import Mathlib.RingTheory.Polynomial.Basic import Goppadecoding.logic import Goppadecoding.vanishing import Goppadecoding.approximant import Goppadecoding.hamming open Polynomial namespace Goppadecoding section interpolation_with_errors variable {k: Type _} [Field k] [DecidableEq k] variable {U: Type _} [DecidableEq U] theorem interpolation_with_errors {α e: U → k} {S: Finset U} {A B a b f: k[X]} {t: ℕ} (injective: Set.InjOn α S) (Adef: A = monic_vanishing_at α S) (appr: approximant A B t a b) (fdeg: 2*t + f.degree < A.degree) (edef: (∀ s, s ∈ S → e s = B.eval (α s) - f.eval (α s))) (wt: hamming_weight e S ≤ t) : (a ∣ A ∧ a ≠ 0 ∧ f = B-b*(A/a) ∧ 2*t + (a*B-b*A).degree < S.card + a.degree ∧ { s ∈ S | e s ≠ 0 } = { s ∈ S | a.eval (α s) = 0 } ) := by let E := monic_vanishing_at α (S.filter (fun s ↦ e s = 0)) let c := monic_vanishing_at α (S.filter (fun s ↦ e s ≠ 0)) have cdeg: degree c ≤ t := by calc _ = ((S.filter (fun s ↦ e s ≠ 0)).card: WithBot ℕ) := by apply degree_monic_vanishing_at _ = ((hamming_weight e S): WithBot ℕ) := by rw[hamming_weight] _ ≤ (t: WithBot ℕ) := by norm_cast have Ec: E*c = A := by rw[monic_vanishing_at_filter,Adef] have Ediv: E ∣ B-f := by apply monic_vanishing_at_divides . exact injon_filter α S (fun s => e s = 0) injective intro s es0 have sS: s ∈ S := by apply Finset.mem_of_mem_filter s es0 calc (B-f).eval (α s) = B.eval (α s) - f.eval (α s) := eval_sub B f (α s) _ = e s := by rw[← edef s sS] _ = 0 := by simp only [Finset.mem_filter] at es0 simp only [es0] cases Ediv with | intro d BfEd => have cBdA: c*B-d*A = c*f := by calc _ = c*B-d*(E*c) := by rw[← Ec] _ = c*B-(E*d)*c := by ring _ = c*B-(B-f)*c := by rw[← BfEd] _ = c*f := by ring have degcBdA: t + degree (c*B-d*A) < degree A := by have cdeg2: (t + degree f) + degree c ≤ (t + degree f) + t := by apply add_le_add_left cdeg calc _ = t + degree (c*f) := by rw[cBdA] _ = t + (degree c + degree f) := by rw[degree_mul] _ = (t + degree f) + degree c := by group _ ≤ (t + degree f) + t := cdeg2 _ = 2*t + degree f := by group _ < degree A := fdeg have Lexists: ∃ L, (c = a*L ∧ d = b*L) := approximant_best appr cdeg degcBdA cases Lexists with | intro L caLdbL => have cnonzero: c ≠ 0 := by apply monic_vanishing_at_nonzero have ac: a ∣ c := by apply Dvd.intro L rw[caLdbL.1] have aA: a ∣ A := by have cA: c ∣ A := by apply Dvd.intro E rw[← Ec] ring exact dvd_trans ac cA constructor . exact aA have anonzero: a ≠ 0 := nonzero_if_divides_nonzero ac cnonzero constructor . exact anonzero have afaBbA: a*f = a*B-b*A := by have Leq: L*(a*f) = L*(a*B-b*A) := by calc _ = (a*L)*f := by ring _ = c*f := by rw[← caLdbL.1] _ = c*B-d*A := by rw[← cBdA] _ = (a*L)*B-d*A := by rw[caLdbL.1] _ = (a*L)*B-(b*L)*A := by rw[caLdbL.2] _ = L*(a*B-b*A) := by ring have Ldivc: L ∣ c := by apply Dvd.intro a rw[mul_comm] rw[caLdbL.1] have Lnonzero: L ≠ 0 := by exact nonzero_if_divides_nonzero Ldivc cnonzero apply mul_left_cancel₀ Lnonzero Leq have aAa: a*(A/a) = A := EuclideanDomain.mul_div_cancel' anonzero aA have fBbAa: f = B-b*(A/a) := by have fBbAa1: a*f = a*(B-b*(A/a)) := by calc a*f = a*B-b*A := afaBbA _ = a*B-b*(a*(A/a)) := by rw[aAa] _ = a*(B-b*(A/a)) := by ring apply mul_left_cancel₀ anonzero fBbAa1 constructor . exact fBbAa constructor . calc _ = 2*t + degree (a*f) := by rw[afaBbA] _ = 2*t + (degree a + degree f) := by rw[degree_mul] _ = (2*t + degree f) + degree a := by group _ < degree A + degree a := by apply add_lt_add_right_nonzero_degree anonzero fdeg _ = degree (monic_vanishing_at α S) + degree a := by rw[Adef] _ = S.card + degree a := by rw[degree_monic_vanishing_at] ext s simp only [ne_eq, Set.mem_setOf_eq, and_congr_right_iff] intro sinS rw[edef s sinS] have Aeval: A.eval (α s) = 0 := by rw[Adef] apply monic_vanishing_at_vanishes α S sinS by_cases aeval: a.eval (α s) = 0 . simp only [aeval, iff_true, ne_eq] have Aaeval: (A/a).eval (α s) ≠ 0 := by have derivA: a*(A/a).diff + a.diff*(A/a) = A.diff := by calc _ = (a*(A/a)).diff := by