Hash-based signatures

Daniel J. Bernstein
(including slides from Tanja Lange)

1 February 2023

Python snippets for this talk:
cr.yp.to/talks/2023.02.01/hash-20230201.tar.gz

https://cr.yp.to/talks/2023.02.01/hash-20230201.tar.gz

Hash functions

The SHA-256 cryptographic hash function

$ echo hello
hello
$

Daniel J. Bernstein Hash-based signatures

The SHA-256 cryptographic hash function

$ echo hello

hello

$ echo hello | sha256sum
5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2¢846£6be03 -
$

Daniel J. Bernstein Hash-based signatures 3

The SHA-256 cryptographic hash function

$ echo hello

hello

$ echo hello | sha256sum
5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2¢846£6be03 -
$ echo world | sha256sum
€258d248£da94c63753607£7c4494ee0fcbe92f1a76bfdac795¢c9d84101eb317 -
$

Daniel J. Bernstein Hash-based signatures 3

The SHA-256 cryptographic hash function

$ echo hello

hello

$ echo hello | sha256sum
5891b5b522d5df086d0f£0b110fbd9d21bb4fc7163af34d08286a2e846f6be03 -
$ echo world | sha256sum
e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101eb317 -
$ echo this is a longer message | sha256sum
c316678498bdf2a77d64el1f3af0cdc6e943234d19ce38034e24ccf98ab5ab5901 -
$

Daniel J. Bernstein Hash-based signatures 3

The SHA-256 cryptographic hash function

$ echo hello

hello

$ echo hello | sha256sum
5891b5b522d5df086d0f£0b110fbd9d21bb4fc7163af34d08286a2e846f6be03
$ echo world | sha256sum
€258d248£da94c63753607£7c4494ee0fcbe92f1a76bfdac795c9d84101eb317
$ echo this is a longer message | sha256sum
c316678498bdf2a77d64el1f3af0cdc6e943234d19ce38034e24ccf98abab5901
$ echo hello | sha256sum
5891b5b522d5df086d0f£0b110fbd9d21bb4fc7163af34d08286a2e846f6be03
$

Daniel J. Bernstein Hash-based signatures

The SHA-256 cryptographic hash function

$ echo hello

hello

$ echo hello | sha256sum
5891b5b522d5df086d0f£0b110fbd9d21bb4fc7163af34d08286a2e846f6be03
$ echo world | sha256sum
€258d248£da94c63753607£7c4494ee0fcbe92f1a76bfdac795c9d84101eb317
$ echo this is a longer message | sha256sum
c316678498bdf2a77d64el1f3af0cdc6e943234d19ce38034e24ccf98abab5901
$ echo hello | sha256sum
5891b5b522d5df086d0f£0b110fbd9d21bb4fc7163af34d08286a2e846f6be03
$

The sha256sum program computes the SHA-256 hash function.
This is a function H : {0,1}* — {0,1}25¢. Each output is 32 bytes.

Daniel J. Bernstein Hash-based signatures 3

Exercise: Hash-function input lengths

1. SHA-256 actually requires input to be at most 204 — 1 bits.
Figure out # years for today's fastest CPU to reach this limit.

2. Reading exercise: Is there an input-size limit for SHA-3?

3. Exploitable buffer overflow was announced 2022.10 in some
SHA-3 software. Reading exercise: How did this happen?

4. How would you have avoided the buffer overflow?

Daniel J. Bernstein Hash-based signatures

The SHA-256 cryptographic hash function in Python 3

>>> import hashlib

>>> def sha256(x):
h = hashlib.sha256()
h.update(x)
return h.digest()

>>> print(sha256(b’hello’) .hex())

2cf24dbabfb0a30e26e83b2ac5b9e29e1b161eb5c1£a7425e73043362938b9824
>>>

Daniel J. Bernstein Hash-based signatures

The SHA-256 cryptographic hash function in Python 3

>>> import hashlib

>>> def sha256(x):
h = hashlib.sha256()
h.update(x)
return h.digest()

>>> print(sha256(b’hello’) .hex())
2cf24dbabfb0a30e26e83b2ac5b9e29e1b161eb5c1£a7425e73043362938b9824
>>> print(sha256(b’hello\n’) .hex())
5891b5b522d5df086d0££0b110£bd9d21bb4fc7163af34d08286a2e846£6be03
>>>

