S-unit attacks

Daniel J. Bernstein

University of lllinois at Chicago; Ruhr University Bochum

Includes new joint work with
Kirsten Eisentrager, Tanja Lange, Karl Rubin,
Alice Silverberg, and Christine van Vredendaal.

Builds upon vast previous literature;
see upcoming paper for credits.



Algebraic geometry: the line over C
f=x*+6x3+5x> = (x+1)}(x +5)'x? € C[x]:

£(10) = f mod x — 10 = 16500  ordio f = 0
f(—1)=fmodx+1=0 od_;f=1
f(—=5)=fmodx+5=0 ord 5f=1
f(0)=Ffmodx—-0=0 ordg f =2

. and consider C[1/x] C C(x):  ordyf = —
“ord, f" = x — r exponent in f. “ord,," = —deg.
This f is an “S-unit” if {c0,0, -1, -5} C S.

Fundamental thm of algebra: }_ ¢ (o) 0rd, £ = 0.
f is almost determined by the vector p — ord, f.

Daniel J. Bernstein S-unit attacks



Intermediate: the line over F+
f=x*+3x3+x2+5x+2 = (x—2)3(x2—3)! € F;[x]:

fmodx —0=2 ord, f =0 flx=1
fmodx—2=0 ord, »f =2 |f|x_2:1/72
fmodx>+1#0 ordef=0 s =1
fmodx?—3=0 orde sf=1 |flues = 1/7°
ordo f = —4 floo = 7*

|flp = 1/#(F7[x]/P)° T for “finite place” P.

“Product formula™ ] |f|,=1; >_ log|f|, =0;
here p ranges over {monlc irreds in F7[x]} U {o0o}.
f is almost determined by the vector p — ord, f.

Daniel J. Bernstein S-unit attacks



Number theory: Z
f=-50421=-3'7" € Z:

fmod2=1 ordyf=0 [flo=1
fmod3=0 ordsf=1 |f|3=1/3
fmod5=4 ordsf=0 |[fls=1
fmod7=0 ord;f=5 |fl;=1/7
|f|.o = 50421

[flp = 1/#£(Z/P)°*T for “finite place” P.

“Product formula™ ] |f|,=1; > log|f|, =0;
here p ranges over {prime numbers} U {oo}.
f is almost determined by the vector p — ord, f.

Daniel J. Bernstein S-unit attacks



-’i':rlﬁ;.?-%: s

B e

"

L

¥ e
— -





http://joakimolofsson.deviantart.com/art/Pacific-Rim-372130691

Lattice-based cryptography

2010 LPR proved “very strong hardness guarantees’:

Assume “worst-case problems on ideal lattices
are hard for polynomial-time quantum algorithms”

l

“the ring-LWE distribution is pseudorandom”

l

security for a “truly practical
lattice-based public-key cryptosystem”

Concrete parameters in cryptosystems are chosen
assuming much more than polynomial hardness.

Daniel J. Bernstein S-unit attacks



What's the supposedly hard problem?

Parameters: Define R = Z[x|/(x" + 1) for some
ne {248, 16,32, 64 128,256,512, 1024, ... }.

[Can generalize, but this talk focuses on these rings R.]

Problem: Given a nonzero ideal | C R,
find a “short” nonzero element g € /.

“Given” I: given v, v, ..., v, € R
such that | = Zvi +Zvo + - - - + Zv,,.

eg vi=x>4+817 — g=2v1+3vn -5 -2y

vy = x? + 540 =2x3+3x? —5x+1
V3:X—|—247
V4:1009

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0
1009 0 0 0

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

277 0 -1 1
540 0 1 0
247 1 0 0
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

277 0 -1 1
263 0 2 -1
247 1 0 0
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
263 0 2 -1
247 1 0 0
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
247 1 0 0
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
55 1 0 1
192 0 0 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
55 1 0 1
137 -1 0 —2

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
55 1 0 1
82 -2 0 -3

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
55 1 0 1
27 -3 0 —4

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1
28 4 0 5
27 -3 0 —4

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 -1

1 7 0 9
27 -3 0 —4

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
16 —1 2 —1

1 7 0 9
11 —2 —2 -3

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 -3 2
2 —1 5 -3
1 7 0 9

11 —2 -2 -3

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 —1 5 -3
1 7 0 9
11 —2 -2 -3

