S-unit attacks

Daniel J. Bernstein

University of Illinois at Chicago; Ruhr University Bochum

Includes new joint work with
Kirsten Eisenträger, Tanja Lange, Karl Rubin, Alice Silverberg, and Christine van Vredendaal.

Builds upon vast previous literature; see upcoming paper for credits.

Algebraic geometry: the line over C

$$
f=x^{4}+6 x^{3}+5 x^{2}=(x+1)^{1}(x+5)^{1} x^{2} \in \mathbf{C}[x]:
$$

$$
f(10)=f \bmod x-10=16500 \quad \operatorname{ord}_{10} f=0
$$

$$
f(-1)=f \bmod x+1=0
$$

$$
\text { ord }_{-1} f=1
$$

$$
f(-5)=f \bmod x+5=0
$$

$$
\operatorname{ord}_{-5} f=1
$$

$$
f(0)=f \bmod x-0=0
$$

$$
\operatorname{cord}_{0} f=2
$$

\ldots and consider $\mathbf{C}[1 / x] \subset \mathbf{C}(x): \quad \operatorname{ord}_{\infty} f=-4$
"ord f " $=x-r$ exponent in f. " $\operatorname{ord}_{\infty} "=-\operatorname{deg}$.
This f is an " S-unit" if $\{\infty, 0,-1,-5\} \subseteq S$.
Fundamental the of algebra: $\sum_{\rho \in \mathbb{C} \cup\{\infty\}} \operatorname{ord}_{\rho} f=0$. f is almost determined by the vector $\rho \mapsto \operatorname{ord}_{\rho} f$.

Intermediate: the line over \mathbf{F}_{7}

$$
f=x^{4}+3 x^{3}+x^{2}+5 x+2=(x-2)^{2}\left(x^{2}-3\right)^{1} \in \mathbf{F}_{7}[x]:
$$

$f \bmod x-0=2$ $\operatorname{ord}_{x} f=0$

$$
|f|_{x}=1
$$

$f \bmod x-2=0$ $\operatorname{ord}_{x-2} f=2$

$$
|f|_{x-2}=1 / 7^{2}
$$

$$
f \bmod x^{2}+1 \neq 0 \quad \operatorname{ord}_{x^{2}+1} f=0
$$

$$
|f|_{x^{2}+1}=1
$$

$$
f \bmod x^{2}-3=0 \quad \operatorname{ord}_{x^{2}-3} f=1
$$

$$
|f|_{x^{2}-3}=1 / 7^{2}
$$

$$
\operatorname{ord}_{\infty} f=-4
$$

$$
|f|_{\infty}=7^{4}
$$

$|f|_{P}=1 / \#\left(\mathbf{F}_{7}[x] / P\right)^{\text {ord } P f}$ for "finite place" P. "Product formula": $\prod_{\rho}|f|_{\rho}=1 ; \sum_{\rho} \log |f|_{\rho}=0$; here ρ ranges over $\left\{\right.$ monic irreds in $\left.\mathbf{F}_{7}[x]\right\} \cup\{\infty\}$. f is almost determined by the vector $\rho \mapsto \operatorname{ord}_{\rho} f$.

Number theory: \mathbf{Z}

$$
f=-50421=-3^{1} 7^{5} \in \mathbf{Z}:
$$

$$
f \bmod 2=1 \quad \operatorname{ord}_{2} f=0 \quad|f|_{2}=1
$$

$$
f \bmod 3=0 \quad \operatorname{ord}_{3} f=1 \quad|f|_{3}=1 / 3^{1}
$$

$$
f \bmod 5=4 \quad \operatorname{ord}_{5} f=0 \quad|f|_{5}=1
$$

$$
f \bmod 7=0 \quad \operatorname{ord}_{7} f=5 \quad|f|_{7}=1 / 7^{5}
$$

$$
|f|_{\infty}=50421
$$

$|f|_{P}=1 / \#(\mathbf{Z} / P)^{\text {ord } p} f$ for "finite place" P.
"Product formula": $\prod_{\rho}|f|_{\rho}=1 ; \sum_{\rho} \log |f|_{\rho}=0$; here ρ ranges over $\{$ prime numbers $\} \cup\{\infty\}$. f is almost determined by the vector $\rho \mapsto \operatorname{ord}_{\rho} f$.