Daniel J. Bernstein Hash-based signatures

The SHA-256 cryptographic hash function in Python 3

>>> import hashlib

>>> def sha256(x):
h = hashlib.sha256()
h.update(x)
return h.digest()

>>> print(sha256(b’hello’) .hex())
2cf24dbabfb0a30e26e83b2ac5b9e29e1b161eb5c1£a7425e73043362938b9824
>>> print(sha256(b’hello\n’) .hex())
5891b5b522d5df086d0££0b110£bd9d21bb4fc7163af34d08286a2e846£6be03
>>> print(sha256(b’hello\n’*1000000) .hex())
1a2cce61984891495b00826e£591104a34f£35766bbbcaaff965£766154812ab
>>>

Daniel J. Bernstein Hash-based signatures

Goals of cryptographic hash functions

What do we want from a hash function H: {0,1}* — {0,1}"?

For any string x, think of H(x) as an n-bit fingerprint of x.

Goals:

>

>
>
>
>

H(x) looks totally random;

nobody can find two different strings x, x’ with H(x) = H(x');
any tiny change from x to x’ makes a totally new H(x');
nobody can compute H(x) without knowing all of x;

nobody can compute a secret x given only H(x);

> ...

Warning: Some hash goals are difficult to mathematically define.

Daniel J. Bernstein Hash-based signatures [

Generic hardness of preimage resistance

Goal: Given y € H({0,1}%),
finding x € {0,1}* with H(x) = y is hard.

*

Here y is given, and is known to be the image of some x € {0,1}*.
Typically there are many such x,
but it should be hard to find any.

Daniel J. Bernstein Hash-based signatures

Generic hardness of preimage resistance

Goal: Given y € H({0,1}%),
finding x € {0,1}* with H(x) = y is hard.

Here y is given, and is known to be the image of some x € {0,1}*.

Typically there are many such x,
but it should be hard to find any.

Generic attack: Try 2" random choices of x.
If the output of H is distributed uniformly then
each x has a 1/2" chance of H(x) = y.

e.g. ~2128 tries if n = 128: very expensive.

Daniel J. Bernstein Hash-based signatures 7

Exercise: multi-target attacks

Given y1,yo, ..., o,
how long does it take to find x1, X2, ..., X520
such that H(x1) = y1 and H(x2) = y2 and ... and H(xp0) = y»207?

Daniel J. Bernstein Hash-based signatures 8

Generic hardness of second-preimage resistance

Goal: Given x € {0,1}*, finding x" € {0,1}*
with x # x” and H(x") = H(x) is hard.

Here x is given, determining y = H(x).
Typically there are many other x’ # x with the same image,
but it should be computationally hard to find any.

Daniel J. Bernstein Hash-based signatures

Generic hardness of second-preimage resistance

Goal: Given x € {0,1}*, finding x" € {0,1}*

with x # x” and H(x") = H(x) is hard.

Here x is given, determining y = H(x).

Typically there are many other x’ # x with the same image,
but it should be computationally hard to find any.

Generic attack: Try 2" random choices of x’ # x.
Same speed as for first preimages.

Daniel J. Bernstein Hash-based signatures

Generic hardness of collision resistance

Goal: Finding x,x’ € {0,1}*
with x # x” and H(x’) = H(x) is hard.
Attacker has full flexibility to choose any output y.

It should still be hard
to find two different strings x, x’ with the same output.

Daniel J. Bernstein Hash-based signatures 10

Generic hardness of collision resistance

Goal: Finding x,x’ € {0,1}*
with x # x” and H(x’) = H(x) is hard.

Attacker has full flexibility to choose any output y.
It should still be hard
to find two different strings x, x’ with the same output.

Generic attack: Try ~2"/2 random choices of x. This number is
much lower than 2" because there is no restriction on the target.

1

The “birthday paradox”: if one draws o

~1.17,/m elements at random os
from a set of m elements, N
then with &~50% probability 05
one has picked one element twice. o

03

02

01

0
0 10 20 30 40 50 60 70 80 90 100

Daniel J. Bernstein Hash-based signatures 10

Weaknesses in common cryptographic hash functions

Some hash functions take n to be too small.
Some hash functions take n large enough
but have structure allowing faster attacks than the generic attacks.

