
Stronger security bounds

for Wegman-Carter-Shoup authenticators

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

Abstract. Shoup proved that various message-authentication codes of
the form (n, m) 7→ h(m) + f(n) are secure against all attacks that see at

most
√

1/ε authenticated messages. Here m is a message; n is a nonce
chosen from a public group G; f is a secret uniform random permutation
of G; h is a secret random function; and ε is a differential probability
associated with h.

Shoup’s result implies that if AES is secure then various state-of-the-art
message-authentication codes of the form (n, m) 7→ h(m) + AESk(n) are

secure up to
√

1/ε authenticated messages. Unfortunately,
√

1/ε is only
about 250 for some state-of-the-art systems, so Shoup’s result provides
no guarantees for long-term keys.

This paper proves that security of the same systems is retained up to
√

#G authenticated messages. In a typical state-of-the-art system,
√

#G
is 264. The heart of the paper is a very general “one-sided” security
theorem: (n, m) 7→ h(m)+f(n) is secure if there are small upper bounds
on differential probabilities for h and on interpolation probabilities for
f .

Keywords: mode of operation, authentication, MAC, Wegman-Carter,
provable security

1 Introduction

This paper proves that various state-of-the-art 128-bit authenticators are secure
against all attacks that see at most 264 authenticated messages. Previous proofs
broke down at a smaller number of messages, often below 250.

? The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2004.10.27.
Permanent ID of this document: 2d603727f69542f30f7da2832240c1ad. This is a
preliminary version meant to announce ideas; it will be replaced by a final version
meant to record the ideas for posterity. There may be big changes before the final
version. Future readers should not be forced to look at preliminary versions, unless
they want to check historical credits; if you cite a preliminary version, please repeat
all ideas that you are using from it, so that the reader can skip it.



A typical example

Here is a well-known polynomial-evaluation message-authentication code over a
field of size 2128.

Each message is a polynomial over the field with constant coefficient 0. The
sender’s nth message, say mn, is transmitted as (n,mn,mn(r) + f(n)); here r
and f are secrets shared by the sender and the receiver. What is the attacker’s
chance of successfully forging a message?

It is easy to prove information-theoretic security of this system if r and f
are independent, r is a uniform random element of the field, and f is a uniform
random function from {n} to the field—in other words, if r, f(1), f(2), . . . are
independent uniform random elements of the field. The attacker’s chance of
success is at most LD/2128, where L is the maximum degree of a message and
D is the number of forgeries attempted. The point is that mn(r) + f(n) leaks
no information about mn(r).

What if f is a uniform random injective function—in other words, what if
f(1), f(2), . . . are chosen to be distinct? If the sender transmits only C messages,
where C is small, then f(1), f(2), . . . , f(C) are nearly independent, and one
can easily prove that the attacker’s chance of success is at most LD/2128 +
C(C − 1)/2129; but this bound becomes useless as C approaches 264. Shoup
proved a better bound in [6, Theorem 2]: the attacker’s chance of success is at
most 2LD/2128 if C ≤ 264/

√
L. This paper eliminates the

√
L denominator:

the attacker’s chance of success is below 1.002LD/2128 if C ≤ 260, and below
1.7LD/2128 if C ≤ 264, and below 3000LD/2128 if C ≤ 266.

For example, say the sender authenticates C = 260 messages, the attacker
tries D = 260 forgeries, and the maximum message degree is L = 216. The
easy bound is about 1/29, which is not at all comforting. Shoup’s bound is
inapplicable. The bound in this paper is 1.002/252.

Consequences for AES-based authenticators

Despite the high speed and information-theoretic security of mn(r)+f(n), users
often prefer mn(r) + AESk(n). The point is that r, k occupy only 32 bytes,
whereas r, f(1), f(2), . . . occupy an additional 16 bytes for each message.

The attacker’s success chance against mn(r) + AESk(n) is bounded by the
sum of two terms: first, the attacker’s success chance against mn(r) + f(n);
second, the attacker’s chance of distinguishing AESk from f . In particular:

• Take f to be a uniform random function. In this case, the first term—the
attacker’s success chance against mn(r)+f(n)—is easily proven to be small.
Unfortunately, the second term becomes unacceptably large as C approaches
264: the attacker can distinguish AESk from f with probability C(C−1)/2129

by looking for collisions.
• Take f to be a uniform random injective function. In this case, the first

term is small, even for C = 264; that is the point of this paper. The second
term is conjectured to also be small: it appears to be extremely difficult to



distinguish AESk from f , even after 265 chosen inputs. “Indistinguishability
from a uniform random permutation” was an explicit design goal for AES.