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 -1 5 -3
1 7 0 9
9 -1 —7 0

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 —1 5 -3
-2 5 1 4
9 -1 —7 0

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 —1 5 -3
-2 5 1 4
6 -3 —6 -5

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 —1 5 -3
—2 5 1 4
4 2 -5 —1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 —1 5 -3
-5 3 2 -1
4 2 -5 -1

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 -1 5 -3
-5 3 2 -1
-1 5 -3 —2

Daniel J. Bernstein S-unit attacks



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 -1 5 -3
-5 3 2 -1
-1 5 -3 —2

But this doesn’t reach “short” when n is large.

[This difficulty is only for number theory, not geometry.
Analogous short-vector problem for sublattice of F7[y]":
naive algorithm gives shortest basis in poly time.]

Daniel J. Bernstein S-unit attacks



Big picture: screenshot from 2019

DPW

1.035 & T T T T T T
—B— Naive algorithm, p = 2m + 1.
—m— Naive algorithm, p = mInm.
1.030 —A— HeuristicCVP, p = 2m + 1.
—a&A— HeuristicCVP, p = mInm.
Lower bound, p = 2m + 1.
1.025 |- - - - Halved lower bound (Remark 5) p = 2m + 1.
LLL
1.020 -
fas}
1.015
1.010 BKZ80
BKZ120
BKZ160
1.005 BKZ300
l l l l l l l \7
1.000 29 210 211 212 213 214 215 216 217 218

Daniel J. Bernstein

S-unit attacks

10



How well the algorithms do

Given nonzero ideal | C R = Z[x]/(x" + 1),
algorithm finds nonzero g = go+ -+ g,_1x" 1 €/

with (g5 + -+ g5_1)"/2 = n - (#(R/)"".
Algorithms using only additive structure of /:

o LLL (fast): n'/" ~1.022.
e BKZ-80 (not hard): n'/" ~ 1.010.
e BKZ-160 (public attack): n'/" ~ 1.007.

o BKZ-300 (large-scale attack):  n%/" ~ 1.005.

Algorithms also using multiplicative structure of R:
blue/red curves; n € 2% bt worse n than LLL
below “rank 1000". Thin curves: “lower bound”.

Daniel J. Bernstein S-unit attacks 11



Major research directions

Many papers analyzing+optimizing BKZ-g: e.g.,
e Last century: exp(©(BlogB)) ops.
e 2001: exp((0.415...+ o(1))B) ops.
e 2015: exp((0.292...+ o(1))B) ops.
e 2015: exp((0.265. ..+ o(1))B) quantum ops.
e 2021: exp((0.257 ...+ o(1))B) quantum ops.
e Many more speedups hidden inside the o(1).
This talk focuses on multiplicative attacks:
e Part 2 of talk: How multiplicative attacks work.
e Part 3 of talk: Better multiplicative attacks.

Daniel J. Bernstein S-unit attacks 12



Part 2
How multiplicative attacks work



Infinite places of K = Q[x]/(x" + 1)
Define {,, = exp(2mi/m) € C for nonzero m € Z.

For any ¢ € 1+ 2Z have ({5,)" + 1 = 0 so there is a
unique ring morphism ¢ : K — C taking x to {5,.

Al x" +1 roots in C: ¢&,,....¢o- LY o GL
All t : K — C: 1q, ..., bn1sb_(n=1)s - -1 L—1.

Define |glc = |ec(g)]” = te(g)r—c(g).
The maps g — |g|. are the infinite places of K.
All places: g — |gl1,g— |gl3,---. 8 — |g|n-1.
Same as: g > g]-1,8 > [g|-3,.... & > [g]-n-1.
_ n
Z |got - gn1x" e = §(g3+'“+g§f1)-
ce{1,3,....n-1}

Daniel J. Bernstein S-unit attacks



Finite places of K = Q[x]/(x" + 1)

Nonzero ideals of R factor into prime ideals.

