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Algebraic geometry: the line over C
f = x 4 + 6x 3 + 5x 2 = (x + 1)1(x + 5)1x 2 ∈ C[x ]:

f (10) = f mod x − 10 = 16500 ord10 f = 0
f (−1) = f mod x + 1 = 0 ord−1 f = 1
f (−5) = f mod x + 5 = 0 ord−5 f = 1

f (0) = f mod x − 0 = 0 ord0 f = 2
. . . and consider C[1=x ] ⊂ C(x): ord∞ f = −4

“ordr f ” = x − r exponent in f . “ord∞” = −deg.
This f is an “S-unit” if {∞; 0;−1;−5} ⊆ S.
Fundamental thm of algebra:

∑
∈C∪{∞} ord f = 0.

f is almost determined by the vector  7→ ord f .
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Intermediate: the line over F7
f = x 4+3x 3+x 2+5x +2 = (x−2)2(x 2−3)1 ∈ F7[x ]:

f mod x − 0 = 2 ordx f = 0 |f |x = 1
f mod x − 2 = 0 ordx−2 f = 2 |f |x−2 = 1=72

f mod x 2 + 1 6= 0 ordx2+1 f = 0 |f |x2+1 = 1
f mod x 2 − 3 = 0 ordx2−3 f = 1 |f |x2−3 = 1=72

ord∞ f = −4 |f |∞ = 74

|f |P = 1=#(F7[x ]=P)ordP f for “finite place” P.
“Product formula”:

∏
 |f | = 1;

∑
 log |f | = 0;

here  ranges over {monic irreds in F7[x ]} ∪ {∞}.
f is almost determined by the vector  7→ ord f .
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Number theory: Z
f = −50421 = −3175 ∈ Z:

f mod 2 = 1 ord2 f = 0 |f |2 = 1
f mod 3 = 0 ord3 f = 1 |f |3 = 1=31

f mod 5 = 4 ord5 f = 0 |f |5 = 1
f mod 7 = 0 ord7 f = 5 |f |7 = 1=75

|f |∞ = 50421

|f |P = 1=#(Z=P)ordP f for “finite place” P.
“Product formula”:

∏
 |f | = 1;

∑
 log |f | = 0;

here  ranges over {prime numbers} ∪ {∞}.
f is almost determined by the vector  7→ ord f .
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Lattice-based cryptography
2010 LPR proved “very strong hardness guarantees”:

Assume “worst-case problems on ideal lattices
are hard for polynomial-time quantum algorithms”

��
“the ring-LWE distribution is pseudorandom”

��
security for a “truly practical

lattice-based public-key cryptosystem”

Concrete parameters in cryptosystems are chosen
assuming much more than polynomial hardness.
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What’s the supposedly hard problem?
Parameters: Define R = Z[x ]=(xn + 1) for some
n ∈ {2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; : : : }.
[Can generalize, but this talk focuses on these rings R .]

Problem: Given a nonzero ideal I ⊆ R ,
find a “short” nonzero element g ∈ I .
“Given” I : given v1; v2; : : : ; vn ∈ R
such that I = Zv1 + Zv2 + · · ·+ Zvn.
e.g. v1 = x 3 + 817

v2 = x 2 + 540
v3 = x + 247
v4 = 1009

−→ g = 2v1 + 3v2 − 5v3 − 2v4
= 2x 3 + 3x 2 − 5x + 1

Daniel J. Bernstein S-unit attacks 8



Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0

1009 0 0 0

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0
192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

277 0 −1 1
540 0 1 0
247 1 0 0
192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

277 0 −1 1
263 0 2 −1
247 1 0 0
192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]

Daniel J. Bernstein S-unit attacks 9



Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
263 0 2 −1
247 1 0 0
192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

247 1 0 0
192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1

192 0 0 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1

137 −1 0 −2

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1
82 −2 0 −3

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1
27 −3 0 −4

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
28 4 0 5
27 −3 0 −4

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

1 7 0 9
27 −3 0 −4

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

1 7 0 9
11 −2 −2 −3

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]

Daniel J. Bernstein S-unit attacks 9



Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
2 −1 5 −3
1 7 0 9

11 −2 −2 −3

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
1 7 0 9

11 −2 −2 −3

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
1 7 0 9
9 −1 −7 0

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

9 −1 −7 0

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

6 −3 −6 −5

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

4 2 −5 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−5 3 2 −1

4 2 −5 −1

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−5 3 2 −1
−1 5 −3 −2

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]