In short, this paper guarantees that mn(r)+AESk(n) is as secure as AES up to
264 messages. The best previous results did not handle nearly as many messages.

The importance in this context of uniform random injective functions, as
opposed to uniform random functions, was pointed out by Shoup in [6, Section
1].

Generalization

This paper considers much more general message-authentication codes of the
form (n,m) 7→ h(m) + f(n). The main theorem of this paper, Theorem 5.1, is
that h(m) + f(n) is secure if (1) differential probabilities for h are small and (2)
interpolation probabilities for f are small.

In particular, assume that f is a uniform random injective function from
the set of nonces to a finite commutative group G, and that the differential
probabilities for h are small. Then h(m)+ f(n) is secure against all attacks that
see at most

√
#G authenticated messages. Consequently h(m) + AESk(n) is

secure against any attacker who cannot break AES and who sees at most
√

#G
authenticated messages.

The form h(m) ⊕ f(n) for an authenticator, where f is a uniform random
function, was introduced by Wegman and Carter in [8, Section 4]. Here ⊕ is
vector addition modulo 2. Brassard in [2] considered h(m) ⊕ f(n) where f is a
random injective function determined by a short key, such as AESk. Shoup in [6],
as discussed above, considered h(m)⊕f(n) where f is a uniform random injective
function. The more general shape h(m)+f(n), where + can be any commutative
group operation, is helpful for accommodating functions that rely on addition
in large characteristic rather than characteristic 2—in particular, functions that
rely on the high-speed multiplication circuits included in common processors.

All of the security proofs in the literature rely on two-sided bounds for the
interpolation probabilities for f . One computes lower bounds on the probability
of any particular sequence of authenticators; one computes nearby upper bounds
on the probability of that sequence of authenticators given h; one deduces that
the authenticators reveal very little information about h, and hence very little
information about the authenticator for a new message. See, e.g., [8, Section
4, Theorem] and [6, Appendix A, Lemma 1]. The heart of the improvement in
this paper is a new “one-sided” proof strategy that moves directly from upper
bounds for f and h to upper bounds on the attacker’s chance of success.

2 Protocol

This section describes a very general message-authentication protocol. Section 3
formalizes the notion of an attack on the protocol. Section 5 analyzes the success
chance of all attacks.

The protocol has several parameters:



• G, a finite commutative group of authenticators. I will always write the
group operation as +. (More general groups, or even loops, would suffice,
but I see no application of the extra generality.) Typical example: G is the
set of 16-byte strings, with the group operation being exclusive-or. Another
example: G is the set

{

0, 1, 2, . . . , 2128 − 1
}

, with the group operation being
addition modulo 2128.

• M , a nonempty set of messages. Typical example: M is the set of all strings
of bytes. Another example: M is the set of all strings of at most 1024 bytes.

• N , a finite set of nonces, with #N ≤ #G. Typical example: N is the set
{

1, 2, 3, . . . , 232 − 1
}

. Another example: N is the set of 16-byte strings.

The protocol has several participants:

• A message generator creates messages.
• A nonce generator accepts messages m from the message generator and

attaches a nonce n to each message m. The nonce generator must never
use the same nonce for two different messages: if it generates (n1,m1) and
(n2,m2), and if m1 6= m2, then n1 must not equal n2. This uniqueness rule
is automatically satisfied if the nonce generator uses nonce 1 for the first
message, nonce 2 for the second message, etc.

• A sender accepts pairs (n,m) from the nonce generator and attaches an
authenticator a to each pair, as discussed below.

• A network accepts a sequence of vectors (n,m, a) from the sender and
transmits a sequence of vectors (n′,m′, a′). Perhaps the sequence of vectors
transmitted is the same as the sequence of vectors sent; perhaps not.

• A receiver receives vectors (n′,m′, a′) from the network. It accepts (n′,m′)
if a′ is the authenticator that the sender would have attached to (n′,m′);
otherwise it discards (n′,m′).

If the network transmits exactly what the sender sent, then the pairs (n,m)
accepted by the receiver are exactly the pairs (n,m) given to the sender; but
what if the network makes changes? The objective of the protocol is forgery

elimination: ensuring that each pair (n′,m′) accepted by the receiver is one of
the pairs (n,m) that was authenticated by the sender.

