i

� b

�

i�1

kb

�

i�1

k

2

;

which shows equation 3.23 is valid, and hence equation 3.10 holds for the basis D of

L

0

, assuming B is itself e�ectively LLL reduced.

Finally to show equation 3.9 also holds for the basis D of L

0

when B is e�ectively LLL

reduced, observe that this condition is equivalent to

kb

�

i

k

2

�

0

@

3

4

�

b

i

� b

�

i�1

kb

�

i�1

k

2

!

2

1

A

kb

�

i�1

k

2

;

which implies

1

kd

�

n+1�i

k

2

�

0

@

3

4

�

d

n+2�i

� d

�

n+1�i

kd

�

n+1�i

k

2

!

2

1

A

1

kd

�

n+2�i

k

2

;

kd

�

n+2�i

k

2

�

0

@

3

4

�

d

n+2�i

� d

�

n+1�i

kd

�

n+1�i

k

2

!

2

1

A

kd

�

n+1�i

k

2

as required. 2

60

Let the rows of a matrix C form a basis for a lattice L

0

, and suppose that a vector

d

�

n

is required such that kd

�

n

k � 2

�(n�1)=4

jdetCj

1=n

for some basis D of L with rows

fd

1

; : : : ; d

n

g (i.e. condition 3.15 is required). Clearly the LLL algorithm could �nd such

a d

�

n

by reducing the matrix C; the following corollary implies an alternative method.

Corollary 3.4.3 Let the rows of a matrix C form a basis for a lattice L

0

. A vector

d

�

n

such that kd

�

n

k � 2

�(n�1)=4

j detCj

1=n

for some basis D of L

0

can be found by LLL

reducing the matrix C

�t

.

Proof: Let A = C

�t

, and apply the LLL to this to form the matrix B. From

theorem 3.4.2 we know that D =

�

B

�t

�

r

is an e�ectively LLL reduced basis for C

(where d

�

n

= b

1

=kb

1

k

2

), so kd

�

n

k

2

� 2

�(n�1)=4

j detCj

1=n

. 2

If, as in the method in section 4.2, it is not explicitly the vector d

�

n

that is required but

a coe�cient such that kvCk � jj 2

�(n�1)=4

d(L)

1=n

, then the following corollary is

more useful.

Corollary 3.4.4 Given a basis C of a lattice L

0

and a vector v 2 Z

n

, one can �nd a

constant 2 Z such that

kvCk � jj 2

�(n�1)=4

d(L

0

)

1=n

; (3.24)

by LLL reducing the matrix C

�t

.

Proof: As the theory in section 4.2 shows, the normal way to �nd such a is to form

an LLL reduced basis D from the initial basis C, and then = (v(H

0

)

�1

)

n

will satisfy

equation 3.24, where D = H

0

C.

Instead if we LLL reduce A = C

�t

to form a basis B, where B = HA, and H has rows

fh

1

; : : :h

n

g, then

kvCk = kvA

�t

k

= kvH

t

B

�t

k

=

v

�

H

t

�

c

�

B

�t

�

r

;

where (H

t

)

c

is H

t

with its columns reversed, and we know D = (B

�t

)

r

is an e�ectively

LLL-reduced basis for L

0

. Thus

kvCk �

�

v

�

H

t

�

c

�

n

d

�

n

� jj 2

�(n�1)=4

d(L

0

)

1=n

;

61

where = (v(H

t

)

c

)

n

= v � h

1

. 2

This theory suggests that if the LLL algorithm is being used for \something to do with"

a large vector d

�

n

, it may be better to consider the dual lattice and search for a small

vector b

1

. The advantage of this is that the LLL algorithm (since it works its way up

through the vectors) can have an \early exit" when it has found a small enough b

1

,

rather than reducing the whole basis to �nd a large d

�

n

.

3.5 Unitary lattices and LLL

In this section we show how to extend the use of the LLL algorithm (see (Lenstra

et al., 1982)) from lattices to any free G-module of �nite rank (with associated positive

de�nite unitary quadratic form), where G denotes the Gaussian integers. We call such

a structure a unitary lattice

3

, and the extension is analogous to that from an R-inner

product space to a C -inner product space in linear algebra.

This work was done completely independently by the author in connection with the

work in Section 5.3. It has since come to the authors attention that prior work was

done in this area in (Fieker & Pohst, 1996), and consequently in (Schiemann, 1998).

This work is discussed in Section 3.6.

In the following theory the symbol G will be used to denote the Gaussian integers

fa + ib j a; b 2 Zg. We now state the de�nitions and results needed to consider the

formation and basis reduction of unitary lattices. The exposition follows very closely

that given in Sections 3.1, 3.2 and 3.3.

De�nition 3.5.1 Let V be a C -vector space. A mapping q : V ! R is called a unitary

quadratic form if the following two conditions are satis�ed:

1. For every � 2 C and x 2 V we have

q(�x) = j�j

2

q(x):

2. If we set b(x; y) =

1

4

(q(x+ y)� q(x� y) + iq(x+ iy)� iq(x� iy)) then b is a

bilinear form satisfying b(�x; y) = �b(x; y) for all � 2 C and x; y 2 V .

Note this de�nition implies b(x; x) = q(x) 2 R and b(x; �y) = �b(x; y). The unitary

quadratic form is called positive de�nite if for all non-zero x 2 V we have q(x) > 0.

3

We de�ne the concept of a unitary lattice to better �t in with standard linear algebra, however it

is acknowledged that unitary lattices can be restated in terms of (higher dimensional) real lattices.

62

De�nition 3.5.2 A unitary lattice K is de�ned to be a free G-module of �nite rank

together with a positive de�nite unitary quadratic form q on K
 C .

With the unitary quadratic form de�ned as above, we call the bilinear form b a dot

product and denote it by x � y =

P

n

i=1

x

i

y

i

for x = (x

1

; : : : ; x

n

); y = (y

1

; : : : ; y

n

) 2 K.

It is a relatively easy exercise in linear algebra (see, for instance (Stoll & Wong, 1968))

to show that, given a basis fb

1

; : : : ; b

n

g of C

n

, the Gram-Schmidt procedure, which is

again de�ned iteratively by

b

�

i

= b

i

�

i�1

X

j=1

�

i;j

b

�

j

where �

i;j

=

b

i

� b

�

j

b

�

j

� b

�

j

;

still produces an orthogonal basis fb

�

1

; : : : ; b

�

n

g such that

1. span fb

�

1

; : : : ; b

�

i

g = span fb

1

; : : : ; b

i

g for all i � n,

2. if �

K

is the determinant of the unitary lattice K then

�

K

=

n

Y

i=1

jb

�

i

j :

In a similar way to Lemma 3.1.5 when given a basis of a unitary lattice we can represent

certain concepts by vectors and matrices.

Lemma 3.5.3 Given a basis (b

i

)

1�i�n

of a unitary lattice (K; q), where b denotes the

symmetric bilinear form associated to q, then

1. An element x 2 L may be represented by a (row) vector X 2 V

n

(G) where x =

P

X

i

b

i

. The vector X is often referred to as the coordinate vector of x with

respect to the basis (b

i

)

1�i�n

.

2. An alternative basis (b

0

i

)

1�i�n

may be represented by an integer matrix H 2

GL

n

(G) whose rows are the coordinate vectors of the b

0

i

in terms of the b

i

. It

follows that the determinant of this matrix must be �1 (i.e. H 2 GL

n

(G)) if and

only if (b

0

i

)

1�i�n

is indeed a basis for (K; q).

3. It is relatively easily checked that the properties of the quadratic form imply

q(x) =

X

1�i;j�n

q

i;j

x

i

x

j

;

63

where q

i;j

= b(b

i

; b

j

). This means the quadratic form may be represented by

the complex positive de�nite symmetric matrix Q = (q

i;j

)

1�i;j�n

, and that the

associated bilinear form satis�es

b(x; y) = Y QX

t

;

where X and Y are the (integer) coordinate vectors of x and y respectively. Notice

that this means q(x) = b(x; x) = XQX

t

.

De�nition 3.5.4 We say that two unitary lattices (K; q) and (K

0

; q

0

) are equivalent

if there is a G-module isomorphism between K and K

0

sending q to q

0

.

Considered as G-modules K and K

0

will be isomorphic if and only if a basis of K maps

via an invertible integer matrix (i.e. H 2 GL

n

(G)) to a basis of K

0

. For this to map

q on to q

0

means that Q

0

= HQH

t

by Lemma 3.1.5(3). The matrix Q thus gives a

representation of a unitary lattice that is unique modulo the equivalence relation �

where Q � Q

0

if and only if Q

0

= HQH

t

for some H 2 GL

n

(G).

As in de�nition 3.1.7 we prefer to de�ne a unitary lattice as a subset of C

n

.

De�nition 3.5.5 For a given basis fb

1

; : : : ; b

n

g of C

m

which form the rows of a (n)� (m)

matrix B, a unitary lattice K is de�ned to be the set of points

K = fy = xB j x 2 G

m

g ;

together with an associated Euclidean quadratic form

P

m

i=1

y

i

y

i

.

In a similar way to real lattices we have that the representation of a lattice by the matrix

B is only unique up to left multiplication by H 2 GL

n

(G) and right multiplication by

a complex orthonormal matrix N . The invariant determinant of the lattice is thus

de�ned as

�

(K;q)

= j det(B)j = j det(Q)j

1=2

:

The concept of the successive minima �

i

of k � k

2

still holds for unitary lattices. For

instance the analogue of Lemma 3.2.4, i.e. �

i

� b

�

j

for some i � j � n still holds for

unitary lattices.

The notion of an LLL-reduced basis also extends easily to unitary lattices.

De�nition 3.5.6 A basis fb

1

; : : : ; b

n

g of K is said to be LLL-reduced if, were the

Gram-Schmidt orthogonalisation procedure were applied to it, the following conditions

64

would hold.

j�

i;j

j � 1=

p

2 8 1 � j < i � n; (3.25)

kb

�

i

+ �

i;i�1

b

�

i�1

k

2

� (3=4)kb

�

i�1

k

2

: (3.26)

To understand the change in the weakly reduced condition, notice that if

�

i;j

=

b

i

� b

�

j

kb

�

j

k

2

= a+ ib;

then by performing the change of unitary base b

i

 b

i

�(bae+ ibbe)b

j

we can transform

�

i;j

to

�

0

i;j

=

(b

i

� (bae+ ibbe)b

j

) � b

�

j

kb

�

j

k

2

= �

i;j

� (bae+ ibbe):

This means we can only ensure that j�

i;j

j �

p

(1=2)

2

+ (1=2)

2

= 1=

p

2.

As before one can relax the weakly reduced condition to just considering j = i� 1 and

together with the Lov�asz condition this implies kb

�

i�1

k

2

� 4kb

�

i

k. It is then simple to

prove

kb

1

k

2

� 4

n�1

�

1

; and (3.27)

kb

1

k � 2

(n�1)=2

�

1=n

: (3.28)

The full LLL conditions allow one to show kb

i

k

2

� 4

i�1

kb

�

i

k

2

and hence

� �

Q

n

i=1

kb

�

i

k � 2

(n�1)=2

�; (3.29)

and

4

1�i

�

i

� kb

�

i

k

2

� kb

1

k

2

� 2

n�1

�

1

: (3.30)

The LLL algorithm follows similarly, and is shown below for completeness sake.

65

Figure 3.5.7 A ow chart of the LLL algorithm

Lovasz
condition
satisfied?

µi,i-1

If i>2 then
 i=i-1

|| b ||i
* 2

*
i-1|| b ||

 2 µi,j

Swap b and bii-1 so change

 and relevant
All the vectors have been examined?

Weakly
reduce
basis

i=i+1
2

µi,j || b i
* ||

2

Change basis to ensure

set i=2

START

END

yesno

no

yes

Perform the unitary Gram-Schmidt algorithm

and store

1/

and for 1 j < i n

The complexity of this algorithm is again O(n

6

log

3

R) where n is the dimension of the

basis, and R = max

1�i�n

fkb

i

k

2

g, since we have a similar quantity D to the real lattice

case, which is lower bounded, and is again multiplied by a factor of at most 3=4 each

time two vectors that fail the Lov�asz condition are swapped.

3.6 Further extensions of LLL

One can extend the ideas of Section 3.5, and make LLL work over other algebraic

structures. For instance it is relatively easy to extend the approach to allow LLL to

reduce over Z[�] ' fa + �b j a; b 2 Zg where � is a degree two algebraic integer,

satisfying �

2

+r�+s = 0 and 4s�r

2

> 0. In this case we can de�ne a positive de�nite

norm function N(a+�b) = a

2

+ sb

2

� rab and if we also de�ne a+ �b = (a� rb)� b�,

then it is left to the reader to verify that the methods of Section 3.5 still hold.

Recently work has been done on extending LLL to work over higher degree algebraic

number �elds. The started with (Fieker & Pohst, 1996), and more recently has been

approached in (Schiemann, 1998). This is an enormous and complicated �eld of ex-

pertise, beyond the scope of this thesis. We refer the interested reader to the above

references. However we note that there are complications in determining the complex-

66

ity of an analogue of the LLL algorithm when working over these higher dimensional

algebraic number �elds.

Yet another approach to dealing with algebraic integers is to place them within a

(standard) integral lattice framework. This has been done in Section 4.7 to help �nd

small solutions to \modular" algebraic integer equation. The bene�t of this approach

is that the integral LLL algorithm is well understood, and thus the complexity of the

method can be well approximated.

67

Chapter 4

Finding small roots of modular

equations

Let p(x) be a univariate modular polynomial of degree k;

p(x) = x

k

+ a

k�1

x

k�1

+ : : :+ a

1

x+ a

0

(mod N): (4.1)

It is assumed that p(x) is monic and irreducible, and that N is not prime, but hard to

factor

1

. The following theorem was proved in (Coppersmith, 1996b).

Theorem 4.0.1 If p(x) is a univariate polynomial of degree k, then for any modulus N

all the solutions p(x

0

) = 0 (mod N) with jx

0

j < N

1=k

may be found in time polynomial

in logN and k.

In this chapter we describe another computational method for the proof of this theorem

i.e. how to �nd all the small integral roots, x

0

2 Z, of equation 4.1, and show the

relationship between the approach taken here, and that taken in (Coppersmith, 1996b).

It will be proved, via the general result on dual lattices developed in Section 3.4 that

these two algorithms are in fact equivalent, though the present approach is preferred for

mathematical simplicity (and therefore ease of implementation), and also, very slightly,

for e�ciency reasons.

It has been shown in (Coppersmith, 1996b), and (Coppersmith et al., 1996), that

�nding small solutions to equation 4.1 can lead to various attacks on the RSA crypto-

graphic scheme when using a small encrypting exponent. These attacks are outlined

1

These assumptions are only to prevent there being easier ways to attack the problem. Only the

fact that p(x) is monic is important in what follows.

68

in Section 4.8. However we start in sections 4.1 and 4.2 by giving expositions of the

algorithms in question, together with proofs of their validity. Examples of both algo-

rithms are then shown in section 4.3, together with a pictorial explanation of the new

method.

In Section 4.4 we show that it is indeed the theory of Section 3.4 that links the two

methods. Section 4.5 then gives two slight practical improvements to the basic algo-

rithm.

Implementation considerations are discussed in Section 4.6, with timings results given

for a C implementation written by the author, using Gnu MP for a multi-precision integer

package. Reference is also given to more extensive results recently achieved.

In Section 4.7 we extend the basic idea of Section 4.1 to �nding small roots of algebraic

modular equations.

As mentioned above, in Section 4.8 we conclude by examining the applications of this

work to cryptography. This section contains a novel result in which we show that there

are provably weak places to hide information even when splitting this between many

blocks.

4.1 The method

In this section we give an exposition of a new method for �nding the small roots

of a (monic) univariate modular equation p(x) = 0 (mod N). The work has been

published in (Howgrave-Graham, 1997).

Observe that for any polynomial r(x), and natural number X , we have the following

upper bound on the absolute size of r(x) in the region jxj � X .

jr(x)j � jx

k

j+ ja

k�1

x

k�1

j+ : : :+ ja

1

xj+ ja

0

j

� jX

k

j+ ja

k�1

X

k�1

j+ : : :+ ja

1

X j+ ja

0

j for all jxj � X:

For some integer h � 2, and natural number X we de�ne a lower triangular (hk)�(hk)

matrix M = (m

i;j

). The entry m

i;j

is given by e

i;j

X

j�1

, where e

i;j

is the coe�cient of

x

j�1

in the expression

q

u;v

(x) = N

(h�1�v)

x

u

(p(x))

v

; (4.2)

with v = b(i� 1)=kc, and u = (i� 1)� kv. Notice that q

u;v

(x

0

) = 0 (mod N

h�1

) for

69

all u; v � 0. All other entries of the matrix are zero, and so this matrix has determinant

detM = X

hk(hk�1)=2

N

hk(h�1)=2

: (4.3)

Let B be an LLL-reduced basis of the rows of M , and denote the �rst (small) row

vector of B by b

1

. Equation 3.14 implies that

kb

1

k

2

� 2

(hk�1)=4

X

(hk�1)=2

N

(h�1)=2

: (4.4)

Letting b

1

= cM also gives

kb

1

k

2

�

1

p

hk

kb

1

k

1

=

1

p

hk

�

�

�

�

�

hk

X

i=1

c

i

m

i;1

�

�

�

�

�

+

�

�

�

�

�

hk

X

i=1

c

i

m

i;2

�

�

�

�

�

+ : : :+

�

�

�

�

�

hk

X

i=1

c

hk

m

i;hk

�

�

�

�

�

!

=

1

p

hk

�

�

�

�

�

hk

X

i=1

c

i

e

i;1

�

�

�

�

�

+

�

�

�

�

�

hk

X

i=1

c

i

e

i;2

!

X

�

�

�

�

�

+ : : :+

�

�

�

�

�

hk

X

i=1

c

hk

e

i;hk

!

X

hk�1

�

�

�

�

�

!

�

1

p

hk

jr(x)j for all jxj � X; (4.5)

where

r(x) =

hk

X

i=1

c

i

e

i;1

+

hk

X

i=1

c

i

e

i;2

!

x+ : : :+

hk

X

i=1

c

hk

e

i;hk

!

x

hk�1

= c

1

hk

X

j=1

e

1;j

x

j�1

+ c

2

hk

X

j=1

e

2;j

x

j�1

+ : : :+ c

hk

hk

X

j=1

e

hk;j

x

j�1

: (4.6)

So kb

1

k is \almost" an upper bound for the polynomial r(x) in the entire range jxj � X .

Notice also that r(x

0

) = 0 (mod N

h�1

) since each sum is zero modulo N

h�1

.

Combining equations 4.4 and 4.5 means that, frommaking the matrixM with a natural

number X , we can form a polynomial r(x) that satis�es r(x

0

) = 0 (mod N

h�1

) and

jr(x)j �

�

2

(hk�1)=4

p

hk

�

X

(hk�1)=2

N

(h�1)=2

for all jxj � X:

Thus choosing

X =

l�

2

�1=2

(hk)

�1=(hk�1)

�

N

(h�1)=(hk�1)

m

� 1 (4.7)

70

means that we can form a polynomial r(x) such that r(x

0

) = 0 (mod N

h�1

) and

jr(x)j < N

h�1

for all jxj � X:

This implies that r(x

0

) = 0 over the integers as well, for any x

0

such that jx

0

j � X ,

and p(x

0

) = 0 (mod N). Solving this univariate equation over the integers can be

done in polynomial time (for instance by Hensel lifting the linear factors, or by �nding

small factors of the trailing coe�cient), and then one can test each solution to see if it

satis�es p(x

0

) = 0 (mod N). Notice that the bound X ! 2

�1=2

N

1=k

as h!1.

The polynomial r(x) can be formed from equation 4.6 or the coe�cients may be ob-

tained by dividing the entries of the vector b

1

by appropriate powers of X .

This kind of reasoning has appeared before in (Hastad, 1988).

