
McEliece verification

Daniel J. Bernstein



“Who cares? Big keys are unusable!”

Let’s look at the facts:
• 1MB is very fast on a modern network.

Are Netflix and YouTube unusable?
• Google’s key can be used to protect any

number of ciphertexts to/from Google.
• 1 key + 106 ciphertexts for McEliece

is several times less network traffic than
1 key + 106 ciphertexts for lattices.

• McEliece deployment is underway: e.g.,
McEliece is already used in some
end-to-end secure-messaging systems
and the Mullvad and Rosenpass VPNs.

Daniel J. Bernstein, McEliece verification 2

https://classic.mceliece.org/impl.html
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/


“Who cares? Big keys are unusable!”
Let’s look at the facts:
• 1MB is very fast on a modern network.

Are Netflix and YouTube unusable?

• Google’s key can be used to protect any
number of ciphertexts to/from Google.

• 1 key + 106 ciphertexts for McEliece
is several times less network traffic than
1 key + 106 ciphertexts for lattices.

• McEliece deployment is underway: e.g.,
McEliece is already used in some
end-to-end secure-messaging systems
and the Mullvad and Rosenpass VPNs.

Daniel J. Bernstein, McEliece verification 2

https://classic.mceliece.org/impl.html
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/


“Who cares? Big keys are unusable!”
Let’s look at the facts:
• 1MB is very fast on a modern network.

Are Netflix and YouTube unusable?
• Google’s key can be used to protect any

number of ciphertexts to/from Google.

• 1 key + 106 ciphertexts for McEliece
is several times less network traffic than
1 key + 106 ciphertexts for lattices.

• McEliece deployment is underway: e.g.,
McEliece is already used in some
end-to-end secure-messaging systems
and the Mullvad and Rosenpass VPNs.

Daniel J. Bernstein, McEliece verification 2

https://classic.mceliece.org/impl.html
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/


“Who cares? Big keys are unusable!”
Let’s look at the facts:
• 1MB is very fast on a modern network.

Are Netflix and YouTube unusable?
• Google’s key can be used to protect any

number of ciphertexts to/from Google.
• 1 key + 106 ciphertexts for McEliece

is several times less network traffic than
1 key + 106 ciphertexts for lattices.

• McEliece deployment is underway: e.g.,
McEliece is already used in some
end-to-end secure-messaging systems
and the Mullvad and Rosenpass VPNs.

Daniel J. Bernstein, McEliece verification 2

https://classic.mceliece.org/impl.html
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/


“Who cares? Big keys are unusable!”
Let’s look at the facts:
• 1MB is very fast on a modern network.

Are Netflix and YouTube unusable?
• Google’s key can be used to protect any

number of ciphertexts to/from Google.
• 1 key + 106 ciphertexts for McEliece

is several times less network traffic than
1 key + 106 ciphertexts for lattices.

• McEliece deployment is underway: e.g.,
McEliece is already used in some
end-to-end secure-messaging systems
and the Mullvad and Rosenpass VPNs.

Daniel J. Bernstein, McEliece verification 2

https://classic.mceliece.org/impl.html
https://mullvad.net/en/blog/2023/4/6/stable-quantum-resistant-tunnels-in-the-app/
https://rosenpass.eu/


McEliece security advantages
QROM IND-CCA2 security of Classic McEliece
has tight proof assuming one-wayness
of the original 1978 McEliece system.
Stable attack target for 45 years.

Nearly 50 papers attacking one-wayness of
McEliece have produced only minor attack
speedups since 1978: asymptotically 0%
change in pre-quantum security levels.
Post-quantum: like AES. The attack surface is
thoroughly explored and well understood.
New: CryptAttackTester includes full attack
circuits + analyses passing systematic tests.

Daniel J. Bernstein, McEliece verification 3

https://classic.mceliece.org/mceliece-security-20221023.pdf
https://isd.mceliece.org
https://cat.cr.yp.to


McEliece security advantages
QROM IND-CCA2 security of Classic McEliece
has tight proof assuming one-wayness
of the original 1978 McEliece system.
Stable attack target for 45 years.
Nearly 50 papers attacking one-wayness of
McEliece have produced only minor attack
speedups since 1978: asymptotically 0%
change in pre-quantum security levels.
Post-quantum: like AES. The attack surface is
thoroughly explored and well understood.

