Lattice-based cryptography,
part 1: simplicity

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:

1. Input message m € {0, 1}.

(Cohen says pick “half of the

integers in the public key at
random’” : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C = (—1)m(I’1K1 R fNKN)-

How can receiver decrypt?

Key generation:

Decryption:
m=0if Cmods < (s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

s—1
nKi+---+ryKy mods < .

(Be careful! What if all r, = 07)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

https://www.sagemath.org
https://sagecell.sagemath.org

For integers C, s with s > 0,
Sage's “Cls” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C—|C/s]|s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10

sage: X=2750

sage: Y=2"20

sage: Y

10438576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

Cee (s-1)//(2*%N)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[uits*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
501543495923784,
-583064075392587,
46109390243834]

sage:

[Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333,
8213, 6370]
sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493,
8213, 6370]
sage:
963821
sage: sum(u)
963821
sage: s//2
179756

sage:

17333,

sum (K) /s

1397, 8656,

sage: m=randrange(2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[il]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*uli]

- for i in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can't encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C # 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m — (m1 mB) - {O, 1}8.
For each i € {1, ..., B}:
Generate rjq, ..., rin €40, 1}.

Ciphertext C:
(=)™ (1K1 + -+ nvKn),

(—1)"B(rg 1K1+ -+ rgnKn).

11

12
2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO", the
1999 Fujisaki—-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m'.

3. Recompute r' = H(m'").

4. Recompute C" from m’, r'.

5. Abort if C"" £ C'.

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n K1+ - -+ ryKpy
against +=Cj.

This takes 2N easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This i1s a problem Iin some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

14

Modified attack:

For each (ry,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (I’1, . r/\/) - {O, 1}N
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpriKnporr — - — InKn
for all (”N/2+17 C ey I’N).

Look up r Ky +--- 4+ rypKy/ in
hash table for each (r, ..., ry).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets
+(Cq,...,E£Cpg for one message.
Convert into B1/22N/2 targets:
total B1/2N/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

16

17
2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 20-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-28"N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—Shen: 2V-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace
(—1)"(nK1+ -+ ryKp) with
m(K1/2)+nKi+ -+ ryKpy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —up)/s € 14 2Z.

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; 4+ sZ;
C=m+nKi+- -+ ryKpn;
m = (C mod s) mod 2.

Be careful to take s € 1 4+ 2Z.

18

Homomorphic encryption

If u;j/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C = m+ 2¢ + sq,
C'=m+2€¢ +sq
with small € € € Z.

C+C'=m+m+2(e+€)+
s(q + q'). This decrypts to
m -+ m' mod 2 if € + €' is small.

CC" = mm'+2(em + €' m+2e€’)+
s(--+). This decrypts to

mm' if em’ +'m <+ 2¢€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"80

sage: s=1+2*xrandrange(Y/4,Y/2)
sage: s

084887308997925

sage: u=[randrange (E)

Cee for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

21
sage: K=[2*uit+s*randrange (

Ce ceil (- (X+2%*ui)/s),
e floor ((X-2*ui)/s)+1)
Cee for ui in u]
sage: K
[687473338058640662659869,
-1111539179100720083770339,
794301459533733434896055,
68817802108374958901751,
742362470968200823035396,
1023345827331539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381]

22
sage: m=randrange(2)

sage: r=[randrange(2)
Cee for i in range(N)]
sage: C=m+sum(r[i]*K[il]

- for i in range(N))

sage: C
2094088748743247210016703
sage: C/s

2703

sage: (CVs)¥%2

1

sage: m

1

sage:

sage: m2=randrange (2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[i]
- for i in range(N))
sage: (2
-51722353737982737270129
sage: C2%s

4971

sage: (C2%s)%2
1

sage: m2

1

sage:

23

24
sage: (C+C2)%s

7674

sage: (CxC2)Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

25

| attices

This i1s a lettuce

ICE

This i1s a latt

26

Lattices, mathematically

Assume that \q,...,Vp € RN

are R-linearly independent,

l.e., RV1 T T RVD —
{rl\/l—l—---—l—rDVD N,...,Ip ER}
Is a D-dimensional vector space.

LV + -+ ZLVp =
{I’1V1—|—---—|—I’DVD ,...,Ip EZ}
Is a rank-D length-N lattice.

Vi,....Vp
Is a basis of this lattice.

27
Short vectors in lattices

Given Vi, \», ..., Vp € ZN,
what Is shortest vector
inlL=2ZVi +---+ ZVp?

0.

“SVP: shortest-vector problem” :
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with length at most 2D/2 times
length of shortest nonzero vector.
Typically ~1.020 instead of 20/2.

28
Subset-sum lattices

One way to find (rq, ...,)
where C = nK1+ -+ ryKpy:

Choose \. Define
W =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Wy = (Kn,0,0,...,).

Define L = ZVy + - - - + ZV).
[contains the short vector
VWo+nWi+- -+ ryVy =

29
LLL is fast but almost never

finds this short vector in L.

1991 Schnorr—Euchner "BKZ"
algorithm spends more time than
LLL finding shorter vectors in any
lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—=Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

30
Lattice attacks on DGHV keys

Recall K; = 2u; + sq; =~ sq;.
Each u; i1ssmall: u; < E.
Note qu,' — q,-Kj = 2qju,- — 2q,-uj.

Define

Vw =(0,0,0,...,—Kj).

Define L = ZV] + -+ + ZVy.
L contains g1V + -+ gyWy =

(1E, q1Ko — oK1, ...) =
(Q1E1 2q1U> — 2gou1, . .)

sage: V=matrix.identity(N)
sage: V=-K[0]x*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL(Q) [0] [0]/E
sage: q0

596487875

sage: round(K[0]/q0)
984887308997925

sage: s

984887308997925

sage:

31

32
sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, O, 0, 0, O)

sage:

33
sage: V.LLLQ) [0]

(610803584000, 1056189937254,
37030242384, 845393454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage: q[O]*K[1]-q[1]*K[O]

1056189937254

sage: qlO]*K[9]-q[9]*K[O]

174256676343

sage:

34
2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache—

Tibouchi: reduce key sizes
by modiftying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

Big attack surfaces are dangerous

1991 Chaum—-van Heijst—

Pfitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free”;
“security follows from rigorous
mathematical proofs”.

35

36
Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

Is, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses
than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

Lattice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have

features that expand the attack
surface even more: e.g.,
rings and decryption failures.

38