Daniel J. Bernstein S-unit attacks 9



Doesn’t look so hard . . .
Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−5 3 2 −1
−1 5 −3 −2

But this doesn’t reach “short” when n is large.
[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y ]n:
naive algorithm gives shortest basis in poly time.]
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Big picture: screenshot from 2019 DPWFig. 5: Quality of Quantum Ideal-SVP vs. LLL and BKZ.
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Lower bound, p = 2m+ 1.
Halved lower bound (Remark 5) p = 2m+ 1.

conductor m ≈ 32000. Nevertheless, our heuristic improvements allow to de-
crease this cross-over point down to m ≈ 6000. Such a dimension is still one
order of magnitude larger than what is used for NIST post-quantum standard-
ization candidates, but is within the range of what is used by certain concrete
Fully Homomorphic Encryption schemes, for example [HS15].

Finally, one may fear that further tricks could improve the heuristic CVP
steps within [CDPR16, CDW17], and maybe reach the lower bound.7 The con-
clusion is somewhat reassuring for NIST candidates, as the cross-over point with
BKZ-300 should not happen before ring rank n ≈ 6000, even given a perfect CVP
oracle for the Log-unit lattice and the Stickelberger lattice: NIST candidates use
cyclotomic rings of rank at most n = 1024.

While the body of this article is focused on prime conductors m, we also
considered the powers of 2 conductors, and found that both the experimental
behavior and the numerical lower bounds were slightly worse in the powers of 2
case. This is reported in Appendix A.

7 We recall that this bound is plausibly not tight, that is, even a perfect CVP oracle
may not be able to reach it; see Remark 4.

24
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How well the algorithms do
Given nonzero ideal I ⊆ R = Z[x ]=(xn + 1),
algorithm finds nonzero g = g0 + · · ·+ gn−1xn−1 ∈ I
with (g2

0 + · · ·+ g2
n−1)1=2 = ” · (#(R=I))1=n.

Algorithms using only additive structure of I :
• LLL (fast): ”1=n ≈ 1:022.
• BKZ-80 (not hard): ”1=n ≈ 1:010.
• BKZ-160 (public attack): ”1=n ≈ 1:007.
• BKZ-300 (large-scale attack): ”1=n ≈ 1:005.

Algorithms also using multiplicative structure of R :
blue/red curves; ” ∈ 2n1=2+o(1) but worse ” than LLL
below “rank 1000”. Thin curves: “lower bound”.
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Major research directions
Many papers analyzing+optimizing BKZ-˛: e.g.,
• Last century: exp(Θ(˛ log ˛)) ops.
• 2001: exp((0:415 : : :+ o(1))˛) ops.
• 2015: exp((0:292 : : :+ o(1))˛) ops.
• 2015: exp((0:265 : : :+ o(1))˛) quantum ops.
• 2021: exp((0:257 : : :+ o(1))˛) quantum ops.
• Many more speedups hidden inside the o(1).

This talk focuses on multiplicative attacks:
• Part 2 of talk: How multiplicative attacks work.
• Part 3 of talk: Better multiplicative attacks.
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Part 2
How multiplicative attacks work



Infinite places of K = Q[x ]=(xn + 1)
Define “m = exp(2ıi=m) ∈ C for nonzero m ∈ Z.
For any c ∈ 1 + 2Z have (“c

2n)n + 1 = 0 so there is a
unique ring morphism «c : K → C taking x to “c

2n.

All xn + 1 roots in C: “1
2n; : : : ; “

n−1
2n ; “

−(n−1)
2n ; : : : ; “−1

2n .
All « : K → C: «1; : : : ; «n−1; «−(n−1); : : : ; «−1.
Define |g |c = |«c(g)|2 = «c(g)«−c(g).
The maps g 7→ |g |c are the infinite places of K .
All places: g 7→ |g |1; g 7→ |g |3; : : : ; g 7→ |g |n−1.
Same as: g 7→ |g |−1; g 7→ |g |−3; : : : ; g 7→ |g |−n−1.∑
c∈{1;3;:::;n−1}

|g0+· · ·+gn−1xn−1|c = n
2(g2

0 +· · ·+g2
n−1).