4.2 A review of Coppersmith's method

Below we outline the approach given in (Coppersmith, 1996b) for �nding small roots

of univariate modular equations. One �rstly chooses a natural number X , and forms

the lower triangular (2hk� k)� (2hk � k) matrix

M =

0

@

D A

O

hk

D

0

1

A

;

where

� D = (d

i;j

) is an (hk � hk) diagonal matrix with entries d

i;i

= X

1�i

,

� A = (a

i;j

) is an (hk� (h�1)k) matrix, where the entry a

i;j

is the coe�cient of x

i

in the expression x

u

((p(x))

v

, with v = b(k+ j�1)=kc, and u = (j�1)�k(v�1).

� D

0

= (d

0

i;j

) is an ((h � 1)k � (h � 1)k) diagonal matrix with entries d

0

i;i

= N

v

where v = b(k + i� 1)=kc.

This has determinant

det(M) = N

hk(h�1)=2

X

�hk(hk�1)=2

: (4.8)

Since there is a triangular sub-matrix of A with 1's on the diagonal it is possible to

transform the matrixM (using integral elementary row operations implied by a matrix

71

H

1

2 GL

n

(Z)), to

~

M = H

1

M =

0

@

^

M 0

(hk�(h�1)k)

A

0

I

(h�1)k

1

A

:

This means that the absolute value of the determinant of both

~

M and

^

M are the same

as that given by equation 4.8. We then reduce

^

M using lattice basis reduction to give a

matrix B = H

2

^

M . Let B

�

(with row vectors b

�

i

) denote this basis after Gram-Schmidt

orthogonalisation. We know from equation 3.15 that

kb

�

hk

k � 2

�(hk�1)=4

N

(h�1)=2

X

�(hk�1)=2

: (4.9)

Assume that p(x

0

) = 0 (mod N) and let y

0

= p(x

0

)=N 2 Z. De�ne the following

vector of length (2hk � k),

c

0

=

�

1; x

0

; : : : ; x

hk�1

0

;�y

0

;�y

0

x

0

; : : : ;�y

0

x

k�1

0

;�y

2

0

; : : : ;�y

h�1

0

x

k�1

0

�

: (4.10)

Further, when given a vector v of length (2hk � k) that has 0's for the last (h � 1)k

entries, then denote by [v]

sh

the vector \shortened" to one of length (hk).

Assuming that jx

0

j � X , the above implies

p

hk �

�

�

�

�

�

�

�

1; x

0

=X; : : :(x

0

=X)

hk�1

; 0; : : : ; 0

�

�

�

�

�

�

�

= kc

0

Mk

= kc

0

H

�1

1

~

Mk

= k[c

0

H

�1

1

]

sh

^

Mk since (c

0

H

�1

1

)

i

= 0 for i > hk

= k[c

0

H

�1

1

]

sh

H

�1

2

Bk

= kc

0

Bk where c

0

= [c

0

H

�1

1

]

sh

H

�1

2

= kc

00

B

�

k for some c

00

2 R

hk

� kc

00

hk

b

�

hk

k

= kc

0

hk

b

�

hk

k since c

00

hk

= c

0

hk

2Z

= jc

0

hk

j kb

�

hk

k

� jc

0

hk

j2

�(hk�1)=4

N

(h�1)=2

X

�(hk�1)=2

; (4.11)

which means, since c

0

hk

2Z, that c

0

hk

= 0 for any

X <

�

2

�1=2

(hk)

�1=(hk�1)

�

N

(h�1)=(hk�1)

: (4.12)

72

If instead of c

0

we consider the variable vector

c(x) =

�

1; x; : : : ; x

hk�1

;�p(x)=N;�xp(x)=N; : : :;�x

k�1

p(x)=N;

�(p(x)=N)

2

;�x(p(x)=N)

2

; : : : ;�x

k�1

(p(x)=N)

h�1

�

; (4.13)

which satis�es c(x

0

) = c

0

, then c

0

hk

(x) is a univariate polynomial given by

c

0

hk

(x) = [c(x)H

�1

1

]

sh

� ((H

�1

2

)

t

)

hk

: (4.14)

This has integer coe�cients after multiplying through by N

h�1

, and with X chosen as

large as possible (from equation 4.12), this polynomial must satisfy c

0

hk

(x

0

) = 0 for any

jx

0

j < X .

The polynomial c

0

hk

(x) is not identically zero since it is the sum of integer multiples of

polynomials of di�erent degrees, and not all the multiples can be zero; otherwise H

2

would have zero determinant.

4.3 Examples

We examine the approach used by both methods to solve the equation p(x) = x

2

+

14x + 19 = 0 (mod 35) with h = 3 (thus X = 2). Actually this polynomial has a

solution x

0

= 3, but as we will see the methods still �nd it even though x

0

> X . It is

often the case that the theoretical X given in the previous two sections is a little too

low.

73

4.3.1 Coppersmith's method

Coppersmith's method would �rstly form the (10)� (10) matrix below.

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 19 0 361 0

2

�1

14 19 532 361

2

�2

1 14 234 532

2

�3

1 28 234

2

�4

1 28

2

�5

1

35

0 35

1225

1225

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

This is transformed (using elementary row operations) to

~

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �19� 2

�2

266� 2

�3

�3363� 2

�4

42028� 2

�5

2

�1

�14� 2

�2

177� 2

�3

�2212� 2

�4

27605� 2

�5

�35� 2

�2

490� 2

�3

�5530� 2

�4

58800� 2

�5

0

�35� 2

�3

980� 2

�4

�19250� 2

�5

0 �1225� 2

�4

34300� 2

�5

�1225� 2

�5

2

�2

�14� 2

�3

158� 2

�4

�1680� 2

�5

1

2

�3

�28� 2

�4

550� 2

�5

1

0 2

�4

�28� 2

�5

1

2

�5

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

74

where

~

M = H

1

M , and

H

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �19 266 �3363 42048

1 �14 177 �2212 27605

�35 490 �5530 58800 1

�35 980 �19250 1

�1225 34300 1

�1225 1

1 �14 158 �1680

1 �28 550

1 �28

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

We then examine (after clearing denominators and swapping the rows and columns),

the (6)� (6) sub-matrix below.

^

M =

0

B

B

B

B

B

B

B

B

B

B

@

�1225 0

34300 �1225� 2

�19250 980� 2 �35� 2

2

58800 �5530� 2 490� 2

2

�35� 2

3

27605 �2212� 2 177� 2

2

�14� 2

3

2

4

42048 �3363� 2 266� 2

2

�19� 2

3

0 2

5

1

C

C

C

C

C

C

C

C

C

C

A

This is LLL reduced to

B

2

=

0

B

B

B

B

B

B

B

B

B

B

@

100 0 15� 2

2

0 �10� 2

4

0

�51 36� 2 20� 2

2

�11� 2

3

�4 � 2

4

�2 � 2

5

108 �45� 2 33� 2

2

2� 2

3

6� 2

4

1� 2

5

16 �90� 2 1� 2

2

4� 2

3

�3 � 2

4

2� 2

5

13 �58� 2 �4� 2

2

6� 2

3

5� 2

4

�4 � 2

5

154 �43� 2 �28� 2

2

�25� 2

3

7� 2

4

�2 � 2

5

1

C

C

C

C

C

C

C

C

C

C

A

;

75

where B

2

= H

2

^

M , and

H

2

=

0

B

B

B

B

B

B

B

B

B

B

@

0 4 5 4 �10 0

3 4 6 3 �4 �2

�8 �4 �5 �3 6 1

1 0 0 0 �3 2

�2 �2 �5 0 5 �4

15 3 7 �1 7 �2

1

C

C

C

C

C

C

C

C

C

C

A

:

Now

H

�1

1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 19 0 361 0

1 14 19 532 361

1 14 234 532

0 1 28 234

1 28

1

1 35

1 35

1 1225

1 1225

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

so [c(x)H

�1

1

]

sh

has (as is typical) the following form

1; x;

�(x

2

+ 14x+ 19)

35

;

�x(x

2

+ 14x+ 19)

35

;

�(x

2

+ 14x+ 19)

2

1225

;

�x(x

2

+ 14x+ 19)

2

1225

!

;

and

H

�1

2

=

0

B

B

B

B

B

B

B

B

B

B

@

�5 4 �2 1 �1 �2

138 �109 56 �18 31 57

�77 60 �32 8 �18 �32

231 �171 104 �7 59 98

109 �82 48 �6 27 46

166 �125 73 �9 41 70

1

C

C

C

C

C

C

C

C

C

C

A

:

Thus taking the dot product of [c(x)H

�1

1

]

sh

with the last column of H

�1

2

(and then

multiplying by 1225) gives the polynomial

r(x) = 2x

5

� x

4

� 8x

3

� 24x

2

+ 8x+ 3;

which evaluates to zero over the integers at the root of (p(x) (mod 35)), x

0

= 3.

76

4.3.2 The alternative method

The approach given in Section 4.1 would immediately form the (6)� (6) matrix below.

M

1

=

0

B

B

B

B

B

B

B

B

B

B

@

1225 0

0 1225� 2

665 490� 2 35� 2

2

0 665� 2 490� 2

2

35� 2

3

361 532� 2 234� 2

2

28� 2

3

2

4

0 361� 2 532� 2

2

234� 2

3

28� 2

4

2

5

1

C

C

C

C

C

C

C

C

C

C

A

This is then LLL reduced to

B

1

=

0

B

B

B

B

B

B

B

B

B

B

@

3 8� 2 �24� 2

2

�8� 2

3

�1� 2

4

2� 2

5

49 50� 2 0 20� 2

3

0 2� 2

5

115 �83� 2 4� 2

2

13� 2

3

6� 2

4

2� 2

5

61 16� 2 37� 2

2

�16� 2

3

3� 2

4

4� 2

5

21 �37� 2 �14� 2

2

2� 2

3

14� 2

4

�4 � 2

5

�201 4� 2 33� 2

2

�4� 2

3

�3� 2

4

1� 2

5

1

C

C

C

C

C

C

C

C

C

C

A

;

where B

1

= HM

1

, and

H =

0

B

B

B

B

B

B

B

B

B

B

@

70 46 �98 32 �57 2

73 48 �104 32 �56 2

55 36 �74 27 �50 2

125 82 �171 60 �109 4

�175 �115 254 �74 126 �4

41 27 �59 18 �31 1

1

C

C

C

C

C

C

C

C

C

C

A

:

The polynomial relationship required can be obtained from

� looking at the vector b

1

, and forming the coe�cients by dividing the entries by

1; 2; : : :2

5

; this gives the polynomial r(x) = 2x

5

� x

4

� 8x

3

� 24x

2

+ 8x+ 3,

� using the entries of h

1

= (�

i

) to form the sum

r(x) = �

1

N

2

+ �

2

N

2

x+ �

3

Np(x) + �

4

Nxp(x) + �

5

p

2

(x) + �

6

xp

2

(x);

which is (obviously) the same polynomial as above.

77

4.3.3 A graphical explanation of the new methods

The algorithm in Section 4.1 can be seen from a pictorial viewpoint. Given the uni-

variate modular equation p(x) = x

2

+ 14x + 19 (mod 35) we can represent this by

the following diagrams where Figure 1.1 gives the value of p(x) modulo 35 in the range

�17 : : :18 for �17 � x � 18, and Figure 4.3.1(B) gives the multiple of 35 that needed

to be subtracted. The sharp vertical lines in Figure 4.3.1(A) do not really exist, but

serve to show discontinuity. The problem is to determine whether or not any of the

points near the origin actually lie on the r = 0 axis.

Figure 4.3.1 The polynomial x

2

+ 14x+ 19 = 35q + r, for �17 � x � 18

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

"r"

-2

0

2

4

6

8

10

12

14

16

18

-20 -15 -10 -5 0 5 10 15 20

"q"

Figure A: r vs. x Figure B: q vs. x

The technique described in Section 4.1 �nds a multiple of p(x) modulo N

h�1

that is

itself small for small values of x (and obviously shares the same roots as p(x)). In our

example

r(x) = m(x)p(x) (mod N

2

)

= (2x

3

� 29x

2

+ 360x� 4513)(x

2

+ 14x+ 19) (mod 1225)

= 2x

5

� x

4

� 8x

3

� 24x

2

+ 8x+ 3 (mod 1225);

and we represent r(x) graphically, in the region �17 � x � 18, below.

78

Figure 4.3.2 The polynomial r(x) = 35q + r, for �17 � x � 18

-600

-400

-200

0

200

400

600

-20 -15 -10 -5 0 5 10 15 20

"r2"

-3000

-2000

-1000

0

1000

2000

3000

-20 -15 -10 -5 0 5 10 15 20

"q2"

Figure A: r vs. x Figure B: q vs. x

It can be seen that no multiples of 1225 need to be removed in the region �3 � x � 3,

which means that the polynomial is true over the integers in this area (shown by the

\continuity" of r). Solving this equation will determine whether r(x) touches the axis

at an integral point.

The process described in (Vall�ee et al., 1988) can be thought of as multiplying p(x) by

a suitably chosen constant and reduce modulo N , whereas the approaches given in this

chapter multiply p(x) by a polynomial of degree (h� 1)k� 1 and reducing modulo N

h

.

4.4 The connection between the methods

We must actually show that it is the theory in Section 3.4 that links the lattices

produced by the two methods given in Sections 4.1 and 4.2.

De�ne the (hk)� (hk) matrix,

E =

�

I

k

0

(h�1)k

A

�

;

where A is de�ned as in Section 4.2. By the process also de�ned in Section 4.2, the

matrix

^

M is almost E

�1

, but the j'th column is multiplied by X

1�j

, and the i'th row

is multiplied by �N

v

, where v = b(j � 1)=kc. Alternatively stated,

^

M = PE

�1

Q,

where P = (p

i;j

) is diagonal and has entries p

i;i

= �N

v

(v de�ned above), and Q =

diag f1; X

�1

; : : : ; X

�(hk�1)

g.

This implies that

^

M

�t

= P

�t

E

t

Q

�t

, with P

�t

= (p

0

i;j

) diagonal and such that p

0

i;i

=

79

�N

�v

, and Q

�t

= diag f1; X; : : :; X

hk�1

g. After clearing denominators we verify that

N

h�1

^

M

�t

=M

1

, where M

1

is the matrix formed by the method given in Section 4.1.

4.5 Slight improvements

There are (at least) two relatively small improvements that can be made; the �rst

decreases the size of the initial matrix by one, and the second considers placing rows

corresponding to di�erent polynomials into the initial matrix.

Before examining these slight improvements it is interesting to note that it is not

always better to perform each of the steps described in Section 4.1. For instance if one

considers the (relatively sparse) cubic polynomial x

3

+ ax+ b = 0 (mod N), then we

might �rstly reduce the matrix on the left, and then \improve" this to the matrix on

the right.

0

B

B

@

N 0 0

0 NX 0

b aX X

3

1

C

C

A

0

B

B

B

B

B

B

B

@

N 0 0 0 0

0 NX 0 0 0

0 0 NX

2

0 0

b aX 0 X

3

0

0 bX aX

2

0 X

3

1

C

C

C

C

C

C

C

A

However it can easily be checked that the bound on X implied by the matrix on the

left is better!

4.5.1 Removing the constant column

Consider removing from the matrixM the column corresponding to the constant terms

of the polynomials (i.e. the left hand one), and the row corresponding to the constant

polynomial N

h�1

(i.e. the top one), and then dividing all the entries by X to form a

matrix M

0

. If one now applies the LLL algorithm to this basis we �nd a small vector

b

0

1

= h

0

1

M

0

that satis�es

kb

0

1

k

2

� 2

(hk�2)=4

X

(hk�2)=2

N

((hk�2)=(hk�1))((h�1)=2)

Let h

1

= (e; �

1

; : : : ; �

hk�1

) where h

0

1

= (�

i

) and e is such that j(h

1

M)

1

j � (1=2)N

h�1

(calculated by reducing (h

0

1

M

0

)

1

modulo N

h�1

), and then consider the vector b

1

=

80

h

1

M . This has k � k

1

norm

kb

1

k

1

� j(h

1

M)

1

j+ kb

0

1

k

1

X

� (1=2)N

h�1

+

q

(hk � 1) kb

0

1

k

2

X

� (1=2)N

h�1

+

q

(hk � 1) 2

(hk�2)=4

X

hk=2

N

(

hk�2

hk�1

)(

h�1

2

)

< N

h�1

;

whenever

X <

�

2

�

hk+2

2hk

(hk � 1)

�1=hk

�

N

(

h�1

hk�1

)

:

Thus this improvement actually marginally increases the permissible bound X whilst

reducing the size of the initial matrix!

4.5.2 Including di�erent polynomials

This improvement comes from the following observation.

Lemma 4.5.1 Given a polynomial p(x)modulo N of degree k, and provided gcd(N; k!) =

1, then one can produce a polynomial q(x) modulo (k!)N also of degree k, which shares

the same roots as p(x).

Proof: We know p(x

0

) =

P

k

i=0

p

i

x

i

= 0 (mod N), and q(x) =

Q

k

i=1

(x � i) =

P

k

i=0

q

i

x

i

= 0 (mod k!) for all x 2 Z. Therefore, using the Chinese remainder the-

orem, we can produce a polynomial r(x) =

P

k

i=0

r

i

x

i

where r

i

� p

i

(mod N) and

r

i

� q

i

(mod k!). By its formation r(x) satis�es r(x

0

) = 0 (mod N), and r(x

0

) = 0

(mod k!), so r(x

0

) = 0 (mod (k!)N). 2

This theorem may be immediately applied to the polynomial p(x) in question, slightly

increasing N (and hence X), but it is better to make use of the theorem continually

whilst creating the matrixM , i.e. making all the polynomials in the matrix zero modulo

(hk � 1)!N

h�1

.

Another approach might be to use the fact that (p(x))

m

= 0 (mod N

m

), and thus

we can �nd a polynomial r(x) = 0 (mod (mk!)N

m

) with the same roots as p(x), and

we can �nd all solutions of this up to O((mk!)

1=mk

N

1=k

) in polynomial time. However

(n!)

1=n

< n for all n � 2, so this is not considered a large improvement, and probably

completely outweighed by the increase in the size of the associated matrix.

81

4.6 Implementations and practical results

Implementations of both algorithms have been written by the author in C using Gnu

MP as a multi-precision integer package. The timing results are from runs on a SGI

Indy with one 100MHz IP22 processor. The main part of the program was an e�cient

implementation of the integral LLL algorithm, details of which may be found in (Cohen,

1991).

Firstly let it be said that these algorithms only �nd solutions of univariate modular

equations up to O(N

1=k

), and that the time to �nd these solutions is of complexity

t = O(h

9

k

6

log

3

N): (4.15)

Therefore as the degree of the polynomial k increases, less possible solutions are checked

in greater time, i.e. the method becomes increasingly bad compared to a brute force

search.

Several timing graphs are given below for various h, k and N . For a given degree k

these are created by forming 3 pseudo-random polynomials of degree k, which have a

maximal X as a root, and then averaging the time taken by the algorithm on these

polynomials.

Below we show the average times needed to �nd solutions up to O(N

2=(3k�1)

) (i.e.

h = 3) for polynomials modulo 10

n

, 10 � n � 200 of degrees 2,3,4 and 5.

Figure 4.6.1 A plot of time t (in seconds) vs. log

10

N with h = 3, for various k

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200

"k=2"
"k=3"
"k=4"
"k=5"

82

As we increase h (to increase X), this also increases the time needed to �nd these

solutions. Below we show the average times to �nd solutions up to O(N

(h�1)=(3h�1)

)

for cubic polynomials modulo 10

n

, 10 � n � 200 with h = 2; 3; 4 and 5.

Figure 4.6.2 A plot of time t (in seconds) vs. log

10

N for cubic polynomials with

2 � h � 5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200

"h=2"
"h=3"
"h=4"
"h=5"

Comparing Figures 4.6.1 and 4.6.2 (or examining the complexity given by equation 4.15)

we see that the algorithm is far more sensitive to an increase in h than one in k.

Furthermore X ! O(N

1=k

) as h ! 1 (i.e. t ! 1), which means there must be a

compromise as to which h to use to maximise the number of X checked per unit time.

This is shown below for cubic polynomials modulo N = 10

50

.

