
Fast verified
post-quantum software

Daniel J. Bernstein

SymCrypt: failures for rare inputs

It’s actually a bug within SymCrypt, the core
cryptographic library responsible for implementing
asymmetric crypto algorithms in Windows 10 and
symmetric crypto algorithms in Windows 8.

—“Warning: Google Researcher Drops
Windows 10 Zero-Day Security Bomb”,
Forbes, https://tinyurl.com/y69fx3nh

Daniel J. Bernstein, Fast verified post-quantum software 3

https://tinyurl.com/y69fx3nh

Falcon software: skewed randomness

Produced signatures were valid but leaked
information on the private key. . . . The fact that
these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being
super careful’) has failed.

—“OFFICIAL COMMENT” within NISTPQC
(NIST Post-Quantum Cryptography Standardization
Project), https://tinyurl.com/y5w46bde

Daniel J. Bernstein, Fast verified post-quantum software 4

https://tinyurl.com/y5w46bde

Minerva: timing attack

Libgcrypt, wolfSSL, and Crypto++ have issued
patches over the summer to fix this bug.
Maintainers of MatrixSSL fixed some issues, but the
library remains vulnerable. Oracle’s SunEC library
remains open to attacks.

—“Minerva attack can recover private keys
from smart cards, cryptographic libraries”,
ZDNet, https://tinyurl.com/y6rlkov4

Daniel J. Bernstein, Fast verified post-quantum software 5

https://tinyurl.com/y6rlkov4

Cryptographic software has a problem . . .

2021.07 Blessing–Specter–Weitzner “You really
shouldn’t roll your own crypto: an empirical study
of vulnerabilities in cryptographic libraries”:
73 “actual” cryptographic vulnerabilities, including
11 “severe” cryptographic vulnerabilities, among
OpenSSL, GnuTLS, Mozilla TLS, WolfSSL, Botan,
Libgcrypt, LibreSSL, BoringSSL post-2010 CVEs.

Daniel J. Bernstein, Fast verified post-quantum software 6

https://arxiv.org/abs/2107.04940

. . . and the complexity is getting worse
Must be

post-quantum!
Must be
fast!

Must stop
timing attacks!

Complicated ecosystem
of post-quantum specs

Much more complicated ecosystem
of post-quantum software

Daniel J. Bernstein, Fast verified post-quantum software 7

Examples of the complications
Official Keccak (SHA-3) code package:

• KeccakP-1600-reference.c,
• KeccakP-1600-x86-64-shld-gas.s,
• KeccakP-1600-AVX2.s,
• KeccakP-1600-AVX512.s,
• KeccakP-1600-times8-SIMD512.c,
• . . .

Much better speeds than using just
reference + “optimizing” compiler.

Each NISTPQC candidate includes hand-optimized
software faster than state-of-the-art compiled code.

Daniel J. Bernstein, Fast verified post-quantum software 8

Examples of the complications
Official Keccak (SHA-3) code package:

• KeccakP-1600-reference.c,
• KeccakP-1600-x86-64-shld-gas.s,
• KeccakP-1600-AVX2.s,
• KeccakP-1600-AVX512.s,
• KeccakP-1600-times8-SIMD512.c,
• . . .

Much better speeds than using just
reference + “optimizing” compiler.
Each NISTPQC candidate includes hand-optimized
software faster than state-of-the-art compiled code.

Daniel J. Bernstein, Fast verified post-quantum software 8

The good news: symbolic testing
Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.
Today’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.

This talk: new saferewrite symbolic-testing tool.
Open source from https://pqsrc.cr.yp.to.
Under the hood, doing most of the work:
valgrind; its VEX library; Z3 theorem prover;
angr.io binary-analysis/symbolic-execution toolkit.

Daniel J. Bernstein, Fast verified post-quantum software 9

https://pqsrc.cr.yp.to

The good news: symbolic testing
Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.
Today’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.
This talk: new saferewrite symbolic-testing tool.
Open source from https://pqsrc.cr.yp.to.