For each nonzero prime ideal P of R, define

lg|lp = #(R/P)~°"&. “Norm of P" is #(R/P).
The maps g — |g|p are the finite places of K.
For each prime number p: Factor x” 4+ 1 in F,[x]
to see the prime ideals of R containing p.

e.g. p=2: Prime ideal 2R+ (x + 1)R = (x + 1)R.

e.g. “unramified degree-1 primes”: p € 1 +2nZ =
exactly n nth roots ry, ..., r, of =1 in Fp.
xX"+1=(x—n)(x—n)...(x —r,) in Fy[x].
Prime ideals pR 4+ (x — n)R, ..., pR + (x — ry)R.

Daniel J. Bernstein S-unit attacks 15



Example: n = 4; R = Z[x]/(x* + 1)
g = & + &ix + &x° + gx°, s = exp(2mi/8):
L1(g) = go + gng_l + g2C8_2 + g3C8_3;

1(g) =g+ &8s + 828 + 838 gl =|ulg)l.
L3(g) = 80 + 8185 + 8285 ° + 8385

13(g) = g+ 816G + &8 + &85 gl = |ua(g)
P17, =1TR + (x — 2)R: |gl170 = 177 9P1r28,
Pi7g = 17TR + (x — 8)R: |g|i7g = 1791788,

P17,—8 =17R + (X + 8)R |g‘17,—8 — 17—0rdpl7’_8g.
'D17,—2 =17R + (X + 2)R |g‘17,_2 — ]_7_°rdP17,—2g_
P41’3 =41R + (X — 3)R |g|41’3 — 41—Ol’dp41’3g.
etc.

Daniel J. Bernstein S-unit attacks 16



S-units of K = Q[x]/(x" + 1)

Assume oo C S C {places of K}.
Useful special case: S has all primes <something.
[Warning: Often people rename S — oo as S|]

g € K*is an S-unit

& gR = [1pes P for some ep

< |gl, =1 for all p € {places of K} — S

& the vector p — log|g|, is 0 outside S.
S-unit lattice: set of such vectors p — log |g]|,.
e.g. Temporarily allowing n=1, K = Q:

{{o0, 2, 3}-units in Q} = £2%3%. (“3-smooth”.)
Lattice: (log2, —log?2,0)Z + (log 3,0, —log 3)Z.

Daniel J. Bernstein S-unit attacks 17



S-unit attacks

0. Choose a finite set S of places.
Input a nonzero ideal / of R.
2. Find an S-generator of [

some g with gR = I[[pcs P

This has a poly-time quantum algorithm,

and surprisingly fast non-quantum algorithms.
3. Find an S-unit u “close to g/I".

This is an S-unit-lattice close-vector problem.
4. Output g/u.

—

Critical for Step 3 speed: constructing short vectors
in the S-unit lattice. We'll see several constructions!

Daniel J. Bernstein S-unit attacks



Special case: unit attacks

0. Define S = oc.

{oo-units of K} = {units of R} = R*.
Input a nonzero ideal / of R.

Find a generator of /: some g with gR = |.
Find a unit v “close to g".

Output g/u.

==

Questions coming up later in this talk:
e How small is g/u compared to 17
e What happens if [ isn't principal?
e |Is this special case as good as the general case?

Daniel J. Bernstein S-unit attacks

19



“Cyclotomic units” in R = Z[x]/(x" + 1)

+1, +x, +x2, ..., +x"1 = F1/x are units.
(1—-x3)/(1 —=x)=1+x+x%¢c R. Unit since
(1—x)/(1—x3)=(1-x*1)/(1-x%€eR.
For c € 14+ 2Z: R has automorphism o, : x — x€.

oc(1+x+x?) =1+ x° + x*¢ is a unit.
Useful to symmetrize: define u. =1+ x¢ + x~¢.

x% ], u? has finite index in R*. Index is called h'.
Assume h™ = 1. Proven, assuming GRH, for
ne {2,4,8,...,256}; heuristics say always true.

[Note to number theorists: This talk is only for powers of 2.]

