
EVALUATING RECURRENCES OF FORM

X

m+n

= f(X

m

; X

n

; X

m�n

) VIA LUCAS CHAINS

Peter L. Montgomery

December 13, 1983; Revised March, 1991 and January, 1992

Abstract. The Lucas function V

n

= V

n

(P; 1) satis�es V

m+n

= V

m

V

n

�V

m�n

. Lucas chains

resemble addition chains, with an identity X

m+n

= f(X

m

; X

n

; X

m�n

) replacing x

m+n

=

x

m

x

n

. We �nd a lower bound on the length of a Lucas chain, and present an algorithm which

performs within 8% of that bound on average for prime n < 10

6

.

1. Introduction

Let P and Q be elements of a commutative ring with identity. De�ne the Lucas functions

U

n

(P;Q) and V

n

(P;Q) by

U

0

(P; Q) = 0; U

1

(P; Q) = 1; U

n+2

(P; Q) = PU

n+1

(P; Q) �QU

n

(P; Q);

V

0

(P; Q) = 2; V

1

(P; Q) = P; V

n+2

(P; Q) = PV

n+1

(P; Q) �QV

n

(P; Q)

for nonnegative n. If Q

�1

exists, then also de�ne

U

�n

(P; Q) = �Q

�n

U

n

(P; Q); V

�n

(P; Q) = Q

�n

V

n

(P; Q)

for n > 0. If x

2

� Px+Q = (x � �)(x � �), then

(1.1) (�� �)U

n

(P; Q) = �

n

� �

n

; V

n

(P; Q) = �

n

+ �

n

:

Lucas functions occur in primality testing algorithms [3][4][12][14][16], factorization algo-

rithms [11][15], and combinatorics (see Conjecture 13).

The familiar Fibonacci and Lucas numbers are F

n

= U

n

(1; �1) and L

n

= V

n

(1; �1).

The following are consequences of (1.1):

F

n

= F

n�1

+ F

n�2

;

F

n

� 0 if n � �1;

jL

n

j = jL

�n

j = L

jnj

;

L

n

= L

n�1

+ L

n�2

= F

n+1

+ F

n�1

= F

n+2

� F

n�2

;

5F

n

= 2L

n

+ L

n�3

;

F

m

F

n

= F

m+n+1

� F

m+1

F

n+1

= F

m+n�2

+ F

m�2

F

n�2

;

5F

m

F

n

= L

m+n

� (�1)

n

L

m�n

:

1991 Mathematics Subject Classi�cation. Primary 11B37; Secondary 11{04, 11B39.

Key words and phrases. Lucas chains, Lucas functions, recurrences, addition chains, continued fractions,

Chebyshev polynomials.

This work was begun while the author was at System Development Corporation (now Unisys). Completed

under U.S. Army fellowship DAAL03{89{G{0063 (1989{1992)

Typeset by A

M

S-T

E

X

1

2 PETER L. MONTGOMERY

When Q = 1, then V

n

(P) = V

n

(P; 1) is a monic polynomial of degree jnj in P . This

polynomial is related to Chebyshev polynomials of the �rst kind [1, pp. 776�], since

V

n

(2 cosx) = 2 cosnx; V

n

(2 coshx) = 2 coshnx; V

n

(x + x

�1

) = x

n

+ x

�n

if x 6= 0

for real x. The �rst few such polynomials are:

V

0

(P) = 2; V

2

(P) = P

2

� 2; V

4

(P) = P

4

� 4P

2

+ 2;

V

1

(P) = P; V

3

(P) = P

3

� 3P; V

5

(P) = P

5

� 5P

3

+ 5P:

These polynomials satisfy the following identities [8, 15]:

V

�n

(P) = V

n

(P);(1.2)

V

2n

(P) = V

2

n

(P) � 2;(1.3)

V

m+n

(P) = V

m

(P)V

n

(P) � V

m�n

(P);(1.4)

V

mn

(P) = V

m

(V

n

(P)):(1.5)

The above are an example of the more general recurrence

X

m+n

(P) = f(X

m

(P); X

n

(P); X

m�n

(P));(1.6)

X

mn

(P) = X

m

(X

n

(P));(1.7)

X

1

(P) = P;

X

0

(P) � X

0

(independent of P):

This more general recurrence is used for x-coordinates of multiples of a point P in one

parameterization of elliptic curves [11, pp. 260{261].

Equation (1.7) follows from the others when m � 0. The proof is by induction on m.

When m = 0, then X

0

is assumed to be a constant. When m = 1, both sides reduce to

X

n

(P). For m � 2, use the induction hypothesis and (1.6) to verify that, with P

0

= X

n

(P),

X

mn

(P) = f(X

mn�n

(P); X

n

(P); X

mn�2n

(P))

= f(X

m�1

(P

0

); X

1

(P

0

); X

m�2

(P

0

))

= X

m

(P

0

) = X

m

(X

n

(P)):

Lucas chains resemble addition chains but represent algorithms for computing X

n

=

X

n

(P) from P for positive n via (1.6), rather than for computing x

n

via x

m+n

= x

m

x

n

.

For example, the addition chain 1, 2, 3, 6, 12, 24, 25, 50, 100, 101, derived from the left-to-

right binary expansion of 101, allows one to compute x

101

from x by successively computing

x

1

= x, x

2

, x

3

, x

6

, x

12

, x

24

, x

25

, x

50

, x

100

, x

101

. We can use the �rst portion of this chain

along with (1.6) to successively compute X

1

= P , X

2

, X

3

, X

6

, X

12

, X

24

from P . But,

although x

25

= x

24

x

1

, (1.6) requires X

23

if we try to apply it with m = 24 and n = 1. One

can overcome this using the addition chain

(1.8) 1; 2; 3; 4; 6; 7; 12; 13; 25; 26; 50; 51; 101:

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 3

Now X

25

= f(X

13

; X

12

; X

1

) and X

26

= f(X

13

; X

13

; X

0

), for example.

We measure the cost of an algorithm for X

n

= X

n

(P) in terms of how many evaluations

of f it requires. For example, (1.8) requires 12 evaluations. This is a reasonable measure

when the time required to evaluate f is independent of the arguments to f , such as with

modular arithmetic or
oating point arithmetic (but not polynomial arithmetic). Theorem 8

of Section 3 gives a lower bound on this cost. Algorithm CFRC of Section 5 performs within

2% of this bound on average for prime n < 10

4

, but it is not suitable for implementation

and its worst case performance is not O(log n). Algorithm PRAC of Section 7 overcomes

these limitations and performs within 8% of this lower bound on average for prime n < 10

6

.

In contrast, the binary method costs 30% more than the lower bound predicts.

We let bxc and dxe designate the greatest integer not exceeding x and the least integer not

less than x, respectively. The integer nearest to x is round(x) = bx + 0:5c. The truncated

base 2 logarithm of the positive number x is lg x = blog

2

xc. It satis�es lg xy � lg x + lg y.

The greatest common divisor of two integers m and n is gcd(m; n).

The notation (x

1

; : : : ; x

n

) (e

1

; : : : ; e

n

) designates a parallel assignment statement.

The x

i

must be distinct variables. To execute it, evaluate all expressions on the right. Then

assign the value of each e

i

to the corresponding x

i

.

