Lattice-based cryptography,

 part 1: simplicityD. J. Bernstein

University of Illinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.

Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$. ie. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2 Z$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?

Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s \mathbf{Z}\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$; otherwise $m=1$.

Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

Let's try this on the computer.
Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X): sagecell.sagemath.org

Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not xor 1000000
sage: factor (314159265358979323)
317213509 * 990371647
sage:

For integers C, s with $\mathrm{s}>0$,
Sage's "C\%s" always produces
outputs between 0 and $s-1$.
Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically
$\mathrm{C}<0$ produces $\mathrm{C} \% \mathrm{~s}<0$
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C,
Sage can make the same mistake.
sage: $N=10$
sage: $X=2 \sim 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: s=randrange ($1, Y+1$)
sage: s
359512
sage: $u=$ [randrange (
.... $\quad(s-1) / /(2 * N)+1)$
....: for i in range (N)]
sage: u
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
sage: $K=[u i+s * r a n d r a n g e($

$$
\begin{array}{ll}
\ldots . \operatorname{ceil}(-(X+u i) / s) \\
\ldots: & f l o o r((X-u i) / s)+1)
\end{array}
$$

for ui in u]
sage: K
[870056918917829,
822006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
501543495923784,
-583064075392587,
46109390243834]
sage: [Ki\%s for $K i$ in $K]$
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: sum(K) \%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
sage: m=randrange (2)
sage: r=[randrange (2)
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage: C\%s
47024
sage: m
0
sage: $\operatorname{sum}(r[i] * u[i]$
for i in range(N))
47024
sage:

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks"
where attacker can see decryption of other ciphertexts.

Chosen-ciphertext attack against this system:
Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately. Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks
Attacker searches all possibilities
for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations:
e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up
$r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop attacks by taking
$N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks
take only $2^{N / 2}$ operations
to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$
with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.
Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$
for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.
Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have 2B targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message.
Convert into $B^{1 / 2} 2^{N / 2}$ targets:
total $B^{1 / 2} 2^{N / 2}$ operations
to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 N}$.

2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace
$(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with
$m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.
To make this work,
modify keygen to force $K_{1} \in 2 \mathbf{Z}$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$.
Also be careful with u_{i} bounds.
2009 van Dijk-Gentry-Halevi-
Vaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Homomorphic encryption

If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $E=2 \sim 10$
sage: $Y=2 \wedge 50$
sage: $X=2^{\wedge} 80$
sage: $s=1+2 * r a n d r a n g e(Y / 4, Y / 2)$
sage: s
984887308997925
sage: $u=$ [randrange (E)
for i in range (N)]
sage: u
$[247,418,365,738,123,735$,
$772,209,673,47]$
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($

$$
\begin{aligned}
& \operatorname{ceil}(-(X+2 * u i) / s) \\
& \text { floor }((X-2 * u i) / s)+1)
\end{aligned}
$$

for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396 ,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrange (2)
sage: r=[randrange (2)
....: for i in range (N)]
sage: $\mathrm{C}=\mathrm{m}+\operatorname{sum}(r[i] * \mathrm{~K}[i]$
....: for i in range (N))
sage: C
2094088748748247210016703
sage: C $\%$ s
2703
sage: ($\mathrm{C} \%$ s $) \% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(\mathrm{r} 2[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: $\mathrm{C} 2 \%$ s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: $(C+C 2) \%$ s
7674
sage: ($\mathrm{C} * \mathrm{C} 2) \%$ s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

Lattices

This is a lettuce:

This is a lattice:

Lattices, mathematically

Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are \mathbf{R}-linearly independent,
ie., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$ is a D-dimensional vector space.
$\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$ is a rank- D length- N lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattices
One way to find $\left(r_{1}, \ldots, r_{N}\right)$
where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:
Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ"
algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV keys

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.

Define

$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$. L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy (K)
sage: Vtop [0]=E
sage: $\mathrm{V}[0]=\mathrm{Vtop}$
sage: $\mathrm{q} 0=\mathrm{V} . \mathrm{LLL}()[0][0] / \mathrm{E}$
sage: qu
596487875
sage: round (K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
sage: V [0]
(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396 ,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
sage: V.LLL() [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: $q=[\mathrm{Ki} / / s$ for Ki in K$]$
sage: $q[0] * E$
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$
1056189937254
sage: $\mathrm{q}[0] * \mathrm{~K}[9]-\mathrm{q}[9] * \mathrm{~K}[0]$
174256676348
sage:

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802 MB.

2012 Chen-Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

Big attack surfaces are dangerous

1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly;
define $C(x, y)=4^{x} 9^{y} \bmod p$
for suitable ranges of x and y.
Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.
Typical exaggerations:
C is "provably secure"; C is
"cryptographically collision-free";
"security follows from rigorous mathematical proofs".

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith-Odlyzko-
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit
is, obtain better security with
"unstructured" compression-
function designs such as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors".
Attacks exploit this structure!
For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