Daniel J. Bernstein S-unit attacks 20



Unit lattice for n = 8

lutly = |1+ Ci6 + e |? ~ exp 2.093.

lut|z = |1+ &3 + ¢ )? ~ exp 1.137.

lut]s = |1+ 36 + i )? ~ exp —2.899.

|unl7 = |1+ {{g + ¢y > ~ exp —0.330.

Define Log., f = (log |f|1, log |f]3, log|f]s, log |f|7).
Log.. u1 ~ (2.093,1.137, —2.899, —0.330).

Log,, us ~ (1.137, —0.330, 2.093, —2.899).

Log,, us ~ (—2.899,2.093, —0.330, 1.137).

Log.. ur ~ (—0.330, —2.899, 1.137, 2.093).

Log,, R* is lattice of dim n/2 — 1 = 3 in hyperplane

{(£1,£3,£5,£7) ERY i+ 43+ 45+ 47 = 0}.
Short lattice basis: Log. u1, Log. u3, Log., us.

Daniel J. Bernstein S-unit attacks 21



Reducing mod units
Start with g = go + g@ix + -+ - + gp_1x"L.
Compute Log. g = (log|g|1, log|gls, - - -, log|g|a-1)-

Try to reduce Log,, g modulo unit lattice:

adjust Log. g by subtracting closest vector from
some precomputed combinations of basis vectors;
repeat several times; keep smallest g5 + -+ - + g2 ;.

Replacing g with gu replaces |g|. with |g|c|u]c.
Easy to track 3_ [g]c = (n/2)(g5 + - + &7-1)-
Note that unit hyperplane is orthogonal to norm:

#(R/1) =#(R/g) =11 lgle = exp > _ log |g]c.

Daniel J. Bernstein S-unit attacks 22



Experiments for small n

Geometric average of n*/"

n|Model Attack Tweak Shortest
41.01516 1.01518 1.01518 1.01518
811.01968 1.01972 1.01696 1.01696
16 | 1.01861 1.01860 1.01628 1.01627

“Shortest”: Take /, find a shortest nonzero vector g,
output 7 = (gg + -~ + g2_1) V2 /#(R/NY".

[Assuming BKZ-n software produces shortest nonzero vector.]

over 100000 experiments:

“Attack”: Same /, find a generator, reduce mod unit
lattice — g, output (g2 +- -+ g2_1)V/2/#(R/1)Y/".
“Model”: Take a hyperplane point, reduce mod unit

lattice — Log,, g, output (gZ + -+ + g,%_l)l/z.
Daniel J. Bernstein S-unit attacks 23



Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for
32,64,128,256,512,1024: 1.01570, 1.01332,
1.01118, 1.00950, 1.00804, (10000:) 1.00667.

Why did 2019 DPW say >1.022 for n below 10007

Daniel J. Bernstein S-unit attacks 24



Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for
32,64,128,256,512,1024: 1.01570, 1.01332,
1.01118, 1.00950, 1.00804, (10000:) 1.00667.

Why did 2019 DPW say >1.022 for n below 10007
Aha: 2019 DPW applies unit attack to principal 1J.

Multiplying J into /

= multiplying #(R/J) into #(R/1)

= multiplying #(R/J)Y" into #(R/1)¥/"
= expanding n by #(R/J)Y/"

= expanding n'/" by #(R/J)/™ .

Daniel J. Bernstein S-unit attacks 24



Finding a close principal multiple /J

Prime p € 1+ 2nZ is contained in n prime ideals P..
“Augmented Stickelberger”: known rank-n lattice
N C Z" with e € A = [], P& principal; e.g., P.P_..

Poly-time quantum algorithm + minor assumption

= some vector v such that /][, P! is principal.

Search some e € A, trying to minimize ) _|v. — e.|.
Use principal P.P_. to force e. < v,.

Define J =[], P¥~%. Then [J is principal.

Replace / with /J, and apply unit attack.

Contribution to n¥/™ #(R/J)Y™ = (p¥/")Xcve—edl,

Daniel J. Bernstein S-unit attacks 25



Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

e Experiments for > _|v. — ec| (for red curve;
blue: limit search; thin: “lower bound”).

Experiments for reducing mod unit lattice.

1/2

Combine appropriately to obtain n*/“n.

Multiply by n~1/? to obtain n. Graph n'/".