Daniel J. Bernstein Hash-based signatures 11

Weaknesses in common cryptographic hash functions

Some hash functions take n to be too small.
Some hash functions take n large enough
but have structure allowing faster attacks than the generic attacks.

MD4 (1990 Rivest): n = 128, so 254 generic collision attack.
MD4-specific collision attack (1995) in seconds.
Current best collision attack (2007) is even faster.

Daniel J. Bernstein Hash-based signatures 11

Weaknesses in common cryptographic hash functions

Some hash functions take n to be too small.
Some hash functions take n large enough
but have structure allowing faster attacks than the generic attacks.

MD4 (1990 Rivest): n = 128, so 254 generic collision attack.
MD4-specific collision attack (1995) in seconds.
Current best collision attack (2007) is even faster.

MD5 (1992 Rivest): n = 128, so 2% generic collision attack.
MD5-specific collision attack (2004) in one hour on a cluster.
Current best collision attack (2013) costs 218 H calls.
Chosen-prefix collisions (2008) showed real-world exploitability.

Flame malware (2012) used MD5 collision
to sign fake Windows update.

Daniel J. Bernstein Hash-based signatures 11

More examples

SHA-0 (1993 NSA): n = 160, so 28 generic collision attack.
Many weaknesses found. Collisions published (2004).

Daniel J. Bernstein Hash-based signatures

12

https://shattered.io/
https://sha-mbles.github.io/

More examples

SHA-0 (1993 NSA): n = 160, so 28 generic collision attack.

Many weaknesses found. Collisions published (2004).

SHA-1 (1995 NSA): n = 160, so 28 generic collision attack.

Collisions published (2017): https://shattered.io/.
Practical attack, chosen-prefix collision (2020):
https://sha-mbles.github.io/

Daniel J. Bernstein Hash-based signatures

12

https://shattered.io/
https://sha-mbles.github.io/

The NSA view of cryptographic standardization

“Narrowing the encryption problem to a single, influential
algorithm might drive out competitors, and that would reduce the
field that NSA had to be concerned about. Could a public
encryption standard be made secure enough to protect against
everything but a massive brute force attack, but weak enough to
still permit an attack of some nature using very sophisticated
(and expensive) techniques?” (Emphasis added.)

This quote is from an internal NSA history book.

Daniel J. Bernstein Hash-based signatures 13

https://archive.org/details/cold_war_iii-nsa/cold_war_iii-ISCAP/page/n239/mode/2up

Some unbroken hash functions

SHA-256 (NSA): n = 256, so 2128 generic collision attack.
SHA-512 (NSA): n = 512.
“SHA-2" refers to SHA-256, SHA-512, etc.

Daniel J. Bernstein Hash-based signatures

14

Some unbroken hash functions

SHA-256 (NSA): n = 256, so 2128 generic collision attack.
SHA-512 (NSA): n = 512.
“SHA-2" refers to SHA-256, SHA-512, etc.

2004-2005: Big improvements in attacks against MD5, SHA-1.
2007-2012: NIST holds competition for new SHA-3 function
in case SHA-2 is broken.

Daniel J. Bernstein Hash-based signatures 14

Some unbroken hash functions

SHA-256 (NSA): n = 256, so 2128 generic collision attack.
SHA-512 (NSA): n = 512.
“SHA-2" refers to SHA-256, SHA-512, etc.

2004-2005: Big improvements in attacks against MD5, SHA-1.

2007-2012: NIST holds competition for new SHA-3 function
in case SHA-2 is broken.

SHA3-256 (Bertoni-Daemen—Peeters—van Assche): n = 256.
SHA3-512 (Bertoni-Daemen—Peeters—van Assche): n = 512.

Daniel J. Bernstein Hash-based signatures

14

Some unbroken hash functions

SHA-256 (NSA): n = 256, so 2128 generic collision attack.
SHA-512 (NSA): n = 512.
“SHA-2" refers to SHA-256, SHA-512, etc.

2004-2005: Big improvements in attacks against MD5, SHA-1.

2007-2012: NIST holds competition for new SHA-3 function
in case SHA-2 is broken.

