-rw-r--r-- 15586 leangoppa-20230726/Goppadecoding/goppa_binary.lean raw
import Mathlib.RingTheory.Polynomial.Basic import Goppadecoding.logic import Goppadecoding.vanishing import Goppadecoding.approximant import Goppadecoding.interpolator import Goppadecoding.hamming import Goppadecoding.vanishing_hamming import Goppadecoding.reedsolomon import Goppadecoding.diff open Polynomial BigOperators namespace Goppadecoding section goppa_binary variable {U: Type _} [DecidableEq U] variable {k: Type _} [Field k] [CharP k 2] [DecidableEq k] theorem goppa_decoding {α e: U → k} {S: Finset U} {A B a b G: k[X]} {t: ℕ} (injective: Set.InjOn α S) (Adef: A = monic_vanishing_at α S) (Gdeg: G.degree = 2*t) (GA: IsCoprime G A) (appr: approximant A B t a b) (einF2: (∀ s, s ∈ S → e s = 0 ∨ e s = 1)) (wt: hamming_weight e S ≤ t) (codeword: G ∣ ∑ s in S, C (((G * B).eval (α s) / A.diff.eval (α s) - e s)) * monic_vanishing_at_except α S s) : ((∀ s, s ∈ S → e s = if a.eval (α s) = 0 then 1 else 0) ∧ hamming_weight e S = a.degree ∧ a ∣ A ∧ a ∣ G*b - a.diff ∧ 2*t + (a*B-b*A).degree < S.card + a.degree ) := by have AG: IsCoprime A G := isCoprime_comm.mpr GA let c := fun s ↦ (G*B).eval (α s) / A.diff.eval (α s) - e s have Gc: G ∣ ∑ s in S, C (c s) * monic_vanishing_at_except α S s := codeword cases Gc with | intro f Gf => have fdeg: 2*t + f.degree < A.degree := by calc _ = G.degree + f.degree := by rw[Gdeg] _ = (G*f).degree := by rw[degree_mul] _ = (∑ s in S, C (c s) * monic_vanishing_at_except α S s).degree := by rw[←Gf] _ < S.card := by apply sum_degree_lt S intro s sinS apply degree_C_mul_lt_if_degree_lt apply degree_monic_vanishing_at_except sinS _ = A.degree := by rw[Adef,degree_monic_vanishing_at α S] have Aprimeevalnonzero: ∀ s, s ∈ S → A.diff.eval (α s) ≠ 0 := by intro s sinS rw[Adef] exact derivative_monic_vanishing_at_eval_nonzero α injective sinS have Gfeval: ∀ s, s ∈ S → (G*f).eval (α s) = c s * A.diff.eval (α s) := by intro s sinS calc _ = (∑ s in S, C (c s) * monic_vanishing_at_except α S s).eval (α s) := by rw[←Gf] _ = (interpolator α S (fun s ↦ c s * A.diff.eval (α s))).eval (α s) := by rw[sum_C_mul_monic_vanishing_at_except_eq_interpolator _ injective Adef] _ = c s * A.diff.eval (α s) := by apply interpolator_eval injective sinS have GBfeval: ∀ s, s ∈ S → (G*(B-f)).eval (α s) = e s * A.diff.eval (α s) := by intro s sinS calc _ = (G*B-G*f).eval (α s) := by ring_nf _ = (G*B).eval (α s) - (G*f).eval (α s) := by rw[eval_sub] _ = (G*B).eval (α s) - (c s * A.diff.eval (α s)) := by rw[Gfeval s sinS] _ = (G*B).eval (α s) - (((G*B).eval (α s) / A.diff.eval (α s) - e s) * A.diff.eval (α s)) := rfl _ = (G*B).eval (α s) - ((G*B).eval (α s) / A.diff.eval (α