
COMPUTING LOGARITHM INTERVALS

WITH THE ARITHMETIC-GEOMETRIC-MEAN ITERATION

DANIEL J. BERNSTEIN

Abstract. This paper presents a fast algorithm that, given a tight interval

around a positive real number x, computes a tight interval around log x. To
obtain p bits of precision for typical values of x, the algorithm uses about

2 lg p square roots and about 5 lg p multiplications (or fewer for subsequent

logarithms). Here log is the natural logarithm, and lg is the base-2 logarithm.
This paper also presents short proofs of all necessary properties of complete

elliptic integrals.

1. Introduction

This paper presents an algorithm that, given a positive real number x to high
accuracy, computes log x to high accuracy. Here log is the natural logarithm. The
algorithm has several useful features:

• It is extremely fast. For p bits of precision, and for x between (e.g.) 2
and 2p, the algorithm time is dominated by about 7 lg p operations on p-bit
numbers, specifically 2 lg p square roots and 5 lg p multiplications. Here lg
is the base-2 logarithm.
• It computes π to high precision, practically for free, as a side effect of

computing log.
• It computes subsequent logarithms at even higher speed: asymptotically,

per logarithm, about 2 lg p square roots and about 2 lg p multiplications.
• Given a tight interval containing x, it computes tight intervals containing

log x and π. See [4] for an application. For large p, the extra cost of
handling intervals is negligible.

See Section 5 for details of the algorithm.
The algorithm relies on various properties of complete elliptic integrals and

the arithmetic-geometric-mean (AGM) iteration. This paper presents streamlined
proofs of those properties. Section 2 introduces the elliptic integrals I and I1 used
throughout the paper; Section 3 relates I and I1 to logarithms; Section 4 introduces
the AGM iteration.

Previous work. Salamin pointed out more than thirty years ago that the elliptic
integral I could be used to quickly compute high-precision approximations to log x
and π; see [2, Item 143]. Salamin’s algorithm is dominated by Θ(lg p) high-precision
operations, with larger constant factors than the algorithm here.

Permanent document ID: 8f92b1e3ec7918d37b28b9efcee5e97f.

Date: 20030717.
2000 Mathematics Subject Classification. Primary 65D20; Secondary 33E05, 65G30, 11Y60.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the Alfred P. Sloan Foundation.

1

2 DANIEL J. BERNSTEIN

Subsequent refinements of Salamin’s algorithm included almost all of the ideas
necessary for minimizing the constant factors, but the ideas were never combined
properly. See Section 6 for a survey of the literature.

Brent in [9, Section 6] introduced another method of computing high-precision
exponentials and logarithms, without relying on elliptic integrals. See [3, Sections
12–16] for further discussion. Brent’s method may be faster than the algorithm
here for small p, but for large p it is slower by a factor roughly proportional to lg p.

Logarithm algorithms are occasionally presented with explicit bounds suitable
for interval computation. See [14] and [13].

The results of Sections 2, 3, and 4 (modulo language, and modulo the difference
between explicit inequalities and order-of-magnitude estimates) have been known
for two centuries, and are a small fraction of the wealth of material collected in
[8]. However, I have not seen such short proofs of the I1 properties, particularly
Theorem 2.6 and Theorem 4.3.

2. Elliptic integrals: basic properties

For positive real numbers a, b define I(a, b) =
∫∞
0

(x2 + a2)−1/2(x2 + b2)−1/2 dx.

Also define I1(a, b) = ∂I(a, b)/∂a =
∫∞
0
−a(x2 + a2)−3/2(x2 + b2)−1/2 dx.

Integrability, differentiation under the integral sign, etc. follow from the fact
that all the integrands in this section are constant in sign, continuous in x, and
differentiable in a, b.

Theorem 2.1. π/2a ≤ I(a, b) ≤ π/2b if b ≤ a.