2. Binary Method

Let n > 0. As (1.8) illustrates we can evaluate X

n

= X

n

(P) from P with O(log n)

evaluations of f using the binary expansion of n and (1.6). If n = 1, then X

n

= X

1

= P is

known. If n � 2 is even, then

X

n

(P) = X

n=2

(X

2

(P)) = X

n=2

(f(P; P; X

0

)):

For arbitrary n > 1, let m = dn=2e. The identities

X

2m�2

= f(X

m�1

; X

m�1

; X

0

);

X

2m�1

= f(X

m

; X

m�1

; X

1

);

X

2m

= f(X

m

; X

m

; X

0

)

(2.1)

express X

n

and X

n�1

in terms of X

m

and X

m�1

, since X

1

= P and X

0

are known. Use

(2.1) to recursively compute X

m

and X

m�1

until m � 3. The �nal computation of X

n�1

can then be dropped.

For n > 0, let L

b

(n) be the number of uses of (1.6) required to compute X

n

(P) by this

algorithm. Then L

b

(1) = 0 and L

b

(2n) = L

b

(n) + 1. If n > 1 is odd, then

L

b

(n) =

�

2 lgn� 1; if n < 3 � 2

lg n�1

;

2 lgn; if n � 3 � 2

lg n�1

:

Equivalently,

(2.2) L

b

(n) = lgn+ lg(2n=3) (n odd, n > 1).

4 PETER L. MONTGOMERY

3. Lucas Chains and Lower Bounds on their Lengths

Let n > 0. An addition chain for n is an increasing sequence of integers

1 = a

0

< a

1

< � � � < a

r

= n

with the property that for i = 1; 2; : : : ; r there exist j; k such that a

i

= a

j

+ a

k

and

k � j < i. The length of the above chain is r. The length of the shortest addition chain

for n is denoted by `(n). By repeatedly using the identity x

m+n

= x

m

x

n

, one can compute

x

n

from x and n with `(n) multiplications. Knuth [7, pp. 441�.] devotes several pages to

addition chains.

By (1.6), we can compute X

m+n

from X

m

, X

n

, and X

m�n

with one evaluation of f .

De�ne a Lucas chain for n to be an increasing sequence of integers

(3.1) 0 = a

�1

< 1 = a

0

< a

1

< � � � < a

r

= n

with the property that for i = 1; 2; : : : ; r there exist j; k; m such that a

i

= a

j

+ a

k

and

a

m

= a

j

� a

k

with �1 � k; m � j < i. When a

�1

is removed, a Lucas chain becomes an

addition chain, so many properties of addition chains apply to Lucas chains. In particular,

the length of the above chain is de�ned to be r. Let L(n) be the length of the shortest

Lucas chain for n.

The binary method satis�es L(n) � L

b

(n) � 2 lgn. On the other hand, L(n) � `(n) �

lgn. Therefore the binary method is optimal to within a constant factor. Many n satisfy

L(n) < L

b

(n), as Table 1 illustrates:

n L

b

(n) Binary Lucas chain for n Shorter Lucas chain(s) for n

9 5 0, 1, 2, 3, 4, 5, 9 0, 1, 2, 3, 6, 9

13 6 0, 1, 2, 3, 4, 6, 7, 13 0, 1, 2, 3, 5, 8, 13

15 6 0, 1, 2, 3, 4, 7, 8, 15 0, 1, 2, 3, 5, 10, 15

0, 1, 2, 3, 6, 9, 15

17 7 0, 1, 2, 3, 4, 5, 8, 9, 17 0, 1, 2, 3, 4, 7, 10, 17

0, 1, 2, 3, 5, 6, 11, 17

0, 1, 2, 3, 5, 7, 10, 17

0, 1, 2, 3, 5, 7, 12, 17

Table 1. Some cases where binary method is not optimal

The cases n = 9 and n = 15 are typical of odd composite numbers. If n = jk has a

known factorization where neither j nor k is a power of 2, then it is shorter to use the

binary method once for X

k

(P) and again for X

j

(X

k

(P)) than to apply the binary method

directly to X

jk

(P).

Theorem 1. If j and k are positive integers and neither is a power of 2, then L

b

(jk) >

L

b

(j) +L

b

(k).

Proof. It su�ces to consider the case where j and k are both odd. Add the four inequalities:

lg jk � lg j + lg k;

lg jk � lg(2j=3) + lg(2k=3) + lg(9=4);

lg(2jk=3) � lg j + lg(2k=3);

lg(2jk=3) � lg(2j=3) + lg k;

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 5

and use (2.2) three times to obtain 2L

b

(jk) � 2L

b

(j)+2L

b

(k)+lg(9=4) > 2(L

b

(j)+L

b

(k)).

�

Theorem 2. If j and k are positive integers, then L(jk) � L(j) + L(k).

Proof. Designate r = L(j) and s = L(k). Let 0, 1, a

1

, a

2

, : : : , a

r

= j and 0, 1, b

1

, b

2

, : : : ,

b

s

= k be Lucas chains for j and k, of lengths r and s respectively. Then

0; 1; a

1

; a

2

; : : : ; a

r

; a

r

b

1

; a

r

b

2

; : : : ; a

r

b

s

= jk

is a Lucas chain for jk of length r + s, so L(jk) � r + s. �

Corollary 3. If j and k are positive integers and neither is a power of 2, then L(jk) <

L

b

(jk).

Proof. Apply Theorems 1 and 2, using L(j) � L

b

(j). �

The analog of Theorem 2 holds for addition chains [7, p. 445], but the analog of Theorem 1

does not hold for the binary method of exponentiation. For example, it is shorter to compute

x

33

as x

32

� x than as

�

x

11

�

3

.

The conclusion of Theorem 2 cannot be strengthened to an equality. Examples where

L(jk) < L(j) + L(k) are 23 � 53 = 1219, 41 � 53 = 2173, 37 � 83 = 3071, and 37 � 113 = 4181.

The Lucas chains

0; 1; 2; 3; 4; 7; 11; 18; 29; 47; 76; 123; 170; 293; 463; 756; 1219;

0; F

2

; F

3

; : : : ; F

12

= 144; F

13

= 233; F

14

= 377; 521; 898; 1275; 2173; 3071;

0; F

2

; F

3

; : : : ; F

18

= 2584; F

19

= 4181

show that L(1219) � 15, L(2173) � 16, L(3071) � 17, and L(4181) � 17. We will later

show that L(23) = 7, L(37) = L(41) = 8, L(53) = 9, and L(83) = L(113) = 10; Theorem 8

provides the necessary lower bounds. Another example is

L(2 � 17 � 53 � 109) = L(196418) = L(F

27

) � 25;

L(2) +L(17) + L(53) + L(109) = 1 + 6 + 9 + 10 = 26:

Such examples seem rare, so we concentrate on the case where n is prime or where no prime

divisor of n is known. By (1.7), it su�ces to do these cases.

In an addition or Lucas chain, step i is called a doubling step if a

i

= 2a

i�1

. Knuth shows

that short addition chains consist primarily of doubling steps. Theorem 5 shows that a Lucas

chain for n cannot have many doubling steps unless n is highly composite. Theorems 7 and

8 use this to obtain bounds on L(n).

Lemma 4. If the Lucas chain (3.1) has exactly d doubling steps, then n � 2

d�1

F

r�d+3

.

Proof. See [7, p. 448]. �

Theorem 5. If a

i+1

= 2a

i

in the Lucas chain (3.1), then a

i

j a

j

for all j � i.

Proof. By induction on j. This is evident for j = i and j = i+1. Assume that j � i+2 > 1.

The de�nition of Lucas chains implies the existence of k, `, m such that �1 � `; m � k < j

where a

j

= a

k

+ a

`

and a

m

= a

k

� a

`

. From

2a

k

= a

j

+ a

m

� a

j

> a

i+1

= 2a

i

;

6 PETER L. MONTGOMERY

we conclude that a

k

> a

i

and hence k > i. By induction, a

i

divides a

k

. From

a

`

+ a

m

= a

k

� a

i+1

= a

i

+ a

i

;

we conclude that a

`

� a

i

or a

m

� a

i

, and hence ` � i or m � i. By induction, either a

i

divides a

`

or a

i

divides a

m

. In either case, a

i

divides a

j

= a

k

+ a

`

= 2a

k

� a

m

. �

Corollary 6. If a

i+1

= 2a

i

in the Lucas chain (3.1), then r � L(a

i

) +L(n=a

i

).