Daniel J. Bernstein S-unit attacks

Insert n'/2 factor because of notation choices.

26



Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

e Experiments for > _|v. — ec| (for red curve;
blue: limit search; thin: “lower bound”).

Experiments for reducing mod unit lattice.

Combine appropriately to obtain n'/?

n.
Multiply by n~1/? to obtain n. Graph n'/".
Typo: Omit the “—"

in the previous line.

Daniel J. Bernstein S-unit attacks

Insert n'/2 factor because of notation choices.

26



Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

e Experiments for > _|v. — ec| (for red curve;
blue: limit search; thin: “lower bound”).

Experiments for reducing mod unit lattice.

Insert n'/2 factor because of notation choices.
12,
Multiply by n~1/? to obtain n. Graph n'/".
Typo: Omit the “—"
Big impact of typo: e.g., n*/" ~ 1.012 for n = 512.
Attack is much more effective than graph shows.

Combine appropriately to obtain n

in the previous line.

Daniel J. Bernstein S-unit attacks 26



Part 3
Better multiplicative attacks



Prime factors of some random integers

2-3-59-73-14051 - 57977 - 1492315939
136652609 - 229896280545203

22 . 43973 - 2825227 - 63219409867
3-7-13-115076653977648103973
2-5-41-4259-17991127274751277
1117 - 167407 - 3365381 - 298195039
23.3%.29.92401 - 150959 - 119850869
43 - 730602942695300753131
2-79-379-577-5009 - 382979 - 473971
3-5-2094395102393195492309

22 .7 337 - 3329369069086258201

23 - 4363 - 14153 - 22120162700921

Daniel J. Bernstein S-unit attacks 28



Traditional method to find S-units

Take random small element v € R:
g 1= x3 — x4 x50 4 5% _ 453
1. Does #(R/u) factor into primes <y?
2. Is u an S-unit for S = co U{P : #(R/P) < y}?
Small primes = fast non-quantum factorization.
[Helpful speedups: #(R/P) € 1+ 2nZ. Batch factorization.]
Standard heuristics = y?7°(1) choices of u
include y'™°(1) S_units, spanning all S-units, for

e appropriate n'/2+°(1) choice for log y,

e appropriate n'/2+°() choice for 3_. u?.
Total time exp(n'/27°(M). [Extension NFS: 1/3 + o(1)7]

Daniel J. Bernstein S-unit attacks 29



Automorphisms and subrings

Apply each o, to quickly amplify each v found
into, typically, n independent S-units.

What if u is invariant under (say) two 0.7 Great!
Start with u from proper subrings. Makes #(R/u)
much more likely to factor into small primes.
Examples of useful subrings of R = Z[x]/(x" + 1):
o Z[x’]/(x"+1)={ueR:0,1(u) = u}.
e Rt ={ueR:o0_4(u)=u}.
Also use subrings to speed up #(R/u) computation
forany u € R: v = uo,1(u), w = vo,nii(v), ...
n'+°() times faster than “fast” resultant methods.

Daniel J. Bernstein S-unit attacks



More cyclotomic fun: Gauss sums

For each prime number p € 1+ 2nZ,
and each group morphism x : F; — ¢Z., define

GaussX,(x) = Z x(a)¢s-

aeF;

Exercise: |Gauss¥,(x)|*> = p if x # 1.
So Gauss¥,(x) is an S-unit for S = co U p.

eg. n=16,{p=C3, p=97 €1+ 2nZ:

There is a morphism x : Fg; — §322 with x(5) = (3.
Gauss¥,(x) = ¢3:Ca7 + $32857 + $5:857 + -
GaussY,(x?) = (<o + $5aar + C5len + -+ -

Daniel J. Bernstein S-unit attacks 31



Many S-units for S = oo U p

Magic fact: GaussX,(x)?/Gauss¥,(x>) € Z[{24]-
Pull back via ¢; to an element of R = Z[x]/(x" +1).

Factor element into prime ideals for, e.g., n = 16:
P11P13PisP_15P_13P_11P?4P?, P2, P25 P2, where
Pi1, Py, ..., P.15 are the prime ideals containing p.