Daniel J. Bernstein S-unit attacks 14



Finite places of K = Q[x ]=(xn + 1)
Nonzero ideals of R factor into prime ideals.
For each nonzero prime ideal P of R , define
|g |P = #(R=P)−ordP g . “Norm of P” is #(R=P).
The maps g 7→ |g |P are the finite places of K .
For each prime number p: Factor xn + 1 in Fp[x ]
to see the prime ideals of R containing p.
e.g. p = 2: Prime ideal 2R + (x + 1)R = (x + 1)R .
e.g. “unramified degree-1 primes”: p ∈ 1 + 2nZ ⇒
exactly n nth roots r1; : : : ; rn of −1 in Fp.
xn + 1 = (x − r1)(x − r2) : : : (x − rn) in Fp[x ].
Prime ideals pR + (x − r1)R; : : : ; pR + (x − rn)R .
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Example: n = 4; R = Z[x ]=(x 4 + 1)
g = g0 + g1x + g2x 2 + g3x 3; “8 = exp(2ıi=8):

«−1(g) = g0 + g1“
−1
8 + g2“

−2
8 + g3“

−3
8 ;

«1(g) = g0 + g1“8 + g2“
2
8 + g3“

3
8 ; |g |1 = |«1(g)|2:

«−3(g) = g0 + g1“
−3
8 + g2“

−6
8 + g3“

−9
8 ;

«3(g) = g0 + g1“
3
8 + g2“

6
8 + g3“

9
8 ; |g |3 = |«3(g)|2:

P17;2 = 17R + (x − 2)R : |g |17;2 = 17−ordP17;2g .
P17;8 = 17R + (x − 8)R : |g |17;8 = 17−ordP17;8g .
P17;−8 = 17R + (x + 8)R : |g |17;−8 = 17−ordP17;−8g .
P17;−2 = 17R + (x + 2)R : |g |17;−2 = 17−ordP17;−2g .
P41;3 = 41R + (x − 3)R : |g |41;3 = 41−ordP41;3g .
etc.
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S-units of K = Q[x ]=(xn + 1)
Assume ∞ ⊆ S ⊆ {places of K}.
Useful special case: S has all primes ≤something.
[Warning: Often people rename S −∞ as S.]

g ∈ K ∗ is an S-unit
⇔ gR =

∏
P∈S PeP for some eP

⇔ |g | = 1 for all  ∈ {places of K} − S
⇔ the vector  7→ log |g | is 0 outside S.
S-unit lattice: set of such vectors  7→ log |g |.
e.g. Temporarily allowing n = 1, K = Q:
{{∞; 2; 3}-units in Q} = ±2Z3Z. (“3-smooth”.)
Lattice: (log 2;−log 2; 0)Z + (log 3; 0;−log 3)Z.
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S-unit attacks
0. Choose a finite set S of places.
1. Input a nonzero ideal I of R .
2. Find an S-generator of I :

some g with gR = I
∏

P∈S PeP .
This has a poly-time quantum algorithm,
and surprisingly fast non-quantum algorithms.

3. Find an S-unit u “close to g=I”.
This is an S-unit-lattice close-vector problem.

4. Output g=u.
Critical for Step 3 speed: constructing short vectors
in the S-unit lattice. We’ll see several constructions!
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Special case: unit attacks
0. Define S =∞.
{∞-units of K} = {units of R} = R∗.

1. Input a nonzero ideal I of R .
2. Find a generator of I : some g with gR = I .
3. Find a unit u “close to g”.
4. Output g=u.
Questions coming up later in this talk:
• How small is g=u compared to I?
• What happens if I isn’t principal?
• Is this special case as good as the general case?
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“Cyclotomic units” in R = Z[x ]=(xn + 1)
±1;±x ;±x 2; : : : ;±xn−1 = ∓1=x are units.
(1− x 3)=(1− x) = 1 + x + x 2 ∈ R . Unit since
(1− x)=(1− x 3) = (1− x 2n2+1)=(1− x 3) ∈ R .
For c ∈ 1 + 2Z: R has automorphism ffc : x 7→ x c .
ffc(1 + x + x 2) = 1 + x c + x 2c is a unit.
Useful to symmetrize: define uc = 1 + x c + x−c .
xZ∏

c uZ
c has finite index in R∗. Index is called h+.