Proof. De�ne b

j

= a

i+j

=a

i

for 0 � j � r � i. By Theorem 5, each b

j

is an integer. Hence

0, a

0

, a

1

, : : : , a

i

and 0, b

0

, b

1

, : : : , b

r�i

are Lucas chains for a

i

and for b

r�i

= a

r

=a

i

,

respectively. Therefore

r = i+ (r � i) � L(a

i

) + L(a

r

=a

i

) = L(a

i

) +L(n=a

i

): �

Theorem 7. Let n be a positive integer with s prime divisors (including multiplicities).

Then the number of doubling steps in a Lucas chain for n cannot exceed s, and n �

2

s�1

F

L(n)�s+3

.

Proof. Let (3.1) be a Lucas chain for n. Suppose that a

i+1

= 2a

i

for i = i

1

; i

2

; : : : ; i

k

where

i

1

< i

2

< � � � < i

k

. Then

a

i

1

j a

i

2

j � � � j a

i

k

j n;

1 � a

i

1

< a

i

2

< � � � < a

i

k

< n;

n = a

i

2

�

a

i

3

a

i

2

� � � � �

a

i

k

a

i

k�1

�

n

a

i

k

:

This expresses n as a product of k integers greater than 1, so k � s. By Lemma 4,

n � 2

k�1

F

r�k+3

� 2

s�1

F

r�s+3

. The claim follows by choosing (3.1) so that r = L(n).

�

Theorem 8. Let n be an integer. Let r = L(n), and suppose that r < L(s) + L(n=s)

whenever 1 < s < n and s j n. Then

(i) n � F

r+2

.

(ii) If n 6= F

r+2

, then n � F

r+2

� F

r�3

.

(iii) If n > L

r

, then j5n� 2L

r+2

j is a Lucas number.

Proof. Let (3.1) be a Lucas chain for n. By Corollary 6, we may assume that a

i

� a

i�1

+a

i�2

for all i > 1. A simple consequence is a

i

� F

i+2

for i = 0; 1; : : : ; r. Setting i = r gives (i).

Suppose that n 6= F

r+2

. Then there exists m > 2 such that a

m

6= a

m�1

+ a

m�2

, so

a

m

� max(a

m�1

+ a

m�3

; 2a

m�2

)

� max(F

m+1

+ F

m�1

; 2F

m

)

= F

m+1

+ F

m�1

= L

m

= F

m+2

� F

m�2

:

Use this and a

m�1

� F

m+1

to derive

a

i

� F

i+2

� F

i�m+1

F

m�2

(m� 1 � i � r):

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 7

Set i = r. Use F

r�m�1

� 0 if r �m, and F

m�4

� 0 since m > 2, to obtain

a

r

� F

r+2

� F

r�m+1

F

m�2

= F

r+2

� F

r�3

� F

r�m�1

F

m�4

� F

r+2

� F

r�3

:

This proves (ii).

To prove (iii) we �nd all cases where n > L

r

, and show that j5n � 2L

r+2

j is a Lucas

number in each case. If n = F

r+2

, then 5n� 2L

r+2

= L

r�1

. If a

i

= a

i�1

+ a

i�2

for all i > 1

except i = m, and if a

m

= a

m�1

+ a

m�3

, then n = a

r

= F

r+2

� F

r�m+1

F

m�2

, so

5n�2L

r+2

= 5F

r+2

�5F

r�m+1

F

m�2

�2L

r+2

= L

r�1

�5F

r�m+1

F

m�2

= (�1)

m�2

L

r�2m+3

:

It remains to show that n � L

r

in all other cases. If a

m

� 2a

m�2

for some m, then

a

i

� F

i+2

� F

i�m+1

F

m�1

= L

i

+ F

i�2

� F

i�m+1

F

m�1

= L

i

� F

i�m�1

F

m�3

for m � 1 � i � r. Consequently n = a

r

� L

r

. This argument also applies if a

m

�

a

m�1

+ a

m�4

� F

m+1

+ F

m�2

for some m. The remaining case occurs when two (or more)

values of m satisfy a

m

= a

m�1

+ a

m�3

, say m = j and m = k where r � k > j > 2. We

successively verify that:

a

i

� F

i+2

(0 � i < r);

a

j�3

� F

j�1

= L

j�2

� F

j�3

;

a

j�1

� F

j+1

= L

j�1

+ F

j�3

;

a

j

= a

j�1

+ a

j�3

� L

j

;

a

i

� L

i

+ F

i�j

F

j�3

(j � 1 � i � r);

a

k�3

� F

k�1

= L

k�2

� F

k�3

;

a

k�1

� L

k�1

+ F

k�j�1

F

j�3

= L

k�1

+ F

k�3

� F

k�j

F

j�2

;

a

k

= a

k�1

+ a

k�3

� L

k�2

+ L

k�1

� F

k�j

F

j�2

= L

k

� F

k�j

F

j�2

� L

k

;

a

k+1

� a

k�1

+ a

k

� (L

k�1

+ F

k�j�1

F

j�3

) + (L

k

� F

k�j

F

j�2

) � L

k+1

a

i

� L

i

(k � i � r):

In the inequality for a

k+1

, we used 0 � F

k�j�1

� F

k�j

and 0 � F

j�3

� F

j�2

. In all cases,

n = a

r

� L

r

. �

Theorem 8 is useful when n is prime. We will soon show that this bound is very good,

by exhibiting Lucas chains for several n which are as short as Theorem 8 permits.

4. Binary-Ternary Method for X

n

(P)

The key idea behind the binary method is the ability to derive a Lucas chain containing

n� 1 and n from a Lucas chain containing k = dn=2e and k � 1.

The Lucas chain 0, 1, 2, 3, 5, 6, 11, 17 for 17 illustrates the following. If n = 3k� 1, use

the binary method to get a Lucas chain containing k � 1 and k. Append 2k � 1 and 3k� 1

to the end of the chain. A similar construction applies if n = 3k� 2. These may reduce the

length of the binary Lucas chain for n by one, and never increase its length.

8 PETER L. MONTGOMERY

The intermediate steps of the binary method, where one needs a Lucas chain containing

both m� 1 and m, can be improved to append 2k � 1, 3k � 2, and 3k� 1 to a Lucas chain

containing k � 1 and k, if m = 3k � 1.

The event in the last paragraph occurs with probability 3/7 (not 1/3). For a heuristic

proof, let p

i

be the probability that m is congruent to i mod 6, for i = 0, 1, 2, 3, 4, 5.

