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Abstract. Shoup proved that various message-authentication codes of the
form (n, m) 7→ h(m) + f(n) are secure against all attacks that see at most
p

1/ε authenticated messages. Here m is a message, n is a nonce chosen from

a public group G, f is a secret uniform random permutation of G, h is a secret
random function, and ε is a differential probability associated with h.

Shoup’s result implies that if AES is secure then various state-of-the-art
message-authentication codes of the form (n, m) 7→ h(m)+AESk(n) are secure

up to
p

1/ε authenticated messages. Unfortunately,
p

1/ε is only about 250

for some state-of-the-art systems, so Shoup’s result provides no guarantees for
long-term keys.

This paper proves that security of the same systems is retained up to
√

#G authenticated messages. In a typical state-of-the-art system,
√

#G is
264. The heart of the paper is a very general “one-sided” security theorem:
(n, m) 7→ h(m) + f(n) is secure if there are small upper bounds on differential

probabilities for h and on interpolation probabilities for f .

1. Introduction

This paper proves that various state-of-the-art 128-bit authenticators are secure
against all attacks that see at most 264 authenticated messages. Previous proofs
broke down at a smaller number of messages, often below 250.

A typical example. Consider the well-known polynomial-evaluation message-
authentication code over a field of size 2128.

Each message is a polynomial over the field with constant coefficient 0. The
sender’s nth message, say mn, is transmitted as (n,mn,mn(r) + f(n)); here r and
f are secrets shared by the sender and the receiver. What is the attacker’s chance
of successfully forging a message?

It is easy to prove information-theoretic security of this system if r and f are
independent, r is a uniform random element of the field, and f is a uniform random
function from {n} to the field—in other words, if r, f(1), f(2), . . . are independent
uniform random elements of the field. The attacker’s chance of success is at most
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LD/2128, where L is the maximum degree of a message and D is the number of
forgeries attempted. The point is that mn(r) + f(n) leaks no information about
mn(r).

What if f is a uniform random injective function—in other words, f(1), f(2), . . .
are chosen to be distinct? If the sender transmits only C messages, where C is
small, then f(1), f(2), . . . , f(C) are nearly independent, and one can easily prove
that the attacker’s chance of success is at most LD/2128 + C(C − 1)/2129; but this
bound becomes useless as C approaches 264. Shoup proved a better bound in [6,

Theorem 2]: the attacker’s chance of success is at most 2LD/2128 if C ≤ 264/
√

L.

This paper eliminates the
√

L denominator: the attacker’s chance of success is
below 1.002LD/2128 if C ≤ 260, and below 1.7LD/2128 if C ≤ 264, and below
3000LD/2128 if C ≤ 266.

For example, say the sender authenticates C = 260 messages, the attacker tries
D = 260 forgeries, and the maximum message degree is L = 216. The easy bound
is about 1/29, which is not at all comforting. Shoup’s bound is inapplicable. The
bound in this paper is 1.002/251.

Consequences for AES-based authenticators. Despite the high speed and
information-theoretic security of mn(r)+f(n), users often prefer mn(r)+AESk(n).
The point is that r, k occupy only 32 bytes, whereas r, f(1), f(2), . . . occupy an
additional 16 bytes for each message.

The attacker’s success chance against mn(r) + AESk(n) is bounded by the sum
of two terms: first, the attacker’s success chance against mn(r) + f(n); second, the
attacker’s chance of distinguishing AESk from f . In particular:

• Take f to be a uniform random function. In this case, the first term—
the attacker’s success chance against mn(r) + f(n)—is easily proven to be
small. Unfortunately, the second term becomes large as C approaches 264:
the attacker can distinguish AESk from f with probability C(C − 1)/2129

by looking for collisions.
• Take f to be a uniform random injective function. In this case, the first

term is small, even for C = 264; that is the point of this paper. The second
term is conjectured to also be small: it appears to be extremely difficult to
distinguish AESk from f , even after 265 chosen inputs. “Indistinguishability
from a uniform random permutation” was an explicit design goal for AES.

In short, this paper guarantees that mn(r) + AESk(n) is as secure as AES up to
264 messages. The best previous results did not handle nearly as many messages.

