
Cache-timing attacks on AES

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

Abstract. This paper warns against the use of S-boxes in cryptography.
In particular, this paper shows that a simple cache-timing attack against
AES software reveals some key bits; this paper also discusses some of the
obstacles to constant-time array access on modern CPUs.

Keywords: side channels, timing attacks, software timing attacks, cache
timing, load timing, S-boxes, AES, Salsa10

1 Introduction

The point of this paper is that it is difficult for software to perform an array
lookup in time independent of the array index. Consequently, typical high-speed
AES software quickly reveals an unacceptable number of key bits to the simplest
conceivable timing attack; see Section 3. Using secret data as an array index is
a recipe for disaster.

One potential response is to load all necessary arrays from DRAM into L1
cache before using them. Unfortunately, this (1) is difficult to do correctly and
(2) does not guarantee constant-time array access. See Section 4.

Another potential response is to try to randomize the information being
leaked. This is a common response to hardware side channels; see, e.g., [4].
Unfortunately, randomization is expensive.

A third potential response, and the solution I recommend, is to stop using
S-boxes: when a cryptographic design relies on S-boxes to achieve reasonable
software speed (as AES does), throw it away. See Section 5.

? The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2004.11.21.
Permanent ID of this document: cd9faae9bd5308c440df50fc26a517b4. This is a
preliminary version meant to announce ideas; it will be replaced by a final version
meant to record the ideas for posterity. There may be big changes before the final
version. Future readers should not be forced to look at preliminary versions, unless
they want to check historical credits; if you cite a preliminary version, please repeat
all ideas that you are using from it, so that the reader can skip it.

Previous work

Koeune and Quisquater in [10] presented details of a fast timing attack on a
“careless implementation” of AES in which doublings used branches rather than
table lookups. “The result presented here is not an attack against Rijndael,
but against bad implementations of it,” Koeune and Quisquater wrote in [10,
Section 7]. In contrast, variable-time S-box lookups are not a sign of a “careless
implementation” of AES; they are difficult to avoid.

Kelsey, Schneier, Wagner, and Hall in [9, Section 7] expressed the belief that
timing attacks could exploit “cache hit ratio in large S-box ciphers like Blowfish,
CAST, and Khufu.” Page in [12], and then Tsunoo, Saito, Suzaki, Shigeri, and
Miyauchi in [14], presented fast timing attacks on DES when all S-boxes were
out of cache before each DES call.

Tsunoo et al. mentioned a strategy for attacking out-of-cache AES if many
(unusual) “plaintexts with long encryption time” could be found. See [14, Section
4.1]. This paper demonstrates a much simpler timing attack on AES. This paper
also points out that the “guaranteed” countermeasure suggested in [12, Section
5.1] and [14, Section 5] fails to achieve constant timings on real computers.

2 Summary of AES

AES scrambles a 16-byte input n using a 16-byte key k, a constant 256-byte
“S-box” S = (99, 124, 119, 123, 242, . . .), and a constant 256-byte “doubled S-
box” S′ = (198, 248, 238, 246, 255, . . .). These S-boxes are expanded into tables
T0, T1, T2, T3 defined by

T0[b] = (S[b] ⊕ S′[b], S[b], S[b], S′[b]),
T1[b] = (S[b], S[b], S′[b], S[b] ⊕ S′[b]),
T2[b] = (S[b], S′[b], S[b] ⊕ S′[b], S[b]),
T3[b] = (S′[b], S[b] ⊕ S′[b], S[b], S[b]).

Here ⊕ means xor, i.e., addition of vectors modulo 2.
AES works with two 16-byte auxiliary arrays, x and y. The first array is

initialized to k. The second array is initialized to n ⊕ k.
AES first modifies x as follows. View x as four 4-byte arrays x0, x1, x2, x3.

Compute the 4-byte array e = (S[x3[1]] ⊕ 1, S[x3[2]], S[x3[3]], S[x3[0]]). Replace
(x0, x1, x2, x3) with (e⊕ x0, e⊕ x0 ⊕ x1, e⊕ x0 ⊕ x1 ⊕ x2, e⊕ x0 ⊕ x1 ⊕ x2 ⊕ x3).