Assume that the behaviors modulo 12 and modulo 18 mirror that modulo 6, i.e.,

Pr(m � i (mod 12)) = Pr(m � i+ 6 (mod 12)) = p

i

=2;

Pr(m � i (mod 18)) = Pr(m � i+ 6 (mod 18)) = Pr(m � i+ 12 (mod 18)) = p

i

=3

for each i. If the probabilities exist, then they must satisfy

p

0

= p

0

=2 + p

5

=3; p

3

= p

0

=2 + p

2

=3;

p

1

= p

1

=2 + p

2

=3; p

4

= p

1

=2 + p

5

=3;

p

2

= p

3

=2 + p

4

=2 + p

5

=3; p

5

= p

2

=3 + p

3

=2 + p

4

=2;

1 = p

0

+ p

1

+ p

2

+ p

3

+ p

4

+ p

5

:

The solution is p

0

= p

1

= p

3

= p

4

= 1=7 and p

2

= p

5

= 3=14. The average reduction of

log k per term in the Lucas chain is

(3=7) log 3 + (4=7) log 2

(3=7)3 + (4=7)2

=

log 432

17

:

Let L

t

(n) be the length of the Lucas chain for n generated by this method, called the

binary-ternary method. For example, L

t

(101) = 11 since the chain is 0, 1, 2, 3, 5, 6, 11,

16, 17, 33, 34, 67, 101. For large n, L

t

(n) is approximately 17 log

432

n � 1:94 log

2

n. One

easily veri�es that L

t

(n) � L

b

(n) for all odd n, using (2.2). There are in�nitely many n

(e.g. n = 9 � 2

k

+ 1) for which L

t

(n) = L

b

(n).

5. Continued Fraction Method for X

n

(P)

The binary-ternary method performs 3% better than the binary method on average.

Theorem 8 suggests that much more improvement is possible.

The Lucas chain 0, 1, 2, 3, 4, 7, 10, 17 for 17 was found by trial and error. Any Lucas

chain for 17 must include two numbers whose total is 17 and whose di�erence is in the chain.

The binary method selects 17 = 9 + 8 and the binary-ternary method selects 17 = 11 + 6.

Let's try 17 = 10 + 7. Then we must include 10� 7 = 3 in the chain. Also, the chain must

include two numbers totaling 10 whose di�erence is in the chain. Since 10 = 7+3, we choose

to include 7� 3 = 4 in the chain (another strategy observes that 10 = 5+ 5, and includes 5

in the chain). At each stage, subtract the smallest number so far from the second smallest

number so far and include the di�erence in the chain. Terminate when a zero di�erence is

obtained. The resulting sequence is 17, 10, 7, 3, 4, 1, 2, 1, 0. Eliminate the duplicate 1 and

rearrange to get 0, 1, 2, 3, 4, 7, 10, 17.

This is the same sequence obtained when computing gcd(17; 10) using only subtraction.

It always generates a Lucas chain if the two starting numbers are coprime. The partition

17 = 12 + 5 leads to the fourth Lucas chain for 17 in Table 1.

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 9

Let ===x

0

; x

1

; x

2

; : : : ; x

k

=== designate the continued fraction

x

0

+

1

x

1

+

1

x

2

+ � � � +

1

x

k

:

If (n� r)=r = ===x

0

; : : : ; x

k

=== where gcd(n; r) = 1 and 0 < r < n, then L(n) � x

0

+ � � �+x

k

.

More precisely, there exists a Lucas chain for n of length x

0

+ � � � + x

k

containing both

n � r and r. This is easily proved by induction on max(n � r; r). For example, 62=39 =

===1; 1; 1; 2; 3; 2===, and X

101

can be computed by the Lucas chain 0, 1, 2, 3, 5, 7, 9, 16, 23,

39, 62, 101. This has length 10, whereas L

b

(101) = 12 and L

t

(101) = 11.

It remains to select r = r(n) so as to minimize the sum of the partial quotients of (n�r)=r

{ see next section.

A straightforward implementation of this algorithm requires one pass to compute and

store the partial quotients of (n � r)=r, and a second pass in reverse order applying (1.6).

The second pass can be eliminated, in view of:

Theorem 9. Suppose jk � �1 (mod n), where 0 < j; k � n=2. If n=j = ===x

0

; : : : ; x

k

===,

where each x

i

is positive, then n=k = ===x

k

; : : : ; x

0

===.

Proof. See [7, exercise 4.5.3{26]. �

Corollary 10. If jk � �1 (mod n), and 0 < j; k < n, then the sums of the partial quotients

of

n�j

j

,

j

n�j

,

n�k

k

, and

k

n�k

are all equal.

For example, 39 � 44 � �1 (mod 101). The regular continued fraction expansions of

101/39 and 101/44 are ===2; 1; 1; 2; 3; 2=== and ===2; 3; 2; 1; 1; 2===, respectively. These closely

resemble those of 62/39 and 57/44, namely ===1; 1; 1; 2; 3; 2=== and ===1; 3; 2; 1; 1; 2===. We

can compute the partial quotients of 62/39 while generating the Lucas chain 0, 1, 2, 3, 5,

8, 13, 18, 31, 44, 57, 101, derived from 57/44.

Algorithm CFRC is based upon these ideas. It computes X

n

(P) given n, P , and an

integer r satisfying 0 < r � n and gcd(n; r) = 1. It �nds the continued fraction expansion

of (n � r)=r, with e=d representing the part not yet expanded. At the same time, it builds

another fraction in a=b. When d > e, set q = dd=ee � 1, so q + 1 � d=e > q. The algorithm

will take the d > e branch q successive times, replacing d=e by d=e� q and b=a by b=a+ q.

When e � d, set q = be=dc. The algorithm will take the e � d branch q successive times,

replacing e=d by e=d� q and a=b by a=b+ q. In e�ect, it transfers partial quotients from d=e

to b=a and from e=d to a=b. At all times, the algorithm maintains A = X

a

(P), B = X

b

(P),

10 PETER L. MONTGOMERY

and C = X

a�b

(P).

Algorithm CFRC(n; r; P)

(a; b; d; e; A; B; C) (1; 1; r; n� r; P; P; X

0

)

while e 6= 0 do

if d > e then

(b; d; B; C) (a+ b; d� e; f(A; B; C); X

�1

(B))

else

(a; e; A; C) (a + b; e � d; f(A; B; C); A)

end if

end while

return A

end CFRC

To obtain a Lucas chain for n, output the new values of a and b whenever they change.

Otherwise variables a and b need not be explicitly manipulated.

The computation of X

�1

(B) in CFRC is free whenX

n

(P) = V

n

(P) is the Lucas sequence,

since this sequence satis�es X

�1

(B) = B. The cost can be avoided in other applications by

remembering whether C = X

a�b

(P) or C = X

b�a

(P), using f(A; B; C) or f(B; A; C) on

the next iteration.

Although Algorithm CFRC was discovered using continued fractions, it is easily veri�ed

without them [10]. The following invariants hold at the start of the while loop in CFRC:

ad + be = n;

d > 0; e � 0;

A = X

a

(P); B = X

b

(P); C = X

a�b

(P);

gcd(d; e) j gcd(n; r):

(5.1)

The last line reduces to gcd(d; e) = 1 but has been generalized in anticipation of Algorithm

PRAC of Section 7. When e = 0, then d = gcd(d; e) = 1. The top equation simpli�es to

a = n, so A = X

a

(P) = X

n

(P) upon termination.

6. Analysis of Algorithm CFRC

Algorithm CFRC is really a family of algorithms indexed by r. Which value of r should

one use?

Let n > 1. For 0 < r < n, if gcd(n; r) = 1, let L

c

(n; r) designate the sum of the partial

quotients of (n� r)=r. Then the Lucas chain built by Algorithm CFRC has length L

c

(n; r).

Let r(n) be a value of r minimizing L

c

(n; r) and let L

c

(n) = L

c

(n; r(n)) be this minimum.

What is the asymptotic value of L

c

(n)? How is r(n) determined?