The importance in this context of uniform random injective functions, as opposed
to uniform random functions, was pointed out by Shoup in [6, Section 1].

Generalization. This paper considers much more general message-authentication
codes of the form (n,m) 7→ h(m)+f(n). The main theorem of this paper, Theorem
5.1, is that h(m) + f(n) is secure if (1) differential probabilities for h are small and
(2) interpolation probabilities for f are small.

In particular, assume that f is a uniform random injective function from the set
of nonces to a finite commutative group G, and that the differential probabilities
for h are small. Then h(m) + f(n) is secure against all attacks that see at most√

#G authenticated messages. Consequently h(m) + AESk(n) is secure against
any attacker who cannot break AES and who sees at most

√
#G authenticated

messages.
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The form h(m)⊕f(n) for an authenticator, where f is a uniform random function,
was introduced by Wegman and Carter in [8, Section 4]. Here ⊕ is vector addition
modulo 2. Brassard in [2] considered h(m) ⊕ f(n) where f is a random injective
function determined by a short key, such as AESk. Shoup in [6], as discussed above,
considered h(m)⊕ f(n) where f is a uniform random injective function. The more
general shape h(m) + f(n), where + can be any commutative group operation, is
helpful for accommodating functions that rely on addition in large characteristic
rather than characteristic 2—in particular, functions that rely on the high-speed
multiplication circuits included in common processors.

All of the proofs in the literature rely on two-sided bounds for the interpolation
probabilities for f . One computes lower bounds on the probability of any particular
sequence of authenticators; one computes nearby upper bounds on the probability
of that sequence of authenticators given h; one deduces that the authenticators
reveal very little information about h, and hence very little information about the
authenticator for a new message. See, e.g., [8, Section 4, Theorem] and [6, Appendix
A, Lemma 1]. The heart of the improvement in this paper is a new “one-sided”
proof strategy that moves directly from upper bounds for f and h to upper bounds
on the attacker’s chance of success.

2. Protocol

This section describes a very general message-authentication protocol. Section
3 formalizes the notion of an attack on the protocol. Section 5 analyzes the success
chance of all attacks.

The protocol has several parameters:

• G, a finite commutative group of authenticators. I will always write the
group operation as +. (More general groups, or even loops, would suffice,
but I see no application of the extra generality.) Typical example: G is the
set of 16-byte strings, with the group operation being exclusive-or. Another
example: G is the set

{

0, 1, 2, . . . , 2128 − 1
}

, with the group operation being

addition modulo 2128.
• M , a nonempty set of messages. Typical example: M is the set of all

strings of bytes. Another example: M is the set of all strings of at most
1024 bytes.

• N , a finite set of nonces, with #N ≤ #G. Typical example: N is the set
{

1, 2, 3, . . . , 232 − 1
}

. Another example: N is the set of 16-byte strings.

The protocol has several participants:

• A message generator creates messages.
• A nonce generator accepts messages from the message generator and

attaches a nonce n to each message m. The nonce generator must never
use the same nonce for two different messages: if it generates (n1,m1)
and (n2,m2), and if m1 6= m2, then n1 must not equal n2. This rule
is automatically satisfied if the nonce generator uses nonce 1 for the first
message, nonce 2 for the second message, etc.

• A sender accepts pairs (n,m) from the nonce generator and attaches an
authenticator a to each pair, as discussed below.

• A network accepts a sequence of vectors (n,m, a) from the sender and
transmits a sequence of vectors (n′,m′, a′). Perhaps the sequence of vectors
transmitted is the same as the sequence of vectors sent; perhaps not.
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• A receiver receives vectors (n′,m′, a′) from the network. It accepts (n′,m′)
if a′ is the authenticator that the sender would have attached to (n′,m′);
otherwise it discards (n′,m′).

If the network transmits exactly what the sender sent, then the pairs (n,m)
accepted by the receiver are exactly the pairs (n,m) given to the sender; but what if
the network makes changes? The objective of the protocol is forgery elimination:
ensuring that each pair (n′,m′) accepted by the receiver is one of the pairs (n,m)
that was authenticated by the sender.

One could ask for additional protocol features:

• The receiver should notice if the network repeats messages or transmits
messages out of order. One way to do this is for the nonce generator to
use increasing nonces (in some specified ordering of the set N), and for
the receiver to discard (n′,m′, a′) unless n′ is larger than the last accepted
nonce.