New: CryptAttackTester includes full attack
circuits + analyses passing systematic tests.

Daniel J. Bernstein, McEliece verification 3

https://classic.mceliece.org/mceliece-security-20221023.pdf
https://isd.mceliece.org
https://cat.cr.yp.to


McEliece security advantages
QROM IND-CCA2 security of Classic McEliece
has tight proof assuming one-wayness
of the original 1978 McEliece system.
Stable attack target for 45 years.
Nearly 50 papers attacking one-wayness of
McEliece have produced only minor attack
speedups since 1978: asymptotically 0%
change in pre-quantum security levels.
Post-quantum: like AES. The attack surface is
thoroughly explored and well understood.
New: CryptAttackTester includes full attack
circuits + analyses passing systematic tests.

Daniel J. Bernstein, McEliece verification 3

https://classic.mceliece.org/mceliece-security-20221023.pdf
https://isd.mceliece.org
https://cat.cr.yp.to


McEliece attack challenges
Classic McEliece parameter selections use
“lengths” 3488, 4608, 6688, 6960, 8192.

Latest records in scaled-down challenges:
• Length-1284 challenge broken as title of

a Eurocrypt 2022 paper.
• Length-1347 challenge broken: simply

ran the faster attack software from
PQCrypto 2008 Bernstein–Lange–Peters
on a larger computer cluster.

Observed speeds match algorithm analyses.
Security levels are remarkably stable.

Daniel J. Bernstein, McEliece verification 4

https://decodingchallenge.org/goppa
https://eprint.iacr.org/2021/1634
https://isd.mceliece.org/1347.html


McEliece attack challenges
Classic McEliece parameter selections use
“lengths” 3488, 4608, 6688, 6960, 8192.
Latest records in scaled-down challenges:
• Length-1284 challenge broken as title of

a Eurocrypt 2022 paper.

• Length-1347 challenge broken: simply
ran the faster attack software from
PQCrypto 2008 Bernstein–Lange–Peters
on a larger computer cluster.

Observed speeds match algorithm analyses.
Security levels are remarkably stable.

Daniel J. Bernstein, McEliece verification 4

https://decodingchallenge.org/goppa
https://eprint.iacr.org/2021/1634
https://isd.mceliece.org/1347.html


McEliece attack challenges
Classic McEliece parameter selections use
“lengths” 3488, 4608, 6688, 6960, 8192.
Latest records in scaled-down challenges:
• Length-1284 challenge broken as title of

a Eurocrypt 2022 paper.
• Length-1347 challenge broken: simply

ran the faster attack software from
PQCrypto 2008 Bernstein–Lange–Peters
on a larger computer cluster.

Observed speeds match algorithm analyses.
Security levels are remarkably stable.

Daniel J. Bernstein, McEliece verification 4

https://decodingchallenge.org/goppa
https://eprint.iacr.org/2021/1634
https://isd.mceliece.org/1347.html


McEliece attack challenges
Classic McEliece parameter selections use
“lengths” 3488, 4608, 6688, 6960, 8192.
Latest records in scaled-down challenges:
• Length-1284 challenge broken as title of

a Eurocrypt 2022 paper.
• Length-1347 challenge broken: simply

ran the faster attack software from
PQCrypto 2008 Bernstein–Lange–Peters
on a larger computer cluster.

Observed speeds match algorithm analyses.
Security levels are remarkably stable.

Daniel J. Bernstein, McEliece verification 4

https://decodingchallenge.org/goppa
https://eprint.iacr.org/2021/1634
https://isd.mceliece.org/1347.html


Classic McEliece implementations
Official software for Classic McEliece is
distributed via SUPERCOP benchmarking
framework. Four implementations for each
parameter set, all passing TIMECOP:
• ref: portable, prioritizing simplicity.
• vec: portable, 64-bit vectorization.
• sse: Intel/AMD, 128-bit vectorization.
• avx: Intel/AMD, 256-bit vectorization.

Unofficial implementations: M4, FPGAs,
McTiny, McOutsourcing, Bouncy Castle (Java
and C#), Rust. Integrations: PQClean, liboqs,
Node.js. New: Easy-to-use libmceliece.