83

Figure 4.6.3 An optimum h for X=t for cubic polynomials modulo N = 10

50

0

5e+10

1e+11

1.5e+11

2e+11

2.5e+11

3e+11

2 2.5 3 3.5 4 4.5 5 5.5 6

"Xdt"

All the above results have been achieved using the new algorithm with an in-built early

exit, and the algorithmic improvement given in Section 4.5.1 (but not that explained

in Section 4.5.2; the e�ect of which is yet to be fully analysed). To see the e�ect of

not using the improvement in Section 4.5.1 we show the time taken for the two cases

(h = 2; k = 2) and (h = 4; k = 4) for various N .

Figure 4.6.4 The e�ect of removing the constant column

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200

"con22"
"nocon22"

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45 50

"con44"
"nocon44"

Figure A: Figure B:

Time, t vs. log

10

N for h = 2, k = 2 Time, t vs. log

10

N for h = 4, k = 4

Lastly we examine the e�ect of the early exit of the LLL algorithm, by comparing the

algorithm given in Section 4.2 to that given in Section 4.1 where no other improvements

84

are used. The �gure below shows the two cases (h = 3; k = 3), and (h = 3; k = 4).

The main speed up seems to come when there is a root that is signi�cantly less than

the maximum X , enabling the last row(s) not to be used in �nding a small enough

element. This is something that only the new method is able to take advantage of, and

the cases below indicate that the theoretical maximum X is a little too low.

Figure 4.6.5 The e�ect of an early exit

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

"noee33"
"ee33"

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80

"noee34"
"ee34"

Figure A: Figure B:

Time, t vs. log

10

N for h = 3, k = 3 Time, t vs. log

10

N for h = 3, k = 4

Since the publication of the dual method further practical results have been achieved in

(Coup�e et al., 1999) which make use of the NTL library of Victor Shoup (see (Shoup,

1995)) { this is a far more e�cient and sophisticated implementation of the lattice

reduction algorithm of Section 3.3. However their results do con�rm the above analysis.

4.7 Algebraic univariate modular equations and general

multivariate equations

In this section we briey discuss the general problem of �nding small solutions to

multivariate modular equations, and then develop techniques using algebraic numbers

that allow us to attack certain instances of this problem. This work was undertaken

at IBM, Yorktown Heights and the helpful input of Don Coppersmith is gratefully

acknowledged.

Some discussion was given in (Coppersmith, 1996a) in which it was explained that the

general lattice techniques (e.g. as described in Section 4.1) can be applied to multi-

variate modular equations. We omit the exact details here, but the general approach

85

is that the rows of the matrix now correspond to the (multivariate) monomials of the

relevant modular polynomials. It was explained that there are two problems with this

extension: �rstly one needs to ensure that the lattice reduction techniques produce

enough equations that are true over the integers (i.e. produce enough rows with small

enough norm), and secondly that the resulting equations are algebraically independent,

so that resultant or Gr�obner base techniques will recover the solutions. As noted in

(Coppersmith, 1996a) the success of such an approach must be limited in general be-

cause it is shown in (Manders & Adleman, 1978) that �nding bounded solutions even

to the trivariate integer equation x

2

� z = 0 mod N , is NP-hard.

The �rst of the above problems (ensuring enough small vectors) was studied in (Jutla,

1998). If we label the vectors produced by the LLL reduction algorithm by b

1

; : : : ; b

n

,

then equation 3.14 gives an upper bound for the size of b

1

. Jutla realised that a lower

bound for any lattice element is achieved by the minimum (in terms of absolute value)

entry on the diagonal of the Coppersmith matrix. He then used this to bound the

vectors b

i

for i � 2. This idea is generalised by Lemma 3.2.5 to produce the improved

bounds on the b

i

given by equation 3.19.

A problem with this extension of Coppersmith's algorithm is that the number of mono-

mials (hence dimension of the lattice) can increase dramatically when exponentiating

the initial polynomial (see Section 4.7.4 for an example).

In the remainder of this section we concentrate on a particular type of multivari-

ate modular equation, namely solving univariate polynomials in an algebraic variable,

\modulo" an algebraic ideal. In particular we attack low exponent RSA (with encrypt-

ing exponent e) with random padding in more than one location, i.e. we assume we

know most of the message M , but do not know some small random pads x

i

. However

the locations of these pads throughout the message (the F

i

shifts below - which are

perhaps powers of 2) are known. This implies we must solve the following equation:

M +

m�1

X

i=0

F

i

x

i

!

e

� c = 0 mod N: (4.16)

We will further assume that F

i

= F

i

for some F , i.e. that the padding is spread in

equally spaced blocks throughout the message, and also that there exists a polynomial

r, of low degree m, and with small coe�cients (of absolute value at most R) such that

r(F) = 0 mod N

= kN; and gcd(k;N) = 1.

86

Under these assumptions we can re-write equation 4.16 as the following

M +

m�1

X

i=0

x

i

F

i

!

e

� c = 0 mod N; (4.17)

and then, since r(F) = 0 mod N , we can introduce the algebraic number � such that

r(�) = 0. It follows that (� � F)g(�) = kN for some g(�), which suggests that we

work modulo the ideal generated (over Z[�]) by N and � � F . We shall denote this

ideal I = hN;�� F i

Z[�]

, and we shall continue to use the \mod" notation to denote

algebraic numbers that are in the same equivalence classes of Z[�]=I .

With the use of the algebraic number �, we may re-write equation 4.17 in the following

way:

M +

m�1

X

i=0

x

i

�

i

!

e

� c = 0 mod I: (4.18)

It might be possible to develop a solution to this problem using the work in (Fieker &

Pohst, 1996) and (Schiemann, 1998) (see Section 3.6), however extending Theorem 4.0.1

to this framework seems a daunting task, and also the complexity of such an approach

may be unclear. Instead we develop techniques based on the ordinary (integral) lattice

reduction techniques, which ensures us of a polynomial time attack, and enables us to

show that there are provably weak locations to place the random padding.

It seems important to show that this type of algebraic attack does exists, without

being overly drawn in to technical details and e�ciency issues. However if the attack

or general technique turns out to be particularly useful in some practical situations

(cryptological or not), then further and deeper analysis may well be warranted.

Since we are using the integral LLL algorithm for reduction we de�ne the size of an

element � 2Z[�] to be the maximum (absolute) size of its coe�cients when expressed

as a polynomial (of degree at most m � 1) in �, and denote this �(�). This quantity

if often referred to as the height of � in Z[�]. It would perhaps be nicer to use the

concept of the algebraic norm N(�), but this seems harder to align with LLL.

In order to extend the general technique of Section 4.1 to solving equation 4.18 we

attack the following three sub-problems.

� We bound the (�) size of a univariate polynomial when we have bounds on the (�)

size of the variable and the coe�cients of the polynomial, and also have bounds

on the (absolute) size of the coe�cients of the minimal polynomial de�ning �.

87

� We �nd aZ-basis for I = hN;��F i

i

Z[�]

for i � 1, and use this to show that some

elements of Z[�] may be considered minimal modulo I , i.e. they are the smallest

element (in terms of the � size) of their equivalence class in Z[�]=I .

� We use the previous two results to build a lattice, which when reduced yields an

univariate (algebraic) polynomial that is valid over Q(�) (i.e. no longer modu-

lar). Since Q(�) is a �eld the number of solutions is bounded by the degree of

the polynomial, and is therefore �nite. This implies that the (algebraic) roots of

the polynomial may be found by performing resultant or Gr�obner base calcula-

tions on the integer polynomial equations corresponding to the powers of �. See

Section 4.7.4 for an example.

4.7.1 Bounding an algebraic polynomial

Using the above notation, we introduce the algebraic number � such that r(�) =

P

m

i=0

r

i

�

i

and jr

i

j < R. Let us assume that we have two algebraic numbers �; , such

that �(�) � B and �() � C. We can express the product � as a polynomial in

� of degree 2(m � 1) with coe�cients � mBC. However � is de�ned only when we

have reduced this with respect to r to be of degree � m� 1. Each time we decrement

the degree the coe�cients can increase by at most a factor of 2R, so we have that

�(�) � m(2R)

m�1

BC. Although this is a rather loose bound, it will serve for our

purposes. However note that for any given polynomial r one might be able to calculate

a better bound than this, or at least form a good bound on average (see Section 4.7.4

for more details).

We can use the above result repeatedly to bound the (�) size of an algebraic polynomial.

If we have

� =

m�1

X

i=0

i

�

i

;

with �(�) � X and �(

i

) � C

i

, then

�(

i

�

i

) �

�

m(2R)

m�1

X

�

i

C

i

(4.19)

and so

�(�) �

i�1

X

i=0

�

m(2R)

m�1

X

�

i

C

i

:

88

4.7.2 An integral basis for the ideal

We wish to �nd aZ-basis for the ideal I

i

= hN;��F i

i

Z[�]

for i � 1. In order to do this

we will �rstly show that I

i

= J

i

where J

i

= hN

i

; (�� F)

i

i

Z[�]

, and then �nd a Z-basis

for the latter ideal.

The elements of I

i

= hN;��F i

i

Z[�]

for i � 1 are f�

i

j � 2 I

1

g, and so obviously J

i

� I

i

.

To show that I

i

� J

i

we prove the following lemma.

Lemma 4.7.1 For all 0 � u; v � i, u+ v = i we have

N

u

(�� F)

v

2 J

i

:

Proof: By the de�nition of � we have

g(�)(�� F) = kN; so

g(�)

u

(�� F)

u

= k

u

N

u

h(�)(�� F)

u

= lN

u

(4.20)

h(�)(�� F)

u+v

= lN

u

(�� F)

v

;

where we allow for cancellation of factors of k

u

and the coe�cients of h(�)

u

in equa-

tion 4.20.

Let l

0

be such that ll

0

+ sN

v

= 1, then

l

0

h(�)(�� F)

u+v

= (1� sN

v

)N

u

(�� F)

v

= N

u

(�� F)

v

� s(�� F)

v

N

u+v

:

This shows that N

u

(�� F)

v

2 J

u+v

for any 0 � u; v � i. 2

This lemma implies that (a(�)N + b(�)(� � F))

i

2 J

i

for any a(�); b(�) 2 Z[�], i.e.

I

i

� J

i

, so we have that I

i

= J

i

.

To �nd a basis for J

i

we simply write the coe�cients of the �

j

N

i

and �

j

(� � F)

i

for

0 � j � m� 1 as the rows of a matrix, and �nd the span (a set of (m� 1) vectors) of

these 2(m� 1) rows (e.g. by putting the matrix in (row) Hermite normal form). One

can view this procedure in a larger matrix which also includes rows with the minimal

polynomial of � present. An example is shown below.

Example 4.1 Let � be an algebraic number with minimal polynomial r(x) = x

3

+

89

2x

2

�4x�1 over the integers (the fact that r is monic is unimportant in what follows).

We have r(5) = 7� 22, so

(�

2

+ 7�+ 31)(�� 5) = 7� 22;

(13�

2

+ 69�+ 139)(�� 5)

2

= 7� 22

2

:

(In general cancellation of factors of k is unlikely, but we show it in this example to

highlight that this situation is no harder than typical).

With 22

2

= 484 we can �nd a Z-basis for I

2

by removing the linear dependencies from

the following matrix rows.

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 484

0 0 0 484 0

0 0 484 0 0

0 0 1 �10 25

0 1 �10 25 0

1 �10 25 0 0

0 1 2 �4 �1

1 2 �4 �1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

�!

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 484

0 0 0 484 0

0 0 484 0 0

1 0 0 4 1511

0 1 0 2 1559

0 0 1 4 1803

0 0 0 7 2583

0 0 0 0 3388

1

C

C

C

C

C

C

C

C

C

C

C

A

�!

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 35

0 1 0 0 337

0 0 1 0 327

0 0 0 1 369

0 0 0 0 484

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

We now show that the determinant of the basis that spans J

i

is equal to N

i

. In general

one can see that the larger matrix (with the minimal polynomial of � included) has

a Sylvester matrix as its bottom (m � 1) � (m � 1) sub-matrix. The resultant R of

(x � F)

i

and r(x) is de�ned to be the determinant of this Sylvester matrix, and has

the property that it equals the product of r(x) applied to the roots of (x� F)

i

, i.e. in

our case R = r(F)

i

= k

i

N

i

.

Thus we can put the Sylvester matrix in row Echelon form with diagonal entries that

multiply to (kN)

i

. Since we have the property h(�)(� � F)

i

= lN

i

, then the only

diagonal entry that can contain a factor of N is the rightmost one (with respect to

the above example), whereas the factors of k

i

may be spread amongst the diagonal

entries. When we reduce such a basis with �

j

N

i

for 0 � j � m � 1 and use the fact

that gcd(k;N) = 1 we obtain a basis with rightmost diagonal entry N

i

and all other

diagonal entries equal to 1. Thus the determinant of the Z-basis of I

i

is N

i

.

In the above example this Z-basis can be read o� from the non-zero vectors in the

90

right-hand m columns of the matrix on the right, i.e.

0

B

B

@

1 0 327

0 1 369

0 0 484

1

C

C

A

;

so I

2

= fa(�

2

+ 327) + b(�+ 369) + 484c j a; b; c 2Zg.

If we apply the LLL algorithm to this basis to give a reduced representation:

0

B

B

@

�6 4 �2

�4 �3 5

�1 �7 �6

1

C

C

A

;

then from equation 3.13 we see there cannot exists two elements of I 2 Z[�]=I

2

which

correspond to vectors (in the above sense) with norm less than 2

�1

p

56 � 3:7

In general we will assume that the LLL reduction of the basis for I

i

has the smallest

vector b

1

such that jb

1

j � det(I

i

)

1=m

= N

i=m

, so approximately the same bound holds

for any element of I

i

, and also the bound applies to all the elements of any basis of I

i

.

This is a plausible assumption on random lattices, though it would be nicer to justify

the assumption in more rigorous terms for our particular lattices.

4.7.3 The lattice and general result

If we let � =

P

m�1

i=0

x

i

�

i

, and jx

i

j � X so that �(�) � X , then we may re-write

equation 4.18 as

p(�) = (M + �)

e

� c (4.21)

= 0 mod I:

In a similar way to Section 4.1 we consider many equations which are zero modulo

I

h

= hN;�� F i

h

Z[�]

for some integer h. In this case however we �rst work out integral

bases for the ideals I

j

for 1 � j � h�1, and then we know p(�)

i

= 0 mod I

i+j

for any

 2 I

j

since p(�) = 0 mod I . Let

i;j

be the i'th element of a basis for I

j

; we consider

91

the following polynomials:

�

k

�

i

p

h

(�);

�

k

i;1

p

h�1

(�);

�

k

i;2

p

h�2

(�);

.

.

.

�

k

i;h�1

p(�);

�

k

i;h

;

for 0 � i � m� 1 and 0 � k � h� 1.

To place these polynomials within a matrix we have columns corresponding to the

\monomials" �

i

�

j

for 0 � i � m� 1 and 0 � j � e(h+ 1)� 1. This produces a square

matrix L of dimension em(h+ 1).

As in the ordinary univariate case, we must multiply the columns of the matrix by

di�erent amounts according to their exponent of �. For 0 � j � e(h + 1) � 1 we

multiply the m columns that correspond to �

j

by B

j

where B = m(2R)

m�1

X is taken

from equation 4.19.

The determinant of the matrix is thus given by

detL = B

me(h+1)(e(h+1)�1)=2

N

eh(h+1)=2

:

We now LLL reduce the matrix L, and let b

1

be the �rst vector of the LLL reduced

basis. Under the assumption that the smallest element in I

h

has � size roughly equal

to N

h=m

, and using the fact that the � size of the (algebraic) polynomial corresponding

to the b

1

is (roughly) bounded by the norm of this vector, means that if we ensure

�

B

me(h+1)(e(h+1)�1)=2

N

eh(h+1)=2

�

1=(em(h+1))

< N

h=m

;

then the polynomial (in �) corresponding to b

1

will be equal to zero over Q(�). By

re-substituting � =

P

m�1

i=0

x

i

�

i

we can then solve the m integer polynomial equations

in m variables x

i

by using resultant or Gr�obner base techniques, since we are assured

of a �nite number of solutions by virtue of the fact that Q(�) is a �eld.

The bound on B implied by equation 4.22 is

B < N

(1=em)(eh=(eh+e�1))

;

which means that we can �nd the variables x

i

in polynomial time whenever jx

i

j � X ,

92

and

X < N

(1=(em))(eh=(eh+e�1))

=(m(2R)

m�1

):

We state this result as a general theorem now.

Theorem 4.7.2 Suppose that (M +

P

m�1

i=0

F

i

x

i

)

e

� c = 0 mod N , and there exists a

polynomial r of degree m whose coe�cients are bounded by jr

i

j � R, such that r(F) =

kN where gcd(k;N) = 1. Also assume there exists an h such that the smallest (in

terms of �) element in hN;�� F i

h

Z[�]

is approximately N

h=m

. Then the variables x

i

may be discovered in polynomial time whenever jx

i

j � X and

X < N

(1=em)(eh=(eh+e�1))

=(m(2R)

m�1

):

Notice that as h!1 the bound X ! N

1=(em)

=(m(2R)

m�1

).

4.7.4 An example

We now exhibit the method working for the case of

N = 2776419924431� 11618928225217 = 32259023825026196088576527

and F = 2

31

, in which case we �nd the relation that F

3

� 3 = 307N . The fact that we

introduce an n'th root of an integer (i.e. � =

3

p

3), and that we have a relatively small

multiple of N (i.e. 307) is not important to the method, but places us in the relatively

nice situation that the random padding is (roughly) in n equally spaced blocks starting

from the bottom.

Assume we know the plaintext to beM+F

2

x

2

+Fx

1

+x

0

for some small x

i

. We wish to

solve (M +�)

3

� c = 0 mod hN;�� F i

Z[�]

where �

3

� 3 = 0 and � = x

2

�

2

+x

1

�+x

0

,

i.e.

p(�) = �

3

+ 3M�

2

+ 3M

2

� +M

3

� c = 0 mod hN;�� F i

Z[�]

:

Let us choose h = 2. We have that (�

2

+2

31

�+2

62

)(�� 2

31

) = �307N , and the ideals

of I

i

for i = 1; 2 correspond to the rows of the matrices T

i

below.

T

1

=

0

B

B

@

1 0 32259019213340177661188623

0 1 32259023825026193941092879

0 0 32259023825026196088576527

1

C

C

A

93

T

2

=

0

B

B

@

1 0 231264508904394298184937453565234678988358039525426

0 1 578135898968673335914228437568534195239429376957565

0 0 1040644618143607751116024675892568259248385135381729

1

C

C

A

If we LLL reduce the last of these we obtain

0

B

B

@

�80295565554254907 19180902889356093 31951861464601304

�16881151744752424 �63414413809502483 82595316698858576

�14581400600148755 �94876966154403662 �75696063265047569

;

1

C

C

A

and notice that the �rst row does indeed have norm approximately equal to 0:87N

2=3

.

Let u

i

; v

i

denote the coe�cients of �

i

in p(�); p

2

(�) respectively, then we wish to reduce

the rows of the following matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

B

8

T

0

B

7

v

5

T

0

B

6

v

4

T

0

B

5

v

3

T

0

B

4

v

2

T

0

B

3

v

1

T

0

B

2

v

0

T

0

B

7

T

0

B

6

v

5

T

0

B

5

v

4

T

0

B

4

v

3

T

0

B

3

v

2

T

0

B

2

v

1

T

0

Bv

0

T

0

B

6

T

0

B

5

v

5

T

0

B

4

v

4

T

0

B

3

v

3

T

0

B

2

v

2

T

0

Bv

1

T

0

v

0

T

0

B

5

T

1

B

4

u

2

T

1

B

3

u

1

T

1

B

2

u

0

T

1

B

4

T

1

B

3

u

2

T

1

B

2

u

1

T

1

Bu

0

T

1

B

3

T

1

B

2

u

2

T

1

Bu

1

T

1

u

0

T

1

B

2

T

2

BT

2

T

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where T

0

is the identity matrix (the T

j

serve to show sub-matrices rather than matrix

elements), and B = m(2R)

m�1

X = is to account for the columns corresponding to

di�erent powers of �.