• The receiver should notice if the network loses a message. There’s no way to
recover if the network is losing all messages, but there are retransmission
protocols that eventually succeed in transmitting all data if the network
delivers (e.g.) 1% of all messages.

But this paper focuses on the cryptographic problem of forgery elimination.
The sender’s authenticator for a pair (n,m) is h(m)+f(n): i.e., the sender gives

(n,m, h(m, f(n))) to the network. Here h is a random function from M to G, and f
is a random function from N to G. The pair (f, h) is a secret shared by the sender
and receiver; this means that the actions of the message generator, nonce generator,
and network are independent of (f, h). In particular, if the message generator
encrypts messages, it does so using a key independent of (f, h). The proof strategy
in this paper can be extended to cover protocols that reuse f for encryption, as
long as separate f inputs are used for encryption and for authentication; but that
extension is not included in the statement of Theorem 5.1.

Warning: “Random” and “uniform random” and “independent uniform random”
do not mean the same thing. For example, if k is a uniform random 16-byte string,
then (k, 0) is a non-uniform random 17-byte string; AESk is a non-uniform random
permutation of the set of 16-byte strings; k[0], the first byte of k, is a uniform
random byte; k[0], k[1], and k[2] are independent uniform random bytes; k[0], k[1],
and k[0]⊕k[1] are non-independent uniform random bytes; (k[0], 0) and (k[1], 0) are
independent non-uniform random 2-byte strings. I realize that the word “random”
is sometimes used to mean “uniform random, independent of everything else,” but
a more careful use of terminology is helpful in stating and proving theorems.

3. Attacks

The combined behavior of the message generator, nonce generator, and network
is called an “attack.” The attack creates messages; it creates nonces, subject to
the rule that nonces never repeat; it inspects the authenticators provided by the
sender; and it provides some number of forgeries to the receiver.

More formally: An attack is an algorithm given oracle access to a function
S. The algorithm feeds a nonce n1 and message m1 to the oracle. It receives an
authenticator a1 = S(n1,m1). It then feeds a nonce n2 and message m2 to the
oracle, obeying the rule that n2 6= n1 if m2 6= m1. It receives an authenticator
a2 = S(n2,m2). It then feeds a nonce n3 and message m3 to the oracle, obeying
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the rule that n3 6= n1 if m3 6= m1, and the rule that n3 6= n2 if m3 6= m2. It receives
an authenticator a3 = S(n3,m3). It continues for any number of messages. It then
prints some number of forgery attempts (n′,m′, a′).

The attack succeeds against S if at least one forgery attempt (m′, n′, a′) has
a′ = S(n′,m′) with (n′,m′) /∈ {(n1,m1), (n2,m2), (n3,m3), . . . }.

Is there an attack that succeeds against (n,m) 7→ h(m) + f(n) with noticeable
probability? Theorem 5.1 states, under certain assumptions on f and h, that the
answer is no. The receiver is overwhelmingly likely to discard every forgery—no
matter how the message generator chooses messages, now matter how the nonce
generator chooses unique nonces, and no matter how the network chooses forgeries.
(However, if the nonce generator repeats a nonce, all bets are off!)

The rest of this section discusses the strength of this theorem, under the same
assumptions on f and h.

Forgeries versus selective forgeries. A selective forgery is a forged message
chosen in advance by the attacker. Some protocols prevent selective forgeries but
allow attackers to compute authenticators for random-looking messages. These
protocols assume—often incorrectly—that random-looking messages will not cause
any damage. In contrast, h(m) + f(n) rejects all forgeries.

Attacks versus blind attacks. Some protocols prevent blind attacks but allow
forgeries when attackers can inspect authenticated messages. (Trivial example: use
a secret password as an authenticator for every message.) In contrast, h(m)+ f(n)
rejects all forgeries even after the attacker sees a large number of authenticated
messages. This paper does not rely on secrecy.

Chosen messages versus known messages. Some protocols are secure for some
message generators but are insecure for others. An attacker who can influence
the message generator can often obtain enough information to forge messages. In
contrast, h(m) + f(n) rejects all forgeries no matter what the message generator
does.