These seem to be open problems (still? TBD). Leo Moser [6, p. 144] conjectures that

L

c

(n) = O(log n). We require that L

c

(n) � L

b

(n) if the continued fraction method is to be

competitive with the binary method. Table 2 lists `(p), L

b

(p), L

t

(p), L

c

(p), and L

p

(p) (the

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 11

p `(p) L

b

(n) L

t

(p) L

c

(p) L

p

(p) Optimal values for r(p)

2 1 1 1 1 1 1

3 2 2 2 2 2 1

5 3 3 3 3 3 2

7 4 4 4 4 4 2, 3

11 5 5 5 5 5 3, 4

13 5 6 6 5 5 5

17 5 7 6 6 6 5, 7

19 6 7 7 6 6 7, 8

23 6 7 7 7 7 5, 7, 9, 10

29 7 8 8 7 7 8, 11, 12

31 7 8 8 7 7 12, 13

37 7 9 9 8 8 8, 10, 11, 14

41 7 9 9 8 8 11, 12, 15, 16, 17, 18

43 7 9 9 8 8 12, 18

47 8 9 9 8 8 13, 18

53 8 10 10 9 9 12, 14, 19, 22, 23

59 8 10 10 9 9 18, 23, 25, 26

61 8 10 10 9 9 17, 18, 22, 25

67 8 11 10 9 9 18, 26

71 9 11 10 9 9 21, 26, 27, 30

73 8 11 11 9 9 27

79 9 11 11 9 9 29, 30

83 8 11 11 10 10 18, 19, 22, 23, 30, 34, 35, 36

89 9 11 11 9 9 34

97 8 12 11 10 10 21, 26, 35, 36, 37, 41

101 9 12 11 10 10 30, 37, 39, 44

103 9 12 11 10 10 37, 39

107 9 12 12 10 10 41, 47

109 9 12 12 10 11 30, 40, 45, 46

113 9 12 12 11 10 21, 24, 30, 31, 33, 35, 40, 42, 43, 48, 49, 51

127 10 12 12 11 12 27, 29, 34, 35, 45, 47, 48, 49, 56, 57

131 9 13 12 10 10 50, 55

137 9 13 12 11 11 29, 31, 37, 52, 53

139 10 13 12 11 11 30, 39, 41, 51, 57, 61

149 9 13 12 11 11 34, 40, 41, 44, 55, 57, 65

151 10 13 13 11 11 56, 59, 62, 64

157 10 13 13 11 11 34, 46, 58, 60, 66, 69

163 9 13 13 11 11 44, 62, 63, 71

167 10 13 13 11 11 46, 60, 64, 69

173 10 13 13 11 11 64, 66, 73, 76

179 10 13 13 11 11 50, 68, 74, 75

181 10 13 13 11 12 50, 70, 75, 76

191 11 13 13 11 11 74, 80

193 9 14 13 11 11 81

197 10 14 13 12 12 43, 52, 55, 70, 71, 72, 76, 77, 86, 87

199 10 14 13 11 11 55, 76

Totals 364 472 459 404 406

Table 2. Some numbers related to L(p) for p < 200

last number refers to Algorithm PRAC of Section 7) for all prime p < 200. Table 2 also

lists the optimal values of r(p) below p=2 for Algorithm CFRC.

By Theorem 8 and Table 2, L(p) = L

c

(p) for all prime p < 200 except possibly 113 and

12 PETER L. MONTGOMERY

197. Conclusion (iii) of Theorem 8 is needed only for p = 127. But L(113) = 10 < 11 =

L

c

(113), as demonstrated by the Lucas chains

0; 1; 2; 3; 5; 6 (or 8); 11; 16; 27; 43; 70; 113 and

0; 1; 2; 3; 5; 8; 13; 16 (or 21); 29; 42; 71; 113:

The exact value of L(197) remains open.

If r is selected randomly, then E(L

c

(p; r)) = O((log p)

2

) [17 TBD]. So we must be careful

in our selection of r. A table was made of all p for which L

c

(p) � 20, by recursively

enumerating all continued fractions whose sum of partial quotients is 20 or less. It included

all primes below 10000. If p < 10000, then L

c

(p) < 1:5 log

2

p + 1 unless p is 3847 or 5903

(Algorithm PRAC of Section 7 shows that L(p) < 1:5 log

2

p+1 even when p is 3847 or 5903).

The function L

c

(p) seems very smooth; for example, L

c

(p) = 19 or 20 if 6053 < p < 10000.

In all cases an optimal r existed for which the largest partial quotient of (p� r)=p was 3 or

less. Table 3 summarizes the values of L

c

(p). The column titled a

k+1

refers to Conjecture 13.

TBD - extend it.

Minimum Maximum Number of

k a

k+1

p with p with L

k

F

k+2

� F

k�3

p with

L

c

(p) = k L

c

(p) = k L

c

(p) = k

1 2 2 2 1 3 1

2 3 3 3 3 2 1

3 4 5 5 4 5 1

4 5 7 7 7 7 1

5 9 11 13 11 12 2

6 13 17 19 18 19 2

7 17 23 31 29 31 3

8 24 37 47 47 50 4

9 40 53 89 76 81 8

10 56 83 131 123 131 7

11 81 113 233 199 212 16

12 115 197 337 322 343 21

13 185 331 547 521 555 26

14 267 421 883 843 898 42

15 386 739 1597 1364 1453 74

16 551 1087 2351 2207 2351 96

17 882 1663 3739 3571 3804 137

18 1273 2671 6053 5778 6155 209

19 1849 3847 9791 9349 9959 320

20 2640 5903 � 9973 15127 16114 � 258

Table 3. Statistics on L

c

(p) for prime p < 10000

The following conjectures give an upper bound on L

c

(n).

Conjecture 11. For all su�ciently large n there exists m = m(n) such that 1 � m < n

and gcd(m; n) = 1 and all the partial quotients of n=m are 1, 2, or 3.

Partial justi�cation. See [2][5][7, exercise 3.3.4{31]. �

Lemma 12. If n=m = ===x

1

; x

2

; : : : ; x

k

=== where 1 � m � n and gcd(m; n) = 1, then

L

c

(n;m) = x

1

+ � � �+ x

k

� 1.

Proof. Observe that (n�m)=m = ===x

1

� 1; x

2

; : : : ; x

k

===. �

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 13

Conjecture 13. Suppose that

(6.1) m=n = ===0; x

1

; x

2

; : : : ; x

k

===

where gcd(m; n) = 1 and 0 � m � n. Designate s = x

1

+ � � � + x

k

. If each x

i

is 1, 2, or 3,

then n � a

s

where

a

4j

= 8U

j�1

(5; 1) + (37V

j�1

(5; 1) + 7� 3(�1)

j

)=21;

a

4j+1

= U

j+1

(5; 1);

a

4j+2

= 18U

j�1

(5; 1) + (85V

j�1

(5; 1) + 70 + 30(�1)

j

)=21;

a

4j+3

= U

j+1

(5; 1) + (2V

j+1

(5; 1) + 7� 3(�1)

j

)=7;

except that a

2

= 2, a

6

= 9, and a

10

= 40.

Justi�cation. Given s, choose n as small as possible subject to 1 � x

i

� 3 for 1 � i � k

and k > 0; we want to show that this minimal n is a

s

. Given s and n, choose k as small as

possible. Given s, n, and k, choose x

1

, : : : , x

k

with as few 2's as possible.