Similarly GaussX,(x)°/GaussZ ,(x°) etc. = More
principal products of powers of P11, Py3, ..., Piis.

A is generated by exponent vectors for (1) these
S-units and (2) P.P_. (principal since h* = 1).

[Note to number theorists: labeling here is P. = o_1(P;).]

Daniel J. Bernstein S-unit attacks



Explaining the magic: Jacobi sums

Define JacobiX,(x1, x2) = Z x1(a)x2(1 — a).
acF;—{1}

Exercise: If x1x2 # 1 then JacobiX,(x1,x2) =
GaussX ,(x1) GaussX ,(x2)/GaussZ ,(x1X2)-

So |Jacobin(x1,x2)\2 =pif 1 ¢ {x1. X2 xX1X2}-
e.g. n=16, {p = {3, p=97, x(5) = C32'
Jacobin(x, X) — 1+20 + C2+28 + C3—|—66 .
Jacobin(xz, ) 2—|—2O + C4+28 i C6+66

since 1 — 5! = 5%, 1 52 = 528 etc. in Fgy.

Daniel J. Bernstein S-unit attacks



N, improving A by a factor 2

Jacobi¥ ,(x',x) for i =1, i =2, etc.:
GaussX ,(x)?/GaussZ ,(x?),

GaussY ,(x?)GaussX ,(x)/GaussX ,(x>),
GaussX ,(x®)GaussX ,(x)/GaussX ,(x*),

GaussX ,(x*)GaussX ,(x)/GaussZ ,(x°), etc.
Multiply:

GaussX ,(x)?/Gauss¥ ,(x?) (wasn't used in A),
GaussX ,(x)*/GaussZ ,(x>) (was used in A),
(x*) (
(

GaussZ ,(x)*/GaussX ,(x*) (wasn't used in A),
GaussX ,(x)°/GaussX ,(x°) (was used in A), etc.

Define A" using all Jacobi sums: all base-field
combinations of Gauss sums. #(Z"/N\) = 2#(Z"/N).

Daniel J. Bernstein S-unit attacks 34



A", improving A by a factor 2"/?

Fact: More products [, P¢ are principal if n > 4.
Typical case: P. generates the “class group”; then
N has index 2"/2~1 inside lattice of “class relations”.
Class group = {ideals # 0} /{principal ideals # 0}.

Start from all known S-units: group generated by
cyclotomic units, Jacobi sums, generators of P.P_..
Successively extend set by adjoining square roots.

How to find square products of powers of current
generators? Map the group in many ways to F:
use known exponents of P.; use random quadratic
characters (squareness mod random prime ideals Q).
Then fast linear algebra over F, finds squares.

Daniel J. Bernstein S-unit attacks 35



Example: n =8

Take p =17, x(3) = {16, e = 1+ x° + x~€.
Find generator g7 = x® — x> + x3 — x> — 1 of P;P_7.
Compute ¥; = JacobiX (X', x) pulled back to R.

S-unit ideal factorization
Zl = 2X7+2X6—X4—|—2X2—2X P_7P_5P_3P_1
Yo = x'—2x°—3x%+x*—x3—x P;P_sP_3P_4
Yo/2, P;/P_7
87 P7P_7
grro/¥q P?
(U5g722/21)1/2 :X7 —X4+X3 P7

Scaling up to n = 256: All sgrts in 10 minutes.

Daniel J. Bernstein S-unit attacks 36



End of the story forn=4, n=8, n=16

For n = 16: #(Z°/\) = 256. “Lower bound” 2 =
expand #(R/NY"™ by p?™ = 972/ ~ 1.03639,
on top of &~ 1.01861 for unit-lattice model.

Daniel J. Bernstein S-unit attacks 37



End of the story forn=4, n=8, n=16

For n = 16: #(Z°/\) = 256. “Lower bound” 2 =
expand #(R/NY"™ by p?™ = 972/ ~ 1.03639,
on top of &~ 1.01861 for unit-lattice model.

Instead construct more S-units: #(Z°/A") = 1.
The input ideal was principal in the first place!
Find generator of /. Reduce mod units.