s) * A.diff.eval (α s)) + e s * A.diff.eval (α s) := by ring _ = (G*B).eval (α s) - (G*B).eval (α s) + e s * A.diff.eval (α s) := by rw[div_mul_cancel _ (Aprimeevalnonzero s sinS)] _ = e s * A.diff.eval (α s) := by group have Bfevalnonzero: ∀ s, s ∈ S → ((B-f).eval (α s) ≠ 0 ↔ e s ≠ 0) := by intro s sinS constructor . intro Bfnonzero have esAnonzero: e s * A.diff.eval (α s) ≠ 0 := by have Aeval: A.eval (α s) = 0 := by rw[Adef] exact monic_vanishing_at_vanishes α S sinS have Gnonzero: G.eval (α s) ≠ 0 := by exact no_shared_root_if_coprime AG Aeval calc _ = (G*(B-f)).eval (α s) := by rw[GBfeval s sinS] _ = G.eval (α s) * (B-f).eval (α s) := by rw[eval_mul] _ ≠ 0 := mul_ne_zero Gnonzero Bfnonzero exact nonzero_if_mul_right_nonzero esAnonzero . intro esnonzero have GBfnonzero: G.eval (α s) * (B-f).eval (α s) ≠ 0 := by calc _ = (G*(B-f)).eval (α s) := by rw[eval_mul] _ = e s * A.diff.eval (α s) := GBfeval s sinS _ ≠ 0 := mul_ne_zero esnonzero (Aprimeevalnonzero s sinS) exact nonzero_if_mul_left_nonzero GBfnonzero have Bfevalzero: ∀ s, s ∈ S → ((B-f).eval (α s) = 0 ↔ e s = 0) := by intro s sinS constructor . contrapose repeat rw[← not_eq_iff] rw[Bfevalnonzero s sinS] simp only [ne_eq, imp_self] . contrapose repeat rw[← not_eq_iff] rw[Bfevalnonzero s sinS] simp only [ne_eq, imp_self] let Bf := fun s ↦ B.eval (α s) - f.eval (α s) have wtBfwte: hamming_weight Bf S = hamming_weight e S := by calc _ = (S.filter (fun s ↦ B.eval (α s) - f.eval (α s) ≠ 0)).card := rfl _ = (S.filter (fun s ↦ (B-f).eval (α s) ≠ 0)).card := by simp only [CharTwo.sub_eq_add, ne_eq, eval_add] _ = (S.filter (fun s ↦ e s ≠ 0)).card := by apply congr_arg ext s rename_i inst inst_1 inst_2 inst_3 aesop_subst Adef simp_all only [CharTwo.sub_eq_add, eval_add, ne_eq, eval_mul, map_add, Finset.mem_filter, and_congr_right_iff, implies_true] _ = hamming_weight e S := rfl have wtBf: hamming_weight Bf S ≤ t := by calc _ = hamming_weight e S := wtBfwte _ ≤ t := wt have Bfx: ∀ s, s ∈ S → Bf s = B.eval (α s) - f.eval (α s) := by simp only [CharTwo.sub_eq_add, implies_true] have iwe: a ∣ A ∧ a ≠ 0 ∧ f = B-b*(A/a) ∧ 2*t + degree (a*B-b*A) < S.card + degree a ∧ { s ∈ S | Bf s ≠ 0 } = { s ∈ S | a.eval (α s) = 0 } := interpolation_with_errors injective Adef appr fdeg Bfx wtBf have aA: a ∣ A := iwe.1 have anonzero: a ≠ 0 := iwe.2.1 have fBbAa: f = B-b*(A/a) := iwe.2.2.1 have degaBbA: 2*t + degree (a*B-b*A) < S.card + degree a := iwe.2.2.2.1 have Bfa: { u ∈ S | Bf u ≠ 0 } = { u ∈ S | a.eval (α u) = 0 } := iwe.2.2.2.2 have amv: a ∣ monic_vanishing_at α S := by rw[← Adef]; exact aA have ea: ∀ s, s ∈ S → e s = if a.eval (α s) = 0 then 1 else 0 := by intro s sinS by_cases a0: a.eval (α s) = 0 . simp only [a0, ite_true] have sina: s ∈ { u ∈ S | a.eval (α u) = 0 } := by simp only [Set.mem_setOf_eq, sinS, a0, and_self] have sinBf: s ∈ { u ∈ S | Bf u ≠ 0 } := by rw[Bfa]; exact sina rw[Set.mem_setOf] at sinBf have Bfs: Bf s ≠ 0 := and_imp_right sinBf have Bfs2: B.eval (α s) - f.eval (α s) ≠ 0 := Bfs have esnonzero: e s ≠ 0 := by rw[← Bfevalnonzero s sinS] rw[eval_sub] exact Bfs2 have es0or1: e s = 0 ∨ e s = 1 := einF2 s sinS rw[or_iff_not_imp_left] at es0or1 exact es0or1 esnonzero . simp only [a0, ite_false] have sina: s ∉ { u ∈ S | a.eval (α u) = 0 } := by simp only [Set.mem_setOf_eq, sinS, a0, and_false, not_false_eq_true] have sinBf: s ∉ { u ∈ S | Bf u ≠ 0 } := by rw[Bfa]; exact sina rw[Set.nmem_setOf_iff] at sinBf rw[not_and] at sinBf rw[not_ne_iff] at sinBf have Bfs: Bf s = 0 := sinBf sinS have Bfs2: B.eval (α s) - f.eval (α s) = 0 := Bfs rw[← Bfevalzero s sinS] rw[eval_sub] exact Bfs2 constructor . exact ea constructor . exact hamming_weight_roots_eq_degree_if_dvd_monic_vanishing_at injective amv ea constructor . exact aA constructor . have Gba: ∀ s, s ∈ S → a.eval (α s) = 0 → (G*b - a.diff).eval (α s) = 0 := by intro s sinS as0 have aAa: a*(A/a) = A := EuclideanDomain.mul_div_cancel' anonzero aA have derivA: a*(A/a).diff + (a.diff)*(A/a) = A.diff := by calc _ = (a*(A/a)).diff := by rw[add_comm,diff]; simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, derivative_mul] _ = A.diff := by rw[aAa] have derivAeval: a.diff.eval (α s) * (A/a).eval (α s) = A.diff.eval (α s) := by calc _ = 0 * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by ring _ = a.eval (α s) * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by rw[as0] _ = (a*(A/a).diff).eval (α s) + (a.diff*(A/a)).eval (α s) := by repeat rw[eval_mul] _ = (a*(A/a).diff + (a.diff)*(A/a)).eval (α s) := by rw[eval_add] _ = A.diff.eval (α s) := by rw[derivA] have AprimeGbae: A.diff.eval (α s) * (G*b).eval (α s) = A.diff.eval (α s) * (a.diff.eval (α s) * e s) := by calc _ = (a.diff.eval (α s) * (A/a).eval (α s)) * (G*b).eval (α s) := by rw[derivAeval] _ = a.diff.eval (α s) * ((A/a).eval (α s) * (G*b).eval (α s)) := by rw[mul_assoc] _ = a.diff.eval (α s) * ((A/a)*(G*b)).eval (α s) := by rw[← eval_mul] _ = a.diff.eval (α s) * (G*(b*(A/a))).eval (α s) := by group _ = a.diff.eval (α s) * (G*(B-f)).eval (α s) := by rw[fBbAa]; group _ = a.diff.eval (α s) * (e s * A.diff.eval (α s)) := by rw[GBfeval s sinS] _ = _ := by group have Gbae: (G*b).eval (α s) = a.diff.eval (α s) * e s := mul_left_cancel₀ (Aprimeevalnonzero s sinS) AprimeGbae have es1: e s = 1 := by rw[ea s sinS]; simp only[as0,ite_true] rw[es1] at Gbae rw[eval_sub,Gbae] ring rw[Adef] at aA apply