SHA3-256 (Bertoni-Daemen—Peeters—van Assche): n = 256.
SHA3-512 (Bertoni-Daemen—Peeters—van Assche): n = 512.

Another popular SHA-3 finalist, faster than SHA-3 in software:

BLAKE. Successors: BLAKE2, BLAKES.

Daniel J. Bernstein Hash-based signatures

14

One-time signatures

Hash-based signatures

Use a hash function to build a public-key signature system.

Old idea, starting with 1979 Lamport one-time signatures.
Many further improvements in years since.

Daniel J. Bernstein Hash-based signatures

16

Hash-based signatures

Use a hash function to build a public-key signature system.

Old idea, starting with 1979 Lamport one-time signatures.
Many further improvements in years since.

Signer generates secret key and public key.
Everyone learns signer’s public key.

Using secret key, signer can sign any message m,
producing a signed message (m,s).

Everyone can verify (m,s) using signer’s public key.

Daniel J. Bernstein Hash-based signatures

16

Hash-based signatures

Use a hash function to build a public-key signature system.

Old idea, starting with 1979 Lamport one-time signatures.
Many further improvements in years since.

Signer generates secret key and public key.
Everyone learns signer’s public key.

Using secret key, signer can sign any message m,
producing a signed message (m,s).

Everyone can verify (m,s) using signer’s public key.

Attacker's goal: construct (m,s) that signer didn't sign
but that passes verification using signer’s public key.

Daniel J. Bernstein Hash-based signatures

16

Hash-based signatures

Use a hash function to build a public-key signature system.
Old idea, starting with 1979 Lamport one-time signatures.
Many further improvements in years since.

Signer generates secret key and public key.
Everyone learns signer’s public key.

Using secret key, signer can sign any message m,
producing a signed message (m,s).

Everyone can verify (m,s) using signer’s public key.

Attacker's goal: construct (m,s) that signer didn't sign
but that passes verification using signer’s public key.

Attacker looks at public key and at signed messages.
Tries modifying the signed messages or creating new messages.

Daniel J. Bernstein Hash-based signatures

A signature scheme for empty messages: key generation

Daniel J. Bernstein Hash-based signatures 17

A signature scheme for empty messages: key generation
import os,hashlib

def sha3_256(x):
h = hashlib.sha3_256()
h.update(x)
return h.digest()

def keypair():
secret = sha3_256(os.urandom(32))
public = sha3_256(secret)
return public,secret

Daniel J. Bernstein Hash-based signatures 17

A signature scheme for empty messages: key generation

import os,hashlib

def sha3_256(x):
h = hashlib.sha3_256()
h.update(x)
return h.digest()

def keypair():
secret = sha3_256(os.urandom(32))
public = sha3_256(secret)
return public,secret

>>> import signempty

>>> pk,sk = signempty.keypair()

>>> pk.hex()
’61ba682£03259a276dc2d790ed4863113d5559ad7cdd3c282083b9aabb170ff
>>> sk.hex()
’4645dd39db47dd18b646a34b8f2dc6afd7fa62cc6faafc2ad3426dc94394335

Daniel J. Bernstein Hash-based signatures 17

Signing and verifying empty messages

def sign(message,secret):
if not isinstance(message,bytes):
raise TypeError(’message must be a byte string’)
if message != b’’:
raise ValueError(’message must be empty’)
signedmessage = secret
return signedmessage

def open(signedmessage,public):
if len(signedmessage) != 32:
raise ValueError(’bad signature’)
if sha3_256(signedmessage) != public:
raise ValueError(’bad signature’)
message = b’’
return message

Daniel J. Bernstein Hash-based signatures

18

Signing and verifying empty messages

def sign(message,secret):
if not isinstance(message,bytes):
raise TypeError(’message must be a byte string’)
if message != b’’:
raise ValueError(’message must be empty’)
signedmessage = secret
return signedmessage

def open(signedmessage,public):
if len(signedmessage) != 32:
raise ValueError(’bad signature’)
if sha3_256(signedmessage) != public:
raise ValueError(’bad signature’)
message = b’’
return message