Assume h+ = 1. Proven, assuming GRH, for
n ∈ {2; 4; 8; : : : ; 256}; heuristics say always true.
[Note to number theorists: This talk is only for powers of 2.]
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Unit lattice for n = 8
|u1|1 = |1 + “16 + “−1

16 |2 ≈ exp 2:093.
|u1|3 = |1 + “3

16 + “−3
16 |2 ≈ exp 1:137.

|u1|5 = |1 + “5
16 + “−5

16 |2 ≈ exp−2:899.
|u1|7 = |1 + “7

16 + “−7
16 |2 ≈ exp−0:330.

Define Log∞ f = (log |f |1; log |f |3; log |f |5; log |f |7).
Log∞ u1 ≈ (2:093; 1:137;−2:899;−0:330).
Log∞ u3 ≈ (1:137;−0:330; 2:093;−2:899).
Log∞ u5 ≈ (−2:899; 2:093;−0:330; 1:137).
Log∞ u7 ≈ (−0:330;−2:899; 1:137; 2:093).
Log∞ R∗ is lattice of dim n=2− 1 = 3 in hyperplane{

(‘1; ‘3; ‘5; ‘7) ∈ R4 : ‘1 + ‘3 + ‘5 + ‘7 = 0
}

.
Short lattice basis: Log∞ u1, Log∞ u3, Log∞ u5.
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Reducing mod units
Start with g = g0 + g1x + · · ·+ gn−1xn−1.
Compute Log∞ g = (log |g |1; log |g |3; : : : ; log |g |n−1).
Try to reduce Log∞ g modulo unit lattice:
adjust Log∞ g by subtracting closest vector from
some precomputed combinations of basis vectors;
repeat several times; keep smallest g2

0 + · · ·+ g2
n−1.

Replacing g with gu replaces |g |c with |g |c |u|c .
Easy to track

∑
c |g |c = (n=2)(g2

0 + · · ·+ g2
n−1).

Note that unit hyperplane is orthogonal to norm:
#(R=I) = #(R=g) =

∏
c |g |c = exp

∑
c log |g |c .
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Experiments for small n
Geometric average of ”1=n over 100000 experiments:

n Model Attack Tweak Shortest
4 1:01516 1:01518 1:01518 1:01518
8 1:01968 1:01972 1:01696 1:01696

16 1:01861 1:01860 1:01628 1:01627
“Shortest”: Take I , find a shortest nonzero vector g ,
output ” = (g2

0 + · · ·+ g2
n−1)1=2=#(R=I)1=n.

[Assuming BKZ-n software produces shortest nonzero vector.]

“Attack”: Same I , find a generator, reduce mod unit
lattice → g , output (g2

0 + · · ·+ g2
n−1)1=2=#(R=I)1=n.

“Model”: Take a hyperplane point, reduce mod unit
lattice → Log∞ g , output (g2

0 + · · ·+ g2
n−1)1=2.
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Wasn’t this attack supposed to be useless?
Geometric average of 100000 runs of model for
32; 64; 128; 256; 512; 1024: 1.01570, 1.01332,
1.01118, 1.00950, 1.00804, (10000:) 1.00667.
Why did 2019 DPW say >1:022 for n below 1000?

Aha: 2019 DPW applies unit attack to principal IJ .
Multiplying J into I
⇒ multiplying #(R=J) into #(R=I)
⇒ multiplying #(R=J)1=n into #(R=I)1=n

⇒ expanding ” by #(R=J)1=n

⇒ expanding ”1=n by #(R=J)1=n2.
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Wasn’t this attack supposed to be useless?
Geometric average of 100000 runs of model for
32; 64; 128; 256; 512; 1024: 1.01570, 1.01332,
1.01118, 1.00950, 1.00804, (10000:) 1.00667.
Why did 2019 DPW say >1:022 for n below 1000?
Aha: 2019 DPW applies unit attack to principal IJ .
Multiplying J into I
⇒ multiplying #(R=J) into #(R=I)
⇒ multiplying #(R=J)1=n into #(R=I)1=n

⇒ expanding ” by #(R=J)1=n

⇒ expanding ”1=n by #(R=J)1=n2.
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Finding a close principal multiple IJ
Prime p ∈ 1 + 2nZ is contained in n prime ideals Pc .
“Augmented Stickelberger”: known rank-n lattice
Λ ⊆ Zn with e ∈ Λ⇒

∏
c Pec

c principal; e.g., PcP−c .
Poly-time quantum algorithm + minor assumption
⇒ some vector v such that I

∏
c Pvc

c is principal.
Search some e ∈ Λ, trying to minimize

∑
c |vc − ec |.