One could ask for additional protocol features:

• The receiver should notice if the network repeats messages or transmits
messages out of order. One way to do this is for the nonce generator to
use increasing nonces (in some specified ordering of the set N), and for the
receiver to discard (n′,m′, a′) unless n′ is larger than the last accepted nonce.

• The receiver should notice if the network loses a message. There’s no way
to recover if the network is losing all messages, but there are retransmission
protocols that eventually succeed in transmitting all data if the network
delivers (e.g.) 1% of all messages.

But this paper focuses on the cryptographic problem of forgery elimination.
The sender’s authenticator for a pair (n,m) is h(m) + f(n): i.e., the sender

gives (n,m, h(m) + f(n)) to the network. Here h is a random function from



M to G, and f is a random function from N to G. The pair (f, h) is a secret
shared by the sender and receiver; this means that the actions of the message
generator, nonce generator, and network are independent of (f, h). In particular,
if the message generator encrypts messages, it does so using a key independent
of (f, h). The proof strategy in this paper can be extended to cover protocols
that reuse f for encryption, as long as separate f inputs are used for encryption
and for authentication; but that extension is not included in the statement of
Theorem 5.1.

Warning: The phrases “random” and “uniform random” and “independent
uniform random” do not mean the same thing. For example, if k is a uniform
random 16-byte string, then (k, 0) is a non-uniform random 17-byte string; AESk

is a non-uniform random permutation of the set of 16-byte strings; k[0], the first
byte of k, is a uniform random byte; k[0], k[1], and k[2] are independent uniform
random bytes; k[0], k[1], and k[0] ⊕ k[1] are non-independent uniform random
bytes; (k[0], 0) and (k[1], 0) are independent non-uniform random 2-byte strings.
I realize that the word “random” is sometimes used to mean “uniform random,
independent of everything else,” but a more careful use of terminology is helpful
in stating and proving theorems.

3 Attacks

The combined behavior of the message generator, nonce generator, and network
is called an “attack.” The attack creates messages; it creates nonces, subject to
the rule that nonces never repeat; it inspects the authenticators provided by the
sender; and it provides some number of forgeries to the receiver. The network
is presumed to provide data to the message generator and nonce generator, so
each message can depend on previous authenticators.

More formally: An attack is an algorithm given oracle access to a function
S. The algorithm feeds a nonce n1 and message m1 to the oracle. It receives an
authenticator a1 = S(n1,m1). It then feeds a nonce n2 and message m2 to the
oracle, obeying the rule that n2 6= n1 if m2 6= m1. It receives an authenticator
a2 = S(n2,m2). It then feeds a nonce n3 and message m3 to the oracle, obeying
the rule that n3 6= n1 if m3 6= m1, and the rule that n3 6= n2 if m3 6= m2.
It receives an authenticator a3 = S(n3,m3). It continues for any number of
messages. It then prints some number of forgery attempts (n′,m′, a′).

The attack succeeds against S if at least one forgery attempt (m′, n′, a′)
has a′ = S(n′,m′) with (n′,m′) /∈ {(n1,m1), (n2,m2), (n3,m3), . . .}.

Is there an attack that succeeds against (n,m) 7→ h(m)+f(n) with noticeable
probability? Theorem 5.1 states, under certain assumptions on f and h, that the
answer is no. The receiver is overwhelmingly likely to discard every forgery—
no matter how the message generator chooses messages, now matter how the
nonce generator chooses unique nonces, and no matter how the network chooses
forgeries.

The rest of this section discusses the strength of this theorem, under the
same assumptions on f and h.



Forgeries versus selective forgeries

A selective forgery is a forged message chosen in advance by the attacker. Some
protocols prevent selective forgeries but allow attackers to find authenticators
for random-looking messages. These protocols assume—often incorrectly—that
random-looking messages will not cause any damage. In contrast, h(m) + f(n)
rejects all forgeries.

Attacks versus blind attacks

Some protocols prevent blind attacks but allow forgeries when attackers can
inspect authenticated messages. (Trivial example: use a secret password as an
authenticator for every message.) In contrast, h(m) + f(n) rejects all forgeries
even after the attacker sees a large number of authenticated messages.

