Fast norm computation
in smooth-degree
Abelian number fields
D. J. Bernstein

University of Illinois at Chicago;
Ruhr University Bochum;
Academia Sinica

Notation,
for α in number field K :
$\operatorname{tr}_{\mathbf{Q}}^{K} \alpha, \operatorname{det}_{\mathbf{Q}}^{K} \alpha$ mean tr, jet of
$\beta \mapsto \alpha \beta$ as \mathbf{Q}-linear map $K \rightarrow K$. More generally: $\operatorname{tr}_{F}^{K} \alpha, \operatorname{det}_{F}^{K} \alpha$ as F-linear map for subfield F of K.

Often want to compute $\operatorname{det}_{\mathbf{Q}}^{K}$. One of many examples: Define $\zeta_{m}=\exp (2 \pi i / m)$ and $h_{m}^{-}=$ $\# \mathrm{Cl}\left(\mathbf{Q}\left(\zeta_{m}\right)\right) / \# \mathrm{Cl}\left(\mathbf{R} \cap \mathbf{Q}\left(\zeta_{m}\right)\right)$.
e.g. $h_{64}^{-}=17 ; h_{128}^{-}=17 \cdot 21121$; $h_{256}^{-}=17 \cdot 21121 \cdot 29102880226241$.
$17=2 \operatorname{det}_{\mathbf{Q}}^{\mathbf{Q}\left(\zeta_{16}\right)}\left(B_{64} / 2\right)$ where $B_{64}=\zeta_{16}^{7}-\zeta_{16}^{6}+\zeta_{16}^{5}+\zeta_{16}^{4}+\zeta_{16}^{3}-$ $\zeta_{16}^{2}-\zeta_{16}-1$.
$21121=2 \operatorname{det}_{\mathbf{Q}}^{\mathbf{Q}\left(\zeta_{32}\right)}\left(B_{128} / 2\right)$ where $B_{128}=-\zeta_{32}^{15}+\zeta_{32}^{14}-\zeta_{32}^{13}+\zeta_{32}^{12}+$ $\zeta_{32}^{11}+\zeta_{32}^{10}+\zeta_{32}^{9}+\zeta_{32}^{8}-\zeta_{32}^{7}-\zeta_{32}^{6}-$ $\zeta_{32}^{5}+\zeta_{32}^{4}+\zeta_{32}^{3}-\zeta_{32}^{2}-\zeta_{32}-1$. $29102880226241=\cdots$

1851 Summer, 1952 Hesse, 1964 Schrutka vo Rechtenstamm, 1970 Newman, 1978 LehmerMasley, 1992 Fung-GranvilleWilliams, 1995 Jha, 1998 Louboutin, 1999 Shokrollahi: various algorithms to evaluate $m \mapsto h_{m}^{-}$, all using at least $m^{1.5+o(1)}$ bit operations (even with fast multiplication).
h_{m}^{-}has $m^{1+o(1)}$ bits.

1851 Summer, 1952 Hasse, 1964 Schrutka vo Rechtenstamm,
1970 Newman, 1978 LehmerMasley, 1992 Fung-GranvilleWilliams, 1995 Jha, 1998 Louboutin, 1999 Shokrollahi: various algorithms to evaluate $m \mapsto h_{m}^{-}$, all using at least $m^{1.5+o(1)}$ bit operations (even with fast multiplication).
h_{m}^{-}has $m^{1+o(1)}$ bits.
For many choices of m :
Fast $\operatorname{det}_{\mathbf{Q}}^{K}$ as in this talk gives h_{m}^{-} using $m^{1+o(1)}$ bit operations.

Main motivation

Core computation in algebraic number theory: filter all small elements of \mathcal{O}_{K} to find S-units
(elements with prime-ideal
factorizations supported on S).
More generally, filter all small elements of an \mathcal{O}_{K}-ideal $I \neq 0$ to find S-generators of I.

Traditional application: Compute
S-unit group; in particular, conjecturally obtain \mathcal{O}_{K}^{*} and $\mathrm{Cl}(K)$ in subexponential time.

How to recognize S-units?
For some fields K (e.g., in NFS), find small elements of \mathcal{O}_{K} in a low-dimensional lattice. Easily scan a sublattice for each factor.

How to recognize S-units?
For some fields K (e.g., in NFS),
find small elements of \mathcal{O}_{K} in a low-dimensional lattice. Easily scan a sublattice for each factor.

For balanced high-degree K (e.g., cyclotomics), lattice has high dimension; scanning sublattices seems hard. So, for each small α (modulo automorphisms etc.), compute $\operatorname{det}_{\mathbf{Q}}^{K} \alpha$, see whether $\operatorname{det}_{\mathbf{Q}}^{K} \alpha$ factors suitably.

How fast is $\alpha \mapsto \operatorname{det}_{\mathbf{Q}}^{K} \alpha$?

Highlights of the 2022 paper

Section 2: For small α, how large is $\operatorname{det}_{\mathbf{Q}}^{K} \alpha$? Case study: $\mathbf{Q}\left(\zeta_{m}\right)$ where $m=2 n \in\{4,8,16, \ldots\}$. Trivially $O(n \log n)$ bits; more precise "circular approximation" to distribution; experiments.