Use principal PcP−c to force ec ≤ vc .
Define J =

∏
c Pvc−ec

c . Then IJ is principal.
Replace I with IJ , and apply unit attack.
Contribution to ”1=n: #(R=J)1=n2 = (p1=n2)

∑
c |vc−ec |.
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Constructing the 2019 DPW graph
Reverse-engineered procedure to build the graph:
• Experiments for

∑
c |vc − ec | (for red curve;

blue: limit search; thin: “lower bound”).
• Experiments for reducing mod unit lattice.
• Insert n1=2 factor because of notation choices.
• Combine appropriately to obtain n1=2”.
• Multiply by n−1=2 to obtain ”. Graph ”1=n.

• Typo: Omit the “−” in the previous line.
Big impact of typo: e.g., n1=n ≈ 1:012 for n = 512.
Attack is much more effective than graph shows.

Daniel J. Bernstein S-unit attacks 26



Constructing the 2019 DPW graph
Reverse-engineered procedure to build the graph:
• Experiments for

∑
c |vc − ec | (for red curve;

blue: limit search; thin: “lower bound”).
• Experiments for reducing mod unit lattice.
• Insert n1=2 factor because of notation choices.
• Combine appropriately to obtain n1=2”.
• Multiply by n−1=2 to obtain ”. Graph ”1=n.
• Typo: Omit the “−” in the previous line.

Big impact of typo: e.g., n1=n ≈ 1:012 for n = 512.
Attack is much more effective than graph shows.

Daniel J. Bernstein S-unit attacks 26



Constructing the 2019 DPW graph
Reverse-engineered procedure to build the graph:
• Experiments for

∑
c |vc − ec | (for red curve;

blue: limit search; thin: “lower bound”).
• Experiments for reducing mod unit lattice.
• Insert n1=2 factor because of notation choices.
• Combine appropriately to obtain n1=2”.
• Multiply by n−1=2 to obtain ”. Graph ”1=n.
• Typo: Omit the “−” in the previous line.

Big impact of typo: e.g., n1=n ≈ 1:012 for n = 512.
Attack is much more effective than graph shows.

Daniel J. Bernstein S-unit attacks 26



Part 3
Better multiplicative attacks



Prime factors of some random integers
2 · 3 · 59 · 73 · 14051 · 57977 · 1492315939
136652609 · 229896280545203
22 · 43973 · 2825227 · 63219409867
3 · 7 · 13 · 115076653977648103973
2 · 5 · 41 · 4259 · 17991127274751277
11 · 17 · 167407 · 3365381 · 298195039
23 · 34 · 29 · 92401 · 150959 · 119850869
43 · 730602942695300753131
2 · 79 · 379 · 577 · 5009 · 382979 · 473971
3 · 5 · 2094395102393195492309
22 · 7 · 337 · 3329369069086258201
23 · 4363 · 14153 · 22120162700921
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Traditional method to find S-units
Take random small element u ∈ R :
e.g. u = x 31 − x 41 + x 59 + x 26 − x 53.
1. Does #(R=u) factor into primes ≤y?
2. Is u an S-unit for S =∞∪ {P : #(R=P) ≤ y}?
Small primes ⇒ fast non-quantum factorization.
[Helpful speedups: #(R=P) ∈ 1 + 2nZ. Batch factorization.]

Standard heuristics ⇒ y 2+o(1) choices of u
include y 1+o(1) S-units, spanning all S-units, for
• appropriate n1=2+o(1) choice for log y ,
• appropriate n1=2+o(1) choice for

∑
i u2

i .
Total time exp(n1=2+o(1)). [Extension NFS: 1=3 + o(1)?]
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Automorphisms and subrings
Apply each ffc to quickly amplify each u found
into, typically, n independent S-units.
What if u is invariant under (say) two ffc? Great!
Start with u from proper subrings. Makes #(R=u)
much more likely to factor into small primes.
Examples of useful subrings of R = Z[x ]=(xn + 1):
• Z[x 2]=(xn + 1) = {u ∈ R : ffn+1(u) = u}.
• R+ = {u ∈ R : ff−1(u) = u}.