AES then modifies y as follows. View y as four 4-byte arrays y0, y1, y2, y3.
Replace (y0, y1, y2, y3) with

(T0[y0[0]] ⊕ T1[y1[1]] ⊕ T2[y2[2]] ⊕ T3[y3[3]] ⊕ x0,

T0[y1[0]] ⊕ T1[y2[1]] ⊕ T2[y3[2]] ⊕ T3[y0[3]] ⊕ x1,

T0[y2[0]] ⊕ T1[y3[1]] ⊕ T2[y0[2]] ⊕ T3[y1[3]] ⊕ x2,

T0[y3[0]] ⊕ T1[y0[1]] ⊕ T2[y1[2]] ⊕ T3[y2[3]] ⊕ x3).

I learned this view of AES from software published by Barreto in [3].

AES modifies x again, using ⊕2 instead of ⊕1; modifies y again; modifies
x again, using ⊕4; modifies y again; and so on for a total of ten rounds. The
constants for the x modifications are 1, 2, 4, 8, 16, 32, 64, 128, 27, 54. On the tenth
round, the modification of y uses (S[], S[], S[], S[]) rather than T0[]⊕T1[]⊕T2[]⊕
T3[]. The final value of y is the output AESk(n).

Note that the evolution of x is independent of n. One can expand k into the
eleven values of x, together occupying 176 bytes, and then reuse those values for
each n. Beware, however, that the time saved may be outweighed by the time
to load the precomputed values of x from memory, when many keys are handled
simultaneously.

3 A simple cache-timing attack on AES

I wrote reasonably straightforward AES code for the x86 architecture, and timed
it on a 900MHz Athlon as follows:

int aescycles(void)

{

timing tstart;

timing tend;

int t;

do {

timing_now(&tstart);

aes(out,key,in);

timing_now(&tend);

t = timing_diff(&tend,&tstart);

} while (t <= 0 || t >= 1000);

return t;

}

Here timing_now uses the CPU’s RDTSC instruction to report the number
of clock cycles since boot; timing_diff subtracts two such numbers. Timings
outside a reasonable range are ignored: occasionally the AES computation is
interrupted by a network packet or by another program. (Some CPUs, notably
the Pentium M, have also been reported to erroneously add 232 to occasional
cycle counts.)

I did this repeatedly with pseudorandom inputs under a single key, identifying
the byte at input position b that made AES slowest:

for (x = 0;x < 256;++x) {

xt = 0;

for (i = 0;i < loops;++i) {

for (j = 0;j < 16;++j) in[j] = random() >> 16;

in[b] = x;

xt += aescycles(); xt += aescycles(); xt += aescycles();

xt += aescycles(); xt += aescycles();

}

if (xt > bestxt) { bestx = x; bestxt = xt; }

}

return bestx;

Unlike [14], I did not go to any extra effort to knock table entries out of cache.

I then tried, for increasingly many repetitions and for various input positions,
seeing how well that byte predicted the corresponding key byte, for ten random
keys:

for (loops = 4;loops <= 65536;loops *= 2) {

for (b = 0;b < 16;++b) {

printf("%d, %d loops:",b,loops);

for (k = 0;k < 10;++k) {

for (j = 0;j < 16;++j) key[j] = getchar();

printf(" %d",bestx() ^ key[b]);

fflush(stdout);

}

printf("\n");

}

}

Here getchar() was reading bytes from /dev/urandom, a source of hard-to-
predict data. The operation ^ is xor; recall that AES begins by xor’ing the key
with the input and then using each byte of the result as a table index.

The program’s output showed within a few minutes that this simple timing
analysis reliably predicted 24 bits of the key—specifically, key byte 1 was 135⊕x

where x was the input byte 1 that maximized the AES time, and similarly for
key bytes 5 and 9:

0, 1024 loops: 228 220 220 90 146 12 192 217 130 137

1, 1024 loops: 135 135 135 135 135 135 135 135 135 135

2, 1024 loops: 234 39 14 151 153 53 8 70 6 155

3, 1024 loops: 218 149 169 94 204 41 145 72 202 0

4, 1024 loops: 177 38 46 15 146 81 119 59 25 187

5, 1024 loops: 135 135 135 135 135 135 135 135 135 135

6, 1024 loops: 0 175 64 9 3 67 78 201 215 185

7, 1024 loops: 204 98 59 128 253 186 21 57 209 43

8, 1024 loops: 239 56 110 255 254 255 30 189 94 63

9, 1024 loops: 135 135 135 178 135 173 135 135 135 135

10, 1024 loops: 20 184 24 83 142 64 227 182 48 230

11, 1024 loops: 165 155 170 245 149 246 97 245 172 64

12, 1024 loops: 238 226 91 138 21 140 222 118 132 174

13, 1024 loops: 85 83 115 24 67 6 142 90 151 243

14, 1024 loops: 54 40 227 43 181 228 82 110 67 170

15, 1024 loops: 133 33 254 70 115 59 217 120 140 204

I stopped the analysis at this point; 24 key bits is already an unacceptable level
of information leakage.

To check that these results were not specific to my AES implementation, I
substituted the (slower, even without key expansion) implementation from [3],
and again found that this simple timing analysis reliably predicted some key
bytes:

8, 512 loops: 253 253 253 253 253 253 10 253 253 253

12, 512 loops: 253 253 253 253 253 253 110 253 253 253

See Appendix A for analysis code targeting yet another implementation.
Of course, the same attacks can be carried out on an AES implementation

exposed to the network. See [5] for an introduction to remote timing attacks.
The attacker’s cost depends on the signal-to-noise ratio, where “signal” is the
AES cache-timing variability (which, presumably, would be improved by a more
sophisticated attack) and “noise” is independent timing variation added by the
network. If, for example, the signal is 2−4 clock cycles while the noise is 210 clock
cycles, the attacker will see the signal within roughly 230 tests.

4 Load-timing variability

This section discusses several ways in which the time taken to load an array
element depends on the array index. I do not guarantee the completeness of
this list; my goal in this section is to demonstrate that constant S-box timing is
difficult to achieve, not to demonstrate that it can be achieved.

Cache is faster than DRAM

Here is the simplest model of timing variability; see, e.g., [12, Section 2] and
[14, Section 2.1]. All recently used lines of memory are automatically saved in
a limited-size cache. Reading from a cached line takes less time than reading
from an uncached line.

The Athlon, for example, divides memory into 64-byte lines. There are 327680
bytes of cache containing 5120 recently used lines.

Similarly, a typical Pentium III divides memory into 32-byte lines, and has
524288 bytes of cache containing 16384 recently used lines.

L1 cache is faster than L2 cache

Modern CPUs actually have two (and occasionally more) levels of cache. All
recently used lines of level-2 cache are automatically saved in (or moved to) a
limited-size level-1 cache. Reading from a line in L1 cache takes less time than
reading from a line in L2 cache.

On the Athlon, for example, there are 65536 bytes of L1 cache containing
1024 recently used lines, and 262144 bytes of L2 cache containing 4096 other

recently used lines. The result of a load from L1 cache is available after 3 cycles;
the result of a load from L2 cache is available after 11 cycles.

Similarly, a typical Pentium III has 16384 bytes of L1 cache containing 512
recently used lines, and 524288 bytes of L2 cache containing 16384 recently used
lines, including all the lines in L1 cache.

Cache associativity is limited

The Athlon’s L1 cache is two-way associative. (The Pentium III’s L1 cache
is four-way associative.) This means that each line of memory has only two
locations in L1 cache where it can be placed; all lines with the same address
modulo 32768 are competing for those two locations. If three lines with the
same address modulo 32768 are read, the first line is booted out of the L1 cache.

Typical AES software uses several different arrays: the AES input; the key
(perhaps expanded); the AES output; the stack, for temporary variables; and
the AES tables. The positions of these arrays can easily overlap modulo 32768.
Consequently, even if the AES software starts by making sure that the AES
tables are in L1 cache, it might lose some table entries from cache by accessing
(e.g.) the key and the stack.

A solution is to first copy all relevant data onto the stack and then make
sure that the AES tables are in L1 cache. This takes some time. Copying 208
bytes of input, key, and output takes at least 26 cycles; loading 64 cache lines, to
guarantee that those lines are in L1 cache, takes at least 32 cycles, plus several
cycles waiting in case the last few lines are still being copied from L2 cache.

(Note that similar penalties apply to many other functions. Consider, for
example, the 4096-byte expanded key arrays used in [11, Section 3.2]—“GCM”—
for moderate-speed multiplication in a field of size 2128. The array indices depend
on secret data. The message and the stack can overlap the arrays modulo 32768,
forcing various portions of the arrays out of L1 cache and leaking a great deal
of secret information.)