Highlights of the 2022 paper

Section 2: For small α, how large is $\operatorname{det}_{\mathbf{Q}}^{K} \alpha$? Case study: $\mathbf{Q}\left(\zeta_{m}\right)$ where $m=2 n \in\{4,8,16, \ldots\}$. Trivially $O(n \log n)$ bits; more precise "circular approximation" to distribution; experiments.

Section 3: How fast are standard $\operatorname{det}_{\mathbf{Q}}^{K}$ algorithms? Modular resultants via continued fractions: usually $n^{2}(\log n)^{3+o(1)}$. $\prod_{\sigma} \sigma(\alpha)$ in C: $n^{2}(\log n)^{3+o(1) ; ~}$ $n^{2}(\log n)^{2+o(1)}$ using a cyclotomic speedup from 1982 Schönhage.

Section 1: $\operatorname{det}_{\mathbf{Q}}^{K} \alpha=\operatorname{det}_{\mathbf{Q}}^{F} \operatorname{det}_{F}^{K} \alpha$ obviously reduces cost to $n^{1+o(1)}$ for the same $\mathbf{Q}\left(\zeta_{m}\right)$ case study. See paper for credits + speedups.

Section 1: $\operatorname{det}_{\mathbf{Q}}^{K} \alpha=\operatorname{det}_{\mathbf{Q}}^{F} \operatorname{det}_{F}^{K} \alpha$ obviously reduces cost to $n^{1+o(1)}$ for the same $\mathbf{Q}\left(\zeta_{m}\right)$ case study. See paper for credits + speedups.

Section 4: How general is this? Want small-relative-degree tower.
Also want small bases supporting fast multiplication and subfields.
For Abelian fields: Gauss-period basis is small, supports subfields; generalizing Reader's FFT gives fast multiplication; total cost $n(\log n)^{3+o(1)}$ if reldeg $(\log n)^{o(1)}$.

Section 1: $\operatorname{det}_{\mathbf{Q}}^{K} \alpha=\operatorname{det}_{\mathbf{Q}}^{F} \operatorname{det}_{F}^{K} \alpha$ obviously reduces cost to $n^{1+o(1)}$ for the same $\mathbf{Q}\left(\zeta_{m}\right)$ case study. See paper for credits + speedups.

Section 4: How general is this? Want small-relative-degree tower.
Also want small bases supporting fast multiplication and subfield.
For Abelian fields: Gauss-period basis is small, supports subfields; generalizing Reader's FFT gives fast multiplication; total cost $n(\log n)^{3+o(1)}$ if reldeg $(\log n)^{o(1)}$.

Section 5: S-unit application.

Power-of-2 cyclotomics

Take, e.g., $B_{128}=-\zeta_{32}^{15}+\cdots$.
$\operatorname{det}_{\mathbf{Q}\left(\zeta_{16}\right)}^{\mathbf{Q}\left(\zeta_{32}\right)} B_{128}=B_{128} \cdot \sigma\left(B_{128}\right)$
$=-6 \zeta_{16}^{7}-2 \zeta_{16}^{6}-6 \zeta_{16}^{5}-6 \zeta_{16}^{4}$
$-6 \zeta_{16}^{3}+6 \zeta_{16}^{2}-2 \zeta_{16}-2$.
$\operatorname{det}_{\mathbf{Q}\left(\zeta_{8}\right)}^{\mathbf{Q}\left(\zeta_{32}\right)} B_{128}$
$=-88 \zeta_{8}^{3}+104 \zeta_{8}^{2}+56 \zeta_{8}+88$.
$\operatorname{det}_{\mathbf{Q}\left(\zeta_{4}\right)}^{\mathbf{Q}\left(\zeta_{32}\right)} B_{128}$
$=22912 \zeta_{4}-12928$.
$\operatorname{det}_{\mathbf{Q}}^{\mathbf{Q}\left(\zeta_{32}\right)} B_{128}$
$=692092928=21121 \cdot 2^{15}$.

2010 Gentry-Halevi: This costs $n(\log n)^{O(1)}$ and "relies heavily on the special form of $\ldots x^{n}+1$, with n a power of two".

2010 Gentry-Halevi: This costs $n(\log n)^{O(1)}$ and "relies heavily on the special form of $\ldots x^{n}+1$, with n a power of two". In fact, also works for $\mathbf{Q}\left(\zeta_{m}\right)$ for any smooth positive integer m.

2010 Gentry-Halevi: This costs $n(\log n)^{O(1)}$ and "relies heavily on the special form of $\ldots x^{n}+1$, with n a power of two". In fact, also works for $\mathbf{Q}\left(\zeta_{m}\right)$ for any smooth positive integer m.

What about further fields?
Main challenge: fast multiplication.

2010 Gentry-Halevi: This costs $n(\log n)^{O(1)}$ and "relies heavily on the special form of $\ldots x^{n}+1$, with n a power of two".