“Tweak": Multiply by x + 1, reduce, repeat for
L(x+ ) (x+ 1) (x+ 13 (x+1)*,....
Often (x + 1)¢g is closer to unit lattice than g.
Take smallest generator found across all (x + 1)¢/.
When to stop? Compare 2°#(R/I) to best g.

[Faster: reduce in log space mod units and x + 1.]

Daniel J. Bernstein S-unit attacks 37



Recap: Constructing small S-units

|square roots|

JacobiX |

m=1+x+x1 P1P_; gen

in R in R+

GaussXx
ratios

random

Daniel J. Bernstein S-unit attacks 38



Impact for larger values of n

For n = 32: #(Z%2/\) = 1114112.
“Lower bound” 5 = expand by ~ 1.02603,
on top of &~ 1.01570 for unit-lattice model.

Daniel J. Bernstein S-unit attacks 39



Impact for larger values of n

For n = 32: #(Z%2/\) = 1114112.
“Lower bound” 5 = expand by ~ 1.02603,
on top of &~ 1.01570 for unit-lattice model.

Instead construct more S-units: #(Z32/\") = 17.
“Class number” = #(class group) = 17.

Chance 1/17: [ principal. Expansion factor 1.

Chance 16/17: I non-principal. /P principal
for some prime ideal P with #(R/P) = 193.
Expansion factor 193%/" =~ 1.00515.

[Note to number theorists: upcoming labels use P, = 0.(P,1),
with P,1 = pR + (x + a)R for smallest ain {0, 1, ..., p—1}]

Daniel J. Bernstein S-unit attacks 39



Broader n = 32 search example, part 1
32 prime ideals Pig3 . have #(R/ P13 ) = 193.
32 prime ideals Pas7, have #(R/Pys7.c) = 257.
32 prime ideals Pysg . have #(R/ Py ) = 449.
Note 449'/" ~ 1.00598 vs. 193!/" ~ 1.00515.

Precompute S-units, including

generato_ri Y193, Y257, "Y4ixsl;, Y577, Y641, 'Y?_6191 ... of
P193,31P1_913,1v P257,—19'?1193,1: P449,—1_91P193,1v
Ps77.15P193.1+ Pea1,10P1931. PreosPiozr: - -

Daniel J. Bernstein S-unit attacks

40



Broader n = 32 search example, part 1

32 prime ideals Pig3 . have #(R/ P13 ) = 193.
32 prime ideals Pas7, have #(R/Pys7.c) = 257.
32 prime ideals Pysg . have #(R/ Py ) = 449.
Note 4491/ ~ 1.00598 vs. 1931/ ~ 1.00515.

Precompute S-units, including

generators Y193, Y257, V449, Y577, Y41, Y769, - - . Of
P1o331P1o5.1: Past—10Pio31 Paso10Pio3.1:
Ps77.15P103.1+ Pea110Pio3 10 PreosPios1s - - - -
Random example of a target: | =
3141592653589793238462643383280129R +
(x + 13443234652173688219737012017423)R.
Initial S-generator computation: gR = IP193 13.

Daniel J. Bernstein S-unit attacks



Broader n = 32 search example, part 2

Multiply by precomputed S-units for more S-gens
of /. (Don't repeat the quantum computations!)

gR = IP193 13. Attack: 1.02549; tweak: 1.01901.

g0'13(’7193)R /P193,19. 101709, 1.01709.
g0'13(")’257)R IP2579. 102179, 1.02103.
£013(7103)019(Y257) R = IPas703.  1.02517; 1.01588.
g013(Ya49) R = IPasg 9. 1.02100; 1.02100.
g0'13(’)’193)0'19(’)’449)R = IP449’23. 102584, 1.01830.
g0o13(vs577)R = IPs773. 1.02634; 1.02456.
g0'13(")’193)0'19(’)’577)R = IP577,29' 102682, 1.02224.
g013('y641)R /P641,_9. 101810, 1.01810.

g0'13(’)’193)0'19(’)’641)R = /P641'_23. 100990, 1.00990.