Another difficulty is that the operating system will interrupt the program
during the AES computation if (for example) a network packet arrives, or a disk
has found a block of data, or another program has been waiting for a while to use
the CPU. When the program starts again, the AES tables are unlikely to be in
L1 cache. A solution is for the program to call cache_level1(table,size) to
tell the operating system to put the tables back into L1 cache before restarting
the program. Unfortunately, I am not aware of any current operating-system
support for this cache_level1() function.

Cache-bank throughput is limited

The time taken to load an array element depends on the array index even if all

array entries are in L1 cache.
On the Athlon, for example, each 64-byte cache line is divided into 8 banks.

Usually the L1 cache can perform two loads from L1 cache every cycle. However,

if the two loads are from bank 0 of two lines with different addresses modulo
32768, or from bank 1 of two such lines, etc., then the second load will wait for
a cycle.

(I am not aware of any official Athlon documentation saying this. Thanks to
Andreas Kaiser for drawing my attention to [2, Section 5.8], which documents the
analogous fact for the Athlon 64. See [7, Section 14.7] for a similar observation
about the Pentium Pro/II/III.)

One can try to avoid this problem by using 64-byte spacing between elements
of an array, so that all elements are in the same bank. This, however, slows down
the computation in two ways. First, multiplying an array index by 64 takes an
extra instruction compared to multiplying it by 1, 2, 4, or 8; there are 160
array lookups in AES (aside from key expansion), and the 160 extra instructions
consume more than 53 Athlon cycles. Second, it is now necessary to load 256
lines into L1 cache rather than 64, taking at least 128 Athlon cycles rather than
32.

A more subtle approach is to use 32-byte spacing or 16-byte spacing. This
reduces the penalty from 26 + 53 + 128 cycles to 26 + 53 + 64 or 26 + 53 + 32
cycles respectively. However, it means that each array occupies 2 or 4 banks
respectively. One must carefully schedule loads so that loads from the same
bank cannot bump into each other.

5 Cryptography without S-boxes

When I explained cache-timing attacks in a course on cryptography in 1997,
I categorically recommended against all use of S-boxes in new cryptographic
designs. I have seen nothing since then to change my opinion. S-boxes are unsafe

and unnecessary.

The simple operations

• + (addition modulo 232),
• <<c (shift of a 32-bit word c bits to the left, where c is constant),
• >>c (shift of a 32-bit word c bits to the right),
• <<<c (rotation of a 32-bit word c bits to the left),
• & (32-bit and),
• | (32-bit or), and
• ^ (32-bit xor)

take constant time on typical CPUs and appear to provide high security at high
speed. Three examples of this approach are TEA, published by Wheeler and
Needham in [16]; SHA-256, published in [1]; and Helix, published by Ferguson,
Whiting, Schneier, Kelsey, Lucks, and Kohno in [6].

(One can implement AES using these operations, of course, but the result is
painfully slow. AES cannot achieve reasonable software speed without S-boxes.)

Here is a new example of a cryptographic function with input-independent
timings on typical CPUs. The function, denoted Salsa10, produces a 64-byte
output (representing 16 little-endian 4-byte integers) from a 64-byte input as
follows:

#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))

void salsa10_specification(uint32 x[16],uint32 in[16])

{

int i;

for (i = 0;i < 16;++i) x[i] = in[i];

for (i = 10;i > 0;--i) {

x[4] ^= R(x[0]+x[12], 6); x[8] ^= R(x[4]+x[0],17);

x[12] += R(x[8]|x[4],16); x[0] += R(x[12]^x[8], 5);

x[9] += R(x[5]|x[1], 8); x[13] += R(x[9]|x[5], 7);

x[1] ^= R(x[13]+x[9],17); x[5] += R(x[1]^x[13],12);

x[14] ^= R(x[10]+x[6], 7); x[2] += R(x[14]^x[10],15);

x[6] ^= R(x[2]+x[14],13); x[10] ^= R(x[6]+x[2],15);

x[3] += R(x[15]|x[11],20); x[7] ^= R(x[3]+x[15],16);