Also use subrings to speed up #(R=u) computation
for any u ∈ R : v = uffn+1(u), w = vffn=2+1(v), . . .
n1+o(1) times faster than “fast” resultant methods.
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More cyclotomic fun: Gauss sums
For each prime number p ∈ 1 + 2nZ,
and each group morphism ffl : F∗p → “Z

2n, define

GaussΣp(ffl) =
∑
a∈F∗

p

ffl(a)“a
p:

Exercise: |GaussΣp(ffl)|2 = p if ffl 6= 1.
So GaussΣp(ffl) is an S-unit for S =∞∪ p.
e.g. n = 16, “2n = “32, p = 97 ∈ 1 + 2nZ:
There is a morphism ffl : F∗97 → “Z

32 with ffl(5) = “32.
GaussΣp(ffl) = “0

32“
1
97 + “1

32“
5
97 + “2

32“
25
97 + · · · .

GaussΣp(ffl2) = “0
32“

1
97 + “2

32“
5
97 + “4

32“
25
97 + · · · .
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Many S-units for S =∞∪ p
Magic fact: GaussΣp(ffl)3=GaussΣp(ffl3) ∈ Z[“2n].
Pull back via «1 to an element of R = Z[x ]=(xn + 1).
Factor element into prime ideals for, e.g., n = 16:
P11P13P15P−15P−13P−11P2

−9P2
−7P2

−5P2
−3P2

−1 where
P±1;P±3; : : : ;P±15 are the prime ideals containing p.
Similarly GaussΣp(ffl)5=GaussΣp(ffl5) etc. ⇒ More
principal products of powers of P±1;P±3; : : : ;P±15.
Λ is generated by exponent vectors for (1) these
S-units and (2) PcP−c (principal since h+ = 1).
[Note to number theorists: labeling here is Pc = ff−1

c (P1).]

Daniel J. Bernstein S-unit attacks 32



Explaining the magic: Jacobi sums

Define JacobiΣp(ffl1; ffl2) =
∑

a∈F∗
p−{1}

ffl1(a)ffl2(1− a).

Exercise: If ffl1ffl2 6= 1 then JacobiΣp(ffl1; ffl2) =
GaussΣp(ffl1) GaussΣp(ffl2)=GaussΣp(ffl1ffl2).
So |JacobiΣp(ffl1; ffl2)|2 = p if 1 =∈ {ffl1; ffl2; ffl1ffl2}.
e.g. n = 16, “2n = “32, p = 97, ffl(5) = “32:
JacobiΣp(ffl;ffl) = “1+20

32 + “2+28
32 + “3+66

32 + · · · ,
JacobiΣp(ffl2; ffl) = “2+20

32 + “4+28
32 + “6+66

32 + · · ·
since 1− 51 = 520, 1− 52 = 528, etc. in F97.
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Λ′, improving Λ by a factor 2
JacobiΣp(ffli ; ffl) for i = 1, i = 2, etc.:
GaussΣp(ffl)2=GaussΣp(ffl2),
GaussΣp(ffl2)GaussΣp(ffl)=GaussΣp(ffl3),
GaussΣp(ffl3)GaussΣp(ffl)=GaussΣp(ffl4),
GaussΣp(ffl4)GaussΣp(ffl)=GaussΣp(ffl5), etc.
Multiply:
GaussΣp(ffl)2=GaussΣp(ffl2) (wasn’t used in Λ),
GaussΣp(ffl)3=GaussΣp(ffl3) (was used in Λ),
GaussΣp(ffl)4=GaussΣp(ffl4) (wasn’t used in Λ),
GaussΣp(ffl)5=GaussΣp(ffl5) (was used in Λ), etc.
Define Λ′ using all Jacobi sums: all base-field
combinations of Gauss sums. #(Zn=Λ) = 2#(Zn=Λ′).
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Λ′′, improving Λ by a factor 2n=2

Fact: More products
∏

c Pec
c are principal if n ≥ 4.