Any permutation of x

1

; : : : ; x

k

will leave k, s, and the number of 2's unchanged. Motzkin

and Straus [13][7, exercise 4.5.3{37] show that the minimum n will occur when

x

1

� x

k

� x

3

� x

k�2

� x

5

� � � � � x

6

� x

k�3

� x

4

� x

k�1

� x

2

:

For x = 1; 2; 3, de�ne a matrix M

x

=

�

x 1

1 0

�

. Since m=n is in lowest terms, equation

(13) is equivalent to the matrix equation [7, exercise 4.5.3{2]

(6.2)

�

m

n

�

=M

x

0

M

x

1

� � �M

x

k

�

1

0

�

:

If M and N are 2� 2 matrices with nonnegative coe�cients, de�neM � N if each entry

in M is at least as large as the corresponding entry in N ; de�ne M > N if all entries are

larger. Straightforward calculations show that

M

1

M

1

=

�

2 1

1 1

�

�

�

2 1

1 0

�

=M

2

;

M

1

M

2

=

�

3 1

2 1

�

�

�

3 1

1 0

�

=M

3

;

M

2

M

1

=

�

3 2

1 1

�

�

�

3 1

1 0

�

=M

3

;

M

3

M

3

M

3

M

3

M

3

=

�

360 109

109 33

�

>

�

345 91

91 24

�

=M

3

M

1

M

3

M

1

M

3

M

1

M

3

:

If two adjacent x

i

's are both 1, then the inequality M

1

M

1

> M

2

shows we can replace both

1's by a 2 without increasing n in (6.2); this contradicts the minimality of k. Likewise there

cannot be a 1 adjacent to a 2. There cannot be �ve adjacent 3's, since we could replace

them by four 3's and three 1's while preserving x

1

+ � � �+x

k

and reducing n. The inequality

2M

2

MM

2

�M

1

MM

3

�M

3

MM

1

= 2

�

1 0

0 0

�

M

�

1 0

0 0

�

� 0

14 PETER L. MONTGOMERY

for anyM � 0 likewise shows that we have at most one 2 in our minimal solution; otherwise

we could replace them by a 1 and a 3 in some order while preserving k and without increasing

n.

TBD. See �le conj.13

Next let k vary, while also varying the number of x

i

equal to 1, the number of x

i

equal

to 2, and the number of x

i

equal to 3. A program did this for s � 45. For each s, the

minimum denominator equaled a

s

. Except for s = 2; 6; 10, the minimum occurred when

b(s+ 2)=4c of the x

i

were equal to three and the rest were equal to one. The other minima

were 1=2 = ===0; 2===, 7=9 = ===0; 1; 3; 2===, and 31=40 = ===0; 1; 3; 2; 3; 1===. �

Corollary 14. Assume Conjectures 11 and 13. Then L

c

(n) � 4 log

�

n + O(1) where � =

(5 +

p

21)=2. (Note that 4 log

�

n � 1:77 log

2

n.)

Proof. By adjusting the constant O(1), if necessary, we may assume that n is large enough

to satisfy the requirements of Conjecture 11. Select m satisfying the conclusion of Conjec-

ture 11. Let s = x

1

+ � � �+ x

k

. where m=n = ===0; x

1

; : : : ; x

k

===

A calculation gives � + �

�1

= 5. By (1.1) and Conjecture 13, there exists c > 0 such

that a

i

� c�

i

=4 for all i � 1. From n � a

s

� c�

s=4

follows s � 4 log

�

(n=c). But L

c

(n) �

L

c

(n;m) = s� 1. �

7. A Practical Algorithm

The results in the last section may be of theoretical interest. But we have not speci�ed

how to select r(n). We do not know whether a good choice exists, although we believe that

it does.

Let � = (1 +

p

5)=2. The choice r = round(n=�) ensures that the �rst several partial

quotients of r=(n�r) will be 1. If the other partial quotients are also small, then this choice

will be near optimal, but if they are high then this choice of r can be poor. For example,

if n = 151, then r = round(93:323 : : :) leads to r=(n � r) = 93=58 = ===1; 1; 1; 1; 1; 11===.

Therefore L

c

(151; 93) = 16 whereas L

b

(151) = 13. (The bad chain is 0, 1, 2, 3, 5, 8,

13, 21, 34, 47, 60, 73, 86, 99, 112, 125, 138, 151, in which most successive terms di�er

by 13.) Similarly 4476=2767 = ===1; 1; 1; 1; 1; 1; 1; 2; 81===, so L

c

(7243; 4476) = 90 whereas

L

b

(7243) = 24.

We can do a partial or exhaustive search for r, selecting the best value found. This is

reasonable if one must compute X

n

(P) for several di�erent P while n remains constant (e.g.

[4][11]). But we have no assurance of success, and the search time can become expensive.

Instead we modify CFRC to avoid bad behavior. The trouble occurs only if the partial

quotients are large, so we introduce additional steps which preserve (5.1) and which can be

used when d > 4e or e > 4d (the constant 4 is subject to experimentation). For example, if

d > 4e,

If d � e (mod 2), replace (a; b; d; A; B) (2a; a+ b; (d� e)=2; X

2

(A); f(A; B; C)):

If d � 0 (mod 2), replace (a; d; A; C) (2a; d=2; X

2

(A); f(A; C; B)):

If e � 0 (mod 2), replace (b; e; B; C) (2b; e=2; X

2

(B); f(C; X

�1

(B); A)):

If these are applied with n = 151 and r = 93, then the Lucas chain becomes 0, 1, 2, 3, 5,

8, 13, 21, 26, 47, 52, 99, 151, a chain of length 11 rather than 16. By Theorem 8, the new

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 15

chain is optimal. The transformations lead to a chain of length 21 for 7243 using r = 4476.

This is not optimal since L

c

(7243) = L

c

(7243; 2776) = 20, but is nearly so since Theorem 8

shows that L(7243) � 19.

Transformations based on d (mod 3) and e (mod 3) can also be used. They are incorpo-

rated into the following algorithm for X

n

(P). Algorithm PRAC permits composite n, using

(1.7) as necessary.

Algorithm PRAC(n; P)

Cmt. Return X

n

(P), assuming that n � 0.

if n = 0 then return X

0

(A; d) (P; n)

while d 6= 1 do

Cmt. Know that A = X

n=d

(P); desire X

n

(P) = X

d

(A).

Let p be a prime factor of d; if none known or if d is prime then p d.

r (d=p)round(p=�) where � = (1 +

p

5)=2

Cmt. If a better value for r(p) is known, use it instead.

(d; e; B; C) (r; d� r; A; X

0

)

while d 6= e do

Cmt. Invariant (5.1) holds here for some a and b.

if d < e then (d; e; A; B; C) (e; d; B; A; X

�1

(C))

Do the �rst line of Table 4 whose condition quali�es.

end while

A f(A; B; C)

end while

return A

end PRAC

If gcd(n; r) = 1 and none of the partial quotients of r=(n� r) exceed 3, then Algorithms

CFRC and PRAC are equivalent. Most transformations in Table 4 were selected because

they preserve (5.1) and decrease d+ e quickly if big partial quotients do occur. (Variables

a and b do not appear in PRAC, but it is easy to restore them.) Transformation 9 is a

catchall for use when d > 4e and e � 0 (mod 6); an improved transformation 9 would

be welcome. Transformations 1 and 2 are look aheads, intended to save a evaluation over

applying transformation 3 followed by 8 or 9, respectively. Column \Cost" gives the number

of evaluations required by each transformation (equivalently, the number of new terms to

be inserted into the associated Lucas chain). Column \Drop" shows the minimum factor

by which each transformation reduces d+ e. Column \Usage" shows how many times each

transformation was used when building Tables 5 and 6 of Section 8.