Proof. x2 + b2 ≤ x2 + a2 so
∫∞
0

(x2 + a2)−1 dx ≤ I(a, b) ≤
∫∞
0

(x2 + b2)−1 dx. �

Theorem 2.2. 0 ≤ −aI1(a, b) ≤ I(a, b).

Proof. 0 ≤ a2 ≤ x2 + a2. �

Theorem 2.3. I(a, b) = I(1, b/a)/a.

Proof. Substitute x = au: aI(a, b) =
∫∞
0
a2(a2u2 + a2)−1/2(a2u2 + b2)−1/2 du =∫∞

0
(u2 + 1)−1/2(u2 + b2/a2)−1/2 du = I(1, b/a). �

Theorem 2.4. I(a, b) + aI1(a, b) + b(∂I(a, b))/∂b = 0.

Proof. Apply a(∂/∂a) + b(∂/∂b) to Theorem 2.3. �

Theorem 2.5. I(a, b) = I(a+b
2 ,
√
ab).

Proof. Substitute u = (x− ab/x)/2, using (2u)2 + (a+ b)2 = (x2 + a2)(x2 + b2)/x2

and x du = (u2 + ab)1/2 dx: I(a, b) =
∫∞
−∞((2u)2 + (a+ b)2)−1/2(u2 + ab)−1/2 du =

2
∫∞
0

(22(u2 + (a+b
2)2))−1/2(u2 + ab)−1/2 du = I(a+b

2 ,
√
ab). �

Theorem 2.6. I(a, b) + 2aI1(a, b) = I1(a+b
2 ,
√
ab)(a− b)/2.

Proof. Apply a(∂/∂a) − b(∂/∂b) to Theorem 2.5: aI1(a, b) − b(∂I(a, b)/∂b) =

I(a+b
2 ,
√
ab)(a− b)/2. By Theorem 2.4, I(a, b) + aI1(a, b) + b(∂I(a, b)/∂b) = 0. �

Theorem 2.7. I(1, b) = 2
∫√b

0
(x2 + 1)−1/2(x2 + b2)−1/2 dx.

Proof.
∫∞√

b
(x2 + 1)−1/2(x2 + b2)−1/2 dx =

∫√b

0
((b

u)2 + 1)−1/2((b
u)2 + b2)−1/2 b

u2 du =∫√b

0
(b2 + u2)−1/2(1 + u2)−1/2 du. �

COMPUTING LOGARITHM INTERVALS WITH THE AGM ITERATION 3

Theorem 2.8. (1 + b)−1 + I(1, b) + I1(1, b) = 2
∫√b

0
b2(x2 + 1)−1/2(x2 + b2)−3/2 dx.

Proof. By Theorem 2.4, I(1, b) + I1(1, b) + b(∂I(1, b)/∂b) = 0. By Theorem 2.7,

∂I(1, b)/∂b = b−1/2(b+1)−1/2(b+b2)−1/2+2
∫√b

0
−b(x2+1)−1/2(x2+b2)−3/2 dx. �

Theorem 2.9. a2I(a, b) + (a2 − b2)aI1(a, b) =
∫∞
0
a2(x2 + a2)−3/2(x2 + b2)1/2 dx.

Proof. x2 + a2 − (a2 − b2) = x2 + b2. �

Theorem 2.9 explains why I(a, b), a2I(a, b) + (a2 − b2)aI1(a, b), etc. are called
elliptic integrals, and why related algebraic objects are called elliptic curves:
substitute x = a tan θ to see that a2I(a, b) + (a2 − b2)aI1(a, b) is the arc length of
one quadrant of the ellipse θ 7→ (a cos θ, b sin θ). Theorem 2.9 is not used elsewhere
in this paper.

3. Elliptic integrals: logarithm bounds

This section presents precise bounds along the following lines: “If b ≈ 0 then
I(1, b) ≈ log(4/b) and I(1, b) + I1(1, b) ≈ 1.” Write L(b) = log(

√
b−1 +

√
b−1 + 1).