Chosen messages versus known messages

Some protocols are secure for some message generators but insecure for others.
An attacker who can influence the message generator can often obtain enough
information to forge messages. In contrast, h(m) + f(n) rejects all forgeries no
matter what the message generator does.

Of course, if an attacker can convince the message generator to produce a
message, then he does not need to forge an authenticator for that message. An
easily corrupted message generator is often a problem. It is, however, not the
cryptographic problem considered in this paper.

Receiver interaction

In Section 2, the receiver is not a source of information. However, when the same
protocol is placed into a larger context, the receiver often becomes a source of
information, revealing to the attacker whether a forgery was accepted.

One can expand the definition of an “attack” to allow interaction with a
verification oracle. However, this expansion makes no difference in the attack’s
success chance. An attack that interacts with the receiver has the same success
chance as an attack that skips the interactions and simply assumes that all
the forgeries are rejected. This type of interaction can change the number of
successful forgeries if the attacker succeeds, but this paper guarantees that the
attacker will not succeed in the first place.

4 Interpolation probabilities

Let f be a random function from N to G. The hypothesis on f in Section 5 is that
f has maximum k-interpolation probability on the scale of 1/#Gk, for various
k ∈ {0, 1, . . . ,#N}. Here the maximum k-interpolation probability of f is



the maximum, for all x1, x2, . . . , xk ∈ G and all distinct n1, n2, . . . , nk ∈ N , of
the probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk).

This section proves that this condition is satisfied by a uniform random
function and by a uniform random injective function.

Theorem 4.1. Let f be a uniform random function from a finite set N to a

finite set G. Assume that #N ≤ #G. Then f has maximum k-interpolation

probability 1/#Gk for each k ∈ {0, 1, . . . ,#N}.

Proof. (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) with probability 1/#Gk. ut

Theorem 4.2. Let f be a uniform random injective function from a finite set N
to a finite set G. Assume that #N ≤ #G. Then f has maximum k-interpolation

probability at most (1 − (k − 1)/#G)−k/2/#Gk for each k ∈ {0, 1, . . . ,#N}.

Proof. Fix distinct n1, n2, . . . , nk ∈ N . Fix x1, x2, . . . , xk ∈ G.
Case 1: There are collisions in x1, x2, . . . , xk. Then (f(n1), . . . , f(nk)) =

(x1, . . . , xk) with probability 0.
Case 2: There are no collisions. Then f(n1) = x1 with probability 1/#G;

if that happens then f(n2) = x2 with conditional probability 1/(#G − 1);
if that happens then f(n3) = x3 with conditional probability 1/(#G − 2);
and so on. The probability that (f(n1), f(n2), . . . , f(nk)) = (x1, x2, . . . , xk) is

exactly
∏

0≤i≤k−1 1/(#G − i) =
√

∏

0≤i≤k−1 1/(#G − i)(#G − (k − 1 − i)) ≤
√

∏

0≤i≤k−1 1/(#G)2(1 − (k − 1)/#G) =
√

(1 − (k − 1)/#G)−k/(#G)2k. ut

5 The main theorem

Theorem 5.1 is the main theorem of this paper: (n,m) 7→ h(m)+f(n) is secure if
h has small differential probabilities and f has small interpolation probabilities.

Theorems 5.2 and 5.3 consider two special cases: a uniform random function
f , and a uniform random injective function f .

Theorem 5.4 proves that (n,m) 7→ h(m) + AESk(n) is secure if h has small
differential probabilities and AESk is secure, i.e., AESk is difficult to distinguish
from a uniform random injective function.

Theorem 5.1. Let h be a random function from a nonempty set M to a finite

commutative group G. Let f be a random function from a finite set N to G. Let

C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G. Assume, for all

g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g with probability at

most ε. Assume that f has maximum C-interpolation probability at most δ/#GC

and maximum (C +1)-interpolation probability at most δε/#GC . Assume that h
and f are independent. Then any attack that performs at most C distinct oracle

queries and at most D forgery attempts succeeds against (n,m) 7→ h(m) + f(n)
with probability at most Dδε.



Proof. It suffices to show that each forgery attempt succeeds with probability
at most δε. Assume from now on that the attack makes exactly one forgery
attempt.

If the attack performs fewer than C distinct oracle queries, modify it to
perform additional oracle queries with new nonces and to discard the results;
new nonces are available since #N ≥ C, and at least one message is available
since #M ≥ 1. Assume from now on that the attack makes exactly C distinct
oracle queries.