Of course, if an attacker can somehow convince the message generator to produce
a message, then he does not need to forge an authenticator for that message. An
easily corrupted message generator is often a problem. It is, however, not the
cryptographic problem considered in this paper.

Receiver interaction. In Section 2, the receiver is not a source of information.
However, when the same protocol is placed into a larger context, the receiver often
becomes a source of information, revealing to the attacker whether a forgery was
accepted.

One can expand the notion of “attack” to allow interaction with a verification
oracle. However, this expansion makes no difference in the attack’s success chance.
An attack that interacts with the receiver has the same success chance as an attack
that skips the interactions and simply assumes that all the forgeries are rejected.
This type of interaction can change the number of successful forgeries if the attacker
succeeds, but this paper guarantees that the attacker will not succeed in the first
place.
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4. Interpolation probabilities

Let f be a random function from N to G. The hypothesis on f in Section 5 is
that f has maximum k-interpolation probability on the scale of 1/#Gk, for various
k ∈ {0, 1, . . . ,#N}. Here the maximum k-interpolation probability of f is
the maximum, for all x1, x2, . . . , xk ∈ G and all distinct n1, n2, . . . , nk ∈ N , of the
probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk).

This section proves that this condition is satisfied by a uniform random function
and by a uniform random injective function.

Theorem 4.1. Let f be a uniform random function from N to G. Then f has

maximum k-interpolation probability 1/#Gk for each k ∈ {0, 1, . . . ,#N}.
Proof. The probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) is exactly
1/#Gk. �

Theorem 4.2. Let f be a uniform random injective function from N to G. Then

f has maximum k-interpolation probability at most (1− (k− 1)/#G)−k/2/#Gk for

each k ∈ {0, 1, . . . ,#N}.
Proof. Fix distinct n1, n2, . . . , nk ∈ N . Fix x1, x2, . . . , xk ∈ G.

Case 1: There are collisions in x1, x2, . . . , xk. Then (f(n1), f(n2), . . . , f(nk)) =
(x1, x2, . . . , xk) with probability 0.

Case 2: There are no collisions. Then f(n1) = x1 with probability 1/#G; if that
happens then f(n2) = x2 with conditional probability 1/(#G− 1); if that happens
then f(n3) = x3 with conditional probability 1/(#G − 2); and so on through
f(nk) = xk. The probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) is
∏

0≤i≤k−1 1/(#G − i), with square
∏

0≤i≤k−1 1/(#G − i)(#G − (k − 1 − i)) ≤
∏

0≤i≤k−1 1/(#G)2(1 − (k − 1)/#G) = (1 − (k − 1)/#G)−k/(#G)2k. �

5. The main theorem

Theorem 5.1. Let h be a random function from M to G. Let f be a random

function from N to G. Let C and D be positive integers. Assume that C +1 ≤ #N .

Assume, for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g with

probability at most ε. Assume that f has maximum C-interpolation probability

at most δ/#GC and maximum (C + 1)-interpolation probability at most δε/#GC.

Assume that h and f are independent. Then any attack that performs at most C
distinct oracle queries and at most D forgery attempts succeeds against (n,m) 7→
h(m) + f(n) with probability at most Dδε.

Proof. It suffices to show that each forgery attempt succeeds with probability at
most δε. Assume from now on that the attack makes exactly one forgery attempt.

If the attack performs fewer than C distinct oracle queries, modify it to perform
additional oracle queries with new nonces and to discard the results; new nonces
are available since #N ≥ C, and at least one message is available since #M ≥ 1.
Assume from now on that the attack makes exactly C distinct oracle queries.

If the attack might repeat oracle queries, modify it to cache oracle queries and
responses. Assume from now on that the attack does not repeat queries.

Write (ni,mi) for the ith oracle query. Then n1, n2, . . . , nC are distinct. Write
ai for the ith oracle response, when the attack is applied to (n,m) 7→ h(m) + f(n);
then ai = h(mi) + f(ni). Write (n′,m′, a′) for the attempted forgery.
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Everything that the attack does is determined by (1) an infinite sequence b of coin
flips, by definition independent of h and f , and (2) the sequence of oracle responses
a1, a2, . . . , aC . In particular, n1, n2, . . . , nC ,m1,m2, . . . ,mC , n′,m′, a′ are equal to
various functions evaluated at b, a1, a2, . . . , aC . Furthermore, f(ni) is determined
by ai and h(mi), so f(ni) is equal to a function evaluated at h, b, a1, a2, . . . , aC .