The simple proof technique used here is not new, and explicit bounds in this
context are not new, but I am not aware of previous simple proofs of explicit
bounds. For inexplicit bounds using the same proof technique, see [18, page 522]
and [15]; for explicit bounds with longer proofs, see [7, pages 355–356] and [8,
Theorem 7.2].

Theorem 3.1. If 0 < b ≤ 1 then (2 + 1
2b

2)L(b) − (1
2b)(1 + b)1/2 ≤ I(1, b) ≤

(2 + 1
2b

2 + 9
32b

4)L(b)− (1
2b−

3
16b

2 + 9
32b

3)(1 + b)1/2.

The difference between lower and upper bounds is on the scale of b2. The bounds
can easily be made tighter by the same technique.

Proof. I(1, b) = 2
∫√b

0
(1 + x2)−1/2(x2 + b2)−1/2 dx by Theorem 2.7. Recall that

(1+x2)−1/2 ≥ 1−x2/2 for 0 ≤ x ≤ 1, since 1 ≥ 1−(3−x2)x4/4 = (1−x2/2)2(1+x2).
Thus

I(1, b) ≥
∫ √b

0

(2− x2)(x2 + b2)−1/2 dx

= (2 + 1
2b

2) log(x+ (x2 + b2)1/2)− (1
2x)(x2 + b2)1/2

∣∣∣√b

0

= (2 + 1
2b

2) log

(√
b+
√
b+ b2√

0 +
√

0 + b2

)
− (1

2

√
b)(b+ b2)1/2

= (2 + 1
2b

2)L(b)− (1
2b)(1 + b)1/2.

Similarly, (1 + x2)−1/2 ≤ 1− 1
2x

2 + 3
8x

4 for 0 ≤ x, so

I(1, b) ≤
∫ √b

0

(2− x2 + 3
4x

4)(x2 + b2)−1/2 dx

= (2 + 1
2b

2 + 9
32b

4) log(x+ (x2 + b2)1/2)− (1
2 −

3
16x

2 + 9
32b

2)x(x2 + b2)1/2
∣∣∣√b

0

= (2 + 1
2b

2 + 9
32b

4)L(b)− (1
2b−

3
16b

2 + 9
32b

3)(1 + b)1/2.

�

4 DANIEL J. BERNSTEIN

Theorem 3.2. If 0 < b ≤ 1 then (2+b2)(1+b)−1/2−b2L(b) ≤ (1+b)−1 +I(1, b)+
I1(1, b) ≤ (2 + b2 + 3

8b
3 + 9

8b
4)(1 + b)−1/2 − (b2 + 9

8b
4)L(b).

Proof. (1+b)−1+I(1, b)+I1(1, b) = 2
∫√b

0
b2(x2+1)−1/2(x2+b2)−3/2 dx by Theorem

2.8. Recall that (1 + x2)−1/2 ≥ 1− x2/2 for 0 ≤ x ≤ 1, as in Theorem 3.1, so

(1 + b)−1 + I(1, b) + I1(1, b) ≥
∫ √b

0

b2(2− x2)(x2 + b2)−3/2 dx

= (2 + b2)x(x2 + b2)−1/2 − b2 log(x+ (x2 + b2)1/2)
∣∣∣√b

0

= (2 + b2)(1 + b)−1/2 − b2L(b).

Similarly, (1 + x2)−1/2 ≤ 1− 1
2x

2 + 3
8x

4 for 0 ≤ x, so

(1 + b)−1 + I(1, b) + I1(1, b) ≤
∫ √b

0

b2(2− x2 + 3
4x

4)(x2 + b2)−3/2 dx

= (2 + b2 + 3
8b

2x2 + 9
8b

4)x(x2 + b2)−1/2 − (b2 + 9
8b

4) log(x+ (x2 + b2)1/2)
∣∣∣√b

0

= (2 + b2 + 3
8b

3 + 9
8b

4)(1 + b)−1/2 − (b2 + 9
8b

4)L(b).