>>> sm = signempty.sign(b’’,sk)
>>> signempty.open(sm,pk)
b) J

Daniel J. Bernstein Hash-based signatures

A signature scheme for 1-bit messages: keygen, signing

import signempty

def keypair():
p0,s0 = signempty.keypair()
pl,sl = signempty.keypair()
return (pO,pl),(s0,s1)

def sign(message,secret):
if not isinstance(message,bytes):
raise TypeError(’message must be a byte string’)

if message == b’0’:
return message,signempty.sign(b’’,secret[0])
if message == b’1’:

return message,signempty.sign(b’’,secret[1])
raise ValueError("message must be b’0’ or b’1’")

Daniel J. Bernstein Hash-based signatures 19

A signature scheme for 1-bit messages: verification

def open(signedmessage,public):

if not isinstance(signedmessage[0],bytes):
raise TypeError(’message must be a byte string’)

if signedmessage[0] == b’0’:
signempty.open(signedmessage[1] ,public[0])
return b’0’

if signedmessage[0] == b’1’:
signempty.open(signedmessage[1] ,public[1])
return b’1’

raise ValueError(’bad signature’)

Daniel J. Bernstein Hash-based signatures 20

A signature scheme for 1-bit messages: verification

def open(signedmessage,public):

if not isinstance(signedmessage[0],bytes):
raise TypeError(’message must be a byte string’)

if signedmessage[0] == b’0’:
signempty.open(signedmessage[1] ,public[0])
return b’0’

if signedmessage[0] == b’1’:
signempty.open(signedmessage[1] ,public[1])
return b’1’

raise ValueError(’bad signature’)

>>> import signbit

>>> pk,sk = signbit.keypair()
>>> sm = signbit.sign(b’1’,sk)
>>> signbit.open(sm,pk)

b’1’

Daniel J. Bernstein Hash-based signatures

20

A signature scheme for 4-bit messages: key generation

import signbit

def keypair():
p0,s0 = signbit.keypair()
pl,sl = signbit.keypair()
p2,s2 = signbit.keypair()
p3,s3 = signbit.keypair()
return (p0,pl,p2,p3),(s0,s1,s2,s3)

def sign(m,secret):
if not isinstance(m,bytes):
raise TypeError(’message must be a byte string’)
if len(m) != 4:
raise ValueError(’message must have length 4’)
sm0 = signbit.sign(m[0:1],secret[0])
sml = signbit.sign(m[1:2],secret[1])
sm2 = signbit.sign(m[2:3],secret[2])
sm3 = signbit.sign(m[3:4],secret[3])
return smO,sml,sm2,sm3

Daniel J. Bernstein Hash-based signatures

A signature scheme for 4-bit messages: sign & verify

def open(sm,public):
if len(sm) != 4:
raise ValueError(’signed message must have length 4°)
m0 = signbit.open(sm[0],public[0])

ml = signbit.open(sm[1],public[1])
m2 = signbit.open(sm[2],public[2])
m3 = signbit.open(sm[3],public[3])

return mO+m1+m2+m3

Daniel J. Bernstein Hash-based signatures

22

Do not use one secret key to sign two messages!

>>> import signdbits

>>> pk,sk = signdbits.keypair()

>>> sm0111 = signdbits.sign(b’0111’,sk)
>>> signdbits.open(sm0111,pk)

b’0111°

>>> sm1101 = signdbits.sign(b’1101°,sk)
>>> signdbits.open(sm1101,pk)

b’1101°

Daniel J. Bernstein Hash-based signatures

23

Do not use one secret key to sign two messages!

>>> import signdbits

>>> pk,sk = signdbits.keypair()

>>> sm0111 = signdbits.sign(b’0111’,sk)
>>> signdbits.open(sm0111,pk)

b’0111°

>>> sm1101 = signdbits.sign(b’1101°,sk)
>>> signdbits.open(sm1101,pk)

b’1101°

>>> forgery = sm1101[:2]+sm0111[2:]