Typical case: Pc generates the “class group”; then
Λ′ has index 2n=2−1 inside lattice of “class relations”.
Class group = {ideals 6= 0}={principal ideals 6= 0}.
Start from all known S-units: group generated by
cyclotomic units, Jacobi sums, generators of PcP−c .
Successively extend set by adjoining square roots.
How to find square products of powers of current
generators? Map the group in many ways to F2:
use known exponents of Pc ; use random quadratic
characters (squareness mod random prime ideals Q).
Then fast linear algebra over F2 finds squares.
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Example: n = 8
Take p = 17, ffl(3) = “16, uc = 1 + x c + x−c .
Find generator g7 = x 6− x 5 + x 3− x 2− 1 of P7P−7.
Compute Σi = JacobiΣp(ffli ; ffl) pulled back to R .
S-unit ideal factorization
Σ1 = 2x 7+2x 6−x 4+2x 2−2x P−7P−5P−3P−1
Σ2 = x 7−2x 6−3x 5+x 4−x 3−x P7P−5P−3P−1
Σ2=Σ1 P7=P−7
g7 P7P−7
g7Σ2=Σ1 P2

7
(u5g7Σ2=Σ1)1=2 = x 7 − x 4 + x 3 P7

Scaling up to n = 256: All sqrts in 10 minutes.
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End of the story for n = 4, n = 8, n = 16
For n = 16: #(Z16=Λ) = 256. “Lower bound” 2 ⇒
expand #(R=I)1=n2 by p2=n2 = 972=n2 ≈ 1:03639,
on top of ≈ 1:01861 for unit-lattice model.

Instead construct more S-units: #(Z16=Λ′′) = 1.
The input ideal was principal in the first place!
Find generator of I . Reduce mod units.
“Tweak”: Multiply by x + 1, reduce, repeat for
I ; (x + 1)I ; (x + 1)2I ; (x + 1)3I ; (x + 1)4I ; : : : :
Often (x + 1)eg is closer to unit lattice than g .
Take smallest generator found across all (x + 1)eI .
When to stop? Compare 2e#(R=I) to best g .
[Faster: reduce in log space mod units and x + 1.]
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Recap: Constructing small S-units

S-units

ffc
��

x + 1

11

square roots

mm

u1 = 1 + x + x−1

66

P1P−1 gen

OO

>>

JacobiΣ

OO

YY

random
in R+
OO

in R

<<

GaussΣ
ratios

OO
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Impact for larger values of n
For n = 32: #(Z32=Λ) = 1114112.
“Lower bound” 5 ⇒ expand by ≈ 1:02603,
on top of ≈ 1:01570 for unit-lattice model.

Instead construct more S-units: #(Z32=Λ′′) = 17.
“Class number” = #(class group) = 17.
Chance 1=17: I principal. Expansion factor 1.
Chance 16=17: I non-principal. IP principal
for some prime ideal P with #(R=P) = 193.
Expansion factor 1931=n2 ≈ 1:00515.
[Note to number theorists: upcoming labels use Pp;c = ffc(Pp;1),
with Pp;1 = pR + (x + a)R for smallest a in {0; 1; : : : ; p − 1}.]
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Broader n = 32 search example, part 1
32 prime ideals P193;c have #(R=P193;c) = 193.
32 prime ideals P257;c have #(R=P257;c) = 257.
32 prime ideals P449;c have #(R=P449;c) = 449.
Note 4491=n2 ≈ 1:00598 vs. 1931=n2 ≈ 1:00515.
Precompute S-units, including
generators ‚193; ‚257; ‚449; ‚577; ‚641; ‚769; : : : of
P193;31P−1

193;1, P257;−19P−1
193;1, P449;−19P−1

193;1,
P577;15P−1

193;1, P641;19P−1
193;1, P769;5P−1

193;1, . . . .

Random example of a target: I =
3141592653589793238462643383280129R +
(x + 13443234652173688219737012017423)R .
Initial S-generator computation: gR = IP193;13.
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Broader n = 32 search example, part 2
Multiply by precomputed S-units for more S-gens
of I . (Don’t repeat the quantum computations!)
gR = IP193;13. Attack: 1.02549; tweak: 1.01901.
gff13(‚193)R = IP193;19. 1.01709; 1.01709.
gff13(‚257)R = IP257;9. 1.02179; 1.02103.
gff13(‚193)ff19(‚257)R = IP257;23. 1.02517; 1.01588.
gff13(‚449)R = IP449;9. 1.02100; 1.02100.
gff13(‚193)ff19(‚449)R = IP449;23. 1.02584; 1.01830.
gff13(‚577)R = IP577;3. 1.02634; 1.02456.
gff13(‚193)ff19(‚577)R = IP577;29. 1.02682; 1.02224.
gff13(‚641)R = IP641;−9. 1.01810; 1.01810.
gff13(‚193)ff19(‚641)R = IP641;−23. 1.00990; 1.00990.