Daniel J. Bernstein S-unit attacks

41



End of the story for n = 32

Geometric average of n*/" over 10000 experiments:

n \ Attackl0 Attackl? Attackl4 Shortest
32 ‘ 1.01660 1.01622 1.01599 1.01576

“Attack10": Tweaked unit attack starting from
12 gens of ideals IP, . with p < 210,

“Attack12"”: Tweaked unit attack starting from
same [ pool, 32 gens of ideals /P, . with p < 2!2.

“Attack14”: Tweaked unit attack starting from
same | pool, 124 gens of ideals IP, . with p < 214,

(If 1 is principal, take gen of /. Could also try /J.)

Daniel J. Bernstein S-unit attacks

42



Generalizing to any n

Find S-unit lattice: generators of [[p ¢ P .
Typically see small P;; € S generating class group;
for each Q € S, find generator of some Q[], PZCC.

Find S-generator of [: gR = I]]pcs P".
No more quantum steps required after this.

Try J=R, J=Q, J = QQ, etc. For each J,
immediately see generator of some IJ]], PZ"C.

Fast reduction mod A” = gen of small multiple of /.
(For n = 32, jumped to J with IJ principal.)

Fast reduction mod unit lattice and x + 1 = short.

Much shorter vectors than pure unit attack.

Daniel J. Bernstein S-unit attacks 43



Using more primes for n = 64

#(Z%*/N'") = 17 - 21121 = 359057.
Again precompute S-units.

Given /, compute S-generator: gR = IT]_ Py .
Basic attack: Reduce exponent vector mod A,
finding generator of small /] P55, &

“Small”: 1000 experiments in > _|v. — e.| model =
25.2% 5, 64.8% 4, 9.6% 3, 0.3% 2, 0.1% 1.

2574/m ~ 1.00543: 257Y/" ~ 1.00136.

Further options: /][ Pg; .- Many more options:

IPoa1,b [ 1. Pz ci 1P769,aPea1b [ Pog7 i etc.
Paying 2 primes gains many tries at closeness.

Daniel J. Bernstein S-unit attacks 44



A meet-in-the-middle search for n = 64

Efficiently index each ideal class by e € Z/359057:
I has class e < IP,57 | principal.

0_1,03 act as mults by —1,29301 on Z/359057.
Precompute classes of P257’1, P641,1, P769,1, P1153'1
(via small S-units): 1, 25489, 99282, 201437.

Start with S-generator of | = class of /.
Tabulate 642 classes of IP1153 2P69 b-
Tabulate 642 classes of P(;&,CPQ_;?’C,.

Rough estimate: 64*/359057 ~ 47 collisions.

Collision = /P1153,aP769,bP641,cP257,d principal.
Reconstruct /P1153 2P769,5Pea1,cPos7,4 generator.
Reduce each generator mod units, and apply tweak.

Daniel J. Bernstein S-unit attacks

45



A numerical example for n = 64

Took ideal I C R containing the random prime
31415926535897932384626433832795028841971710593.
Examples of short g € / found by meet-in-the-middle
search of principal IJ;J, with odd #(R/J;) < 222

Ideal generated by g Nt/
(1 + x)®1Pga1,. Preo,. Prsorr, . 1.01399
(1 + x)°IP3og977, .. 1.01389
IPs41,. P134a003s,... 1.01385
(14 x)*IPas7, Pi1ss. Piiz77.. P3ooar, . 1.01350
(1 + x)*IPss960, . P23soos1, . 1.01288
For comparison, shortest nonzero vector in /:

(1 + x)/Pes25203171851009, ... 1.01243

Daniel J. Bernstein S-unit attacks 46



Conjectured scalability: exp(n*/2+°))

Simple algorithm variant, skipping many speedups:

Take traditional log y € n*/2t°(1),
Take S = o0 U{P:#(R/P) < y}.
Precompute {S-unit u € R: Y, u? < nt/2te)},

Compute S-generator g of /.

Replace g with gu/v having log vector closest to /;
repeat until stable = small S-generator of /.
Multiply by P.P_. gens = short element of /.
Repeat y°() times, avoiding cycles; take shortest.

Heuristics = n < n/2+°() time exp(n'/2T°().
“Vector within € of shortest in subexponential time.”

Daniel J. Bernstein S-unit attacks 47