We claim that the remaining cost of Algorithm PRAC never exceeds 4 log

2

(d+ e) at the

start of the inner while loop, and that it never exceeds 4 log

2

d at the start of the outer while

16 PETER L. MONTGOMERY

No. Condition Action(s) Cost Drop Usage

1 d � 1:25e and (d; e) ((2d � e)=3; (2e � d)=3) 3 3 41289

d � �e (mod 3) T f(A; B; C)

(A; B) (f(T; A; B); f(T; B; A))

2 d � 1:25e and d (d� e)=2 2 2 5517

d � e (mod 6) (A; B) (X

2

(A); f(A; B; C))

3 d � 4e d d� e 1 5/4 1654399

(B; C) (f(A; B; C); X

�1

(B))

4 d � e (mod 2) d (d� e)=2 2 2 72970

(A; B) (X

2

(A); f(A; B; C))

5 d � 0 (mod 2) d d=2 2 5/3 69301

(A; C) (X

2

(A); f(A; C; B))

6 d � 0 (mod 3) d d=3� e 4 3 14385

(T

1

; T

2

) (X

2

(A); f(A; B; C))

A f(T

1

; A; A)

(B; C) (f(T

1

; T

2

; C); X

�1

(B))

7 d � �e (mod 3) d (d� 2e)=3 4 3 13180

T

1

 f(A; B; C)

(A; B) (X

3

(A); f(T

1

; A; B))

8 d � e (mod 3) d (d� e)=3 4 5/2 2377

(T

1

; T

2

) (f(A; B; C); f(A; C; B))

(A; B; C) (X

3

(A); T

1

; T

2

)

9 e � 0 (mod 2) e e=2 2 1 3161

(B; C) (X

2

(B); f(C; X

�1

(B); A))

Table 4. Transformations used by Algorithm PRAC

loop. These are evident from the Cost and Drop columns of Table 4 if transformation 9 is

never required; indeed its cost won't exceed log

5=4

(d + e) � 3:1 log

2

(d + e). Suppose that

transformation 9 is usedm > 0 successive times. The starting values (d

1

; e

1

) and the ending

values (d

2

; e

2

) of (d; e) will satisfy d

1

= d

2

, e

1

= e

2

� 2

m

, d

1

> 4e

1

, and e

2

� 3 (mod 6).

Now only transformations 4 and 5 can qualify. Apply them k times until d � 4e but at

most m times. Let (d

3

; e

3

) be the �nal values of (d; e). Then d

3

� d

2

=2

k

and e

3

= e

2

. If

d

3

� 4e

3

, then

d

1

+ e

1

d

3

+ e

3

�

5e

1

5e

3

= 2

m

:

If instead k = m, then

d

1

+ e

1

d

3

+ e

3

�

d

2

+ e

2

� 2

m

d

2

=2

k

+ e

2

= 2

m

:

In both cases we have reduced the value of d+e by a factor at least 2

m

at a cost of 2(m+k) �

4m. Consequently the total cost of Algorithm PRAC will not exceed 4 log

2

n if n > 0. An

improved estimate is possible, since our selection of r ensures that transformation 3 will be

used several times initially.

Let L

p

(n) be the length of the Lucas chain associated with Algorithm PRAC, using p = d

and r = round(d=�) in the outer while loop. The values of L

p

(p) for prime p below 200

appear in Table 2.

While debugging Algorithm PRAC, one can use invariant (5.1) to insert a check. Replace

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 17

the assignment A f(A; B; C) by:

T f(A; B; C)

if X

2

(A) 6= f(T; C; X

2

(B)) then signal an error condition

A T:

The test is valid because if A = X

a

, B = X

b

, and C = X

a�b

for some integers a and b, then

T = X

a+b

and

X

2

(A) = X

2a

= f(X

a+b

; X

a�b

; X

2b

) = f(T; C; X

2

(B)):

For particular functions f , it may possible to optimize this check. For example, when

X

n

(P) = V

n

(P), the check can be shortened to (C � 2)(T � 2) 6= (A � B)

2

. The author

concedes that inclusion of this check revealed subtle errors in an early version of his multiple

precision routines.

If n is a multiple precision integer, then the tests on d (mod 3) and e (mod 3) within

PRAC may be too expensive. A simpli�ed version of PRAC uses only transformations 3, 4,

5, and 9. The worst cost estimate of 4 log

2

n still applies.

8. Comparative Performance of Algorithms

Table 5 summarizes the total costs of each algorithm for prime p below 10

4

and below

10

6

, except that CFRC was run only for p � 10000. The results are compared to the lower

bound predicted by Theorem 8.

Algorithm Total cost Total cost Excess over Least squares �t

for p < 10

4

for p < 10

6

Theorem 8

Theorem 8 21141 2114698 1:446 log

2

p+ 0:409

L

b

26636 2755571 30.3% 1:992 log

2

p� 1:455

L

t

25874 2679141 26.7% 1:944 log

2

p� 1:541

L

c

21558 2.0% 1:536 log

2

p� 0:304

L

p

22204 2278430 7.7% 1:628 log

2

p� 0:856

Table 5. Comparative performance for prime p < 10

6

The results of Algorithm PRAC are not as good as those of CFRC, but they are nearly

as good. Both PRAC and CFRC do considerably better than the binary and binary-ternary

methods. PRAC can be programmed as is, whereas CFRC does not specify how to choose

r(n). PRAC beats CFRC for n = 113, 439, 479, 809, 2029, 2039, 2707, 2819, 3023, 3469,

3847, 4493, 4561, 4567, 4637, 4703, 4909, 4967, 5333, 5903, 6737, 6779, 7459, 7643, 7927,

7993, and 8629.

A simple variation of Algorithm PRAC which tried eight values of r, corresponding to

r = (d=p)round (p � ===0; 1; 1; 1; : : : ===) ;

r = (d=p)round (p � ===0; 1; 2; 1; : : : ===) ;

r = (d=p)round (p � ===0; 1; 1; 2; : : : ===) ;

.

.

.

18 PETER L. MONTGOMERY

L

b

(p) � L

p

(p) �4 �3 �2 �1 0 1 2

Number of p 17 40 54 111 145 328 691

First p 103529 63997 52813 6151 2 13 67

L

b

(p) � L

p

(p) 3 4 5 6 7 8 9

Number of p 1801 4456 12855 25880 24255 7514 351

First p 131 521 1597 8219 25463 67103 263513

Table 6. Comparison of Algorithm PRAC and binary method for

prime p < 10

6

had a total cost of 21541 for p < 10

4

, slightly better than CFRC. TBD - how many is best?

The worst case constant of proportionality derived for PRAC is not as good as that of

the binary method, and indeed PRAC occasionally does worse. Table 6 tallies the di�erence

L

p

(p) � L

b

(p) for the 78498 prime p below 10

6

.

If n is odd, and we set r d� 1 in PRAC (so that e = 1 throughout the inner loop and

only transformations 3, 4, 5 are used), we discover a right-to-left binary method. For 101,

the corresponding Lucas chain is 0, 1, 2, 3, 4, 5, 8, 11, 16, 27, 32, 37, 64, 101. The cost of

this algorithm is 2 lgn, which is slightly worse than the binary method of Section 2. When

n � �3 (mod 8), as in this case, we can remove 4 from the chain. The cost of this method

drops by half if the values of X

2

k(P) are available in a table for k � lgn.

9. Open Problems

Here are some open problems in this �eld:

Problem 1. Find an easily computed function r(n) and a constant c < 2 such that Algo-

rithm CFRC or PRAC (or a variation thereof) requires at most c lgn evaluations of f to

compute X

n

(P), for all su�ciently large n. Possibly most of the transformations in Table 4

can be replaced by a generalized transformation based upon the least prime not dividing e.

Problem 2. Does lim

p!1

L(p)= ln p exist, if p is restricted to prime values? Are this and

lim supL(n)= lnn equal to 1= ln((1 +

p

5)=2)?

Problem 3. The sequence 0, 1, 2, 3, 4, 7, 10, 11, 9 is not a Lucas chain for 9, since it is

not ascending. It cannot be rearranged to form a Lucas chain for 9 (although 9 = 7+2, the

di�erence 7�2 is missing). It does represent a way to computeX

9

= f(X

10

; X

�1

(X

1

); X

11

).