>>> signdbits.open(forgery,pk)

b’1111°

Daniel J. Bernstein Hash-based signatures

23

Lamport’'s 1-time signature system
Sign arbitrary-length message by signing its 256-bit hash:

def hashbits(message):
h = sha3_256(message)
return [(b’0’,b’1’) [1&(h([i//8]1>>(i%8))] for i in range(256)]

def keypair():
keys = [signbit.keypair() for n in range(256)]
return zip(xkeys)

def sign(message,secret):
hbits = hashbits(message)
sigs = [signbit.sign(hbits[i],secret[i]) for i in range(256)]
return sigs,message

def open(sm,public):
if len(sm[0]) != 256:
raise ValueError(’wrong signature length’)
message = sm[1]
hbits = hashbits(message)
for i in range(256):
if hbits[i] != signbit.open(sm[0] [i],public[i]):
raise ValueError(’bit %d of hash does not match’%i)
return message

Daniel J. Bernstein Hash-based signatures

24

Can we build shorter signatures?
Each Lamport signature has 256 signbit signatures.
Each signbit signature has 1 signempty signature.
Each signempty signature has one hash output (32 bytes).
Total 256 hash outputs (8192 bytes).

For a 4-bit message: 4 hash outputs (128 bytes).

Can we build shorter signatures?
Each Lamport signature has 256 signbit signatures.
Each signbit signature has 1 signempty signature.
Each signempty signature has one hash output (32 bytes).
Total 256 hash outputs (8192 bytes).

For a 4-bit message: 4 hash outputs (128 bytes).

Idea for doing better, just 1 hash output for a 4-bit message:
» Define
H'(x) = H(H'"}(x)) = H(H(- - (H(x)))).
—_——
i times
» Pick random sk, compute pk = H(sk).

» For message m € {0,1,...,15} reveal s = H™(sk) as
signature.

» To verify check that pk = H0~™(s).

Can we build shorter signatures?
Each Lamport signature has 256 signbit signatures.
Each signbit signature has 1 signempty signature.
Each signempty signature has one hash output (32 bytes).
Total 256 hash outputs (8192 bytes).

For a 4-bit message: 4 hash outputs (128 bytes).

Idea for doing better, just 1 hash output for a 4-bit message:
» Define
H'(x) = H(H'"}(x)) = H(H(- - (H(x)))).
—_——
i times
» Pick random sk, compute pk = H(sk).

» For message m € {0,1,...,15} reveal s = H™(sk) as
signature.

» To verify check that pk = H0~™(s).
This is the weak Winternitz signature system.

Weak Winternitz

def keypair():
secret = sha3_256(os.urandom(32))
public = secret
for i in range(16): public = sha3_256(public)
return public,secret

def sign(m,secret):
if not isinstance(m,int) or m<0 or m>15:
raise ValueError (’message must be in {0,1,...,15}’)
s = secret
for i in range(m): s = sha3_256(s)
return s,m

def open(sm,public):
if not isinstance(sm[1],int) or sm[1]<0 or sm[1]>15:

raise ValueError(’message must be in {0,1,...,15}’)
c = sm[0]
for i in range(16-sm[1]): ¢ = sha3_256(c)
if ¢ != public: raise ValueError(’bad signature’)

return sm[1]

Why this is “weak” Winternitz

This is insecure even if you sign only 1 message!

>>> import weak_winternitz

>>> pk,sk = weak_winternitz.keypair()
>>> sm7 = weak_winternitz.sign(7,sk)
>>> H = weak_winternitz.sha3_256

>>> weak_winternitz.open(sm7,pk)

7

>>> forgery = H(sm7[0]),8

>>> weak_winternitz.open(forgery,pk)
8

>>> forgery2 = H(forgery[0]),9

>>> weak_winternitz.open(forgery2,pk)
9

>>>

Why this is “weak” Winternitz

This is insecure even if you sign only 1 message!

>>> import weak_winternitz

>>> pk,sk = weak_winternitz.keypair()
>>> sm7 = weak_winternitz.sign(7,sk)
>>> H = weak_winternitz.sha3_256

>>> weak_winternitz.open(sm7,pk)

7

>>> forgery = H(sm7[0]),8

>>> weak_winternitz.open(forgery,pk)
8

>>> forgery2 = H(forgery[0]),9

>>> weak_winternitz.open(forgery2,pk)
9

>>>

Fix: Strong Winternitz uses weak Winternitz twice,
running one chain forward, one chain backward.
(Exercise: this is safe with H'® instead of H® in weak Winternitz.)

