
nbc4.tv, 2004.11.19:

“Two people who worked at LAX blew

the whistle on what appeared to be

serious security problems. They went to

NBC4, they say, only after first trying to

warn authorities. Now one of the people

who helped expose these problems says

the airport is trying to drive him out of

business.

“ ‘I’ve been targeted. I’ve been challenged

by them. I’ve been discriminated,’

said Aamir Chishty, who runs Aeroex

Corporation, a company that contracts

with airlines to handle baggage at LAX.



“In NBC4’s first report Chishty said there

were private companies handling baggage

at LAX without the proper permits and

security badges and accessing doors

marked restricted even though signs say

‘ID badge required.’

“So NBC4 sent a producer undercover to

the Tom Bradley International terminal to

investigate. He was able to walk in and

out of doors marked restricted and gain

access behind ticket counters to conveyor

belts with screened luggage. He also got

into the back areas where he found most

bags sitting unguarded—leaving it possible

for someone to plant something in a bag.



“Most of the time nobody questioned him

to see if he had a security badge. �����

“Since NBC4’s story aired it appears

neither the airport nor the airlines have

taken any action regarding the doors—

many of them remain wide open. But

they have taken action against Aeroex by

confiscating their security badges.”



Continuing homework:

Find security holes!

Your targets:

9 holes per person

by the end of this week,

10 holes per person

by the end of next week.

Homework procrastinators

are likely to fail the course.



Memory allocation

Several syscalls tell kernel

to set aside extra memory.

e.g. brk() and sbrk() syscalls,

used by malloc() and realloc(),

need memory for process RAM.

e.g. fork() syscall

needs memory for new process,

as large as old process.

e.g. execve() syscall,

if running a larger program,

needs memory for that program.



Wasted allocation

Sometimes memory is allocated

but never actually used.

e.g. Sloppy program

allocates 1-megabyte buffer

but uses only 37 bytes.

(Fix: allocate only

the memory you need.)

e.g. Process calls fork();

child process calls execve()

of a much smaller program.

Temporarily uses much more memory.

(Fix: use better syscalls,

vfork() or posix_spawn().)



Copy-on-write

Memory is divided into

4096-byte pages.

When one page of memory is

created as a copy of another,

kernel stores the pages

in the same physical location.

Writes to the pages are intercepted.

Kernel creates two copies,

then allows the write

to change one copy.

Advantage: For wasted allocations,

copy-on-write saves time,

because the copy never happens.



Overcommitment

UNIX kernel keeps track of

physical locations used,

but many UNIX kernels

fail to keep track of

number of pages allocated.

e.g. When process calls

malloc(1048576),

creating 256 empty pages,

kernel doesn’t just skip making

256 copies of an empty page;

it fails to set aside

256 pages of memory.



What if memory isn’t available?

malloc() succeeds anyway.

Kernel doesn’t notice

the lack of memory.

Process then writes to page.

Kernel tries to copy page.

Oops, there’s no memory!

Process can’t continue.

Kernel kills it.

(Some kernels look around for

big new processes to kill.)



Bottom line: Process may be

killed at any moment.

No way for program to react.

For comparison:

If kernel keeps track of

number of pages allocated,

then malloc() returns 0.

Program checks for that

and takes appropriate action.

But this takes extra effort

for kernel implementors.



Security impact

Attacker uses up all memory.

Is this a security problem?

Charge users for memory.

Make sure that all programs

are prepared for sudden death.

Always use rename()

for rewriting files.

Always have explicit

“I’m done” message

when one process is

sending data to another.