Does there exist a positive integer n such that X

n

can be computed using (1.6) fewer than

L(n) times?

Problem 4. Strengthen Theorem 8. (Neither CFRC nor PRAC does as well as Theorem 8

allows for p = 197, 421, 461, 491, 509, 739, 751, 757, 761, 769, 797, 811, 821, 823, 827, 829,

839. The Lucas chains

0; 1; 2; 3; 5; 7; 12; 19; 24; 43; 67; 110; 177; 244; 421 and

0; 1; 2; 3; 5; 7; 12; 19; 24; 43; 67; 110; 177; 287; 464; 751

show that CFRC and PRAC are suboptimal for p = 421 and p = 751.)

Problem 5. One can evaluate V

n

(P) without Lucas chains. For example, V

5

(P) = (P �

2)(P

2

+ P � 1)

2

+ 2 uses 3 = L(5) multiplications. Do all polynomial chains for V

n

(P)

require at least L(n) multiplications (see [7, p. 475�.] for de�nitions)?

RECURRENCES OF FORM X

m+n

= f(X

m

; X

n

; X

m�n

) 19

Problem 6. Estimate the density of composite n for which there exist j; k > 1 with n = jk

and L(n) < L(j) + L(k).

10. Using Lucas Chains to Evaluate other Lucas Functions

Sometimes one needs both U

n

= U

n

(P; 1) and V

n

= V

n

(P; 1). If n is negative, then

V

n

= V

�n

and U

n

= �U

�n

. If n is even, then V

n

= V

2

n=2

� 2 and U

n

= U

n=2

V

n=2

. So we

may assume that n is odd and positive.

If � = P

2

� 4 is invertible, use the binary or binary-ternary method to compute both V

n

and V

n�1

. Then U

n

= (V

1

V

n

� 2V

n�1

)=�. Otherwise the identities

U

i+j

= U

i

V

j

� U

i�j

= U

j

V

i

+ U

i�j

;

V

i+j

= V

i

V

j

� V

i�j

express U

i+j

and V

i+j

in terms of U

i

, V

i

, U

j

, V

j

, U

i�j

, and V

i�j

. If (3.1) is a Lucas chain

for n, then we can successively compute U

a

i

and V

a

i

for i = 0; 1; : : : ; r. At most 2L(n)

multiplications are needed to get U

n

and V

n

. Actually, we need calculate U

a

i

only for some

of the a

i

, so the true cost is somewhere between L(n) and 2L(n) multiplications.

If Q is arbitrary, then

V

i+j

(P;Q) = V

i

(P;Q)V

j

(P;Q) �Q

j

V

i�j

(P;Q)

= V

i

(P;Q)V

j

(P;Q) �Q

i

V

j�i

(P;Q):

If n � 0, then 3L(n) multiplications su�ce to compute both V

n

(P;Q) and Q

n

for arbitrary

Q. If U

n

(P;Q) is also required, then one can use

U

i+j

(P;Q) = U

i

(P;Q)V

j

(P;Q) �Q

j

U

i�j

(P;Q)

= V

i

(P;Q)U

j

(P;Q) �Q

i

U

j�i

(P;Q):

In this case the binary method is convenient and e�cient, since all di�erences i� j will be

�1, 0, or +1, causing Q

j

U

i�j

(P;Q) and Q

i

U

j�i

(P;Q) to be �Q

j

, �Q

i

, or 0.

11. Summary

A Lucas chain for n is a sequence of subscripts used to compute V

n

(P) or other sequence

satisfying (1.6). The shortest Lucas chain for n has length L(n). The binary method shows

that L(n) � L

b

(n) � 2 lgn. Theorem 8 shows that L(p) > 1:44 log

2

p for all su�ciently

large prime p. For large random n, Algorithm PRAC seems to generate a Lucas chain of

length about 1:6 log

2

n, but its length occasionally exceeds 2 log

2

n. Algorithm CFRC seems

to do better, but it is incomplete and can do much worse in its worst case. It appears that

L(n) < 1:5 log

2

n+ 1 for all n, but it seems hard even to prove that lim supL(n)= lgn < 2.

TBD check to 10

6

References

1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1965.

2. I. Borosh, Rational continued fractions with small partial quotients, Abstract 731{10{29., Notices Amer.

Math. Soc. 23 (1976), A{52.

20 PETER L. MONTGOMERY

3. John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of 2

m

� 1,

Math. Comp. 29 (1975), 620{647.

4. J. P. Buhler, R. E. Crandall, and M. A. Penk, Primes of the form n! � 1 and 2 � 3 � 5 : : : p � 1., Math.

Comp. 38 (1982), 639{643.

5. T W. Cusick, Continuants with bounded digits, Mathematika 24 (1977), 166{172.

6. Richard K. Guy, Unsolved Problems in Intuitive Mathematics, Unsolved Problems in Number Theory,

Vol. I (P. R. Halmos, ed.), Springer-Verlag, New York, 1981.

7. Donald E. Knuth, Seminumerical Algorithms The Art of Computer Programming, Vol. II, 2nd ed.,

Addison-Wesley, Reading, Mass., 1981.

8. D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419{448.

9. D. H. Lehmer,Computer technology applied to the theory of numbers, Studies in Number Theory (Math.

Assoc. Amer. Studies in Math. Vol. 6) (W. J. LeVeque, ed., ed.), 1969, pp. 117{151.

10. Peter. L. Montgomery, Problem 1202, Math. Mag. 58 (1985), 300{301.

11. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp.

48 (1987), 243{264.

12. Michael A. Morrison., A note on primality testing using Lucas sequences, Math. Comp. 29 (1975),

181{182.

13. T. S. Motzkin and E. G. Straus, Some combinatorial extremum problems, Proc. Amer. Math. Soc. 7

(1956), 1014{1021.

14. Carl Pomerance, J. L. Selfridge, snf Samuel S. Wagsta�, Jr., The pseudoprimes to 25 �10

9

, Math, Comp.

35 (1980), 1003{1026.

15. H. C. Williams, A p + 1 method of factoring, Math. Comp. 39 (1982), 225{234.

16. M. C. Wunderlich,A performance analysis of a simple prime-testing algorithm, Math. Comp. 40 (1983),

709{714.

17. Andrew C. Yao and Donald E. Knuth, Analysis of the subtractive algorithm for greatest common divi-

sors, Proc. Nat. Acad. Sci. USA 72 (1975), 4720{4722.

Notes to Printer

An A

M

S-T

E

X version of this manuscript is available.

The \=== : : : ===" notation is intended to match that in [7, pp. 339�.]. The macros I used to

generate these symbols are crude.

Table 2 can be split into two parts if it does not �t on one page.

Notes to Referee

I did not try very hard to prove Conjecture 13. Possibly one can �rst prove a correspond-

ing result when the largest partial quotient is 2. Problem 3 of Section 9 may also have an

easy solution.

I coined the term \Lucas chain". Do you approve of this name?

I did not try to get a comprehensive list of low values of j and k for which L(jk) <

L(j) + L(k). The examples following Corollary 3 were found by hand.

The solution to [7, exercise 3.3.4{31] references a paper by I. Borosh and H. Niederreiter

related to Conjecture 11. I wrote Borosh regarding this in November, 1982, but got no

response. TBD - it is in BIT 1983

This paper seems long. I could present PRAC early, using (5.1) as a justi�cation, but

the article would seem too dry. Are there some portions which you recommend I remove?

I welcome your verifying some numbers in the tables.

Is the double usage of L(n) and L

n

confusing? If so, please suggest an alternate notation.

Department of Mathematics, University of California, Los Angeles, CA 90024{1555

E-mail address: pmontgom@math.ucla.edu