Under the hood, doing most of the work:
valgrind; its VEX library; Z3 theorem prover;
angr.io binary-analysis/symbolic-execution toolkit.

Daniel J. Bernstein, Fast verified post-quantum software 9

https://pqsrc.cr.yp.to

The good news: symbolic testing
Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.
Today’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.
This talk: new saferewrite symbolic-testing tool.
Open source from https://pqsrc.cr.yp.to.
Under the hood, doing most of the work:
valgrind; its VEX library; Z3 theorem prover;
angr.io binary-analysis/symbolic-execution toolkit.

Daniel J. Bernstein, Fast verified post-quantum software 9

https://pqsrc.cr.yp.to

Case study: int16[64] comparison
Subroutine used inside Frodo post-quantum KEM.
My ref version, cmp_64xint16/ref/verify.c:

#include <stdint.h>

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{ for (int i = 0;i < 64;++i)
if (x[i] != y[i])

return -1;
return 0;

}

Daniel J. Bernstein, Fast verified post-quantum software 10

Automatic saferewrite analysis
Using clang -O1 -fwrapv -march=native:

• saferewrite says unsafe-valgrindfailure:
Code has variable branches/indices,
violating constant-time coding discipline.

• And unsafe-unrollsplit-65:
Unrolling split the code into 65 cases.

Using gcc -O3 -march=native -mtune=native:
• unsafe-valgrindfailure
• unsafe-unrollsplit-65
• equals-ref-clang_-O1_...:

cmp_64xint16 binaries give same outputs.

Daniel J. Bernstein, Fast verified post-quantum software 11

Automatic saferewrite analysis
Using clang -O1 -fwrapv -march=native:

• saferewrite says unsafe-valgrindfailure:
Code has variable branches/indices,
violating constant-time coding discipline.

• And unsafe-unrollsplit-65:
Unrolling split the code into 65 cases.

Using gcc -O3 -march=native -mtune=native:
• unsafe-valgrindfailure
• unsafe-unrollsplit-65
• equals-ref-clang_-O1_...:

cmp_64xint16 binaries give same outputs.

Daniel J. Bernstein, Fast verified post-quantum software 11

Automatic analysis of a rewrite
#include <stdint.h>
#include <string.h>

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{
return memcmp(x,y,128);

}

Again unsafe-valgrindfailure: variable time.
Also unsafe-differentfrom-ref-clang_....
Why? Nonzero memcmp output isn’t always -1.

Daniel J. Bernstein, Fast verified post-quantum software 12

Automatic analysis of a rewrite
#include <stdint.h>
#include <string.h>

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{
return memcmp(x,y,128);

}

Again unsafe-valgrindfailure: variable time.
Also unsafe-differentfrom-ref-clang_....
Why? Nonzero memcmp output isn’t always -1.

Daniel J. Bernstein, Fast verified post-quantum software 12

Automatic analysis of another rewrite
#include <stdint.h>
#include <string.h>
int cmp_64xint16(const uint16_t *x,

const uint16_t *y)
{ int r = memcmp(x,y,128);

if (r != 0) return -1;
return 0;

}

Now equals-ref-clang_... but still
unsafe-valgrindfailure. 2017 Frodo software
used memcmp; broken by 2020.06 timing attack.

Daniel J. Bernstein, Fast verified post-quantum software 13

Automatic analysis of another rewrite
#include <stdint.h>
#include <string.h>
int cmp_64xint16(const uint16_t *x,

const uint16_t *y)
{ int r = memcmp(x,y,128);

if (r != 0) return -1;
return 0;

}

Now equals-ref-clang_... but still
unsafe-valgrindfailure. 2017 Frodo software
used memcmp; broken by 2020.06 timing attack.