If the attack might repeat oracle queries, modify it to cache oracle queries
and responses. Assume from now on that the attack does not repeat queries.

Write (ni,mi) for the ith oracle query. Then n1, n2, . . . , nC are distinct. Write
ai for the ith oracle response, when the attack is applied to (n,m) 7→ h(m)+f(n);
then ai = h(mi) + f(ni). Write (n′,m′, a′) for the attempted forgery.

Everything that the attack does is determined by (1) an infinite sequence b
of coin flips, by definition independent of h and f , and (2) the sequence of oracle
responses a1, a2, . . . , aC . In particular, n1, n2, . . . , nC ,m1,m2, . . . ,mC , n′,m′, a′

are equal to various functions evaluated at b, a1, a2, . . . , aC . Furthermore, f(ni)
is determined by ai and h(mi), so f(ni) is equal to a function evaluated at
h, b, a1, a2, . . . , aC .

Fix (g1, g2, . . . , gC) ∈ GC . Consider the event that (n′,m′, a′) is a successful
forgery and (a1, a2, . . . , aC) = (g1, g2, . . . , gC). It suffices to show that this event
has probability at most δε/#GC .

Define p as the probability that b satisfies the following measurable constraint:
if (a1, a2, . . . , aC) = (g1, g2, . . . , gC) then n′ /∈ {n1, n2, . . . , nC}. I claim, for each
b satisfying the constraint and for each h, that f has conditional probability at
most δε/#GC of making the attack work.

Indeed, assume that b satisfies the constraint, that (n′,m′, a′) is a successful
forgery, and that (a1, a2, . . . , aC) = (g1, g2, . . . , gC). Then #{n1, . . . , nC , n′} =
C + 1, and f(n1), . . . , f(nC), f(n′) are equal to various functions evaluated at
h, b, g1, g2, . . . , gC . By hypothesis, f is independent of h; f is also independent
of b; and g1, g2, . . . , gC are fixed. The conditional probability of f interpolating
these values is at most the maximum (C + 1)-interpolation probability of f ,
which by hypothesis is at most δε/#GC .

I also claim, for each b not satisfying the constraint, that h has conditional
probability at most ε of satisfying a necessary differential condition; and, for
each b and each qualifying h, that f has conditional probability at most δ/#GC

of making the attack work.

Indeed, assume that b does not satisfy the constraint, that (a1, a2, . . . , aC) =
(g1, g2, . . . , gC), and that (n′,m′, a′) is a successful forgery. Then n′ = ni for
a unique i; a′ = h(m′) + f(ni); m′ 6= mi; and ai = h(mi) + f(ni). Now
h(mi) − h(m′) = ai − a′; the inputs mi,m

′ and the output ai − a′ are equal
to various functions evaluated at b, g1, g2, . . . , gC , and thus are independent of h;
by hypothesis, h satisfies the condition h(mi)−h(m′) = ai − a′ with probability
at most ε. Furthermore, f(n1), f(n2), . . . , f(nC) are equal to various functions
evaluated at h, b, g1, g2, . . . , gC ; f is independent of h, b, g1, g2, . . . , gC ; so the



conditional probability of f interpolating these values is at most the maximum
C-interpolation probability of f , which by hypothesis is at most δ/#GC .

The total probability of success is at most p(δε/#GC)+(1−p)(ε)(δ/#GC) =
δε/#GC . ut

Theorem 5.2. Let h be a random function from a nonempty set M to a finite

commutative group G. Let f be a uniform random function from a finite set N to

G. Let C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G. Assume,

for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′)+ g with probability

at most ε. Assume that h and f are independent. Assume that ε ≥ 1/#G. Then

any attack that performs at most C distinct oracle queries and at most D forgery

attempts succeeds against (n,m) 7→ h(m) + f(n) with probability at most Dε.

Proof. Write δ = 1. Then f has maximum C-interpolation probability 1/#GC =
δ/#GC , and maximum (C + 1)-interpolation probability 1/#GC+1 ≤ δε/#GC ,
by Theorem 4.1. By Theorem 5.1, the attack succeeds with probability at most
Dδε = Dε. ut

Theorem 5.3. Let h be a random function from a nonempty set M to a finite

commutative group G. Let f be a uniform random injective function from a finite

set N to G. Let C and D be positive integers. Assume that C + 1 ≤ #N ≤ #G.

