
Reuters, 2004.11.09:

“Worm breaks speed record from discovery

to life

“A new computer worm emerged on

Tuesday which broke the speed record

from the announcement of a security

vulnerability in Microsoft’s Internet

Explorer to a full-blown virus that spreads

in the wild.

“The vulnerability was discovered and

made public by two hackers with aliases

‘ned’ and ‘SkyLined’ on Friday, and only

four days later a worm exploiting the

weakness was developed and set loose,

several virus-trackers reported.



“Microsoft said the worm is a variant of

MyDoom and that it was investigating the

threat the worm poses.

“Some anti-virus companies said the new

worm was different from MyDoom because

it spreads via weblinks and not e-mail

attachments.

“ ‘People will receive an e-mail saying that

their PayPal account has been credited or

that they are invited to watch a webcam.

When they click on the link, just by

viewing a site it executes code and infects

the computer,’ said technical consultant

Graham Cluley at Sophos Anti-Virus.



“Microsoft was expected to issue its

monthly batch of security patches later

on Tuesday, but the company could not

immediately say if a patch for the new

worm would be part of it.

“However, the U.S. software giant said

that consumers who had installed Service

Pack 2 for Windows XP were at a reduced

risk.

“The weakness in Internet Explorer is

known as the IFRAME buffer overflow

vulnerability.”

[AUS-CERT admits that future exploits

may work under SP2.]



2004.11.15: Guest lecture

by Jon Solworth, Director,

Kernel Security and Networking Lab,

CS.

2004.11.17: Midterm 2,

focusing on setuid and related topics.

Assignment due 2004.11.22: read

textbook Chapter 4.



Attacker blocking permission bits

Each process has, in system data,

umask (“file mode mask”).

Typical umask: 022.

Another typical umask: 077.

Any permission bit in umask

is removed from new files.

e.g. open("foo",O_CREAT,0666)

creates foo with permissions

0644 if umask is 022;

or 0600 if umask is 077.



Umask is preserved by execve.

Joe can run a setuid program

with umask set to 0777.

Files created by program

then have permissions 000:

not readable, not writable,

even to the file owner.

root can read and write anyway,

but maybe program is setuid

to something other than root.

Fix: Program sets its own umask.



System-specific setuid problems

OS designer adds system data

and neglects to consider effect

of data after setuid exec.

(Even worse: considers effect,

and blames the setuid programs.)

e.g. FreeBSD allows two processes

to share their signal actions.

FreeBSD bug fixed 2001.07.09:

shared signal actions weren’t

un-shared by execve.

Any user can take over

any setuid program.



Another Sendmail example

Bug sort-of-fixed 1996.09.17:

a->q_uid = daemon_uid;

a->q_gid = daemon_gid;

pw = getpwnam(user);

if (pw != NULL) {

a->q_uid = pw->pw_uid;

a->q_gid = pw->pw_gid;

}

getpwnam() looks for

a uid and gid in /etc/passwd.

e.g. getpwnam("djb") returns

uid and gid 1001 if /etc/passwd

has djb:*:1001:1001:...



Context: Sendmail delivers messages

to accounts such as djb.

/home/djb/.forward can specify

a program to run for each message;

Sendmail runs that program

under djb’s uid.

To figure out djb’s uid,

Sendmail calls getpwnam("djb"),

which reads /etc/passwd

and returns 1001.

Sendmail calls setuid(1001).



Sendmail also delivers messages

to aliases such as postmaster.

/etc/aliases can specify

a program to run for each message;

Sendmail runs that program

under uid 1 (daemon).

Sendmail calls getpwnam("postmaster"),

which doesn’t find postmaster

in /etc/passwd; returns 0.

Sendmail sees the 0

and calls setuid(1).



Joe runs Sendmail, telling it

to deliver a message to joe.

Sendmail looks in /home/joe/.forward,

which says “Run /home/joe/evil.”

Oops, system is very busy.

Sendmail saves message in queue,

along with the following note:

“Deliver message to joe

by running /home/joe/evil.”



Joe starts Sendmail again,

telling it to run the queue:

joe% sendmail -q

System is no longer busy.

Sendmail tries to deliver message

by running /home/joe/evil.

But what uid should it use?

Sendmail calls getpwnam("joe")

to find the uid and gid.



By setting resource limits,

Joe can make getpwnam() fail.

Easiest: file-descriptor limits.

getpwnam() returns 0,

even though joe is in /etc/passwd.

Sendmail runs /home/joe/evil

as uid 1.

Joe can now read and destroy

subsequent mailing-list deliveries.



Sendmail “fix”:

Remove file-descriptor limits.

But Joe can still force

getpwnam() to fail.

System has limit on

total number of open files

across all processes.

If Joe opens many files,

getpwnam() can’t open more.

Joe can attack any program,

not just setuid programs,

in this way.



Underlying source of problem:

getpwnam() returns 0

for “permanent” errors

(user not in /etc/passwd)

and for “temporary” errors

(unable to open /etc/passwd).

For temporary errors,

Sendmail needs to try again later;

but Sendmail can’t tell

whether the error was temporary.

For comparison: If open()

fails because file doesn’t exist,

it sets errno to ENOENT.

If it fails because of fd rlimit,

it sets errno to EMFILE.

getpwnam() should use ESRCH.