Daniel J. Bernstein, McEliece verification 5

https://classic.mceliece.org/impl.html
https://bench.cr.yp.to
https://bench.cr.yp.to/tips.html#timecop
https://github.com/pqcryptotw/mceliece-arm-m4
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
https://mctiny.org/
https://github.com/devillegna/McOutsourcing
https://bouncycastle.org/
https://github.com/Colfenor/classic-mceliece-rust
https://github.com/PQClean/PQClean
https://openquantumsafe.org/liboqs/
https://github.com/tniessen/node-mceliece-nist
https://lib.mceliece.org


Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.

• Sorting integer arrays in constant time.
• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.

• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.
• “Control bits” for permutations.

• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.
• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).

• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.
• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.

• Constant-time decoding of Goppa codes.
Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.
• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Checklist for software verification
Want to verify that each internal operation
works correctly for all possible inputs:
• SHAKE256 on constant-length inputs.
• Sorting integer arrays in constant time.
• “Control bits” for permutations.
• Arithmetic in binary fields (e.g., F8192).
• Constant-time row reduction of matrices.
• Constant-time decoding of Goppa codes.

Plus: Put everything together into “keygen,
enc, dec always work”. Automate the entire
process to handle many implementations.

Daniel J. Bernstein, McEliece verification 6



Verified constant-time sorting
Want secret permutation of {0,1, . . . ,8191}.
Solution: sort 8192 secret 32-bit integers and
their indices; restart if there are collisions.

saferewrite from pqsrc.cr.yp.to
automatically verifies constant-time min/max
code (and more). Relies on angr, which uses
VEX for code unrolling, Z3 for SMT solving.
sorting.cr.yp.to includes fast
constant-time N-input sorting built from
min/max (“sorting networks”) for int32;
automated verif with angr + DAG analysis.
Classic McEliece also uses int16, int64.

Daniel J. Bernstein, McEliece verification 7

https://pqsrc.cr.yp.to
https://angr.io
https://sorting.cr.yp.to


Verified constant-time sorting
Want secret permutation of {0,1, . . . ,8191}.
Solution: sort 8192 secret 32-bit integers and
their indices; restart if there are collisions.
saferewrite from pqsrc.cr.yp.to
automatically verifies constant-time min/max
code (and more). Relies on angr, which uses
VEX for code unrolling, Z3 for SMT solving.

sorting.cr.yp.to includes fast
constant-time N-input sorting built from
min/max (“sorting networks”) for int32;
automated verif with angr + DAG analysis.
Classic McEliece also uses int16, int64.

Daniel J. Bernstein, McEliece verification 7

https://pqsrc.cr.yp.to
https://angr.io
https://sorting.cr.yp.to


Verified constant-time sorting
Want secret permutation of {0,1, . . . ,8191}.
Solution: sort 8192 secret 32-bit integers and
their indices; restart if there are collisions.
saferewrite from pqsrc.cr.yp.to
automatically verifies constant-time min/max
code (and more). Relies on angr, which uses
VEX for code unrolling, Z3 for SMT solving.
sorting.cr.yp.to includes fast
constant-time N-input sorting built from
min/max (“sorting networks”) for int32;
automated verif with angr + DAG analysis.
Classic McEliece also uses int16, int64.

Daniel J. Bernstein, McEliece verification 7

https://pqsrc.cr.yp.to
https://angr.io
https://sorting.cr.yp.to


Verified formulas for control bits
Can permute 8192 items in constant time via
sorting. Simpler, faster: “Control bits” specify
• swap 0 with 1? swap 2 with 3? etc.;
• swap 0 with 2? swap 1 with 3? etc.;
• swap 0 with 4? swap 1 with 5? etc.;
• and so on: 1,2,4,8, . . . ,8,4,2,1.

This pattern is a “Beneš network”.

cr.yp.to/papers.html#controlbits
presents a proof of fast formulas mapping
any given permutation to control bits.
Proof is computer-verified using HOL Light.