Daniel J. Bernstein, Fast verified post-quantum software 13

2020.06 Frodo official constant-time code
int8_t ct_verify(const uint16_t *a,

const uint16_t *b, size_t len)
{ // Compare two arrays in constant time.

// Returns 0 if the byte arrays are equal,
// -1 otherwise.

uint16_t r = 0;
for (size_t i = 0; i < len; i++) {

r |= a[i] ^ b[i];
}
r=(-(int16_t)r)>>(8*sizeof(uint16_t)-1);
return (int8_t)r;

}

Daniel J. Bernstein, Fast verified post-quantum software 14

Use saferewrite to analyze this . . .
Add wrapper to fit the cmp_64xint16 interface:

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.
(Frodo uses int16[N] for a few choices of N.)

Feed ct_verify and wrapper to saferewrite:
• No more unsafe-valgrindfailure: Great.
• unsafe-differentfrom-ref-...: Oops!

Bug discovered 2020.12 by Saarinen; easy to exploit.

Daniel J. Bernstein, Fast verified post-quantum software 15

Use saferewrite to analyze this . . .
Add wrapper to fit the cmp_64xint16 interface:

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.
(Frodo uses int16[N] for a few choices of N.)
Feed ct_verify and wrapper to saferewrite:

• No more unsafe-valgrindfailure: Great.

• unsafe-differentfrom-ref-...: Oops!
Bug discovered 2020.12 by Saarinen; easy to exploit.

Daniel J. Bernstein, Fast verified post-quantum software 15

Use saferewrite to analyze this . . .
Add wrapper to fit the cmp_64xint16 interface:

int cmp_64xint16(const uint16_t *x,
const uint16_t *y)

{ return ct_verify(x,y,64); }

saferewrite focuses on constant lengths.
(Frodo uses int16[N] for a few choices of N.)
Feed ct_verify and wrapper to saferewrite:

• No more unsafe-valgrindfailure: Great.
• unsafe-differentfrom-ref-...: Oops!

Bug discovered 2020.12 by Saarinen; easy to exploit.
Daniel J. Bernstein, Fast verified post-quantum software 15

A safe rewrite: correct constant-time code

#include <stdint.h>
int cmp_64xint16(const uint16_t *x,

const uint16_t *y)
{ uint32_t differences = 0;

for (long long i = 0;i < 64;++i)
differences |= x[i] ^ y[i];

return (1 & ((differences - 1) >> 16)) - 1;
}

Now saferewrite analysis with both compilers
says equals-ref-... and no more unsafe.

Daniel J. Bernstein, Fast verified post-quantum software 16

Examples in saferewrite package
10 sample implementations of cmp_64xint16.
One uses OpenSSL’s CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.

103 sample implementations of 39 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.
unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!
Beware: automatically uses many cores, big RAM.
Tip: chmod +t src/*; chmod -t src/cmp*

Daniel J. Bernstein, Fast verified post-quantum software 17

Examples in saferewrite package
10 sample implementations of cmp_64xint16.
One uses OpenSSL’s CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.
103 sample implementations of 39 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.

unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!
Beware: automatically uses many cores, big RAM.
Tip: chmod +t src/*; chmod -t src/cmp*

Daniel J. Bernstein, Fast verified post-quantum software 17

Examples in saferewrite package
10 sample implementations of cmp_64xint16.
One uses OpenSSL’s CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.
103 sample implementations of 39 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.
unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!

Beware: automatically uses many cores, big RAM.
Tip: chmod +t src/*; chmod -t src/cmp*

Daniel J. Bernstein, Fast verified post-quantum software 17

Examples in saferewrite package
10 sample implementations of cmp_64xint16.
One uses OpenSSL’s CRYPTO_memcmp Intel asm;
see CVE-2018-0733 re CRYPTO_memcmp HP asm.
103 sample implementations of 39 other functions.
Some functions much bigger than cmp_64xint16.
Some simple functions for exercising saferewrite.
unsafe-differentfrom automatically includes
example of an input triggering the difference.
Can be hard to find by traditional testing/fuzzing!
Beware: automatically uses many cores, big RAM.
Tip: chmod +t src/*; chmod -t src/cmp*

Daniel J. Bernstein, Fast verified post-quantum software 17

Example: integer-sequence encoders
Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

• 245-line encode_761x1531/avx/encode.c
encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.