Daniel J. Bernstein S-unit attacks 41



End of the story for n = 32
Geometric average of ”1=n over 10000 experiments:

n Attack10 Attack12 Attack14 Shortest
32 1:01660 1:01622 1:01599 1:01576

“Attack10”: Tweaked unit attack starting from
12 gens of ideals IPp;c with p < 210.
“Attack12”: Tweaked unit attack starting from
same I pool, 32 gens of ideals IPp;c with p < 212.
“Attack14”: Tweaked unit attack starting from
same I pool, 124 gens of ideals IPp;c with p < 214.
(If I is principal, take gen of I . Could also try IJ .)
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Generalizing to any n
Find S-unit lattice: generators of

∏
P∈S PeP .

Typically see small P‘;1 ∈ S generating class group;
for each Q ∈ S, find generator of some Q

∏
c Pec

‘;c .
Find S-generator of I : gR = I

∏
P∈S PvP .

No more quantum steps required after this.
Try J = R , J = Q, J = QQ′, etc. For each J ,
immediately see generator of some IJ

∏
c Pec

‘;c .
Fast reduction mod Λ′′ ⇒ gen of small multiple of I .
(For n = 32, jumped to J with IJ principal.)
Fast reduction mod unit lattice and x + 1 ⇒ short.
Much shorter vectors than pure unit attack.
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Using more primes for n = 64
#(Z64=Λ′′) = 17 · 21121 = 359057.
Again precompute S-units.
Given I , compute S-generator: gR = I

∏
c Pvc

257;c .
Basic attack: Reduce exponent vector mod Λ′′,
finding generator of small I

∏
c Pvc−ec

257;c .
“Small”: 1000 experiments in

∑
c |vc − ec | model ⇒

25.2% 5, 64.8% 4, 9.6% 3, 0.3% 2, 0.1% 1.
2574=n2 ≈ 1:00543; 2571=n2 ≈ 1:00136.
Further options: I

∏
c Pvc

641;c . Many more options:
IP641;b

∏
c Pvc

257;c ; IP769;aP641;b
∏

c Pvc
257;c ; etc.

Paying 2 primes gains many tries at closeness.
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A meet-in-the-middle search for n = 64
Efficiently index each ideal class by e ∈ Z=359057:
I has class e ⇔ IP−e

257;1 principal.
ff−1; ff3 act as mults by −1; 29301 on Z=359057.
Precompute classes of P257;1;P641;1;P769;1;P1153;1
(via small S-units): 1, 25489, 99282, 201437.
Start with S-generator of I ⇒ class of I .
Tabulate 642 classes of IP1153;aP769;b.
Tabulate 642 classes of P−1

641;cP−1
257;d .

Rough estimate: 644=359057 ≈ 47 collisions.
Collision ⇒ IP1153;aP769;bP641;cP257;d principal.
Reconstruct IP1153;aP769;bP641;cP257;d generator.
Reduce each generator mod units, and apply tweak.
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A numerical example for n = 64
Took ideal I ⊂ R containing the random prime
31415926535897932384626433832795028841971710593.
Examples of short g ∈ I found by meet-in-the-middle
search of principal IJ1J2 with odd #(R=Jj) < 222:
Ideal generated by g ”1=n

(1 + x)8IP641;:::P769;:::P78977;::: 1:01399
(1 + x)5IP398977;::: 1:01389
IP641;:::P1340033;::: 1:01385
(1 + x)4IP257;:::P1153;:::P11777;:::P39041;::: 1:01350
(1 + x)3IP35969;:::P2350081;::: 1:01288
For comparison, shortest nonzero vector in I :
(1 + x)IP6525293171851009;::: 1:01243
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Conjectured scalability: exp(n1=2+o(1))
Simple algorithm variant, skipping many speedups:
Take traditional log y ∈ n1=2+o(1).
Take S =∞∪ {P : #(R=P) ≤ y}.
Precompute

{
S-unit u ∈ R :

∑
i u2

i ≤ n1=2+o(1)}.
Compute S-generator g of I .
Replace g with gu=v having log vector closest to I ;
repeat until stable ⇒ small S-generator of I .
Multiply by PcP−c gens ⇒ short element of I .
Repeat yO(1) times, avoiding cycles; take shortest.
Heuristics ⇒ ” ≤ n1=2+o(1), time exp(n1=2+o(1)).
“Vector within › of shortest in subexponential time.”
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