Assume, for all g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g
with probability at most ε. Assume that h and f are independent. Assume that

ε ≥ 1/#G. Then any attack that performs at most C distinct oracle queries

and at most D forgery attempts succeeds against (n,m) 7→ h(m) + f(n) with

probability at most D(1 − C/#G)−(C+1)/2ε.

In particular, if C =
⌊√

#G
⌋

, then the extra factor (1 − C/#G)−(C+1)/2 is
below 1.7 for all reasonably large G.

Proof. Write δ = (1 − C/#G)−(C+1)/2. By Theorem 4.2, f has maximum C-
interpolation probability at most (1 − (C − 1)/#G)−C/2/#GC ≤ δ/#GC . By
Theorem 4.2 again, f has maximum (C + 1)-interpolation probability at most
(1 − C/#G)−(C+1)/2/#GC+1 ≤ δε/#GC . By Theorem 5.1, the attack succeeds
with probability at most Dδε. ut

Theorem 5.4. Let G be the set of 16-byte strings with a group structure. Let

k be a random AES key. Let h be a random function from a nonempty set M
to G. Assume that the distribution of h is computable. Let C and D be positive

integers. Assume that C + 1 ≤ 2128. Assume, for all g ∈ G and all distinct

m,m′ ∈ M , that h(m) = h(m′) + g with probability at most ε. Assume that

h and k are independent. Assume that ε ≥ 1/2128. Let A be an attack that

performs at most C distinct oracle queries and at most D forgery attempts.

Assume that A succeeds against (n,m) 7→ h(m) + AESk(n) with probability γ.

Define A′ as the algorithm that, given an oracle for a function f , chooses h
randomly, applies A to (n,m) 7→ h(m)+f(n), and prints 1 if A succeeded. Then

A′ distinguishes AESk from a uniform random permutation of G with probability

at least γ − D(1 − C/2128)−(C+1)/2ε, using at most C + D oracle queries.



Consequently, A succeeds against (n,m) 7→ h(m)+AESk(n) with probability
at most δ+D(1−C/2128)−(C+1)/2ε, where δ is the probability that an algorithm
as fast as A′ can distinguish AESk from a uniform random permutation of G.

Proof. A′ makes one oracle query for each oracle query in A, and one oracle
query for each attempted forgery printed by A, for a total of at most C + D
oracle queries.

When A′ is given an oracle for AESk, it applies A to (n,m) 7→ h(m) +
AESk(n), so it prints 1 with probability γ by hypothesis.

When A′ is given an oracle for a uniform random permutation f of G, it
applies A to (n,m) 7→ h(m) + f(n), so it prints 1 with probability at most
D(1 − C/2128)−(C+1)/2ε by Theorem 5.3.

Therefore A′ distinguishes AESk from a uniform random permutation of G
with probability at least γ − D(1 − C/2128)−(C+1)/2ε. ut

References

1. —, 20th annual symposium on foundations of computer science, IEEE Computer
Society, New York, 1979. MR 82a:68004.

2. Gilles Brassard, On computationally secure authentication tags requiring short secret

shared keys, in [3] (1983), 79–86. URL: http://cr.yp.to/bib/entries.html#1983/
brassard.

3. David Chaum, Ronald L. Rivest, Alan T. Sherman (editors), Advances in cryptology:

proceedings of Crypto 82, Plenum Press, New York, 1983. ISBN 0–306–41366–3. MR
84j:94004.

4. Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, Lecture Notes in
Computer Science, 1109, Springer-Verlag, Berlin, 1996.

5. Victor Shoup, On fast and provably secure message authentication based on universal

hashing, in [4] (1996), 313–328; see also newer version [6].
6. Victor Shoup, On fast and provably secure message authentication based on universal

hashing (1996); see also older version [5]. URL: http://www.shoup.net/papers.
7. Mark N. Wegman, J. Lawrence Carter, New classes and applications of hash func-

tions, in [1] (1979), 175–182; see also newer version [8]. URL: http://cr.yp.to/
bib/entries.html#1979/wegman.

8. Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in au-

thentication and set equality, Journal of Computer and System Sciences 22 (1981),
265–279; see also older version [7]. ISSN 0022–0000. MR 82i:68017. URL: http://
cr.yp.to/bib/entries.html#1981/wegman.