rw[diff,add_comm] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, derivative_mul] _ = A.diff := by rw[aAa] have derivAeval: a.diff.eval (α s) * (A/a).eval (α s) ≠ 0 := by calc _ = 0 * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by ring _ = a.eval (α s) * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by simp only [zero_mul, zero_add, aeval] _ = (a*(A/a).diff).eval (α s) + (a.diff*(A/a)).eval (α s) := by repeat rw[eval_mul] _ = (a*(A/a).diff + a.diff*(A/a)).eval (α s) := by rw[eval_add] _ = A.diff.eval (α s) := by rw[derivA] _ = (monic_vanishing_at α S).diff.eval (α s) := by rw[Adef] _ ≠ 0 := by apply derivative_monic_vanishing_at_eval_nonzero α injective sinS exact right_ne_zero_of_mul derivAeval have beval: b.eval (α s) ≠ 0 := by let coprime := appr.1 exact no_shared_root_if_coprime coprime aeval have bAaeval: b.eval (α s) * (A/a).eval (α s) ≠ 0 := mul_ne_zero beval Aaeval have Bfeval: B.eval (α s) - f.eval (α s) ≠ 0 := by calc _ = (B-f).eval (α s) := by rw[eval_sub] _ = (B-(B-b*(A/a))).eval (α s) := by rw[fBbAa] _ = (b*(A/a)).eval (α s) := by group _ = b.eval (α s) * (A/a).eval (α s) := by rw[eval_mul] _ ≠ 0 := bAaeval simp only [Bfeval, not_false_eq_true] . simp only [aeval, iff_false, not_not] have aBfeval: a.eval (α s) * (B.eval (α s) - f.eval (α s)) = 0 := by calc _ = (a*(B-f)).eval (α s) := by rw[← eval_sub,← eval_mul] _ = (a*B-a*f).eval (α s) := by ring_nf _ = (a*B-(a*B-b*A)).eval (α s) := by rw[afaBbA] _ = (b*A).eval (α s) := by ring_nf _ = b.eval (α s) * A.eval (α s) := by rw[eval_mul] _ = b.eval (α s) * 0 := by rw[Aeval] _ = 0 := by ring rw[← not_eq_iff] at aeval apply zero_if_mul_left_zero aeval aBfeval theorem checking_interpolation_with_errors {α: U → k} {S: Finset U} {A B a b f: k[X]} {t: ℕ} (injective: Set.InjOn α S) (Adef: A = monic_vanishing_at α S) (adeg: a.degree ≤ t) (aA: a ∣ A) (aBbAdeg: 2*t + (a*B-b*A).degree < S.card + a.degree) (fdef: f = B-b*(A/a)) : (a*(B-f) = b*A ∧ 2*t + f.degree < S.card ∧ hamming_weight (fun s ↦ B.eval (α s) - f.eval (α s)) S ≤ t ) := by have Anonzero: A ≠ 0 := by rw[Adef]; exact monic_vanishing_at_nonzero α S have anonzero: a ≠ 0 := nonzero_if_divides_nonzero aA Anonzero have aAa: a*(A/a) = A := EuclideanDomain.mul_div_cancel' anonzero aA have af: a*f = a*B-b*A := by calc a*f = a*(B-b*(A/a)) := by rw[fdef] _ = a*B-b*(a*(A/a)) := by ring _ = a*B-b*A := by rw[aAa] constructor . calc a*(B-f) = a*B-a*f := by ring _ = a*B-(a*B-b*A) := by rw[af] _ = b*A := by ring constructor . have afdeg: (2*t + degree f) + degree a < S.card + degree a := by calc _ = 2*t + (degree a + degree f) := by group _ = 2*t + degree (a*f) := by rw[← degree_mul] _ = 2*t + degree (a*B-b*A) := by rw[af] _ < S.card + degree a := aBbAdeg exact lt_of_add_lt_add_right afdeg unfold hamming_weight simp only [ne_eq] have Bfroots: (S.filter (fun s ↦ ¬B.eval (α s) - f.eval (α s) = 0)) ⊆ (S.filter (fun s ↦ a.eval (α s) = 0)) := by intro s simp only [Finset.mem_filter, and_imp] intro sinS Bfnonzero rw[← not_eq_iff] at Bfnonzero constructor . exact sinS have aBfeval: a.eval (α s) * (B.eval (α s) - f.eval (α s)) = 0 := by calc _ = (a*(B-f)).eval (α s) := by rw[eval_mul,eval_sub] _ = (a*(B-(B-b*(A/a)))).eval (α s) := by rw[fdef] _ = (b*(a*(A/a))).eval (α s) := by ring_nf _ = (b*A).eval (α s) := by rw[aAa] _ = b.eval (α s) * A.eval (α s) := by rw[eval_mul] _ = b.eval (α s) * (monic_vanishing_at α S).eval (α s) := by rw[Adef] _ = b.eval (α s) * 0 := by rw[monic_vanishing_at_vanishes α S sinS] _ = 0 := by ring exact zero_if_mul_right_zero Bfnonzero aBfeval have Bfroots2: (S.filter (fun s ↦ ¬B.eval (α s) - f.eval (α s) = 0)).card ≤ (S.filter (fun s ↦ a.eval (α s) = 0)).card := Finset.card_le_of_subset Bfroots have rootst: (S.filter (fun s ↦ a.eval (α s) = 0)).card ≤ (t:WithBot ℕ) := by calc _ ≤ degree a := card_filter_image_roots_le_degree α S a injective anonzero _ ≤ t := adeg have rootst2: (S.filter (fun s ↦ a.eval (α s) = 0)).card ≤ t := WithBot.coe_le_coe.mp rootst exact le_trans Bfroots2 rootst2 end interpolation_with_errors