The reduction of this type of lattice can be considerably speeded up, by reducing

whole blocks (corresponding to the bases of the ideals) together. We omit the details

of such an improvement here for the sake of brevity, though details may be found in

(Coppersmith & Howgrave-Graham, 1999).

If we compare this to Jutla's approach on p(x; y; z) = (M + F

2

x+ Fy + z)

3

� c, then

notice that p

3

has 220 monomials. This corresponds to the dimension of the necessary

lattice to reduce, and is almost certainly infeasible with todays computing power.

94

4.7.5 Conclusions

This attack on RSA encorporates a novel use algebraic numbers in the general lattice

techniques. Using these methods we have been able to show that there are provably

weak places to hide information even when splitting it in more than one block. The al-

gebraic variant also allows us to signi�cantly reduce the size of the lattice in comparison

to treating equation 4.17 simply as a multivariate equation.

At present it seems a relatively theoretical attack in all but a few exceptional situations

(e.g. the example in Section 4.7.4). It would be nice if it were possible to extend this

technique to more general and practical situations.

One minor extension is to get around the (relatively weak) condition gcd(k;N) = 1: If

1 < gcd(k;N) < N then we have a non-trivial factor of N , and with the application

to RSA, this breaks the cryptosystem immediately. If gcd(k;N) = N

i

for some i � 1

then we can work in the ideal generated by M = N

i

and �� F , and use the fact that

p(x)

i

= 0 modM .

Finally it would seem that the condition that the minimum � size of any element of

hN;� � F i

h

Z[�]

should be around N

h=m

may be possible to prove (and so it may be

possible to drop the assumption in Theorem 4.7.2). This is the subject of further work.

4.8 Applications to low exponent RSA

The implications of being able to �nd small solutions of univariate modular equations

on the RSA cryptosystem have been well studied, and we start by summing up some

well known attacks; for further details see (Boneh, 1999). In Section 4.8.4 we note that

the theory of Section 4.7 gives a new result which shows that there are provably weak

places to hide information even when splitting this information between many blocks.

As in Section 1.1 we revert to the use of Alice, Bob and Eve. All of these attacks

can be prevented by using larger public exponents, but we shall assume that for some

applications (perhaps smartcards) this would rather not be done.

4.8.1 One small block of unknown plaintext

The simplest application of Theorem 4.0.1 to RSA is when there is one small block of

unknown plaintext. We will explain this idea with Alice using a public exponent of 3

�rstly, and then generalise it to an arbitrary exponent.

95

Suppose Eve knows 2=3 of the message that Bob is sending Alice, but is unsure of the

last 1=3, i.e. Eve knows the message M is (M

0

+ x), for some known M

0

and small

jxj < N

1=3

, and she also intercepts the ciphertext c, then all she must do is solve the

equation

(M

0

+ x)

3

= c (mod N);

for jxj < N

1=3

, which is possible using the lattice methods.

In general, if Alice uses an encrypting exponent of e, then for this attack to work Eve

must know (e� 1)=e of Bob's message.

4.8.2 Broadcast attack

It would seem rather unlikely that Eve should know any of Bob's message as in the

previous attack. In this section we examine the case when Bob broadcasts the same

message M to many of his friends, k say, all with their own moduli N

i

and secret keys

e

i

, as studied in (Hastad, 1988). Let the respective ciphertexts be c

i

.

Consider the simplest case that k = 3 and all the e

i

are 3. If Bob does not try to hide

the fact this is happening then Eve will know M

3

= c

i

(mod N

i

) from which she can

deduce M

3

= c (mod N

1

N

2

N

3

) where c (mod N

1

N

2

N

3

) is obtained by applying the

Chinese remainder theorem

2

to the c

i

(mod N

i

). However since M is less than the

least N

i

and therefore M

3

is less than N

1

N

2

N

3

we actually have that M = c

1=3

.

This idea can be generalised even if Bob tries to hide the fact that they are the sameM

by applying a known polynomial p

i

to the message of each friend prior to encryption

(e.g. the linear polynomial p

i

(x) = x+ 2

m

i if M were m bits long).

To see this observe that Eve knows (p

i

(M))

e

i

= c

i

(mod N

i

). From this she may �nd

the following

p(M) = c (mod

k

Y

i=1

N

i

)

where c is calculated as before, by applying the Chinese remainder theorem to the c

i

,

and p is also found by applying the Chinese remainder theorem to each of the coe�cients

of the polynomials p

e

i

i

(M) (in a similar way to Lemma 4.5.1). This univariate modular

equation may obviously be solved using the lattice methods if M is su�ciently small.

2

In the rare case that the N

i

are not relatively prime the CRT would obtain a non-trivial factor of

some N

i

.

96

As an example of this, if all the p

i

are linear polynomials (c.f. the possible padding

function above), then p

e

i

i

will be of degree e

i

, so p will be of degree e

max

= maxfe

i

g.

Therefore as long as M is less than

�

Q

k

i=1

N

i

�

1=e

max

it will discovered by the lattice

methods, and note that this will be the case if k > e

max

when all the N

i

are approxi-

mately the same size.

Note that this attack would fail if Bob were to attach random (rather than known)

padding to the message to each friend.

4.8.3 Repeated message and short pad attack

In the last section we saw how random padding might help Bob secure his message,

however this is not always the case if there is not enough of it. Consider the situation

when Bob sends two messages to Alice that only di�er by a small amount; either

because of the types of message they are, or because Bob sends the same message twice

(perhaps due to a noisy transmission line) and is appending a small amount of random

padding (or a timestamp). Also, for simplicity, let us assume that Alice is using a

public exponent of 3.

In this case Eve knows M

3

= c

1

(mod N) and (M + x)

3

= c

2

(mod N). She can

eliminate the unknown M from these equations by using resultants, and is left with

x

9

+ 3(c

1

� c

2

)x

6

+ 3(c

2

2

+ 7c

1

c

2

+ c

2

1

)x

3

+ (c1� c2)

3

= 0 (mod N);

so she may discover the padding as long as jxj � N

1=9

.

It is not obvious that Eve can recoverM from the knowledge of x, but this is true due to

a clever trick of Franklin and Reiter, which is explained and generalised in (Coppersmith

et al., 1996). To explain this in our case let m be a polynomial indeterminate and

calculate gcd(m

3

� c

1

; (m+ x)

3

� c

2

) over Z

N

[m] using the Euclidean algorithm

3

. It

can be shown that the result of this gcd will be the linear polynomial m �M (it is

clear that this divides the gcd), and hence we have discovered the original m.

The way to prevent this attack is to use more random padding. Conversely this implies

that keeping the same amount of padding and increasing ones modulus N for \extra

security" is a very dangerous thing to do!

Another precaution one might also choose is to distribute the random padding through-

out the message, rather than in any one block. As is discussed in the next section it is

3

Although Z

N

[m] is not a Euclidean ring, it can be shown that if the Euclidean algorithm ever

breaks, it gives a non-trivial divisor of N .

97

by no means certain that this action alone would prevent these kinds of attack.

4.8.4 Many small blocks of unknown plaintext

Using the theory in Section 4.7 we may sometimes uncover small blocks of plaintext

even when they are placed in many locations throughout the message. See Section 4.7.4

for an example of this attack, and Theorem 4.7.2 for a description of the weak locations

to place multiple blocks.

98

Chapter 5

Factoring

In this chapter we examine the use of lattices in factoring. The work is based very

largely on a result of Coppersmith on �nding small solutions of general bivariate in-

teger equations, �rst shown (Coppersmith, 1996a). This result is briey discussed

in Section 5.1 in connection with the problem of factoring an integer N , when some

information is known about the bits of a factor.

In Section 5.2 we show how to produce an alternative, simpler, lattice that also implies

the factoring result of Coppersmith. From the work in Section 3.5 we also show (in

Section 5.3) that this factoring lattice allows one to factor over the Gaussian integers

and thereby �nd solutions to the integer equation x

2

+ y

2

= n for small y. This has

implications on a cryptosystem proposed in (Vanstone & Zuccherato, 1997).

In Section 5.4 we modify the lattice slightly to allow for factoring integers with repeated

factors, and thereby produce and analyse a factoring algorithm with an interesting new

complexity.

In Section 5.5 we then modify the basic lattice in a slightly di�erent way to search

for divisors in residue classes. This leads to a constructive method to �nd all divisors

sx + r which divide N for known r; s when s > n

1=4

, and an analysis to bound the

number of such divisors. This problem was �rst considered in (Lenstra, 1984), where

it was shown how to construct the divisors whenever s > n

1=3

.

5.1 Coppersmith's approach

Coppersmith extended his idea of solving univariate modular equations (i.e. a uni-

variate polynomial in x, and a linear term in y, say) to general bivariate equations in

99

(Coppersmith, 1996a). If we are looking for solutions to r(x; y) = 0 and X and Y are

bounds on the sizes of jxj and jyj respectively, then the generalised approach works

with the quantity D, which is the largest monomial of the bivariate polynomial when

evaluated at (x; y) = (X; Y), rather than N as in the univariate modular approach.

We state Coppersmith's main theorem below.

Theorem 5.1.1 Let r(x; y) =

P

ij

r

ij

x

i

y

j

be a bivariate polynomial over Zof degree �

in x and � in y. Assume r is irreducible over Z. Let X and Y be bounds on desired

solutions x

0

and y

0

. De�ne D = max

ij

jr

ij

X

i

Y

j

j. Choose � > 0. Assume

X

�+(��=2)

Y

�+(�=(2�))

< D � 2

�3(�

2

+�

2

)�2

:

In time polynomial in �; � and log

2

D, our algorithm will produce all integer pairs

(x

0

; y

0

)) with jx

0

j < X, jy

0

j < Y , and r(x

0

; y

0

) = 0.

Let r(x; y) be as before, but with total degree �. Assume

(XY)

�

< D � 2

�6�

2

�2

:

In time polynomial in � and log

2

D, our algorithm will produce all integer pairs (x

0

; y

0

)

with jx

0

j < X, jy

0

j < Y , and r(x

0

; y

0

) = 0.

An interesting application of this result, and the one Coppersmith concentrated on in

(Coppersmith, 1996a), is the bivariate equation (p

0

+ x)(q

0

+ y) = N . If we know the

top m bits of a factor p of N , then by division we also know the top m bits of q, such

that pq = N . This means that given p

0

, and by choosing q

0

accordingly, we can ensure

D = maxfXY; q

0

X; p

0

Y; jp

0

q

0

� N jg � q

0

X � p

0

Y . Let p = N

�

, and X = N

�

, so

q = N

1��

and Y = N

1�2�+�

. By using the �rst part of Coppersmith's theorem with

� = � = 1, we must ensure that (XY)

3=2

< D, i.e.

�

N

1�2�+2�

�

3=2

< N

1��+�

which will be true whenever � < � � 1=4.

This implies that whenever the top (1=4 + ") bits of a factor p of N are known, the

remaining bits of pmay be found in polynomial time. In fact this result can be strength-

ened slightly, as we shall see in the next section.

100

5.2 An alternative method

In this section we endeavour to reach a similar factoring result to (Coppersmith, 1996a)

but by following a slightly di�erent path. In fact we follow a similar approach to that

taken in Section 4.1, i.e. we produce a matrix such that all the rows correspond to

polynomials that evaluate to zero to some modulus at the sought after root x

0

. We

then reduce this matrix using the LLL algorithm.

The situation is marginally more complicated in this case however since the modulus

is precisely unknown, though we do have a (close) estimate to its size.

As is usual in these methods, we start by choosing an integer h which will correspond

to the dimension of the matrix we form. The higher the value of h, the larger the value

of permissible X (i.e. the further away our guess p

0

can be from the true divisor p),

although of course, a larger matrix also implies a greater time reducing it.

We then choose an integer u < h and form the matrix M(h; u;X) with rows corre-

sponding

1

to the polynomials

p

i

(x) =

(

N

u�i

(p

0

+ x)

i

0 � i � u

(p

0

+ x)

u

x

i�u

u < i � h:

(5.1)

For a given h the optimum choice of u is given by equation 5.3, and one should choose

X to be as large as possible, but still satisfy equation 5.4.

Thus, as an example, if h = 4 and u = 2 then we form the following matrix.

M(4; 2; X) =

0

B

B

B

B

B

@

N

2

Np

0

NX

p

2

0

2p

0

X X

2

p

2

0

X 2p

0

X

2

X

3

1

C

C

C

C

C

A

Clearly all the rows of such a matrix correspond to polynomials which evaluate to zero

modulo (p

0

+ x

0

)

u

= p

u

at x = x

0

, thus so does any linear combination of them.

If we LLL reduce this matrix to form a small row b

1

then for a general u; h and X we

1

Having decided on the natural number X the row that corresponds to the polynomial p(x) =

a

n

x

n

+ : : :+ a

2

x

2

+ a

1

x+ a

0

, n < h is of size h and given by

�

a

0

a

1

X a

2

X

2

: : : a

n

X

n

0 : : : 0

�

:

101

have

kb

1

k < 2

(h�1)=4

�

N

u(u+1)=2

X

h(h�1)=2

�

1=h

;

from equation 3.14.

Letting b

1

(x) denote the polynomial corresponding to b

1

then, in a similar way to

Section 4.1, we have

jb

1

(x)j <

p

h kb

1

k

= 2

(h�1)=4

p

hN

u(u+1)=2h

X

(h�1)=2

for all jxj < X .

Thus, if X was such that jb

1

(x)j < (p

0

+ x

0

)

u

' p

u

0

for all jxj < X , when we already

know b

1

(x

0

) = 0 (mod (p

0

+x

0

)

u

) this would imply that b

1

(x

0

) = 0, i.e. we only need

to solve b

1

(x) over the integers.

Letting p

0

= N

�

, this means we want to �nd the maximum X such that

2

(h�1)=4

p

hN

u(u+1)=2h

X

(h�1)=2

< N

u�

;

which turns out to be

X <

�

2

�1=2

h

�1=(h�1)

�

N

u(2�h�u�1)=(h(h�1))

: (5.2)

For a given h and � ' log

N

(p

0

) we can maximise the r.h.s. by choosing

u = �h �

1

2

; (5.3)

and so the maximum allowable X (i.e. the maximum allowable error jp � p

0

j) must

satisfy

X <

�

2

�1=2

h

�1=(h�1)

�

N

(�h�1=2)

2

=(h(h�1))

: (5.4)

Observe that as h! 1 the maximum allowable X ! N

(�

2

)

, which we now state this

result precisely, as a general theorem.

Theorem 5.2.1 All x 2Zsuch that (p

0

+ x) divides N where p

0

= N

�

and jxj < N

can be found in polynomial time whenever there exist integers h > u > 0 such that

h(h� 1)� 2u�h + u(u+ 1) < 0:

102

The largest value of for which this can hold is �

2

� ".

Proof: The proof follows from equation 5.2 with X = N

. 2

Note that with � = 1=2 we have Coppersmith's result that only the top (1=4+") log

2

N

bits of p need to be known to �nd it exactly, but for smaller � this result becomes

superior. However, although Coppersmith does not explicitly give the bounds as in

Theorem 5.2.1, he does explain how his algorithm can be modi�ed to achieve such

improved bounds.

Also notice that this approach seems to eliminate the need for the resultant calculations

used in (Coppersmith, 1996a), because it solves with respect to only one variable.

However, given two equations in x and y, with one equation being xy = N , then one

could replace y by N=x in the other and consider the numerator (a polynomial in x) of

the subsequent expression. This shows that Coppersmith's use of resultants was trivial

in this case.

5.3 Factoring over the Gaussian integers

Essentially there is nothing to do to extend the factoring method to Gaussian integers,

but it should be shown that all the necessary arguments still hold.

Firstly notice that the LLL algorithm was shown to extend to unitary lattices in Sec-

tion 3.5, and that this ensures that a lattice vector b

1

is found such that

kb

1

k � 2

(n�1)=2

�

1=n

:

Now following the exposition of Section 5.2, but letting the symbol Z replace X to

illustrate that this is now the size of a complex number, one creates the same matrix

M(h; u; Z) but with N and p

0

as Gaussian integers, and hence (using equation 3.28)

we can �nd a Gaussian integer polynomial b

1

(z) such that for all jzj < Z we have

jb

1

(z)j < 2

(h�1)=2

p

h jN j

u(u+1)=2h

Z

(h�1)=2

:

If this is less than jpj

u

then b

1

(z) will be true over the Gaussian integers, and can

therefore be solved in polynomial time (for instance by substituting z = x + iy and

then using the resultant algorithm on the real and complex parts).

By balancing u as in Section 5.2 we achieve a similar result to Theorem 5.2.1 which we

state precisely below, again using G to denote the Gaussian integers.

103

Theorem 5.3.1 All z 2 G such that (p

0

+ z) divides N 2 G where p

0

2 G, jp

0

j = jN j

�

and jzj < jN j

can be found in polynomial time whenever there exist integers h > u > 0

such that

h(h� 1)� 2u�h + u(u+ 1) < 0:

The largest value of for which this can hold is �

2

� ".

5.3.1 An application

Given the Diophantine equation

x

2

� y

2

= N; where y = kN

1=4

; (5.5)

it can easily be shown that x is bounded by

p

N � x �

p

N +O(k

2

);

thus integer solutions may be found to equation 5.5 after O(k

2

) tests of x. We note

that a similar approach can be used to �nd solutions to

x

2

+ y

2

= N; where y = kN

1=4

: (5.6)

Fermat applied this method to factorise the number

N = pq =

�

p+ q

2

�

2

�

�

p� q

2

�

2

;

and pointed out that if (p � q) � kN

1=4

then this gives rise to an O(k

2

) factorisation

method. It is a clear warning to cryptographers to ensure that the primes used in the

RSA protocol for instance are not close enough together for this attack to be feasible.

The cryptographic situation is actually seen to be weaker that this, with the aid of

Coppersmith's result, since equation 5.5 factors as

N = (x� y)(x+ y)

=

�

p

N + O(k

2

)� kN

1=4

��

p

N +O(k

2

) + kN

1=4

�

=

�

p

N � k

�

N

1=4

�O(k)

�� �

p

N + k

�

N

1=4

+O(k)

��

:

104

Assuming that k < N

1=4

this means that there is a Gaussian integer factor p of N at

about p '

p

N � ikN

1=4

, and Theorem 5.2.1 implies that for any p

0

' N

1=2

we can

�nd the true p if p = p

0

+ x

0

with jx

0

j < N

1=4��

. Together these facts imply that p

can be found after O(k

1+�

) trials of possible p

0

.

Using the Gaussian integer methods outline above we can now use an identical approach

to solve equation 5.6 since it factors as

N = (x� iy)(x+ iy)

=

�

p

N �O(k

2

)� ikN

1=4

��

p

N �O(k

2

) + ikN

1=4

�

=

�

p

N � k

�

iN

1=4

+O(k)

�� �

p

N + k

�

iN

1=4

� O(k)

��

:

Assuming that k < N

1=4

this means that there is a factor p of N at about p '

p

N �kN

1=4

, and Theorem 5.3.1 implies that for any p

0

' N

1=2

we can �nd the true p

if p = p

0

+ z

0

with jz

0

j < N

1=4��

. Together these facts imply that p can be found after

O(k

1+�

) trials of possible p

0

.

It was shown in (McKee & Pinch, 1998) and (Coppersmith, 1998) that the cryptosys-

tem in (Vanstone & Zuccherato, 1997) was susceptible to attack from the fact that it

produces a number N = pq which is the product of two primes of the form either a

2

+4

or a

2

� 3a+ 9.

For simplicity let us restrict ourselves to the case p = a

2

+ 4 and q = b

2

+ 4, thus

N = pq = (ab+ 4)

2

+ (2(a + b))

2

(one can either verify this algebraically or with the

matrix equations below).

det

a 2

�2 a

!

det

b 2

�2 b

!

= det

"

a 2

�2 ab

!

b 2

�2 b

!#

= det

ab+ 4 2(a+ b)

�2(a+ b) ab+ 4

!