Strong Winternitz

import weak_winternitz

def keypair():
keys = [weak_winternitz.keypair() for n in range(2)]
return zip(xkeys)

def sign(m,secret):
if not isinstance(m,int) or m<0 or m>15:
raise ValueError(’message must be in {0,1,...,15}’)
sign0 = weak_winternitz.sign(m,secret[0])
signl = weak_winternitz.sign(15-m,secret[1])
return signO[0],sign1[0],m

def open(sm,public):
if not isinstance(sm[2],int) or sm[2]<0 or sm[2]>15:
raise ValueError (’message must be in {0,1,...,15}’)
weak_winternitz.open((sm[0],sm[2]) ,public[0])
weak_winternitz.open((sm[1],15-sm[2]) ,public[1])
return sm[2]

Daniel J. Bernstein Hash-based signatures 28

Full Winternitz, using base 28

Write 256-bit message (or 256-bit hash of actual message)
in base 28 as (mg, my, ..., ms1).

Put ¢ = > g.;-3(2% — m;). Note that ¢ < 213,
Write ¢ in base 28 as (cp, c1).
Sign with chains of lengths mg, my, ..., m31, o, 1.

Signature has just 34 hash values. Lamport used 256 hash values.

Daniel J. Bernstein Hash-based signatures 29

Exercise: varying the Winternitz base

How does Winternitz work in base 2° for signing 256 bits?

How does this compare to base 287 Efficiency metrics:
» How many bytes are in the signature?
» How many bytes are in the public key?
» How many bytes are in the secret key?
» How many hash-function computations are used in signing?
>

How many hash-function computations are used in verifying?

Daniel J. Bernstein Hash-based signatures 30

Many-time signatures

Merkle's (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key Pis.

Pis = H(P13, P1a)

— S~—
P13 = H(Po, P1o) P14 = H(P11, P12)

AN 7N

Py = H(P1,P2) Pio = H(P3,Ps) P11 =H(Ps,Ps) Pio=H(P7,Ps)

/N /N /N /N
Py P3 Ps

P, Py Ps P; Pg

! ! ! ! ! ! ! !

51 \)) S3 S4 Ss Se S7 Sg

Si — Pj can be Lamport or Winternitz one-time signature system.
Each such pair (S;, P;) may be used only once.

Daniel J. Bernstein Hash-based signatures 32

Signature in 8-time Merkle hash tree
Signature of first message: (sign(m, S1), P1, P2, Pio, P1a).

‘ P15 = H(P13, P14) ‘

/ S~
P13 = H(P9, P1o) ‘P14 = H(P11, P12)‘
N 7 N
Py = H(Py,P;) | Pio = H(Ps, Ps)| P11 = H(Ps,Ps) Pio= H(Ps,Ps)

/N
N
)) ! ! ! ! ! !

S> S3 Sa Ss Se S Se

Daniel J. Bernstein Hash-based signatures 33

Signature in 8-time Merkle hash tree

Signature of first message: (sign(m, S1), P1, P2, Pio, P1a).

‘ Pis = H(P13, P14)‘
S~
P13 = H(P9, P1o) ‘P14 = H(P11, P12)‘
N 7 N
Py = H(Py,P;) | Pio = H(Ps, Ps)| P11 = H(Ps,Ps) Pio= H(Ps,Ps)

N /N /N /N
Ps P, Ps Ps P; Ps
] } | | | | | |
52 53 54 55 S6

S7 Sg

Verify signature sign(m, S1) with public key P;.

Link Py against public key Pis by computing Py = H(P1, Ps),
P15 = H(P§, P1o), and comparing H(P;5, P14) with Pis.

Reject if H(P;3, P1a) # Pis of if the signature verification failed.

Daniel J. Bernstein Hash-based signatures

33

Basic data flow

T; are one-time signature keys.
1 indicates input to hash function.
| indicates signing.

Daniel J. Bernstein Hash-based signatures

34

Basic data flow

O/ \O
0/ \O O/ \O
T/ A T/ \T T/ \T T/ \T

T; are one-time signature keys.
1 indicates input to hash function.
| indicates signing.

Daniel J. Bernstein Hash-based signatures 34

Basic data flow

O/ \O
O/ \O O/ \O
ANV N ANV AN

T; are one-time signature keys.
1 indicates input to hash function.
| indicates signing.