Existing reference code, much simpler:
• 38-line encode_761x1531/ref/Encode.c
• 18-line encode_761x1531/ref/wrapper.c

“Is the optimized code a safe rewrite of ref?”
Automatic saferewrite analysis: equals-ref.

Daniel J. Bernstein, Fast verified post-quantum software 18

Example: integer-sequence encoders
Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

• 245-line encode_761x1531/avx/encode.c
encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.
Existing reference code, much simpler:

• 38-line encode_761x1531/ref/Encode.c
• 18-line encode_761x1531/ref/wrapper.c

“Is the optimized code a safe rewrite of ref?”
Automatic saferewrite analysis: equals-ref.

Daniel J. Bernstein, Fast verified post-quantum software 18

Example: integer-sequence encoders
Existing optimized code from NTRU Prime,
with heavy use of Intel AVX2 vector instructions:

• 245-line encode_761x1531/avx/encode.c
encode.c and similar encoders for other sizes are
automatically generated by 239-line Python script.
Existing reference code, much simpler:

• 38-line encode_761x1531/ref/Encode.c
• 18-line encode_761x1531/ref/wrapper.c

“Is the optimized code a safe rewrite of ref?”
Automatic saferewrite analysis: equals-ref.

Daniel J. Bernstein, Fast verified post-quantum software 18

Excerpt from avx/encode.c
x = _mm256_loadu_si256((__m256i *) reading);
x = _mm256_add_epi16(x,_mm256_set1_epi16(2295));
x &= _mm256_set1_epi16(16383);
x = _mm256_mulhi_epi16(x,_mm256_set1_epi16(21846));
y = x & _mm256_set1_epi32(65535);
x = _mm256_srli_epi32(x,16);
x = _mm256_mullo_epi32(x,_mm256_set1_epi32(1531));
x = _mm256_add_epi32(y,x);
x = _mm256_shuffle_epi8(x,_mm256_set_epi8(

12,8,4,0,12,8,4,0,14,13,10,9,6,5,2,1,
12,8,4,0,12,8,4,0,14,13,10,9,6,5,2,1
));

x = _mm256_permute4x64_epi64(x,0xd8);
_mm_storeu_si128((__m128i *) writing,

_mm256_extractf128_si256(x,0));
*((uint32 *) (out+0)) = _mm256_extract_epi32(x,4);
*((uint32 *) (out+4)) = _mm256_extract_epi32(x,6);

Daniel J. Bernstein, Fast verified post-quantum software 19

Links, TODO #saferewrite
saferewrite package is available now from
https://pqsrc.cr.yp.to. Work in progress:

• More post-quantum case studies.
• More pre-quantum case studies: e.g., Ed25519.
• More languages: e.g., support Python ref.
• Developer integration: incremental testing etc.
• “Cuts”: subroutine swaps etc. for faster testing.
• Plugins for dedicated equivalence testers.
• Higher assurance for the entire toolchain.

Related work: Cryptol/SAW/hacrypto, Cryptoline,
Fiat-Crypto, HACL*, Jasmin, ValeCrypt, VST.

Daniel J. Bernstein, Fast verified post-quantum software 20

https://pqsrc.cr.yp.to
https://github.com/GaloisInc/hacrypto
https://github.com/fmlab-iis/cryptoline
https://github.com/mit-plv/fiat-crypto/
https://github.com/project-everest/hacl-star
https://github.com/jasmin-lang/jasmin
https://github.com/project-everest/hacl-star/tree/master/vale
https://vst.cs.princeton.edu/