Let x = ab + 4 and y = 2(a + b), so N = x

2

+ y

2

, and let k be such that y =

kN

1=4

then assuming a > b, we have that k = O(a=b). Both McKee and Pinch, and

Coppersmith realised this weakness and quoted the O((a=b)

2

) \Fermat method" to

break the cryptosystem. However using the Gaussian integer variant of the factoring

algorithm of Section 5.2 this can be improved to an O(a=b) attack, approximately

105

square-rooting

2

the time necessary to break Vanstone and Zuccherato's cryptosystem.

5.4 Factoring numbers with repeated factors

In this section we show there is a deterministic O(p

1�m�

) time algorithm for factoring

integers of the form N = p

m

q where p = N

�

. This has implications in a few recently

proposed cryptosystems (see e.g. (Okamoto & Uchiyama, 1998) and (Takagi, 1998))

which use moduli of the form N = p

2

q, showing that there is at worst an O(N

1=8

)

algorithm for factoring such N , and that the method can be improved to O(N

1=9

) if p

and q are chosen to be of the same magnitude (i.e. N

1=3

).

5.4.1 The method

Following the exposition given in Section 5.2, let us �rstly assume that we have an

approximation p

0

to a true factor p = p

0

+ x

0

of N , where N = p

m

q. We shall show

that if jx

0

j is su�ciently small then p may be found in polynomial time.

Theorem 5.4.1 All x 2Zsuch that (p

0

+x)

m

divides N where p

0

= N

�

and jxj < N

can be found in polynomial time whenever there exist integers h > u > 0 such that

h(hm� 1)� 2u�hm + u(u+ 1) < 0:

The largest value of for which this can hold is m�

2

� ".

Proof: The following is a relatively minor extension to the proof of Theorem 5.2.1,

but is shown in detail for completeness sake. For given integers h and u < h (which

are speci�ed in more detail later) consider the polynomials

p

i;j

(x) = x

j

N

u�i

(p

0

+ x)

im

(

(0 � i < u; 0 � j < m); and

(i = u; 0 � j � (h� u� 1)m):

For all 0 � i < h we have that p

i

(x

0

) = 0 (mod p

um

), so any linear combination of

these polynomial must also evaluate to zero modulo p

um

at x = x

0

.

Let X be an upper bound on the size of jx

0

j (the maximum possible value for X is

also calculated later). We �rstly form a (hm)� (hm) matrix M

h;u

= (m

i;j

) where the

2

Having said this the original parameters suggested by Vanstone and Zuccherato had a � b in which

case the cryptosystem was awed even by an O((a=b)

2

) attack.

106

entry m

i;j

is the coe�cient of x

j

in p

a;b

(x) multiplied by X

j

, and where a and b are

such that b+ am = i, with a � u, and 0 � b < m for all a < u. For instance, if m = 2,

and with h = 4 and u = 2 we would consider the matrix

M

4;2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

N

2

0 0 0 0 0 0 0

0 N

2

X 0 0 0 0 0 0

p

2

0

N 2p

0

NX NX

2

0 0 0 0 0

0 p

2

0

NX 2p

0

NX

2

NX

3

0 0 0 0

p

4

0

4p

3

0

X 6p

2

0

X

2

4p

0

X

3

X

4

0 0 0

0 p

4

0

X 4p

3

0

X

2

6p

2

0

X

3

4p

0

X

4

X

5

0 0

0 0 p

4

0

X

2

4p

3

0

X

3

6p

2

0

X

4

4p

0

X

5

X

6

0

0 0 0 p

4

0

X

3

4p

3

0

X

4

6p

2

0

X

5

4p

0

X

6

X

7

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

We then LLL reduce the rows of M

h;u

to �nd a small row b

1

which satis�es

jb

1

j < 2

(h�1)=4

(detM

h;u

)

1=(hm)

< 2

(h�1)=4

�

N

mu(u+1)=2

X

hm(hm�1)=2

�

1=(hm)

:

Letting b

1

(x) be the polynomial corresponding to this small row, then we have that for

all jxj < X

jb

1

(x)j <

q

(hm) jb

1

j

< 2

(h�1)=4

q

(hm) N

u(u+1)=(2h)

X

(hm�1)=2

:

Note that if

jb

1

(x)j < p

um

; (5.7)

then b

1

(x

0

) = 0 over the integers, since we know that b

1

(x

0

) = 0 (mod p

um

).

For a given h and p

0

' p = N

�

we now calculate the optimum choice of u. To ensure

that condition 5.7 is satis�ed (and thus we can �nd x

0

by �nding the linear factors of

b

1

over the integers) we must have (ignoring the small factors independent of N) that

N

u(u+1)=(2h)

X

(hm�1)=2

< N

�um

which will occur whenever

X < N

u(2�hm�u�1)=(h(hm�1))

:

107

The right-hand side of the above equation is maximised by choosing u = hm�� 1=2 in

which case we can choose X = N

where

 =

(2�hm� 1)

2

4h(hm� 1)

:

Notice that as h!1 we have that X ! N

m�

2

which completes the proof. 2

Note that if one were to choose an � to minimise the risk from this attack, i.e. � = 1=m

(which makes the attack an O(

p

p) method) then p = N

�

may well be small enough for

the elliptic curve factorisation method (ECM) to work. Alternatively, if one chooses p

and q approximately the same size, i.e. � = 1=(m+ 1), then one has an O(p

1=(m+1)

)

method of factoring.

This practical running speed of this algorithm (in comparison with ECM) has been

studied in more detail in (Boneh et al., 1999).

5.5 Divisors in residue classes

Let r; s; n be integers satisfying 0 � r < s < N , s � N

�

, � > 1=4, and gcd(r; s) = 1.

Lenstra showed in (Lenstra, 1984) that the number of integer divisors of N equivalent

to r (mod s) satis�es an upper bound c(�) dependent only on �. He then proved the

bound c(�) = O((� � 1=4)

�2

), and showed how to construct all such divisors when

� > 1=3, in time polynomial in logN and (� � 1=4)

�1

. By comparison we show how

to construct all such divisors when � > 1=4 in polynomial time, and also improve the

asymptotic analysis of the bound to O((�� 1=4)

�3=2

). However, at present, the actual

bounds achieved from these techniques for � > 1=3 are inferior to Lenstra's results (see

Section 5.5.4) and in fact the bound of c(�) = O((�� 1=4)

�3=2

) can be reached from a

more careful analysis of Lenstra's technique, as shown in (Coppersmith et al., 1998).

The fact that one can construct the divisors in residue classes follows fairly trivially

from (Coppersmith, 1996a), as is shown in Section 5.5.1. However in Section 5.5.2

we extend Theorem 5.2.1 because of its simpler lattice, and for a simpler analysis in

calculating bounds on c(�). These bounds are shown in Section 5.5.3, and a further

discussion on the subject is given in Section 5.5.4.

The author is very grateful for much helpful cooperation with Don Coppersmith and

S. V. Nagaraj in the work of this section.

108

5.5.1 An application to RSA

In this section we describe an attack given in (Boneh et al., 1998) which makes use of

divisors in residue classes. We �rstly show how to use Theorem 5.1.1 to calculate the

divisors of a number N which lie in given residue classes.

Theorem 5.5.1 All divisors of N of the form sx+ r, for some known s and r, where

0 � r < s < N , gcd(r; s) = 1 and s = N

�

may be found in time polynomial in logN

and (�� 1=4)

�1

whenever � > 1=4.

Proof: Suppose (sx

0

+r) divides N for some known s and r, i.e.N = (sx

0

+r)(sy

0

+r

0

)

where r

0

= N=r (mod s) (note r

0

exists otherwise we can �nd a factor of N). Then

the polynomial

p(x; y) =

1

s

�

(sx+ r)(sy + r

0

)�N

�

= sxy + r

0

x+ ry + (rr

0

�N)=s

will be zero when evaluated at (x; y) = (x

0

; y

0

).

If s = N

�

, and jx

0

j < X = N

�

then jy

0

j < Y = N

1�2���

and D = sXY = N

1��

.

To use Theorem 5.1.1 we must ensure that (XY)

3=2

< D, which will be true whenever

� > 1=4. 2

Now suppose we are using RSA with N = pq, where p � q �

p

N , and some small

public exponent e. Also assume (for simplicity) that gcd(p� 1; q� 1) = 2, then by the

de�ning property of the encryption and decryption exponents e and d we have

ed+ k

�

N + 1

2

�

p+ q

2

�

= 1:

Now suppose that one has exposed the bottom 1=4 of the bits of d perhaps by the

timing techniques as described in (Kocher, 1996) and Section 1.2.5. Then, assuming

N is an n-bit integer, we have

ed+ k (M � t) = 1 (mod 2

n=4

);

where M = (N + 1)=2 and only k and t = (p+ q)=2 are unknown modulo 2

n=4

. Since

we are assuming a low e, and we know k=e � d=N � 1, we can iterate through k giving

possible choices for t. For each of these candidate values for t (mod 2

n=4

) we can

then work out the implied possible divisor p (mod 2

n=4

) of N by solving the following

109

quadratic equation

p

2

� tp+N = 0 (mod 2

n=4

):

And �nally, with the knowledge of p (mod 2

n=4

) we can then calculate the remaining

bits of p by using Theorem 5.5.1.

There are various other attacks on RSA described in (Boneh et al., 1998), which make

use of divisors in residue classes, which the interested reader may consult.

5.5.2 The method

In this section we extend Theorem 5.2.1 to account for divisors ofN of the form (sx+r)

for some known s and r. We then form a bound on the number of such divisors by

considering the degree of the polynomial derived from the lattice methods.

To extend Theorem 5.2.1 to divisors in residue classes we �rstly assume that the size

of x is within known bounds.

Lemma 5.5.2 All x such that (sx+ r) divides N where 0 � r < s < N , gcd(r; s) = 1,

s = N

�

and N

�

� jxj < N

can be found in polynomial time whenever there exist

integers h > u > 0 such that

h(h� 1)� 2u(�+ �)h+ u(u+ 1) < 0: (5.8)

The largest value of for which this can hold is (�+ �)

2

� ".

Proof: Let s

0

be such that ss

0

= 1 (mod N), then the following are divisible by

(sx+ r):

N; and

s

0

(sx+ r) = x+ r

00

(mod N):

Thus we form the matrix exactly as in Section 5.2 with p

0

= r

00

. Now all the rows are

equivalent to multiples of (sx + r)

u

which is at least N

(�+�)u

under the assumption

that jxj � N

�

. Following the analysis in Section 5.2 the only change to equation 5.2 is

that � becomes �+ � which yields the required result.

The best choice of u is (�+ �)h� 1=2 implying lim

h!1

max

= (�+ �)

2

. 2

We now show that when � > 0:365 we can use Lemma 5.5.2 directly to �nd all the

110

relevant divisors.

Corollary 5.5.3 All divisors of N of the form (sx+r) with s = N

�

and (

p

3�1)=2 <

� � 1=2 may be found in polynomial time.

Proof: We �rst �nd the divisors (sx+ r) <

p

N and then the divisors (sx+ r) >

p

N

are found by looking for their corresponding divisors (sx + r

0

) <

p

N where r

0

= N=r

(mod s). Since sx <

p

N we know that x < N

1=2��

, but x could possibly be as

small as 1, so we set � = 0 and = 1=2 � � and apply Lemma 5.5.2. We have that

(1=2� �) < �

2

whenever � > (

p

3� 1)=2 � 0:365. 2

When � < (

p

3� 1)=2 we cannot �nd all the divisors with one choice of X = N

1=2��

;

instead we must split the interval [0; 1=2 � �] up in to more intervals and apply

Lemma 5.5.2 to each of these in turn.

Corollary 5.5.4 By reducing two matrices, we can �nd all divisors of N of the form

(sx+ r) where s = N

�

and � > 0:32066 (approximately).

Proof: We split the interval [0; 1=2 � �] in to [0; �] and [�; 1=2 � �]. Applying

Lemma 5.5.2, all the solutions in the �rst interval will be found as long as � < �

2

and

all the solutions in the second interval will be found if (1=2� �) < (� + �)

2

. Thus if

we let �

0

� 0:32066 be the solution to (�+ �

2

)

2

+ � � 1=2 = 0 and � = �

2

0

then both

of these will hold. 2

Lemma 5.5.5 All divisors of N of the form (sx + r) with s = N

�

and � > 1=4 may

be found in polynomial time.

Proof: By splitting the interval [0; 1=2� �] in to

[0; �

1

]; [�

1

; �

2

]; : : : [�

J

; 1=2� �];

we require that

1=2� � < (�+ �

J

)

2

�

J

< (�+ �

J�1

)

2

.

.

.

�

1

< �

2

111

This will be true for all � > �

0

where �

0

is a solution to

f

J

(�) =

�+

�

�+ : : :

�

�+ �

2

�

2

�

2

: : :

!

2

+ � � 1=2

= 0

Notice that we have f

J

(�) = (f

J�1

(�)+1=2)

2

+��1=2 which implies that f

J

(1=4)! 0

as J !1, i.e. �

0

! 1=4 as J !1. 2

Rather than split the intervals to minimise the number of di�erent matrices that need

to be reduced (i.e. di�erent values of X with very large h) as in Lemma 5.5.5, we now

aim to split the intervals so as to minimise the density of the possible solutions in each

interval

3

, i.e. (h� 1)=(� �). This leads to the following result.

Lemma 5.5.6 For any given s; r such that o � r < s < N , gcd(r; s) = 1 and s = N

�

the number of divisors of N of the form (sx+ r) is upper bounded by

c(�) = 2 +

��

(�� 1=4)

3=2

+

4�

� � 1=4

:

Proof: Assume we are given 0 < � < 1. As before we consider the divisors (sx+r) <

p

N �rst. For any 0 � � � 1=2� � where jxj � N

�

we can choose h and u to imply

a (from equation 5.8), denoted �(�), which minimises (h� 1)=(� �). These values

are

h =

�

2�

(�+ �)

2

� �

�

;

u = b(�+ �)hc ;

�(�) =

2(�+ �)uh� u(u+ 1)

h(h� 1)

+ ":

The density then satis�es

h� 1

�(�)� �

<

4�

((�+ �)

2

� �)

2

:

Since the r.h.s. is an increasing function for all � < 1=2� � we have that

h� 1 < (�(�)� �)

4�

((�+ �)

2

� �)

2

<

Z

�(�)

v=�

4�

((�+ v)

2

� v)

2

dv:

3

A third (unexplored) option would be to split the intervals so as to minimise the expected time to

�nd all the relevant divisors.

112

If we split the interval [0; 1=2� �] in to

[0;�(0)); [�(0);�(�(0))); : : : ; [�

(i�1)

(0); �

(i)

(0))

where �

(i)

(0) > 1=2� � and then sum (h � 1) (the bound on the possible number of

divisors in each interval) over all these intervals we have.

X

(h� 1) <

Z

1=2��

0

4�

((�+ v)

2

� v)

2

dv

!

+

2�

�� 1=4

<

��

(�� 1=4)

3=2

+

2�

� � 1=4

We must also account for the fact that we may have r = 1 in which case (sx + r) will

divide N when x = 0, and so we should add one to this total. The same bound applies

to the divisors (sx + r) >

p

N by considering their corresponding divisors as before,

and so we reach the desired formula above. 2

5.5.3 Results

In this section use Lemma 5.5.2 to calculate the bounds on the number of divisors in

residue classes for particular �.

Example 5.1 For instance using just two intervals, J = 2, and having h

1

= 3, u

1

= 1

for the �rst interval, and also h

2

= 3, u

2

= 1 for the second interval, then to �nd the

relevant divisors (sx + r) we would reduce the following four lattices, where r

0

= N=r

(mod s) and p

1

= r=s (mod N), p

2

= r

0

=s (mod N), X

1

= N

1=2��

and X

2

=

N

5=6�2�

.

� (sx+ r) �

p

N (sx+ r) >

p

N

5

6

� 2�

1

2

� �

0

B

B

@

0 0 N

0 X

1

p

1

X

2

1

p

1

X

1

0

1

C

C

A

0

B

B

@

0 0 N

0 X

1

p

2

X

2

1

p

2

X

1

0

1

C

C

A

7

6

� 3�

5

6

� 2�

0

B

B

@

0 0 N

0 X

2

p

1

X

2

2

p

1

X

2

0

1

C

C

A

0

B

B

@

0 0 N

0 X

2

p

2

X

2

2

p

2

X

2

0

1

C

C

A

Thus if 7=6� 3� < 0, i.e. � > 7=18 � 0:389 reducing these lattices will discover all the

divisors of N of the form (sx + r) except the two possible divisors of 1 and N itself.

Thus there are at most 4� (3� 1) + 2 = 10 divisors of N when � > 7=18.

113

However since the lattice methods �nd the divisors (sx+ r) where jxj is small, we also

�nd the divisors of N of the form (s(�x) + r) = �(sx � r). Thus this result can be

strengthened to there being at most 10 divisors of N either of the form sx+r or sx�r.

For a given number of intervals we can choose the h

i

and u

i

so as to minimise the

� for which the divisors will be found for a given H =

P

h

i

(the bound c(�) is only

dependent on H). For instance this has been done for the case of two intervals below.

� > c(�) � h

1

h

2

u

1

u

2

7=18 � 0:389 10 3 3 1 1

3=8 = 0:375 12 3 4 1 1

7=19 � 0:368 14 4 4 1 1

29=80 � 0:363 16 5 4 2 1

5=14 � 0:357 18 6 4 2 1

39=110 � 0:355 20 6 5 2 1

43=122 � 0:353 22 6 6 2 2

4339=13039� 0:333 58 17 13 7 4

The following table, which ranges over the next three pages, shows the optimum number

of intervals, J , and the corresponding h

i

, u

i

, to minimise � for 6 � c(�) � 132. This

covers all � > 0:29.