Daniel J. Bernstein Hash-based signatures 34

PK

Trees of trees
/ \

O/ \O O/ \O
T/ \T T/ \T T/ \T T/ \T
J

Daniel J. Bernstein Hash-based signatures 35

Hash-based signatures today

Stateful vs. stateless

All of the signature systems so far in this talk
require keeping track of number of messages signed.

Adam Langley: “for most environments it's a huge foot-cannon.”
Counting number of messages might not seem difficult, but
what happens if you copy the signature state (sk, #messages)?
Copying is normal: backups, virtual-machine cloning, etc.

Daniel J. Bernstein Hash-based signatures

37

https://www.imperialviolet.org/2013/07/18/hashsig.html

Stateful vs. stateless

All of the signature systems so far in this talk
require keeping track of number of messages signed.

Adam Langley: “for most environments it's a huge foot-cannon.”
Counting number of messages might not seem difficult, but
what happens if you copy the signature state (sk, #messages)?
Copying is normal: backups, virtual-machine cloning, etc.

Fix: Build a stateless hash-based signature scheme.
Basic ideas: huge trees (1987 Goldreich), keys on demand (Levin).

600 KB: Goldreich's signature using good 1-time signature scheme.

Daniel J. Bernstein Hash-based signatures 37

https://www.imperialviolet.org/2013/07/18/hashsig.html

Stateful vs. stateless

All of the signature systems so far in this talk
require keeping track of number of messages signed.

Adam Langley: “for most environments it's a huge foot-cannon.”
Counting number of messages might not seem difficult, but
what happens if you copy the signature state (sk, #messages)?
Copying is normal: backups, virtual-machine cloning, etc.

Fix: Build a stateless hash-based signature scheme.
Basic ideas: huge trees (1987 Goldreich), keys on demand (Levin).

600 KB: Goldreich's signature using good 1-time signature scheme.

41 KB: SPHINCS-256 signature (2014
Bernstein—Hopwood—Hyilsing—Lange—Niederhagen—
Papachristodoulou-Schneider-Schwabe-Wilcox-O'Hearn).

More optimizations, more tradeoff options: SPHINCS+.

Daniel J. Bernstein Hash-based signatures 37

https://www.imperialviolet.org/2013/07/18/hashsig.html

The hash perspective on post-quantum cryptography

The three major types of post-quantum public-key cryptography:
> Stateless hash-based signatures (the safe default option).
Modern versions with many optimizations:

» SPHINCS—+ “simple”: slightly more streamlined.
» SPHINCS+ “robust”: easier security review.

Daniel J. Bernstein Hash-based signatures 38

The hash perspective on post-quantum cryptography

The three major types of post-quantum public-key cryptography:

> Stateless hash-based signatures (the safe default option).
Modern versions with many optimizations:
» SPHINCS—+ “simple”: slightly more streamlined.
» SPHINCS+ “robust”: easier security review.
» Stateful hash-based signatures (if you can't afford stateless).
Modern versions with many optimizations:

» LMS: slightly more streamlined than XMSS.
» XMSS: easier security review than LMS.

Daniel J. Bernstein Hash-based signatures 38

The hash perspective on post-quantum cryptography

The three major types of post-quantum public-key cryptography:
> Stateless hash-based signatures (the safe default option).
Modern versions with many optimizations:
» SPHINCS—+ “simple”: slightly more streamlined.
» SPHINCS+ “robust”: easier security review.
» Stateful hash-based signatures (if you can't afford stateless).
Modern versions with many optimizations:
» LMS: slightly more streamlined than XMSS.
» XMSS: easier security review than LMS.
» Dangerous post-quantum public-key cryptosystems:
use not just hash functions but also structured math problems.

Daniel J. Bernstein Hash-based signatures 38

Standardization

» CFRG has published RFCs for XMSS and LMS.

» NIST has copied the XMSS and LMS standards, and has
announced that it will standardize SPHINCS+-.

» SO SC27 JTC1 WG2 is working on standard for stateful
hash-based signatures.

More information: https://sphincs.org.

See also Tanja Lange's course page for more videos and slides
for hash-based signatures and more PQC.

Daniel J. Bernstein Hash-based signatures

39

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://sphincs.org
https://hyperelliptic.org/tanja/teaching/pqcrypto22/