Daniel J. Bernstein, McEliece verification 8

https://cr.yp.to/papers.html#controlbits
https://www.cl.cam.ac.uk/~jrh13/hol-light/


Verified formulas for control bits
Can permute 8192 items in constant time via
sorting. Simpler, faster: “Control bits” specify
• swap 0 with 1? swap 2 with 3? etc.;
• swap 0 with 2? swap 1 with 3? etc.;
• swap 0 with 4? swap 1 with 5? etc.;
• and so on: 1,2,4,8, . . . ,8,4,2,1.

This pattern is a “Beneš network”.
cr.yp.to/papers.html#controlbits
presents a proof of fast formulas mapping
any given permutation to control bits.
Proof is computer-verified using HOL Light.

Daniel J. Bernstein, McEliece verification 8

https://cr.yp.to/papers.html#controlbits
https://www.cl.cam.ac.uk/~jrh13/hol-light/


Verified formulas for decoding
mceliece8192128 secrets: deg-128 irred
poly g ∈ F8192[x]; distinct s0, . . . , s8191 ∈ F8192.

“Goppa codeword”: bits c0, . . . , c8191 with∑
i cisdi /g(si) = 0 for each d ∈ {0,1, . . . ,127}.

“Goppa decoding”: recover a codeword,
given the codeword with ≤128 bits flipped.
(The most complicated step in McEliece dec.)
cr.yp.to/papers.html#goppadecoding:
minicourse on decoding formulas used in the
Classic McEliece software. New: Proofs are
computer-verified in HOL Light and Lean.

Daniel J. Bernstein, McEliece verification 9

https://cr.yp.to/papers.html#goppadecoding
https://lean-lang.org/


Verified formulas for decoding
mceliece8192128 secrets: deg-128 irred
poly g ∈ F8192[x]; distinct s0, . . . , s8191 ∈ F8192.
“Goppa codeword”: bits c0, . . . , c8191 with∑

i cisdi /g(si) = 0 for each d ∈ {0,1, . . . ,127}.

“Goppa decoding”: recover a codeword,
given the codeword with ≤128 bits flipped.
(The most complicated step in McEliece dec.)
cr.yp.to/papers.html#goppadecoding:
minicourse on decoding formulas used in the
Classic McEliece software. New: Proofs are
computer-verified in HOL Light and Lean.

Daniel J. Bernstein, McEliece verification 9

https://cr.yp.to/papers.html#goppadecoding
https://lean-lang.org/


Verified formulas for decoding
mceliece8192128 secrets: deg-128 irred
poly g ∈ F8192[x]; distinct s0, . . . , s8191 ∈ F8192.
“Goppa codeword”: bits c0, . . . , c8191 with∑

i cisdi /g(si) = 0 for each d ∈ {0,1, . . . ,127}.
“Goppa decoding”: recover a codeword,
given the codeword with ≤128 bits flipped.
(The most complicated step in McEliece dec.)

cr.yp.to/papers.html#goppadecoding:
minicourse on decoding formulas used in the
Classic McEliece software. New: Proofs are
computer-verified in HOL Light and Lean.

Daniel J. Bernstein, McEliece verification 9

https://cr.yp.to/papers.html#goppadecoding
https://lean-lang.org/


Verified formulas for decoding
mceliece8192128 secrets: deg-128 irred
poly g ∈ F8192[x]; distinct s0, . . . , s8191 ∈ F8192.
“Goppa codeword”: bits c0, . . . , c8191 with∑

i cisdi /g(si) = 0 for each d ∈ {0,1, . . . ,127}.
“Goppa decoding”: recover a codeword,
given the codeword with ≤128 bits flipped.
(The most complicated step in McEliece dec.)
cr.yp.to/papers.html#goppadecoding:
minicourse on decoding formulas used in the
Classic McEliece software. New: Proofs are
computer-verified in HOL Light and Lean.

Daniel J. Bernstein, McEliece verification 9

https://cr.yp.to/papers.html#goppadecoding
https://lean-lang.org/


The end is in sight
What I’m working on: More code-analysis
tools, automatically matching up stages in
the Classic McEliece keygen/enc/dec
specification to segments of machine code.
HOL Light already includes a model of basic
machine instructions; angr already includes
a model of instructions through AVX2.
Binary-field mult is challenging to optimize,
but the optimized code is easy to verify:
simply trace bilinear operations on bits.

Daniel J. Bernstein, McEliece verification 10