dvd_if_dvd_monic_vanishing_at_and_root_imp_root injective aA Gba exact degaBbA theorem goppa_checking {α e: U → k} {S: Finset U} {A B a b G: k[X]} {t: ℕ} (injective: Set.InjOn α S) (Adef: A = monic_vanishing_at α S) (Gdeg: G.degree = 2*t) (aA: a ∣ A) (aBbAdeg: 2*t + (a*B-b*A).degree < S.card + a.degree) (Gba: a ∣ G*b - a.diff) (ea: ∀ s, s ∈ S → e s = if a.eval (α s) = 0 then 1 else 0) : (hamming_weight e S = a.degree ∧ G ∣ ∑ s in S, C (((G * B).eval (α s) / A.diff.eval (α s) - e s)) * monic_vanishing_at_except α S s ) := by constructor . have amv: a ∣ monic_vanishing_at α S := by rw[← Adef]; exact aA exact hamming_weight_roots_eq_degree_if_dvd_monic_vanishing_at injective amv ea have Anonzero: A ≠ 0 := by rw[Adef]; exact monic_vanishing_at_nonzero α S have anonzero: a ≠ 0 := nonzero_if_divides_nonzero aA Anonzero have aAa: a*(A/a) = A := EuclideanDomain.mul_div_cancel' anonzero aA let f := B - b*(A/a) have af: a*f = a*B-b*A := by calc _ = a*(B-b*(A/a)) := rfl _ = a*B-b*(a*(A/a)) := by ring _ = a*B-b*A := by rw[aAa] have afdeg: (2*t + f.degree) + a.degree < S.card + a.degree := by calc _ = 2*t + (f.degree + a.degree) := by rw[add_assoc] _ = 2*t + (a.degree + f.degree) := by group _ = 2*t + (a*f).degree := by rw[degree_mul] _ = 2*t + (a*B-b*A).degree := by rw[af] _ < S.card + a.degree := aBbAdeg have Gfdeg: (G*f).degree < S.card := by calc _ = G.degree + f.degree := by rw[degree_mul] _ = 2*t + f.degree := by rw[Gdeg] _ < S.card := lt_of_add_lt_add_right afdeg have derivA: a*(A/a).diff + a.diff*(A/a) = A.diff := by calc _ = (a*(A/a)).diff := by rw[add_comm,diff]; simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, derivative_mul] _ = A.diff := by rw[aAa] have Aprimeevalnonzero: ∀ s, s ∈ S → A.diff.eval (α s) ≠ 0 := by intro s sinS rw[Adef] exact derivative_monic_vanishing_at_eval_nonzero α injective sinS have GbAe: ∀ s, s ∈ S → (G*b*(A/a)).eval (α s) = e s * A.diff.eval (α s) := by intro s sinS by_cases a0: a.eval (α s) = 0 . have es1: e s = 1 := by rw[ea s sinS]; simp only [a0, ite_true] have derivAeval: a.diff.eval (α s) * (A/a).eval (α s) = A.diff.eval (α s) := by calc _ = 0 * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by ring _ = a.eval (α s) * (A/a).diff.eval (α s) + a.diff.eval (α s) * (A/a).eval (α s) := by rw[a0] _ = (a*(A/a).diff).eval (α s) + (a.diff*(A/a)).eval (α s) := by repeat rw[eval_mul] _ = (a*(A/a).diff + (a.diff)*(A/a)).eval (α s) := by rw[eval_add] _ = A.diff.eval (α s) := by rw[derivA] have Gba0: (G*b - a.diff).eval (α s) = 0 := eval_eq_zero_of_dvd_of_eval_eq_zero Gba a0 calc _ = (G*b).eval (α s) * (A/a).eval (α s) := by rw[eval_mul] _ = ((G*b - a.diff) + a.diff).eval (α s) * (A/a).eval (α s) := by group _ = ((G*b - a.diff).eval (α s) + a.diff.eval (α s)) * (A/a).eval (α s) := by rw[eval_add] _ = (0 + a.diff.eval (α s)) * (A/a).eval (α s) := by rw[Gba0] _ = a.diff.eval (α s) * (A/a).eval (α s) := by group _ = A.diff.eval (α s) := by rw[derivAeval] _ = 1 * A.diff.eval (α s) := by ring _ = e s * A.diff.eval (α s) := by rw[es1] . have es0: e s = 0 := by rw[ea s sinS]; simp only [a0, ite_false] have aAaeval0: a.eval (α s) * (A/a).eval (α s) = 0 := by calc _ = (a*(A/a)).eval (α s) := by rw[eval_mul] _ = A.eval (α s) := by rw[aAa] _ = (monic_vanishing_at α S).eval (α s) := by rw[Adef] _ = 0 := monic_vanishing_at_vanishes α S sinS have Aaeval0: (A/a).eval (α s) = 0 := zero_if_mul_left_zero a0 aAaeval0 calc _ = G.eval (α s) * b.eval (α s) * (A/a).eval (α s) := by repeat rw[eval_mul] _ = G.eval (α s) * b.eval (α s) * 0 := by rw[Aaeval0] _ = 0 * A.diff.eval (α s) := by ring _ = e s * A.diff.eval (α s) := by rw[es0] have GBfe: ∀ s, s ∈ S → (G*B-G*f).eval (α s) = e s * A.diff.eval (α s) := by intro s sinS calc _ = (G*B-G*(B-b*(A/a))).eval (α s) := rfl _ = (G*b*(A/a)).eval (α s) := by ring_nf _ = e s * A.diff.eval (α s) := by rw[GbAe s sinS] have GBfeover: ∀ s, s ∈ S → (G*B-G*f).eval (α s) / A.diff.eval (α s) = e s := by intro s sinS rw[GBfe s sinS] exact mul_div_cancel (e s) (Aprimeevalnonzero s sinS) have GBA: ∀ s, s ∈ S → (G*B).eval (α s) / A.diff.eval (α s) - e s = (G*f).eval (α s) / A.diff.eval (α s) := by intro s sinS calc _ = ((G*B-G*f)+G*f).eval (α s) / A.diff.eval (α s) - e s := by group _ = ((G*B-G*f).eval (α s) + (G*f).eval (α s)) / A.diff.eval (α s) - e s := by rw[eval_add] _ = (G*B-G*f).eval (α s) / A.diff.eval (α s) + (G*f).eval (α s) / A.diff.eval (α s) - e s := by rw[add_div] _ = e s + (G*f).eval (α s) / A.diff.eval (α s) - e s := by rw[GBfeover s sinS] _ = (G*f).eval (α s) / A.diff.eval (α s) := by group let r := fun s ↦ (G*f).eval (α s) have rmatches: ∀ s, s ∈ S → (G*f).eval (α s) = r s := by intro s _ simp only have Gf: ∑ s in S, C (((G * B).eval (α s) / A.diff.eval (α s) - e s)) * monic_vanishing_at_except α S s = G*f := by calc _ = ∑ s in S, C ((G*f).eval (α s) / A.diff.eval (α s)) * monic_vanishing_at_except α S s := by apply Finset.sum_congr simp only intro s sinS rw[GBA s sinS] _ = interpolator α S (fun s ↦ ((G*f).eval (α s) / A.diff.eval (α s)) * A.diff.eval (α s)) := by rw[sum_C_mul_monic_vanishing_at_except_eq_interpolator _ injective Adef] _ = interpolator α S (fun s ↦ (G*f).eval (α s)) := by unfold interpolator apply Finset.sum_congr simp only intro s sinS simp only rw[div_mul_cancel ((G*f).eval (α s)) (Aprimeevalnonzero s sinS)] _ = G*f := by rw[← interpolator_unique injective rmatches Gfdeg] apply Dvd.intro f rw[Gf] end goppa_binary