�

4. Elliptic integrals: AGM iteration

Throughout this section, a0 and b0 are positive real numbers; an and bn are
defined recursively by an+1 = (an + bn)/2 and bn+1 =

√
anbn. As n increases, both

an and bn converge rapidly to π/2I(a0, b0), the arithmetic-geometric mean of
a0 and b0; see Theorems 4.2 and 4.5.

Theorem 4.1. If n ≥ 1 then an ≥ bn.

Proof. The geometric mean cannot exceed the arithmetic mean: if n ≥ 0 then
a2n+1 − b2n+1 = (an − bn)2/4 ≥ 0 so an+1 ≥ bn+1. �

Theorem 4.2. π/2an ≤ I(a0, b0) ≤ π/2bn for n ≥ 1.

Proof. By Theorem 2.5, I(a0, b0) = I(a1, b1) = I(a2, b2) = · · · = I(an, bn). By
Theorem 4.1, an ≥ bn. Apply Theorem 2.1. �

Theorem 4.3. Define εn = 2n(a2n − b2n)(−an(I1/I)(an, bn)). Then 0 ≤ εn ≤
2n(a2n−b2n) for n ≥ 1, and (a20−b20)(−a0(I1/I)(a0, b0)) = εn+

∑
0≤i<n 2i−1(a2i −b2i).

Proof. 0 < bn ≤ an for n ≥ 1, so 0 ≤ −an(I1/I)(an, bn) ≤ 1 by Theorem 2.2; i.e.,
0 ≤ εn ≤ 2n(a2n − b2n).

Substitute (a2n+1 − b2n+1)an+1 = (a2n − b2n)(an − bn)/8:

εn+1 = 2n(a2n − b2n)

(
−(an − bn)

4

(
I1
I

)
(an+1, bn+1)

)
.

Then apply Theorems 2.6 and 2.5:

εn+1 = 2n(a2n − b2n)

(
−1

2
− an

(
I1
I

)
(an, bn)

)
= −2n−1(a2n − b2n) + εn.

Thus ε0 = εn +
∑

0≤i<n 2i−1(a2i − b2i) by induction. �

COMPUTING LOGARITHM INTERVALS WITH THE AGM ITERATION 5

Theorem 4.4. If 1 ≤ a0/b0 ≤ 1 + 22
m

then 1 ≤ an/bn ≤ 1 + 22
m−n

for n ≥ 0.

Proof. If 1 ≤ an/bn ≤ 1 + 22
m−n

then an+1/bn+1 = (
√
an/bn +

√
bn/an)/2 ≤√

an/bn ≤
√

1 + 22m−n ≤ 1 + 22
m−n−1

. �

Theorem 4.5. If m ≥ 0 and 1 ≤ a0/b0 ≤ 1 + 22
m

then 1 ≤ an/bn ≤ 1 + 23−2
n+1−m

for n ≥ m.

Proof. The base case n = m follows from Theorem 4.4 since 22
m−m

= 23−2
m+1−m

.

If an/bn = 1+ε with 0 ≤ ε ≤ 23−2
n+1−m

then 4+4ε+ε2 ≤ (4+ε2 +ε4/16)(1+ε),

so (1 + ε) + 2 + 1/(1 + ε) ≤ (2 + ε2/4)2, so
√
an/bn +

√
bn/an ≤ 2 + ε2/4, so

an+1/bn+1 ≤ 1 + ε2/8 ≤ 1 + 23−2
n+2−m

. �

5. Computing logarithm intervals

This section presents several algorithms that, given an interval containing x,
compute an interval containing log x. See [6] for fast subroutines to compute sums,
differences, products, quotients, and square roots of intervals.

These algorithms use a parameter p to decide when to stop. For the “arbitrary
x” algorithms, the output interval has approximately p bits of precision if the input
interval does. For the “super-size x” algorithms, the output precision is limited to
about 4 lg x bits, even if p is much larger. The “super-size x” algorithms also slow
down as lg lg x grows past lg p; if lg lg x is much larger than lg p, one should use the
“arbitrary x” algorithms instead.