J H c(�) � � > � > h

i

u

i

(approx.) (exact)

1 3 6 0:416667 5=12 3 1

1 4 8 0:400000 2=5 4 1

2 6 10 0:388889 7=18 3; 3 1; 1

2 7 12 0:375000 3=8 3; 4 1; 1

2 8 14 0:368421 7=19 4; 4 1; 1

2 9 16 0:362500 29=80 5; 4 2; 1

2 10 18 0:357143 5=14 6; 4 2; 1

3 12 20 0:353846 23=65 4; 4; 4 1; 1; 1

3 13 22 0:346429 97=280 5; 4; 4 2; 1; 1

3 14 24 0:342975 83=242 6; 4; 4 2; 1; 1

3 15 26 0:340000 17=50 5; 6; 4 2; 2; 1

3 16 28 0:337209 29=86 6; 6; 4 2; 2; 1

3 17 30 0:334783 77=230 6; 6; 5 2; 2; 1

114

J H c(�) � � > � > h

i

u

i

(approx.) (exact)

4 19 32 0:331325 55=166 5; 6; 4; 4 2; 2; 1; 1

4 20 34 0:329337 467=1418 6; 6; 4; 4 2; 2; 1; 1

4 21 36 0:327453 761=2324 7; 6; 4; 4 3; 2; 1; 1

4 22 38 0:325532 153=470 5; 6; 6; 5 2; 2; 2; 1

4 23 40 0:323892 263=812 7; 6; 6; 4 3; 2; 2; 1

4 24 42 0:321733 2117=6580 7; 6; 6; 5 3; 2; 2; 1

4 25 44 0:320204 943=2945 8; 6; 6; 5 3; 2; 2; 1

4 26 46 0:318837 1261=3955 8; 6; 7; 5 3; 2; 2; 1

5 28 48 0:317414 6799=21420 7; 6; 6; 4; 5 3; 2; 2; 1; 1

5 29 50 0:316170 1007=3185 8; 6; 6; 4; 5 3; 2; 2; 1; 1

5 30 52 0:314856 11593=36820 7; 6; 6; 6; 5 3; 2; 2; 2; 1

5 31 54 0:313679 6719=21420 7; 6; 6; 7; 5 3; 2; 2; 2; 1

5 32 56 0:312304 1193=3820 7; 8; 6; 6; 5 3; 3; 2; 2; 1

5 33 58 0:311004 1611=5180 7; 8; 6; 7; 5 3; 3; 2; 2; 1

5 34 60 0:310045 10016=32305 8; 8; 6; 7; 5 3; 3; 2; 2; 1

5 35 62 0:309127 779=2520 9; 8; 6; 7; 5 4; 3; 2; 2; 1

5 36 64 0:308227 26301=85330 10; 8; 6; 7; 5 4; 3; 2; 2; 1

5 37 66 0:307330 41047=133560 9; 8; 8; 7; 5 4; 3; 3; 2; 1

5 38 68 0:306459 5599=18270 9; 8; 9; 7; 5 4; 3; 3; 2; 1

5 39 70 0:305619 5113=16730 10; 8; 9; 7; 5 4; 3; 3; 2; 1

6 41 72 0:304941 6233=20440 7; 8; 8; 6; 7; 5 3; 3; 3; 2; 2; 1

6 42 74 0:304292 77246=253855 8; 8; 8; 6; 7; 5 3; 3; 3; 2; 2; 1

6 43 76 0:303277 223163=735840 9; 8; 8; 6; 7; 5 4; 3; 3; 2; 2; 1

6 44 78 0:302601 42703=141120 9; 8; 8; 7; 7; 5 4; 3; 3; 2; 2; 1

6 45 80 0:301940 38911=128870 10; 8; 8; 7; 7; 5 4; 3; 3; 2; 2; 1

6 46 82 0:301166 43639=144900 9; 8; 8; 9; 7; 5 4; 3; 3; 3; 2; 1

6 47 84 0:300560 39743=132230 10; 8; 8; 9; 7; 5 4; 3; 3; 3; 2; 1

6 48 86 0:299811 3169=10570 9; 10; 8; 9; 7; 5 4; 4; 3; 3; 2; 1

6 49 88 0:299251 51929=173530 10; 10; 8; 9; 7; 5 4; 4; 3; 3; 2; 1

6 50 90 0:298757 69473=232540 11; 10; 8; 9; 7; 5 5; 4; 3; 3; 2; 1

6 51 92 0:298225 6436=21581 12; 10; 8; 9; 7; 5 5; 4; 3; 3; 2; 1

6 52 94 0:297753 270997=910140 11; 10; 10; 9; 7; 5 5; 4; 4; 3; 2; 1

6 53 96 0:297178 144161=485100 11; 10; 11; 9; 7; 5 5; 4; 4; 3; 2; 1

6 54 98 0:296665 146996=495495 12; 10; 11; 9; 7; 5 5; 4; 4; 3; 2; 1

115

J H c(�) � � > � > h

i

u

i

(approx.) (exact)

7 56 100 0:296248 24159=81550 9; 10; 8; 8; 9; 7; 5 4; 4; 3; 3; 3; 2; 1

7 57 102 0:295679 4243=14350 9; 10; 10; 9; 7; 7; 5 4; 4; 4; 3; 2; 2; 1

7 58 104 0:295248 69463=235270 10; 10; 10; 9; 7; 7; 5 4; 4; 4; 3; 2; 2; 1

7 59 106 0:294682 93031=315700 11; 10; 10; 9; 7; 7; 5 5; 4; 4; 3; 2; 2; 1

7 60 108 0:294256 8612=29267 12; 10; 10; 9; 7; 7; 5 5; 4; 4; 3; 2; 2; 1

7 61 110 0:293781 283669=965580 11; 10; 10; 9; 9; 7; 5 5; 4; 4; 3; 3; 2; 1

7 62 112 0:293381 26252=89481 12; 10; 10; 9; 9; 7; 5 5; 4; 4; 3; 3; 2; 1

7 63 114 0:292973 20303=69300 11; 10; 10; 11; 9; 7; 5 5; 4; 4; 4; 3; 2; 1

7 64 116 0:292595 1467028=5013855 12; 10; 10; 11; 9; 7; 5 5; 4; 4; 4; 3; 2; 1

7 65 118 0:292177 178181=609840 11; 12; 10; 11; 9; 7; 5 5; 5; 4; 4; 3; 2; 1

7 66 120 0:291819 362599=1242549 12; 12; 10; 11; 9; 7; 5 5; 5; 4; 4; 3; 2; 1

7 67 122 0:291498 357583=1226709 12; 12; 10; 11; 9; 8; 5 5; 5; 4; 4; 3; 2; 1

7 68 124 0:291178 1442773=4954950 14; 12; 10; 11; 9; 7; 5 6; 5; 4; 4; 3; 2; 1

7 69 126 0:290836 764769=2629550 14; 12; 11; 11; 9; 7; 5 6; 5; 4; 4; 3; 2; 1

7 70 128 0:290500 298351=1027026 13; 12; 13; 11; 9; 7; 5 6; 5; 5; 4; 3; 2; 1

7 71 130 0:290163 1211191=4174170 14; 12; 13; 11; 9; 7; 5 6; 5; 5; 4; 3; 2; 1

7 72 132 0:289832 1194889=4122690 14; 12; 13; 11; 9; 8; 5 6; 5; 5; 4; 3; 2; 1

5.5.4 Conclusions

We have modi�ed Theorem 5.2.1 to solve the problem of �nding divisors in residue

classes (sx + r)jN , and used this to bound the number of such divisors for a given

s = N

�

, � > 1=4 by c(�) = O((�� 1=4)

�3=2

). In fact Lenstra's technique can also be

extended to show that c(�) = O((�� 1=4)

�3=2

), as explained in (Coppersmith et al.,

1998).

We then worked out the values of c(�) for all � > 0:29; as shown in the �nal table of

the last section. Previously known results due to H. W. Lenstra for � � 1=3 are as

116

follows:

� > c(�) �

1=2 = 0:5 2

2=5 = 0:4 4

3=8 � 0:375 6

4=11 � 0:364 7

13=37 � 0:351 8

9=26 � 0:346 9

31=92 � 0:337 10

1=3 � 0:333 11

Lenstra's bounds can be seen to be considerably better. Firstly this is thought to be

true because the lattice methods �nd the divisors of N of the form sx � r as well

(it is not presently known how to seperate the two problems with lattices). However

Lenstra's results are over twice as good which might imply there is another factor that

needs to be taken in to account. It would be very interesting to try to align these two

sets of results.

In contrast to the given problem one can consider the question of how to construct

numbers N with a given number of divisors in the same residue class. Cohen has

shown that there are an in�nitely many numbers with 6 divisors in the same residue

class, i.e. those of the form n = (2x+ 1)(x

2

+ 1)(x

2

+ x+ 1)(2x

2

� x+ 1)(2x

2

+ x+ 1)

with r = 1 and s = (2x + 1)(x

2

+ 1) � 1. Since s > N

1=3

for all x > 5 we have that

c(1=3) � 6. Also n = (x+ 1)(2x+ 1) with s = x and r = 1 shows that c(�) � 4 for all

� < 1=2.

It seems that a considerable amount of further work is needed to join the two problems,

and therefore have exact upper bounds on the number of divisors in residue classes for

given � > 1=4.

117

Part IV:

Wiener-type attacks on RSA

118

Chapter 6

Wiener-type attacks on RSA

For e�cient RSA signature generation it may be tempting to use a small private expo-

nent d. Unfortunately, Wiener (Wiener, 1990) has shown that when the RSA protocol

is used with a decrypting exponent, d, less than N

1=4

and an encrypting exponent,

e, approximately the same size as N , then the RSA system can be broken

1

in time

polynomial in d=N

1=4

(see Section 6.1.1). Very recently Boneh and Durfee (Boneh &

Durfee, 1999) managed to improve Wiener's result by showing how to break the RSA

cryptosystem even when using decrypting exponents of size up to N

0:292

; their idea is

described in Section 6.1.3.

In order to simplify the RSA key management one may also be tempted to use a single

modulus for several key pairs e

i

, d

i

. However, as pointed out by Simmons (Simmons,

1983), whenever a messagem is sent to two participants whose public exponents happen

to be relatively prime, then the message m can be easily recovered without breaking

the system. DeLaurentis (DeLaurentis, 1984) described two further attacks in which a

participant can break such a common modulus cryptosystem. Particularly, he showed

that knowledge of one key pair e

i

, d

i

gives rise to an e�cient probabilistic algorithm for

factoring the modulus N . Moreover, he also showed that knowledge of one key pair e

i

,

d

i

gives rise to an e�cient deterministic algorithm to generate other key pairs without

determining �(N). For a thorough discussion of the common modulus situation when

using RSA we refer to Moore (Moore, 1992). However note that Simmons's attack

does not break the RSA system at all and the attack of DeLaurentis assumes that the

attacker is also given the secret exponent.

1

We have already seen one way of extending this attack in Section 5.5.1; when a low public exponent

is being used and just 1=4 of the least signi�cant bits of d have been revealed (rather than knowing the

top 3=4 of the bits of d are all zero).

119

In this chapter we study the more realistic problem of what an opponent might do,

given only several public exponents for a given modulus and the knowledge that the

corresponding private exponents are quite small. Such a position could possibly occur

if a person is using the same modulus N , but di�erent exponents e

i

to sign di�erent

classes of message.

Even though this situation is not common in present-day RSA systems, an analysis of

the problem sheds some light on the gain of additional public information in attacking

RSA and on the security of re-using the modulus N . Moreover, it is an interesting

mathematical problem in its own right, for which the lattice based solution shown

below is an elegant solution. The general technique used here may also be useful in

other circumstances. Finally if it is true, as hypothesised in (Boneh & Durfee, 1999),

that Wiener's attack can be extended up to N

1=2�"

then perhaps this technique could

also be improved in a similar way. If one were to assume this, then it could possibly

restrict the search for a solution to extending Wiener's original attack.

The question of how to combine several public exponents for a given modulus in order

to reduce the size constraint on the private exponents for their e�cient reconstruction

was �rst studied by Guo (Guo, 1996). Still based on the continued fraction approach

of Wiener, Guo showed how to break RSA given 3 public exponents even when their

corresponding decrypting exponents are of size less thanN

1=3

. This method is described

in Section 6.1.2. Using instead a lattice basis reduction approach we continue this study

in Section 6.2, generalising (and improving) the result up to an arbitrary number of

exponents. Particularly, we show that with n encrypting exponents e

i

, the lattice basis

approach allows for the d

i

to be as large as N

�

n

where

�

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

(2n+1)2

n

�(2n+1)

(

n

n=2

)

(2n�2)2

n

+(4n+2)

(

n

n=2

)

if n is even,

(2n+1)2

n

�4n

(

n�1

(n�1)=2

)

(2n�2)2

n

+8n

(

n�1

(n�1)=2

)

if n is odd.

It is interesting to note that the method of Section 6.2 allows for 2 encrypting exponents

a decrypting exponent bound of N

5=14

, which is superior to the N

1=3

bound of Guo

even for 3 encrypting exponents.

The author is grateful for helpful cooperation with Jean-Pierre Seifert in the work of

this chapter.

120

6.1 Low private exponent attacks on RSA

6.1.1 Wiener's approach

It was shown in Wiener (Wiener, 1990) that, if one assumes �(N) and e are both

approximately as large as N , and if the decrypting exponent d is less than N

1=4

then

the modulus N can be factored by examining the continued fraction approximation of

e=N . This follows because e and d satisfy the relationship ed� k�(N) = 1. So letting

�(N) = (p� 1)(q � 1)=g, and s = 1� p� q we have that

edg � kN = g + ks: (6.1)

Dividing both sides by dgN gives

e

N

�

k

dg

=

g + ks

dgN

=

�

k

dg

��

s

N

�

+

1

dN

:

Now using the assumption that e ' N , and that s ' N

1=2

means (from examining

equation 6.1) that k=(dg) ' 1 so that the right-hand side of the above equation is

approximately N

�1=2

. It is well known (see for instance (Hardy & Wright, 1979)) that

if

jx� a=bj < 1=(2b

2

)

then a=b is a continued fraction approximant of x. Thus if N

�1=2

< 1=(2(dg)

2

) then

k=(dg) will be a continued fraction approximant of e=N . This is true whenever

d < 2

�1=2

(1=g)N

1=4

; (6.2)

and g will be small under the assumption that �(N) ' N (though clearly g � 2 since

both p and q are odd). Given k=dg one may calculate

r = (p� 1)(q � 1) =

edg

k

�

g

k

= bedg=ke (since g is small);

and then we can factor N since the factors p and q satisfy the quadratic relationship

x

2

� (N + 1� r)x+N = 0.

121

6.1.2 Guo's approach

The approach taken in Guo (Guo, 1996) assumes that one has more than one e

i

for

a given N , and that each of these e

i

has a relatively small d

i

. Guo only considers

the problem for 2 and 3 encryption exponents. For 2 exponents we have the following

relations:

e

1

d

1

g � k

1

(p� 1)(q � 1) = g

e

2

d

2

g � k

2

(p� 1)(q � 1) = g;

so multiplying the �rst by k

2

, the second by k

1

, and subtracting gives

k

2

d

1

e

1

� k

1

d

2

e

2

= k

2

� k

1

: (6.3)

Dividing now both sides of equation 6.3 by k

2

d

1

e

2

implies the following

e

1

e

2

�

k

1

d

2

k

2

d

1

=

k

2

� k

1

k

2

d

1

e

2

;

and assuming that the d

i

(and hence k

i

if the e

i

are large) are at most N

�

means that

the right-hand side is about N

�(1+�)

.

For the fraction k

1

d

2

=(k

2

d

1

) to be a continued fraction approximant of e

1

=e

2

, we must

therefore have that

2(k

2

d

1

)

2

< N

1+�

;

and with the assumptions that k

2

and d

1

are at most N

�

and that g is small this

condition will be true whenever � = 1=3� � for some � > 0.

However, unlike Wiener's attack, the fraction k

1

d

2

=(k

2

d

1

) does not break the RSA

cryptosystem for two reasons:

� Firstly knowing, say, the numerator k

1

d

2

, does not allow us to �nd d

2

or k

1

without factoring this number.

� Secondly there may be a factor in common between d

1

k

2

and d

2

k

1

in which case

the continued fraction method would not give a fraction with numerator k

1

d

2

and

denominator k

2

d

1

, but rather the fraction with the common factor removed.

Guo assumes that the second problem does not exist, i.e. that we have gcd(k

1

d

2

; k

2

d

1

) =

1, and it is estimated that this happens with probability 6=�

2

' 0:61.

122

To get around the �rst problem, Guo suggests that one could either try to factor

k

1

d

2

(a number of size about N

2=3

and not typically of a hard factorisation shape),

or alternatively assume that one has another encrypting exponent e

3

with d

3

< N

1=3

.

Then (repeating the above procedure with e

3

and e

2

) one can also �nd k

3

d

2

, and

calculating gcd(k

1

d

2

; k

3

d

2

) will hopefully (if gcd(k

1

; k

3

) = 1) give d

2

and thus allow the

factoring of N . The probability of this attack working under the given assumptions is

(6=�

2

)

3

' 0:23.

6.1.3 Boneh and Durfee's approach

For simplicity assume that gcd(p � 1; q � 1) = 2. Then to break RSA, and indeed to

factor N we must �nd an (x; y; z) solution to the equation

x(m+ y) + ze = 1;

where m = (N + 1)=2, y = �(p + q)=2, z is the decrypting exponent d and x is the

other coe�cient from the extended Euclidean algorithm (around the same size as z).

Boneh and Durfee (see (Boneh & Durfee, 1999)) named this \the small inverse prob-

lem". In their approach they treated this equation modulo e, and then used the univari-

ate modular approach of Section 4.1 on the resulting bivariate integer equation. The

advancement was multiplying by both x and y in forming the necessary polynomial

relationships for LLL to reduce.

With a certain, natural choice of polynomials they improved the bound on the sus-

ceptible d (i.e. d which lead to a polynomial time factoring of N) to N

�

where � =

(7� 2

p

7)=6 � 0:285. Then, by removing some of the \less good" relations, they were

able to further improve this to � = (2�

p

2)=2 � 0:292. See (Boneh & Durfee, 1999)

for details.

6.2 An extension in the presence of many small decryp-

tion exponents

In this section we will use, among others, ideas from both Wiener and Guo to solve

the general problem of breaking RSA in the presence of n encrypting exponents e

i

, all

with relatively small d

i

< N

�

n

, i = 1; : : : ; n. The main technique used in deriving these

results is the creation and subsequent reduction of certain lattices. The approach taken

can currently only be classed as a heuristic method because, although the vectors we

123

search for can be shown to be relatively short, we cannot yet prove that they are bound

to be found by lattice basis reduction algorithms. Nevertheless, in Section 6.3 it is

shown that our approach performs well in practice, and that the following theoretically

derived bounds are frequently achieved. In particular, in the presence of n encrypting

exponents e

i

, our approach allows for the d

i

to be as large as N

�

n

where

�

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

(2n+1)2

n

�(2n+1)

(

n

n=2

)

(2n�2)2

n

+(4n+2)

(

n

n=2

)

if n is even,

(2n+1)2

n

�4n

(

n�1

(n�1)=2

)

(2n�2)2

n

+8n

(

n�1

(n�1)=2

)

if n is odd.

The �rst few (from n = 1) start 1=4, 5=14, 2=5, 15=34, 29=62. In Section 6.2.5 it is

shown that �

n

! 1 as n!1.

If the LLL algorithm (see (Lenstra et al., 1982)) is used in order to reduce the lat-

tices underlying our approach, and the (pessimistic) estimate for its complexity of

O(m

6

log

3

B) is assumed (given a lattice of dimension m with largest norm B), then

the complexity of our method is O(2

6n

n

3

log

3

N); and so clearly the attack is only

practical for small n.

6.2.1 Preliminaries

In extending the analysis to n encrypting exponents e

i

(with small decrypting exponents

d

i

), we use both Wiener's and Guo's ideas. We shall refer to relations of the form

d

i

ge

i

� k

i

N = g + k

i

s

as Wiener equations, and we shall denote them byW

i

(see equation 6.1 for an example).

Similarly we shall refer to relations of the form

k

i

d

j

e

j

� k

j

d

i

e

i

= k

i

� k

j

as Guo equations, and shall denote them G

i;j

(see equation 6.3 for an example). We

shall also assume, for a given n, that the d

i

and k

i

are at most N

�

n

, that g is small, and

that s is around N

1=2

. Notice that the right-hand sides of W

i

and G

i;j

are therefore

quite small; in fact at most N

(1=2)+�

n

, and N

�

n

respectively. Finally we often refer to

composite relations, e.g. W

u

G

v;w

, in which case we mean the relation, whose left-hand

(resp. right-hand) side is the product of the left-hand (resp. right-hand) sides of W

u

and G

v;w

. For example, W

u

G

v;w

which has a relatively small right-hand side, bounded

124

in size by N

(1=2)+2�

n

.

In the following analysis we examine the cases of 2, 3 and 4 exponents before generalising

the approach to n exponents. This is done both to give explicit examples of the

approach when in the presence of a small number of exponents, and also because it is

not until the presence of 4 exponents that the general phenomenon becomes clear. The

relations that we choose for the cases of 2, 3 and 4 exponents may seem \plucked from

the air", but the pattern is made clear in Section 6.2.5.

6.2.2 RSA in the presence of 2 small decryption exponents

Assuming that we have two small decryption exponents, then the following relations

hold: W

1

; G

1;2

;W

1

W

2

; or more explicitly:

d

1

ge

1

� k

1

N = g + k

1

s;

k

1

d

2

e

2

� k

2

d

1

e

1

= k

1

� k

2

;

d

1

d

2

g

2

e

1

e

2

� d

1

gk

2

e

1

N � d

2

gk

1

e

2

N + k

1

k

2

N

2

= (g + k

1

s)(g + k

2

s):

Multiplying the �rst of these by k

2

and the second by g means that the left-hand sides

are all in terms of d

1

d

2

g

2

, d

1

gk

2

, d

2

gk

1

, and k

1

k

2

, and hence we may write these equa-

tions in the matrix form below.