x[11] += R(x[7]^x[3], 7); x[15] += R(x[11]^x[7], 8);

x[1] += R(x[0]|x[3], 8)^i;x[2] ^= R(x[1]+x[0],14);

x[3] ^= R(x[2]+x[1], 6); x[0] += R(x[3]^x[2],18);

x[6] += R(x[5]^x[4], 8); x[7] += R(x[6]^x[5],12);

x[4] += R(x[7]|x[6],13); x[5] ^= R(x[4]+x[7],15);

x[11] ^= R(x[10]+x[9],18); x[8] += R(x[11]^x[10],11);

x[9] ^= R(x[8]+x[11], 8); x[10] += R(x[9]|x[8], 6);

x[12] += R(x[15]^x[14],17); x[13] ^= R(x[12]+x[15],15);

x[14] += R(x[13]|x[12], 9); x[15] += R(x[14]^x[13], 7);

}

for (i = 0;i < 16;++i) x[i] += in[i];

}

A casual Athlon implementation of Salsa10 takes under 12 cycles per output
byte—less time than AES.

I designed Salsa10 to be a cryptographically strong pseudorandom number
generator. I conjecture that the following two oracles are indistinguishable:

• An oracle for a uniform random function from 16-byte strings to 64-byte
strings.

• An oracle for n 7→ Salsa10(n, 0, k, 0). Here n is a 16-byte string and k is a
uniform random 16-byte string.

I offer $1000 for a proof that one can distinguish these oracles with better price-
performance ratio than searching through 2128 keys.

I simultaneously designed Salsa10 to be a strong hash function. I offer $1000
for a 64-byte string x such that Salsa10(x) begins with 16 bytes of 0s, or for two
different 64-byte strings x, x′ such that Salsa10(x) and Salsa10(x′) begin with
the same 32 bytes.

The Salsa10 data flow follows a row-column structure as in AES, for fast
diffusion and high parallelizability. The three basic operations in Salsa10 were
mixed randomly (except that I decided to have exactly eight | operations), and
the rotation amounts were chosen randomly between 5 and 20; I conjecture that
random choices within this framework are overwhelmingly likely to be secure.

I am not aware of any patents or patent applications relevant to Salsa10.

References

1. —, Secure hash standard, Federal Information Processing Standard 180-2, National
Institute of Standards and Technology, Washington, 2002. URL: http://csrc.

nist.gov/publications/fips/.

2. —, Software optimization guide for AMD Athlon 64 and AMD Opteron proces-
sors, Advanced Micro Devices, 2004. URL: http://www.amd.com/us-en/assets/
content type/white papers and tech docs/25112.PDF.

3. Paulo S. L. M. Barreto, The AES block cipher in C++ (2003). URL: http://

planeta.terra.com.br/informatica/paulobarreto/EAX++.zip.

4. Johannes Bloemer, Jorge Guajardo Merchan, Volker Krummel, Provably secure
masking of AES (2004). URL: http://eprint.iacr.org/2004/101/.

5. David Brumley, Dan Boneh, Remote timing attacks are practical (2003). URL:
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf.

6. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, Ta-
dayoshi Kohno, Helix: fast encryption and authentication in a single cryptographic
primitive, in [8] (2003), 330–346. URL: http://www.macfergus.com/helix/.

7. Agner Fog, How to optimize for the Pentium family of microprocessors, 2004. URL:
http://www.agner.org/assem/.

8. Thomas Johansson (editor), Fast software encryption: 10th international workshop,
FSE 2003, Lund, Sweden, February 24–26, 2003, revised papers, Lecture Notes in
Computer Science, 2887, Springer-Verlag, Berlin, 2003. ISBN 3–540–20449–0.

9. John Kelsey, Bruce Schneier, David Wagner, Chris Hall, Side channel cryptanalysis
of product ciphers, Journal of Computer Security 8 (2000), 141–158. ISSN 0926–
227X.

10. François Koeune, Jean-Jacques Quisquater, A timing attack against Rijndael
(1999). URL: http://www.dice.ucl.ac.be/crypto/techreports.html.

11. David A. McGrew, John Viega, The security and performance of the Galois/counter
mode of operation (2004). URL: http://eprint.iacr.org/2004/193/.

12. Daniel Page, Theoretical use of cache memory as a cryptanalytic side-channel
(2002). URL: http://eprint.iacr.org/2002/169/.