Beware that, as discussed in [5], the usual algorithms for arithmetic operations
such as square root—and for sequences of arithmetic operations—contain many
redundancies that can be eliminated. A sequence of AGM steps can be made
almost three times faster than reported in [11, Theorem 9.1], for example. Note
also that Borwein and Borwein in [8, page 222] observed speed improvements from

a “quartic AGM” in which one computes
√
an+2 and

√
bn+2 directly from

√
an and√

bn; my impression is that these speedups become slowdowns when the square-root
algorithms are properly optimized, but I will leave experiments to the reader.

Computing log x for a super-size x. Let x > 4 be a real number. Define a0 = 1
and b0 = b = (2x/(x2−1))2. Note that

√
b−1+

√
b−1 + 1 = x, so L(b) = log x, where

L is defined in Section 3; note also that 0 < b < 1/2. Define an+1 = (an + bn)/2
and bn+1 =

√
anbn for n ≥ 0, as in Section 4. Define c = 1 + (I1/I)(1, b); note that

0 ≤ c ≤ 1 by Theorem 2.2.
Compute an interval containing b. Successively compute intervals containing

a1, b1, a2, b2, . . . , an, bn, stopping when an−bn is no longer clearly larger than 1/2p.
The number of steps n is at most about lg lg x+ lg p by Theorem 4.5.

Compute an interval containing [0, 2n(a2n − b2n)] +
∑

0≤i<n 2i−1(a2i − b2i). By

Theorem 4.3, this interval contains (1− b2)(1− c). Divide by an interval containing
1 − b2, and subtract from 1, to obtain an interval containing c. Finally, compute
an interval containing[

(1
2b−

3
16b

2 + 9
32b

3)c(1 + b)1/2 − (1 + b)−1 + (2 + b2)(1 + b)−1/2

(2 + 1
2b

2 + 9
32b

4)c+ b2
,

(1
2b)c(1 + b)1/2 − (1 + b)−1 + (2 + b2 + 3

8b
3 + 9

8b
4)(1 + b)−1/2

(2 + 1
2b

2)c+ (b2 + 9
8b

4)

]
.

6 DANIEL J. BERNSTEIN

By Theorems 3.1 and 3.2, this interval contains L(b) = log x. Note that terms such
as 9

8b
4 have very little effect on the output and can be replaced by crude bounds.

At this point one can also compute an interval containing π with a few additional
operations: the interval

[(2 + 1
2b

2)L(b)− (1
2b)(1 + b)1/2, (2 + 1

2b
2 + 9

32b
4)L(b)− (1

2b−
3
16b

2 + 9
32b

3)(1 + b)1/2]

contains I(1, b) by Theorem 3.1, and the interval [2bnI(1, b), 2anI(1, b)] contains π
by Theorem 4.2. This very fast computation of π will be exploited later.

Numerical stability: The computation of c as 1−(1−c) loses about lg log(4/b) ≈
lg lg x bits of precision, since c ≈ 1/ log(4/b). The other arithmetic operations
are stable, each losing only a bounded number of bits of precision. However, the
intervals in Theorems 3.1 and 3.2 are inherently limited to about lg(1/b2) ≈ 4 lg x
bits of precision.

Computing log x for several super-size x’s. After computing a super-size log
as explained above, one can compute another super-size log at somewhat higher
speed, by taking advantage of the π interval obtained from the first computation.

Starting from x, define and compute b, a1, b1, . . . , an, bn as above, but skip the
computation of

∑
i 2i−1(a2i − b2i). Compute an interval containing [π/2an, π/2bn];

by Theorem 4.2, this interval contains I(1, b). Compute an interval containing[
I(1, b) + (1

2b−
3
16b

2 + 9
32b

3)(1 + b)1/2

2 + 1
2b

2 + 9
32b

4
,
I(1, b) + (1

2b)(1 + b)1/2

2 + 1
2b

2

]
;

by Theorem 3.1, this interval contains L(b) = log x.
A further improvement is available in applications that compute logarithms only

to divide them by each other. The above method is to use I1/I to compute log x
and π, then use I to compute π/ log y, then divide to obtain (log y)/ log x; it is
somewhat faster to use I twice to compute π/ log x and π/ log y, then divide to
obtain (log y)/ log x.