(k

1

k

2

; d

1

gk

2

; d

2

gk

1

; d

1

d

2

g

2

)

0

B

B

B

B

B

@

1 �N 0 N

2

e

1

�e

1

�e

1

N

e

2

�e

2

N

e

1

e

2

1

C

C

C

C

C

A

=

(k

1

k

2

; k

2

(g + k

1

s); g(k

1

� k

2

); (g+ k

1

s)(g + k

2

s):

The size of the entries of the vector on the right-hand side are at mostN

2�

2

, N

(1=2)+2�

2

,

N

�

2

, and N

1+2�

2

respectively. These size estimates may be made roughly equivalent by

multiplying the �rst three columns of the matrix by N , M

1

= N

1=2

, and M

2

= N

1+�

2

respectively, which gives the following matrix:

L

2

=

0

B

B

B

B

B

@

N �M

1

N 0 N

2

M

1

e

1

�M

2

e

1

�e

1

N

M

2

e

2

�e

2

N

e

1

e

2

1

C

C

C

C

C

A

125

In this case the vector b = (k

1

k

2

; d

1

gk

2

; d

2

gk

1

; d

1

d

2

g

2

) will be such that

kbL

2

k < 2N

1+2�

2

:

We must now make the assumption that, in the lattice generated by the rows of L

2

,

the shortest vector has length �

1=4��

, where � = det(L

2

) � N

(13=2)+�

2

, and moreover

that the next shortest linearly independent vector has a signi�cantly larger norm than

the shortest vector in L

2

. Indeed, if the lattice L

2

is pretty \random", there are almost

surely no lattice points of L

2

signi�cantly shorter than the Minkowski bound 2�

1=4

.

Under these assumptions, then bL

2

is the shortest vector in the lattice if

N

1+2�

2

< (1=c

2

)

�

N

(13=2)+�

2

�

1=4

for some small c

2

, which is true if

�

2

< 5=14� �

0

:

This implies that the vector b = (b

1

; b

2

; b

3

; b

4

) can be found via lattice basis reduction

algorithms (e.g. LLL) if �

2

< 5=14� �

0

, and then d

1

g=k

1

= b

2

=b

1

can be calculated,

which leads to the factoring of N as shown in Section 6.1.1.

6.2.3 RSA in the presence of 3 small decryption exponents

This method extends easily to 3 encrypting exponents. We now have the quantities

1; e

1

; e

2

; e

1

e

2

; e

3

; e

1

e

3

; e

2

e

3

and e

1

e

2

e

3

from which to form linear relationships, and we

already have relationships concerning the �rst four of these from the 2 exponent case,

namely 1;W

1

; G

1;2

andW

1

W

2

. For the remaining relationships we choose G

1;3

,W

1

G

2;3

,

W

2

G

1;3

and W

1

W

2

W

3

. These relations imply looking for the vector

b = (k

1

k

2

k

3

; d

1

gk

2

k

3

; k

1

d

2

gk

3

; d

1

d

2

g

2

k

3

;

k

1

k

2

d

3

g; k

1

d

3

g; k

2

d

3

g; d

1

d

2

d

3

g

3

);

126

by reducing the rows of the following lattice:

L

3

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 �N 0 N

2

0 0 0 �N

3

e

1

�e

1

�e

1

N �e

1

0 e

1

N e

1

N

2

e

2

�e

2

N 0 e

2

N 0 e

2

N

2

e

1

e

2

0 �e

1

e

2

�e

1

e

2

�e

1

e

2

N

e

3

�e

3

N �e

3

N e

3

N

2

e

1

e

3

0 �e

1

e

3

N

e

2

e

3

�e

2

e

3

N

e

1

e

2

e

3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

�D;

where D is the diagonal matrix

diag(N

3=2

; N;N

(3=2)+�

3

; N

1=2

; N

(3=2)+�

3

; N

1+�

3

; N

1+�

3

; 1)

used to maximise the determinant of L

3

and still keep

kbL

3

k <

p

8N

(3=2)+3�

3

:

Again, using the assumptions that the shortest vector in the lattice generated by the

rows of L

3

has length det(L

3

)

(1=8)��

, and is also signi�cantly shorter than the next

shortest linearly independent vector in L

3

, means that bL

3

will be the shortest vector

in the lattice L

3

if

N

(3=2)+3�

3

< (1=c

3

)

�

N

20+4�

3

�

1=8

for some small c

3

which is true if

�

3

< 2=5� �

0

:

By using again the �rst two components of b, as in the 2 exponent case, one may now

factor the modulus N as shown in Section 6.1.1.

6.2.4 RSA in the presence of 4 small decryption exponents

In the presence of 4 exponents we can now use linear relationships among the quantities

1, e

1

, e

2

, e

1

e

2

, e

3

, e

1

e

3

, e

2

e

3

, e

1

e

2

e

3

, e

4

, e

1

e

4

, e

2

e

4

, e

3

e

4

, e

1

e

2

e

4

, e

1

e

3

e

4

, e

2

e

3

e

4

and

e

1

e

2

e

3

e

4

. As before we already have linear relationships for the �rst half of these quan-

tities from the analysis in the presence of 3 equations. For the remaining quantities we

127

use the relations G

1;4

, W

1

G

2;4

, G

1;2

G

3;4

, G

1;3

G

2;4

, W

1

W

2

G

3;4

, W

1

W

3

G

2;4

, W

2

W

3

G

1;4

and W

1

W

2

W

3

W

4

. Putting these relations in matrix form, and multiplying the columns

by appropriate factors to make all the relations of size at most N

2+4�

4

, results in a

16 � 16 matrix, L

4

, which has determinant N

(109=2)+13�

4

. The vector b we are now

looking for is

b = (k

1

k

2

k

3

k

4

; d

1

gk

2

k

3

k

4

; k

1

d

2

gk

3

k

4

; d

1

d

2

g

2

k

3

k

4

;

k

1

k

2

d

3

gk

4

; d

1

k

2

d

3

g

2

k

4

; k

1

d

2

d

3

g

2

k

4

; d

1

d

2

d

3

g

3

k

4

;

k

1

k

2

k

3

d

4

g; d

1

k

2

k

3

d

4

g

2

; k

1

d

2

k

3

d

4

g

2

; k

1

k

2

d

3

d

4

g

2

;

d

1

d

2

k

3

d

4

g

3

; d

1

k

2

d

3

d

4

g

3

; k

1

d

2

d

3

d

4

g

3

; d

1

d

2

d

3

d

4

g

4

):

Therefore, again making the same assumptions as before, implies that the vector bL

4

is the shortest vector in the lattice generated by the rows of L

4

if

N

2+4�

4

< (1=c

4

)

�

N

(109=2)+13�

4

�

1=16

for some small c

4

, and this is true if

�

4

< 15=34� �

0

:

Using again the �rst two components of b, as in the 2 and 3 exponent case, one may

again factor the modulus N as shown in Section 6.1.1.

6.2.5 The general approach

We now work out the general bound on the d

i

when we have n encrypting exponents.

The reader is encouraged to refer back to the previous sections (when n = 2; 3 and 4)

as examples.

Given that there are n exponents e

i

, then there are 2

n

di�erent quantities, h

j

, involving

the e

i

's, and the product of all of these (assuming e � N) is N

(n2

n�1

)

. This means that

one considers a diagonal matrix, L

n

, of dimension 2

n

, and that the determinant of this

matrix, before multiplying the rows to increase the allowable bound, is N

(n2

n�1

)

.

The last relation W

1

W

2

: : :W

n

has a right-hand side of at most N

(n=2)+n�

n

, and thus

we increase the right-hand side of all the other relations up to this bound, making

the desired vector b such that kbL

n

k

1

is (still) approximately N

(n=2)+n�

n

. The general

form of the desired vector b is that its j

th

entry is the product of n unknown quantitities

a

i

for i = 1 : : :n, where a

i

is either d

i

g or k

i

depending on whether e

i

is present in the

128

j

th

quantity h

j

or not.

We now consider the interesting problem of which relations to consider for n equations.

Observe that a general relation of the form

R

u;v

= W

i

1

: : :W

i

u

G

j

1

;l

1

: : :G

j

v

;l

v

;

(where the i

1

; : : : ; i

u

; j

1

; : : : ; j

v

; l

1

; : : : ; l

v

are unique), has a left-hand side composed

of products of (u + 2v) of the e

i

's with coe�cients that are products of (u + v) of

the unknown quantities a

i

(where a

i

is again either d

i

g

i

or k

i

). Also notice that the

right-hand side of R

u;v

has size at most N

(u=2)+(u+v)�

n

.

Our method requires all the coe�cients to be roughly the same size (a product of n of

the quantities a

i

). This means that relations which have coe�cients less than this must

be multiplied (on both sides) by some missing k

i

. For example, in the the 2 exponent

case we multiplied the �rst equation by k

2

to make all the coe�cients of size N

2�

2

.

This has the e�ect of increasing the right-hand side of relation R

u;v

to a size bounded

by N

(u=2)+(n�v)�

n

.

Given this new relation R

u;v

we now need to make its right-hand side as large as the

right-hand side ofW

1

W

2

: : :W

n

, which means multiplying (both sides) byN

(n�u)=2+v�

n

.

For example, these multiplication factors are the (diagonal) entries of the diagonal

matrix D in the example when n = 3.

Say that the product of these multiplication factors (i.e. the determinant of D in the

n = 3 example) isN

�

n

, where �

n

= x+y�

n

, and let L

n

denoted the lattice of (modi�ed)

relations as before. This means that (under the usual assumptions) the vector bL

n

is

the shortest vector of the lattice if

N

n=2+n�

n

< (1=c

n

)

�

N

n2

n�1

+x+y�

n

�

1=2

n

for some small c

n

, i.e. when

�

n

<

x

n2

n

� y

� �

0

: (6.4)

In order to maximise �

n

we wish both x and y to be large. This means that the

relations should be chosen to maximise v (and minimise u). For instance when n = 2

we choose the relations W

1

; G

1;2

and W

1

W

2

rather than W

1

;W

2

and W

1

W

2

because

�

2

= 2 in the latter case rather than 5=2 + �

2

in the former.

With this general principle in mind we still need to explain exactly which relations

129

we use. In order to mantain the triangularity of L

n

we only consider relations which

introduce one new quantity h

j

. The choices for n � 5 can be seen in the below �gure.

size of size of size of contribution

h

j

relation coe�s h

j

rhs to �

n

1 � 0 0 0 (n=2)

e

1

W

1

1 1 (1=2) + �

n

(n� 1)=2

e

2

G

1;2

2 1 �

n

(n=2) + �

n

e

1

e

2

W

1

W

2

2 2 1 + 2�

n

(n� 2)=2

e

3

G

1;3

2 1 �

n

(n=2) + �

n

e

1

e

3

W

1

G

2;3

3 2 (1=2) + 2�

n

(n� 1)=2 + �

n

e

2

e

3

W

2

G

1;3

3 2 (1=2) + 2�

n

(n� 1)=2 + �

n

e

1

e

2

e

3

W

1

W

2

W

3

3 3 (3=2) + 3�

n

(n� 3)=2

e

4

G

1;4

2 1 �

n

(n=2) + �

n

e

1

e

4

W

1

G

2;4

3 2 (1=2) + 2�

n

(n� 1)=2 + �

n

e

2

e

4

G

1;2

G

3;4

4 2 2�

n

(n=2) + 2�

n

e

3

e

4

G

1;3

G

2;4

4 2 2�

n

(n=2) + 2�

n

e

1

e

2

e

4

W

1

W

2

G

3;4

4 3 1 + 3�

n

(n� 2)=2 + �

n

e

1

e

3

e

4

W

1

W

3

G

2;4

4 3 1 + 3�

n

(n� 2)=2 + �

n

e

2

e

3

e

4

W

2

W

3

G

1;4

4 3 1 + 3�

n

(n� 2)=2 + �

n

e

1

e

2

e

3

e

4

W

1

W

2

W

3

W

4

4 4 2 + 4�

n

(n� 4)=2

e

5

G

1;5

2 1 �

n

(n=2) + �

n

e

1

e

5

W

1

G

2;5

3 2 (1=2) + 2�

n

(n� 1)=2 + �

n

e

2

e

5

G

1;2

G

3;5

4 2 2�

n

(n=2) + 2�

n

e

3

e

5

G

1;3

G

4;5

4 2 2�

n

(n=2) + 2�

n

e

4

e

5

G

1;4

G

2;5

4 2 2�

n

(n� 2)=2 + �

n

e

1

e

2

e

5

W

1

W

2

G

4;5

4 3 1 + 3�

n

(n� 1)=2 + 2�

n

e

1

e

3

e

5

W

1

G

2;3

G

4;5

5 3 (1=2) + 3�

n

(n� 1)=2 + 2�

n

e

1

e

4

e

5

W

1

G

2;4

G

3;5

5 3 (1=2) + 3�

n

(n� 1)=2 + 2�

n

e

2

e

3

e

5

W

2

G

1;3

G

4;5

5 3 (1=2) + 3�

n

(n� 1)=2 + 2�

n

e

2

e

4

e

5

W

2

G

1;4

G

3;5

5 3 (1=2) + 3�

n

(n� 1)=2 + 2�

n

e

3

e

4

e

5

W

3

G

2;4

G

1;5

5 3 (1=2) + 3�

n

(n� 1)=2 + 2�

n

e

1

e

2

e

3

e

5

W

1

W

2

W

3

G

4;5

5 4 (3=2) + 4�

n

(n� 3)=2 + �

n

e

1

e

2

e

4

e

5

W

1

W

2

W

4

G

3;5

5 4 (3=2) + 4�

n

(n� 3)=2 + �

n

e

1

e

3

e

4

e

5

W

1

W

3

W

4

G

2;5

5 4 (3=2) + 4�

n

(n� 3)=2 + �

n

e

2

e

3

e

4

e

5

W

2

W

3

W

4

G

1;5

5 4 (3=2) + 4�

n

(n� 3)=2 + �

n

e

1

e

2

e

3

e

4

e

5

W

1

W

2

W

3

W

4

W

5

5 5 (5=2) + 5�

n

(n� 5)=2

A table showing the chosen relations for n � 5.

130

After the initial \base relation" (which requires that the �rst component of b should

be small), we seek a linear relation between e

1

and 1 (or a multiple of this e.g. N), and

our only choice for this is W

1

. With the introduction of the next exponent e

2

we now

look for a relation between 1; e

1

and e

2

. For this we can either choose W

2

or G

1;2

, and

as explained above G

1;2

is the right choice.

A more interesting situation arises when the fourth exponent e

4

has been introduced,

and one looks for a relation regarding e

1

e

4

and the previous ones. The best choice

in this case turns out to be W

1

G

2;4

. However, when considering the next relation

regarding e

2

e

4

and the previous ones we may now use G

1;2

G

3;4

because the left-hand

side of this relation contains e

1

e

3

, e

1

e

4

, e

2

e

3

and e

2

e

4

all of which are now present.

In general when looking for a relation regarding e

i

1

e

i

2

: : : e

i

s

and the previous ones, one

can use any relation R

u;v

where u + v = s, subject to the required h

j

being present

earlier. It can be shown that the number of relations R

u+v

with v = t should be

�

n

t

�

�

�

n

t�1

�

regardless of the size s = u + v of the relation (though of course this

is subject to t � s and s + 2t � n). The contribution to �

n

for such a relation is

(n � s + t)=2 + t�

n

, and thus (summing over the possible n) the total contribution to

�

n

is shown below.

�

n

=

n

X

s=0

min(s;n�s)

X

t=0

n

t

!

�

n

t� 1

!!

�

n � s + t

2

+ t�

n

�

Assuming n is even this sum can be simpli�ed to

�

n

=

(2n+ 1)2

n

� (2n+ 1)

�

n

n=2

�

4

+

(n+ 1)2

n

� (2n+ 1)

�

n

n=2

�

2

�

n

;

or if n is odd then the sum becomes

�

n

=

(2n+ 1)2

n

� 4n

�

n�1

(n�1)=2

�

4

+

(n+ 1)2

n

� 4n

�

n�1

(n�1)=2

�

2

�

n

:

Using equation 6.4 this means that if n is even, then

�

n

=

(2n+ 1)2

n

� (2n+ 1)

�

n

n=2

�

(2n� 2)2

n

+ (4n+ 2)

�

n

n=2

�

; (6.5)

whilst if n is odd, then

�

n

=

(2n+ 1)2

n

� 4n

�

n�1

(n�1)=2

�

(2n� 2)2

n

+ 8n

�

n�1

(n�1)=2

�
: (6.6)

131

Either way, using Stirling's formula n! �

p

2�nn

n

e

�n

we have that

2k

k

!

=

(2k)!

(k!)

2

�

1

p

�k

2

2k

� 2

2k

as k !1, which shows that �

n

! 1 as n!1.

The theoretical limits for which �

n

when n varies from 1 to 100 are shown below for

completeness sake, and to show how slowly the curve tends to 1. However one should

understand that for n above 10 say, the method is completely infeasibly due to the size

of the matrix to be reduced.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

"bounds"

Fig. 1. Graph of bounds �

n

for n � 100.

6.3 Practical results

Although our method is at the current time only heuristic, it works well in practice as

can be seen from our experimental results below.

Our implementation uses the NTL library (Shoup, 1995) of Victor Shoup. Timings are

given for a 300 MHz AMD K6 running under Linux.

132

Table 6.3.1 Average running time (in seconds) and success rate for 10 random exper-

iments as a function of �

2

.

RSA-500 with 2 public exponents

�

2

bit length of d

i

avg. time in secs. success rate

0.356 178 0.441 40%

0.354 177 0.421 100%

Table 6.3.2 Average running time (in seconds) and number of success rate for 10

random experiments as a function of �

2

.

RSA-700 with 2 public exponents

�

2

bit length of d

i

avg. time in secs. success rate

0.357143 250 1.075 0%

0.355714 249 1.117 70%

0.354286 248 0.93 80%

0.352857 247 1.33 100%

Table 6.3.3 Average running time (in seconds) and success rate for 10 random exper-

iments as a function of �

3

.

RSA-500 with 3 public exponents

�

3

bit length of d

i

avg. time in secs. success rate

0.4 200 3.632 0%

0.398 199 3.567 40%

0.396 198 3.599 90%

0.394 197 3.726 90%

0.392 196 3.595 90%

0.39 195 3.529 100%

Table 6.3.4 Average running time (in seconds) and success rate for 10 random exper-

iments as a function of �

4

.

RSA-200 with 4 public exponents

�

4

bit length of d

i

avg. time in secs. success rate

0.44 88 14.538 0%

0.435 87 14.496 50%

0.43 86 14.328 80%

0.425 85 14.159 100%

133

Table 6.3.5 Average running time (in seconds) and success rate for 10 random exper-

iments as a function of �

5

.

RSA-200 with 5 public exponents

�

5

bit length of d

i

avg. time in secs. success rate

0.45 90 424.756 0%

0.445 89 427.275 60%

0.44 88 422.74 100%

6.4 Open problems

In (Wiener, 1990) it was commented that the attack could not be brought to bear if

the Chinese remainder theorem variant of RSA was being employed, i.e. d was not

small, but d

p

= d (mod p � 1) and d

q

= d (mod q � 1) are both small (and hence

decryption is still speeded up). One should observe that the generalised problem (with

many e

i

and d

i

) seems equally awed against exposing this choice of RSA exponents.

Another theoretical problem raised by this work is to take steps towards proving the

lattice assumptions used in Section 6.2. As the experimental results strongly support

the derived bounds it is natural to ask whether the attack can be turned into a rigorous

theorem.

Lastly, in (Boneh & Durfee, 1999), Boneh and Durfee conjectured that there may be a

polynomial time solution for the small inverse problem, for any d as large as N

1=2�"

.

It would seem that we are presently lacking techniques capable of doing this, but if

this result is proved, it would be very interesting to see if the techniques of Section 6.2

could be used to generalise it to many exponents e

i

and d

i

.

134

Part V:

Conclusions and Open Problems

135

Chapter 7

Conclusions and open problems

Below is a brief summary of each chapter of the thesis for the reader to recap. The main

points of the thesis are highlighted in the following sections: the �rst of these shows

the new results that have been achieved from this work, whilst the second discusses

the problems that remain open.