13. Bart Preneel (editor), Fast software encryption: second international workshop,
Leuven, Belgium, 14–16 December 1994, proceedings, Lecture Notes in Computer
Science, 1008, Springer-Verlag, Berlin, 1995. ISBN 3–540–60590–8.

14. Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, Hiroshi Miyauchi,
Cryptanalysis of DES implemented on computers with cache, in [15] (2003), 62–76.

15. Colin D. Walter, Cetin K. Koc, Christof Paar (editors), Cryptographic hardware
and embedded systems—CHES 2003, Springer-Verlag, Berlin, 2003. ISBN 3–540–
40833–9.

16. David J. Wheeler, Roger M. Needham, TEA, a tiny encryption algorithm, in [13]
(1995), 363–366.

A Appendix: Timing OpenSSL

The same attack as in Section 3, run on a Pentium M in a ThinkPad T40 laptop
against the OpenSSL 0.9.7d library included in FreeBSD 4.10, quickly predicts
24 key bits:

% gcc --version

2.95.4

% sysctl hw.model

hw.model: Intel(R) Pentium(R) M processor 1300MHz

% gcc -o time time.c -O2 -lcrypto

% ./time < /dev/urandom

...

0, 32 loops: 113 62 165 49 102 128 78 146 161 19

1, 32 loops: 86 83 108 230 120 23 98 67 83 152

2, 32 loops: 85 85 98 98 98 98 98 98 98 98

3, 32 loops: 213 23 131 248 66 111 63 239 126 83

4, 32 loops: 117 94 196 17 35 228 111 171 188 186

5, 32 loops: 104 72 161 44 175 12 124 160 15 176

6, 32 loops: 157 67 122 163 198 115 63 150 120 223

7, 32 loops: 78 73 167 161 166 20 85 56 29 249

8, 32 loops: 9 254 192 146 122 7 88 155 49 240

9, 32 loops: 83 129 230 4 173 6 94 208 146 28

10, 32 loops: 94 94 94 94 94 94 94 94 94 94

11, 32 loops: 68 180 14 218 149 38 236 224 114 172

12, 32 loops: 218 82 249 133 114 241 194 55 16 69

13, 32 loops: 48 138 22 95 209 229 32 153 35 40

14, 32 loops: 85 85 85 85 85 85 85 85 85 85

15, 32 loops: 107 31 218 100 174 68 245 97 132 220

I’ve included the time.c code here so that the reader can easily reproduce these
results:

#include <stdio.h>

#include <openssl/aes.h>

typedef struct { unsigned long t[2]; } timing;

#define timing_now(x) \

asm volatile(".byte 15;.byte 49" \

: "=a"((x)->t[0]),"=d"((x)->t[1]))

#define timing_diff(x,y) \

(((x)->t[0] - (double) (y)->t[0]) \

+ 4294967296.0 * ((x)->t[1] - (double) (y)->t[1]))

AES_KEY expanded;

unsigned char out[16];

unsigned char key[16];

unsigned char in[16];

int cycles(void)

{

timing tstart;

timing tend;

int t;

do {

timing_now(&tstart);

AES_encrypt(in,out,&expanded);

timing_now(&tend);

t = timing_diff(&tend,&tstart);

} while (t <= 0 || t >= 1500);

return t;

}

int loops = 1;

int bump(int b)

{

int i;

int j;

int x;

int xt;

int bestx;

int bestxt = 0;

for (x = 0;x < 256;++x) {

xt = 0;

for (i = 0;i < loops;++i) {

for (j = 0;j < 16;++j) in[j] = random() >> 16;

in[b] = x;

xt += cycles() + cycles() + cycles();

}

if (xt > bestxt) {

bestx = x;

bestxt = xt;

}

}

return bestx;

}

main()

{

int j;

int k;

int b;

for (loops = 4;loops <= 65536;loops *= 2) {

for (b = 0;b < 16;++b) {

printf("%d, %d loops:",b,loops);

for (k = 0;k < 10;++k) {

for (j = 0;j < 16;++j) key[j] = getchar();

AES_set_encrypt_key(key,128,&expanded);

printf(" %d",bump(b) ^ key[b]);

fflush(stdout);

}

printf("\n");

}

}

return 0;

}