Computing log x for an arbitrary x. Given an interval containing a positive
real number x, find an integer k such that 2kx is larger, but not much larger,
than 2p/4. Then use the algorithm above to compute intervals containing the logs
of the super-size numbers 2kx and 2dp/4e. Extract intervals containing log 2 =
(log 2dp/4e)/ dp/4e and log x = log 2kx− k log 2.

The time taken by this algorithm is practically independent of x. However,
readers trying to formulate a theorem along these lines are cautioned to consider
the possibility that k has many digits.

When x is between (for example) 2 and 2p, the following algorithm is faster:
select an integer m > lg p − 2 − lg lg x, compute an interval containing the super-
size number x2

m

by repeated squaring, compute an interval containing log x2
m

, and
divide by 2m. Beware that this approach is slow when x is very close to 1.

Computing log x for several arbitrary x’s. The general problem of computing
logarithms of ` numbers can be reduced to the problem of computing logarithms of
`+ 1 super-size numbers, one of which is a power of 2, as in the case ` = 1 above.

When all the numbers are in reasonable ranges, and when ` is small, it is faster
to repeatedly square each number, obtaining ` super-size numbers. However, for
large `, this is slower than the power-of-2 method.

COMPUTING LOGARITHM INTERVALS WITH THE AGM ITERATION 7

6. Previous logarithm algorithms using elliptic integrals

In the following survey, the word “optimal” means “as fast as possible among
all the techniques that I know.” It is not meant to exclude the possibility of future
improvements.

Salamin, as reported in [2, Item 143], proposed using the AGM iteration to
compute π/ log x for super-size x, and thus to compute log x using π. This is the
optimal strategy when x is super-size and π is already known.

Salamin proposed computing π as follows: compute exp 1 by a different method,
then compute (exp 1)2

m

= exp 2m by repeated squaring, then use the AGM iteration
to compute π/ log exp 2m = π/2m. Schroeppel in [2, Item 144] proposed using
22

m

and 22
m

exp 1 instead of exp 2m. Both methods are considerably slower than
optimal.

For x in a reasonable range such as [2, 4], Salamin proposed computing log x
by computing log x2

m

. This is the optimal strategy when only one log is to be
computed, although it is not optimal when many logs are to be computed.

Brent in [10] proposed a different log algorithm using incomplete elliptic integrals.
Brent’s algorithm is somewhat slower than optimal: it saves half the AGM steps
by focusing on moderate values of b, but it works with more than two values of b.

Brent, and independently Salamin in [16], also proposed using the Legendre-
Gauss formula I(1, 2−1/2)(I(1, 2−1/2) + I1(1, 2−1/2)) = π/2 to compute π. This is
faster than Salamin’s previous method of computing π, but in the context of log
computation it is not optimal. The same comment applies to several subsequent
methods of computing π, not cited here.

Brent in [11, Section 9] proposed computing log x for arbitrary x by computing
log 2kx where k is chosen so that 2kx is super-size. This is the optimal strategy
when many logs are to be computed.

Borwein and Borwein in [7, Section 4] proposed another log algorithm in the spirit
of [10] but relying solely on complete elliptic integrals. The strategy is somewhat
slower than optimal.

Newman in [15] proposed computing π and log x for super-size x by using the
AGM iteration to compute (log x)/π, using it again to compute (log(x + 1))/π ≈
(log x+ 1/x)/π, and subtracting. Beware that the subtraction loses about lg x bits
of precision. A better (but still suboptimal) strategy is to use x exp 1 in place of
x+ 1, with exp 1 computed by a different method.