In fact, also works for $\mathbf{Q}\left(\zeta_{m}\right)$ for any smooth positive integer m.

What about further fields? Main challenge: fast multiplication.

2017 Bauch-Bernstein-de
Valence-Lange-van Vredendaal includes analogous det evaluation for multiquadratic fields, built from a fast-multiplication algorithm for those fields.

Prime-conductor cyclotomics

For prime p with smooth $p-1$: use long tower $\mathbf{Q} \subset \cdots \subset \mathbf{Q}\left(\zeta_{p}\right)$.

Use Gauss periods as a basis for each subfield $F \subseteq \mathbf{Q}\left(\zeta_{p}\right)$: e.g., for degree-4 subfield F of $K=\mathbf{Q}\left(\zeta_{17}\right)$, use the basis $\operatorname{tr}_{F}^{K} \zeta_{17}^{1}=\zeta_{17}^{1}+\zeta_{17}^{4}+\zeta_{17}^{-4}+\zeta_{17}^{-1}$, $\operatorname{tr}_{F}^{K} \zeta_{17}^{3}=\zeta_{17}^{3}+\zeta_{17}^{-5}+\zeta_{17}^{5}+\zeta_{17}^{-3}$, $\operatorname{tr}_{F}^{K} \zeta_{17}^{2}=\zeta_{17}^{2}+\zeta_{17}^{8}+\zeta_{17}^{-8}+\zeta_{17}^{-2}$, $\operatorname{tr}_{F}^{K} \zeta_{17}^{6}=\zeta_{17}^{6}+\zeta_{17}^{7}+\zeta_{17}^{-7}+\zeta_{17}^{-6}$.
(Care is required for general conductor. Use 1997 Breuer; Breuer credits Hiss and Lenstra.)

Multiply in $\mathbf{Q}\left(\zeta_{p}\right)$ using FFT.
1968 Reader FFT: To evaluate
$g=g_{1} x^{1}+g_{2} x^{2}+\cdots+g_{16} x^{16}$
at $\zeta_{17}^{1}, \ldots, \zeta_{17}^{16}$, notice that
$g\left(\zeta_{17}^{3^{b}}\right)=\sum_{j} g_{j} \zeta_{17}^{3^{b} j}=\sum_{a} g_{3-a} \zeta_{17}^{3^{b-a}}$.

Multiply in $\mathbf{Q}\left(\zeta_{p}\right)$ using FFT.

1968 Reader FFT: To evaluate

$g=g_{1} x^{1}+g_{2} x^{2}+\cdots+g_{16} x^{16}$
at $\zeta_{17}^{1}, \ldots, \zeta_{17}^{16}$, notice that
$g\left(\zeta_{17}^{3^{b}}\right)=\sum_{j} g_{j} \zeta_{17}^{3^{b}}=\sum_{a} g_{3-a} \zeta_{17}^{3^{b-a}}$.
Length-16 cyclic convolution of
$g_{1}, g_{6}, \ldots, g_{9}, g_{3}$ and
$\zeta_{17}^{1}, \zeta_{17}^{3}, \zeta_{17}^{9}, \ldots, \zeta_{17}^{6}$ is
$g\left(\zeta_{17}^{1}\right), g\left(\zeta_{17}^{3}\right), g\left(\zeta_{17}^{9}\right), \ldots, g\left(\zeta_{17}^{6}\right)$.

Multiply in $\mathbf{Q}\left(\zeta_{p}\right)$ using FFT.
1968 Reader FFT: To evaluate
$g=g_{1} x^{1}+g_{2} x^{2}+\cdots+g_{16} x^{16}$
at $\zeta_{17}^{1}, \ldots, \zeta_{17}^{16}$, notice that
$g\left(\zeta_{17}^{3^{b}}\right)=\sum_{j} g_{j} \zeta_{17}^{3^{b} j}=\sum_{a} g_{3-a} \zeta_{17}^{3^{b-a}}$.
Length-16 cyclic convolution of
$g_{1}, g_{6}, \ldots, g_{9}, g_{3}$ and
$\zeta_{17}^{1}, \zeta_{17}^{3}, \zeta_{17}^{9}, \ldots, \zeta_{17}^{6}$ is
$g\left(\zeta_{17}^{1}\right), g\left(\zeta_{17}^{3}\right), g\left(\zeta_{17}^{9}\right), \ldots, g\left(\zeta_{17}^{6}\right)$.
Folding the Reader FFT:
g represents et of deg-4 subfield
$\Leftrightarrow g_{1}, g_{6}, \ldots$ is 4-periodic.
Use length-4 cyclic convolution with the Gauss periods.

2017 Arita-Handa: folded Nader FFT for prime conductor. (No mention of Gauss periods, Reader.)

2022 paper: Application to det.
Application of segmentation.
Analysis and comparison.
And beyond prime conductor:
Generalization to arbitrary
conductor (Section 4.12; one part is 1978 Winograd FFT).
Sage scripts for arbitrary conductor (Appendix A).
Fast C software (Appendix C)
for the power-of-2 case study.