A brief summary of the thesis

Chapter 1 gives an introduction to cryptography, and then introduces each of the

subsequent chapters in detail. See Section 1.3 for a more detailed account of each of

the chapters below.

Chapter 2 considers the study of smooth numbers in relation to detecting torsion in a

group, and shows that arti�cial smoothness constraints make this problem easier than

may be thought.

Chapter 3 then gives a solid introduction to the theory of lattices, proving numerous

results which are used in subsequent chapters.

Chapter 4 studies the problem of �nding small solutions to univariate modular equa-

tions. It gives an alternative (and simpler) method to that proposed in (Coppersmith,

1996a) which is analysed in some detail. It also briey considers polynomial equations

in more variables.

Chapter 5 looks at the factorisation equation xy = N showing that it can also be

treated in a similar \modular" way. The method is extended to allow for factoring over

Gaussian integers, factoring of numbers with repeated factors, and analysing factors

which lie in residue classes.

136

Chapter 6 considers Wiener-type attacks, i.e. exploiting the use of a small private

exponent in RSA cryptography. It gives an overview of the problem, and then shows

that if one has many public exponents all corresponding to small private exponents

modulo N , then one can improve on Wiener's original attack considerably.

7.1 Results

The section highlights the original work contained within this thesis. This starts with

De�nition 2.2.3 which de�nes the concept of T -reliant addition chains. It is used to

put the work described in (Brickell et al., 1992) in to an addition chain framework. We

subsequently show that this work can be used to produce relatively e�cient addition

chains for sets of integers.

Later in Chapter 2 we de�ne the concept of de�cient numbers (see De�nition 2.4.1). We

�rstly show how to classify (Theorem 2.4.2) and produce (Theorem 2.4.3) such numbers,

and then show that 1-de�cient numbers may be used to approximately halve the time

needed to detect torsion in group orders of known smoothness (see Algorithm 2.4.4).

We also show that general n-de�cient numbers may be useful with enough processors

(see Section 2.4.2).

In Chapter 3 the �rst piece of seemingly original work

1

is Lemma 3.2.5 and the subse-

quent corollaries, in which it is shown how to deduce lower bounds for

Q

�

i

by examining

the diagonal entries of a given triangular basis. This allows one to put de�nite bounds

on the size of the vectors in an LLL-reduced basis as shown in equation 3.19, which in

turn allows a slightly improved analysis on multivariate modular equations, as shown

in section 4.7.

The next original concept in Chapter 3 is the notion of an e�ectively LLL-reduced

basis. It is shown which of the classical results concerning LLL reduction rely on the

\full" LLL conditions, and which just rely on the e�ective conditions. Also a slightly

di�erent variant of the LLL algorithm is described, where it is suggested that it may be

better to do weak reduction at one block at the end, rather than all the way through

the algorithm.

Another concept that relies only on an e�ectively LLL-reduced basis is the new result

concerning LLL reduction on a given lattice basis or its dual. This is explained in

Section 3.4.

1

The result has a classical feel, but the author cannot �nd a previous reference to it. Certainly the

use of this with LLL appears to be novel.

137

Section 3.5 then introduces the notion of unitary lattices, and extends the LLL algo-

rithm to work over such structures. This cannot really be claimed as original work

because of (Fieker & Pohst, 1996) and (Schiemann, 1998), though it was done inde-

pendently.

In Chapter 4 the original work starts by describing the alternative method for solving

univariate modular equations, given in Section 4.1. The connection between this and

the existing method described in (Coppersmith, 1996b) is given in Section 4.4 and

is shown to rely on the dual lattice results described in Section 3.4. We also (in

Section 4.5) describe two small improvements to the general algorithm: removing one

column of the matrix to be reduced, and a method to �nd slightly larger solutions for

the same size of matrix.

The next piece of original work in Chapter 4 is the approach taken to break RSA

when random padding is placed in more than one location. This work is described in

Sections 4.7 and 4.8.4 and shows that there are provably weak ways to pad messages,

even with many blocks. This is a partial answer to Open Problem 3 posed in (Boneh,

1999).

In Chapter 5 the original work starts by describing an alternative factoring algorithm

to the one shown in (Coppersmith, 1996a). In fact the results achieved from the

alternative algorithm are slightly better than a na��ve use of Coppersmith's theorem.

It is then shown, in Section 5.3, that one can factor over the Gaussian integers, by

using the LLL algorithm over unitary lattices described in Section 3.5. This is shown

to have an impact on the moduli used in a cryptosystem by Vanstone and Zuccherato,

essentially square rooting the time needed to factor them. This is an example of the fact

that although Coppersmith has given a general algorithm for solving bivariate poly-

nomial equations, the equations should still be treated with craft, and the immediate

application of the algorithm may not always be the right approach.

Later in Chapter 5 we show how the lattice techniques can be used to factor numbers

of the form N = p

m

q. We give an O(p

1�m�

) for the factorisation of such moduli, where

p = N

�

i.e. O(N

1=8

) even for the case m = 2. For large m this method becomes

superior to the elliptic curve factorisation method, as shown in (Boneh et al., 1999).

Chapter 5 ends by studying the problem of divisors in residue classes. The whole

approach to this problem is original, but the results are a little disappointing. The

main new result is the bound of c(�) = O((��1=4)

�3=2

), but as shown in (Coppersmith

et al., 1998) Lenstra's analysis can also be extended to give this bound as well.

Finally Chapter 6 explores the interesting, if not a little theoretical problem, of breaking

138

RSA when one has many encrypting exponents e

i

each with relatively small decrypting

exponents d

i

modulo a common modulus N . The lattice based solution is interesting

and the general approach may be useful in other circumstances. It is shown that when

one has very many e

i

, 1 � i � m, the d

i

can be as large as N

1�"

. However the

complexity of the algorithm is exponential in m and is certainly infeasible for m � 10

with present lattice reduction techniques.

7.2 Open problems

Having given a overview of the thesis, and highlighted the original contributions made

by it, it remains to discuss some of the related problems that are still open. Chronologi-

cally, the �rst problem encountered is to better understand LLL over algebraic number

�elds (see Section 3.6), i.e. to work out the complexity of the reduction algorithm

over given algebraic number �elds, and to write e�cient implementations of these. It

would be nice to �nd more instances

2

of where the use such algorithms is helpful in

cryptography.

In Section 4.7 we briey discuss �nding small solutions to multivariate Diophantine

equations, and one particular method, using algebraic numbers, is shown for a class

of equations arising from an application in RSA. Although, as shown in (Manders &

Adleman, 1978) �nding small solutions to even bivariate modular equations is NP-hard,

it is an interesting problem to identify which instances of multivariate Diophantine

equation are easier to solve than others.

The analysis of divisors in residue classes given in Section 5.5 is de�nitely an area for

further work. The �rst goal is probably to align the results with (or possibly improve

on) those given in (Lenstra, 1984). The ultimate goal is to join the upper and lower

bounds described in Section 5.5.4, and thus produce exact upper bounds on the number

of divisors in residue classes for given � > 1=4.

Chapter 6 poses quite a few unanswered questions. On the problem of Wiener's attack

it would be fascinating to increase the bound up to N

1=2�"

. If this could be done then

perhaps the extended technique with many e

i

could also be improved in a similar way.

Conversely if one were to assume this, then it could possibly restrict the search for a

solution to extending Wiener's original attack.

Further it would be rather nice to develop lattice techniques in which it can be proved

(or at least good probabilities given) that techniques such as ours will de�nitely �nd the

2

See Section 5.3 for one example.

139

desired vectors. It would also be nice to �nd other equations for which this approach

(which is relatively general) can also be applied to.

Finally the problem of when the Chinese Remainder Theorem variant of RSA decryp-

tion is being used with small d

p

and d

q

seems very hard to attack. Perhaps the problem

of only knowing that d

p

and d

q

are small could be shown to be NP-complete, or at least

reduced to another supposedly hard poblem.

A �nal general point is that almost all the lattices in this thesis have quite discernible

structure. It might possibly be the case that there exist more e�cient ways to reduce

such lattices, rather than resorting to straightforward implementations of LLL or its

extensions.

140

Appendix A

Notation

Symbol Meaning

Z;R; C The sets of integers, real numbers and complex

numbers respectively

G The set of Gaussian integers

jaj The absolute value of a real number a,

or the length of a complex number a

kvk the Euclidean norm of the vector v, i.e.

�

P

n

i=1

v

2

i

�

1=2

kvk

1

the Sum norm of the vector v, i.e.

P

n

i=1

jv

i

j

bxc The largest integer � x when x 2 R

dxe The smallest integer � x when x 2 R

bxe The nearest integer to x 2 R

GL

n

(R) The set of invertible matrices over the ring R

P

B

The set of primes � B

�

n

r

�

The number of ways of picking r objects from n

f

(i)

(x) The application of the function f , i times

�(N) The Carmichael lambda function (see page 6)

�

i;j

The coe�cients resulting from the Gram-Schmidt

orthogonalisation procedure (see page 38)

141

References

Aho, A., Hopcroft, J., & Ullman, J. 1974. The design and analysis of computer algo-

rithms. Addison-Wesley, Reading, Mass.

Ajtai, M. 1998a. The shortest vector problem in L

2

is NP-hard for randomized reduc-

tions. In: Proc. of STOC '98.

Ajtai, M. 1998b. Worst-Case Complexity, Average-Case Complexity and Lattice Prob-

lems. Pages 421{428 of: Proc. International Congress of Mathematicians, vol.

III.

Bach, Eric, & Peralta, Ren�e. 1996. Asymptotic semismoothness probabilities. Mathe-

matics of Computation, 65(216), 1701{1715.

Bleichenbacher, D. 1996. E�ciency and security of cryptosystems based on number

theory. Ph.D. thesis, Swiss Federal Institute of Technology Z�urich.

Bleichenbacher, D. 1998. Chosen ciphertext attacks against protocols based on the

RSA encryption standard PKCS# 1. Pages 1{12 of: CRYPTO '98. LNCS, vol.

1462. Springer.

Bl�omer, J., & Seifert, J.-P. 1999. On the Complexity of Computing Short Linearly

Independent Vectors and Short Bases in a Lattice. In: Proc. 31st Symposium on

Theory of Computing. To appear.

Boneh, D. 1999. Twenty years of attacks on RSA. Notices of the AMS, 46, 203{213.

Boneh, D., & Durfee, G. 1999. New results on the cryptanalysis of low exponent RSA.

In: Proc. of EUROCRYPT '99. To appear.

Boneh, D., & Venkatesan, R. 1998. Breaking RSA nay not be equivalent to factoring.

Pages 59{71 of: Eurocrypt '98. LNCS, vol. 1403. Springer.

142

Boneh, D., Durfee, G., & Frankel, Y. 1998. An attack on RSA given a fraction of the

private key bits. In: Asiacrypt '98.

Boneh, D., Durfee, G., & Howgrave-Graham, N. 1999. Factoring N = p

r

q for Large r.

In: CRYPTO '99. To appear.

Brauer, A. 1939. On addition chains. Bull. Amer. Math. Soc., 45, 736{739.

Brickell, E., Gordon, D., McCurley, K., & Wilson, D. 1992. Fast exponentiation with

precomputation. Pages 200{207 of: EUROCRYPT '92. LNCS, vol. 658. Springer.

Brlek, S., Cast�eran, P., & Strandh, R. 1991. On addition schemes. Pages 379{393 of:

TAPSOFT 1991. LNCS, vol. 494.

Burrows, M., Abadi, M., & Needham, R. 1990. A logic of authentication. ACM Trans.

Computer Systems, 8, 18{36.

Cassels, J. W. S. 1971. An introduction to the geometry of numbers. Springer.

Cohen, H. 1991. A course in computational algebraic number theory. Springer-Verlag.

Conway, J., & Sloane, N. 1988. Sphere packings, lattices and groups. Grundlehren der

math Wiss, no. 290. Springer, NY.

Coppersmith, D. 1996a. Finding a small root of a bivariate integer equation; factoring

with high bits known. In: Proceedings of Eurocrypt 96.

Coppersmith, D. 1996b. Finding a small root of a univariate modular equation. In:

Proceedings of Eurocrypt 96.

Coppersmith, D. 1998. Specialised integer factorisation. In: Eurocrypt '98.

Coppersmith, D., & Howgrave-Graham, N. A. 1999. Using algebraic numbers to recover

low-exponent RSA messages with padding in more than one location. To appear.

Coppersmith, D., Franklin, M., Patarin, J., & Reiter, M. 1996. Low-Exponent RSA

with Related Messages. In: Proceedings of Eurocrypt 96.

Coppersmith, D., Howgrave-Graham, N., & Nagaraj, S. V. 1998. Divisors in residue

classes { constructively. To be submitted.

Coup�e, C., Nguyen, P., & Stern, J. 1999. The e�ectiveness of lattice attacks against

low-exponent RSA. In: PKC '99. To appear.

143

Davida, G. 1982. Chosen signature cryptanalysis of the RSA (MIT) public key cryp-

tosystem. Tech. rept. TR-CS-82-2. Dept. of Electrical Engineering and Computer

Science, University of Wisconsin, Milwaukee, USA.

de Bruijn, N. G. 1951. On the number of positive integers � x and free of prime factors

> y. Indag. Math., 13, 50{60. MR 13:724e.

DeLaurentis, J. M. 1984. A further weakness in the common modulus protocol for the

RSA cryptoalgorithm. Cryptologia, 8, 253{259.

Di�e, W., & Hellman, M.E. 1976. New directions in cryptography. IEEE Transactions

on Information Theory, 22, 644{654.

Downey, P., Leong, B., & Sethi, R. 1981. Computing sequences with addition chains.

SIAM J. Comput., 10(3), 638{646.

Fieker, C., & Pohst, M. E. 1996. On lattices over Number Fields. In: Proc. of Algo-

rithmic Number Theory Sym. II. LNCS, no. 1122. Springer.

Gauss, C. F. 1801. Disquisitiones arithmeticae. Leipzig.

Guo, C. R. 1996. An application of diophantine approximation in computer security.

Math. Comp. To appear.

Hardy, G. H., & Wright, E.M. 1979. An introduction to the theory of numbers. 5 edn.

Oxford University Press.

Hastad, J. 1988. Solving simultaneous modular equations of low degree. SIAM J. of

Computing, 17(2), 336{341.

Hermite, C. 1850. Extraits de lettres de M. Hermite �a M. Jacobi sur di��erents objets

de la th�eorie des nombres, deuxi�eme lettre. J. Reine Angew. Math, 40, 279{290.

Hildebrand, A. 1986. On the number of positive integers � x and free of prime factors

> y. J. Number Theory, 22(3), 289{307.

Hildebrand, A., & Tenenbaum, G. 1986. On integers free of large prime factors. Trans.

Amer. Math. Soc., 296(1), 265{290.

Howgrave-Graham, N. A. 1997. Finding small solutions of univariate modular equations

revisited. Pages 131{142 of: Cryptography and Coding. LNCS, vol. 1355. Springer-

Verlag.

144

Joux, A. 1993. La r�eduction de r�eseaux en cryptographie. Ph.D. thesis, Ecole polytech-

nique, Paris.

Joux, A., & Stern, J. 1998. Lattice reduction: a toolbox for the cryptanalyst. J.

Cryptology, 11(3), 161{185.

Joye, M. 1997. Security analysis of RSA-type cryptosystems. Ph.D. thesis, Univ.

catholique de Louvain.

Jutla, C. 1998. On �nding small solutions of modular multivariate polynomial equa-

tions. Pages 158{170 of: Proc. of Eurocrypt '98. Springer.

Kahn, D. 1967. The Codebreakers. Macmillan Publishing Company, New York.

Kannan, R. 1983. Improved algorithms for integer programming and related lattice

problems. Pages 193{206 of: Proc. 15th Symp. Theory of Comp.

Knuth, D.E. 1981. The Art of Computer Programming, vol. 2, Seminumerical Algo-

rithms. 2nd edn. Reading, Mass.: Addison-Wesley.

Kocher, P. 1996. Timing attacks on implementations of Di�e-Hellman, RSA, DSS, and

other systems. Pages 104{113 of: CRYPTO '96. LNCS, vol. 1109. Springer.

Korkine, A., & Zolotarev, G. 1873. Sur les formes quadratiques. Math. Ann., 6,

336{389.

Lagrange, L. 1773. Recherches d'arithm�etique. Nouv. M�em. Acad. Sci., Paris.

Lenstra, A. K., Lenstra, H. W., & Lov�asz, L. 1982. Factoring polynomials with integer

coe�cients. Mathematische Annalen, 261, 513{534.

Lenstra, H. W. 1984. Divisors in residue classes. Mathematics of Computation, 42(165),

331{340.

Lenstra, H. W. 1987. Factoring integers with elliptic curves. Annals of Mathematics,

126, 649{673.

Manders, K. L., & Adleman, L. 1978. NP-Complete Decision Problems for Binary

Quadratics. J. Of Computer and System Sciences, 16, 168{184.

Matula, D.W. 1982. Basic digit sets for radix representation. J. of the ACM, 29,

1131{1143.

McKee, J., & Pinch, R. 1998. On a cryptosystem of Vanstone and Zuccherato. IEEE

Transactions on Information Theory. To appear.

145

McKee, J.M. 1990. Distribution of the number of points on elliptic curves over a �xed

�nite prime �eld. Ph.D. thesis, University of Cambridge.

Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. 1996. Handbook of Applied

Cryptography. CRC Press.

Moore, J. H. 1992. Protocol failures in cryptosystems. Contemporary Cryptology.

Moree, Pieter. 1993. Psixyology and Diophantine equations. Ph.D. thesis, University

of Leiden.

Okamoto, T., & Uchiyama, S. 1998. A new public-key cryptosystem as secure as

factoring. Pages 308{318 of: Proceedings of Eurocrypt 98.

Pinch, R. 1997. Mathematics for Cryptography. Lecture notes for the Univ. of Cam-

bridge.

Rivest, R. L., Shamir, A., & Adleman, L.M. 1978. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2),

120{126.

RSA140. 1999. Factorizaion of RSA-140 with the Number Field Sieve.

sci.crypt.research. 5th Feb.

Schiemann, A. 1998. Classi�cation of hermitian forms with the neighbour method. J.

Symbolic Computation, 26, 487{508.

Schneier, B. 1996. Applied cryptography : protocols, algorithms and source code in C.

2nd edn. New York ; Chichester : Wiley.

Schnorr, C-P. 1987. A hierarchy of polynomial time lattice basis reduction algorithms.

Theoretical computer science, 53, 201{224.

Schnorr, C-P. 1988. A more e�cient algorithm for lattice basis reduction. J. Algorithms,

47{62.

Schnorr, C-P., & Euchner, M. 1991. Lattice basis reduction: Improved practical algo-

rithms and solving subset sum problems. In: Proc. of the FCT. LNCS. Springer-

Verlag, Berlin.

Shoup, V. 1995. Number Theory Library (NTL). http://www.skoup.net.

Silverman, J.H. 1986. The Arithmetic of Elliptic Curves. Springer-Verlag.

146

Simmons, G. J. 1983. A `weak' privacy protocol using the RSA cryptalgorithm. Cryp-

tologia, 7, 180{182.

Stoll, R. R., & Wong, E. T. 1968. Linear Algebra. Academic Press.

Takagi, T. 1998. Fast RSA-type cryptosystem modulo p

k

q. Pages 318{326 of: Pro-

ceedings of CRYPTO 98.

Tenenbaum, G. 1995. Introduction to analytic and probabalistic number theory. Cam-

bridge studies in advanced mathematics, vol. 46. Camridge University Press.

Vall�ee, B., Girault, M., & To�n, P. 1988. How to guess l'th roots modulo n by

reducing lattice bases. Pages 427{442 of: Proceeding of AAECC-6. LNCS, vol.

357. Springer.

Vanstone, S. A., & Zuccherato, R. J. 1997. Elliptic curve cryptosystems using curves of

smooth order over the ring Z

n

. IEEE Transactions of Information Theory, 43(4),

1231{1237.

Wiener, M. 1990. Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory, 36(3), 553{558.

Yao, A.C. 1976. On the evaluation of powers. SIAM J. Comput., 5(1), 100{103.

147