Newman’s goal was not maximum speed, but maximum simplicity. In particular,
Newman avoided the Legendre-Gauss formula and any other use of I1. However, I
disagree with Newman’s view of “Landen’s transformation law” (Theorem 2.6 here)
as “heavy use of elliptic function theory”; I hope I have convinced the reader that
the basic properties of I1 can be established just as easily as the basic properties
of I. (The Legendre-Gauss formula is not much more difficult.)

Borwein and Borwein in [8, Algorithm 7.2] proposed the following method of
computing log x for, e.g., x between 2 and 4: use I1/I to compute two super-size
logarithms, namely log 2k and log 2kx for an appropriate k. The use of I1/I is
optimal for computing one super-size logarithm, but it is suboptimal for computing
two or more.

8 DANIEL J. BERNSTEIN

References

[1] Robert S. Anderssen, Richard P. Brent (editors), The complexity of computational problem
solving, University of Queensland Press, Brisbane, 1976. ISBN 0–7022–1213–X. Available

from http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub031.html.

[2] Michael Beeler, R. William Gosper, Richard Schroeppel, HAKMEM, Artificial Intelligence
Memo No. 239, Massachusetts Institute of Technology, 1972. Available from http://www.

inwap.com/pdp10/hbaker/hakmem/hakmem.html.

[3] Daniel J. Bernstein, Fast multiplication and its applications. Available from http://cr.yp.

to/papers.html#multapps. ID 8758803e61822d485d54251b27b1a20d.

[4] Daniel J. Bernstein, Computing logarithm floors in essentially linear time, draft. Available
from http://cr.yp.to/papers.html.

[5] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration, draft.

[6] Daniel J. Bernstein, Fast, harmless intervals around high-precision floating-point numbers,
draft.

[7] Jonathan M. Borwein, Peter B. Borwein, The arithmetic-geometric mean and fast computa-

tion of elementary functions, SIAM Review 26 (1984), 351–366. MR 86d:65029.
[8] Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Wiley, New York, 1987. ISBN

0–471–83138–7. MR 89a:11134.

[9] Richard P. Brent, The complexity of multiple-precision arithmetic, in [1] (1976), 126–165.
Available from http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub032.html.

[10] Richard P. Brent, Fast multiple-precision evaluation of elementary functions, Journal of
the ACM 23 (1976), 242–251. ISSN 0004–5411. MR 52:16111. Available from http://web.

comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub034.html.

[11] Richard P. Brent, Multiple-precision zero-finding methods and the complexity of elemen-
tary function evaluation, in [17] (1976), 151–176. MR 54:11843. Available from http://

web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub028.html.

[12] Krzysztof Diks, Wojciech Ritter (editors), Mathematical foundations of computer science
2002: 27th international symposium, MFCS 2002, Warsaw, Poland, 26–30.08.2002: pro-

ceedings, Lecture Notes in Computer Science, 2420, Springer, Berlin, 2002.

[13] Mika Hirvensalo, Juhani Karhumäki, Computing partial information out of intractable one—
the first digit of 2n at base 3 as an example, in [12] (2002), 319–327.

[14] Wolfram Luther, Werner Otten, Computation of standard interval functions in multiple-

precision interval arithmetic, Interval Computations (1994), 78–99. ISSN 0135–4868. MR
96g:65047.

[15] Donald J. Newman, A simplified version of the fast algorithms of Brent and Salamin, Math-
ematics of Computation 44 (1985), 207–210. MR 86e:65030.

[16] Eugene Salamin, Computation of π using arithmetic-geometric mean, Mathematics of Com-

putation 30 (1976), 565–570. ISSN 0025–5718. MR 53:7928.
[17] Joseph F. Traub, Analytic computational complexity, Academic Press, New York, 1976. MR

52:15938.

[18] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge University Press,
Cambridge, 1927. ISBN 0–521–58807–3. MR 97k:01072.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, IL 60607–7045
Email address: djb@cr.yp.to