Fix (g1, g2, . . . , gC) ∈ GC . Consider the event that (n′,m′, a′) is a successful
forgery and (a1, a2, . . . , aC) = (g1, g2, . . . , gC). It suffices to show that this event
has probability at most δε/#GC .

Define p as the probability that b satisfies the following (measurable) constraint:
if (a1, a2, . . . , aC) = (g1, g2, . . . , gC) then n′ /∈ {n1, n2, . . . , nC}. I claim, for each b
satisfying the constraint and for each h, that f has conditional probability at most
δε/#GC of making the attack work.

Indeed, assume that b satisfies the constraint, that (n′,m′, a′) is a successful
forgery, and that (a1, a2, . . . , aC) = (g1, g2, . . . , gC). Then #{n1, n2, . . . , nC , n′} =
C + 1, and f(n1), f(n2), . . . , f(nC), f(n′) match various functions evaluated at
h, b, g1, g2, . . . , gC . By hypothesis, f is independent of h; f is also independent
of b; and g1, g2, . . . , gC are fixed. The conditional probability of f interpolating
these values is at most the maximum (C + 1)-interpolation probability of f , which
by hypothesis is at most δε/#GC .

I also claim, for each b not satisfying the constraint, that h has conditional
probability at most ε of satisfying a necessary differential condition; and, for each b
and each qualifying h, that f has conditional probability at most δ/#GC of making
the attack work.

Indeed, assume that b does not satisfy the constraint, that (a1, a2, . . . , aC) =
(g1, g2, . . . , gC), and that (n′,m′, a′) is a successful forgery. Then n′ = ni for a
unique i; a′ = h(m′)+f(ni); m′ 6= mi; and ai = h(mi)+f(ni). Now h(mi)−h(m′) =
ai − a′; the quantities mi, m′ and ai − a′ match various functions evaluated at
b, g1, g2, . . . , gC , and thus are independent of h; by hypothesis, h satisfies the
condition h(mi) − h(m′) = ai − a′ with probability at most ε. Furthermore,
f(n1), f(n2), . . . , f(nC) match various functions evaluated at h, b, g1, g2, . . . , gC ; f
is independent of h, b, g1, g2, . . . , gC ; the conditional probability of f interpolating
these values is at most the maximum C-interpolation probability of f , which by
hypothesis is at most δ/#GC .

The total probability of success is at most (p)(δε/#GC) + (1− p)(ε)(δ/#GC) =
δε/#GC . �

Theorem 5.2. Let h be a random function from M to G. Let f be a uniform

random function from N to G. Let C and D be positive integers. Assume that C +
1 ≤ #N . Assume, for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′)+g
with probability at most ε. Assume that h and f are independent. Then any attack

that performs at most C distinct oracle queries and at most D forgery attempts

succeeds against (n,m) 7→ h(m) + f(n) with probability at most D max{ε, 1/#G}.
Proof. Take δ = max{1, 1/ε#G}. Apply Theorem 4.1 and Theorem 5.1. �

Theorem 5.3. Let h be a random function from M to G. Let f be a uniform

random injective function from N to G. Let C and D be positive integers. Assume

that C + 1 ≤ #N . Assume, for all g ∈ G and all distinct m,m′ ∈ M , that

h(m) = h(m′)+g with probability at most ε. Assume that h and f are independent.

Then any attack that performs at most C distinct oracle queries and at most D
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forgery attempts succeeds against (n,m) 7→ h(m) + f(n) with probability at most

D(1 − C/#G)−(C+1)/2 max{ε, 1/#G}.
In particular, if C =

⌊√
#G

⌋

, then the extra factor (1−C/#G)−(C+1)/2 is below
1.7 for all reasonably large G.

Proof. Take δ = (1 − C/#G)−(C+1)/2 max{1, 1/ε#G}. Apply Theorem 4.2 and
Theorem 5.1. �
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