Daniel J. Bernstein

S-unit attacks

Lattice-based cryptography

2010 LPR proved "very strong hardness guarantees":

Assume "worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms"
"the ring-LWE distribution is pseudorandom"

Concrete parameters in cryptosystems are chosen assuming much more than polynomial hardness.

What's the supposedly hard problem?

Parameters: Define $R=\mathbf{Z}[x] /\left(x^{n}+1\right)$ for some $n \in\{2,4,8,16,32,64,128,256,512,1024, \ldots\}$.
[Can generalize, but this talk focuses on these rings R.]
Problem: Given a nonzero ideal $I \subseteq R$, find a "short" nonzero element $g \in I$.
"Given" I: given $v_{1}, v_{2}, \ldots, v_{n} \in R$ such that $I=\mathbf{Z} v_{1}+\mathbf{Z} v_{2}+\cdots+\mathbf{Z} v_{n}$.

$$
\text { e.g. } \begin{aligned}
v_{1} & =x^{3}+817 \longrightarrow g=2 v_{1}+3 v_{2}-5 v_{3}-2 v_{4} \\
v_{2} & =x^{2}+540 \\
v_{3} & =x+247 \\
v_{4} & =1009
\end{aligned}
$$

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

817	0	0	1
540	0	1	0
247	1	0	0
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

277	0	-1	1
540	0	1	0
247	1	0	0
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

277	0	-1	1
263	0	2	-1
247	1	0	0
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
263	0	2	-1
247	1	0	0
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
247	1	0	0
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
55	1	0	1
192	0	0	-1

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
55	1	0	1
137	-1	0	-2

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
55	1	0	1
82	-2	0	-3

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
55	1	0	1
27	-3	0	-4

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
28	4	0	5
27	-3	0	-4

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
1	7	0	9
27	-3	0	-4

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
1	7	0	9
11	-2	-2	-3

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
2	-1	5	-3
1	7	0	9
11	-2	-2	-3

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
1	7	0	9
11	-2	-2	-3

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
1	7	0	9
9	-1	-7	0

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
-2	5	1	4
9	-1	-7	0

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
-2	5	1	4
6	-3	-6	-5

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

$$
\begin{array}{rrrr}
3 & 2 & -1 & 5 \\
2 & -1 & 5 & -3 \\
-2 & 5 & 1 & 4 \\
4 & 2 & -5 & -1
\end{array}
$$

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

$$
\begin{array}{rrrr}
3 & 2 & -1 & 5 \\
2 & -1 & 5 & -3 \\
-5 & 3 & 2 & -1 \\
4 & 2 & -5 & -1
\end{array}
$$

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
-5	3	2	-1
-1	5	-3	-2

Doesn't look so hard ...

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
-5	3	2	-1
-1	5	-3	-2

But this doesn't reach "short" when n is large.
[This difficulty is only for number theory, not geometry. Analogous short-vector problem for sublattice of $\mathbf{F}_{7}[y]^{n}$: naive algorithm gives shortest basis in poly time.]

Big picture: screenshot from 2019 DPW

Daniel J. Bernstein
S-unit attacks

How well the algorithms do

Given nonzero ideal $I \subseteq R=\mathbf{Z}[x] /\left(x^{n}+1\right)$, algorithm finds nonzero $g=g_{0}+\cdots+g_{n-1} x^{n-1} \in I$ with $\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)^{1 / 2}=\eta \cdot(\#(R / I))^{1 / n}$.
Algorithms using only additive structure of I :

- LLL (fast):

$$
\begin{aligned}
& \eta^{1 / n} \approx 1.022 \\
& \eta^{1 / n} \approx 1.010 \\
& \eta^{1 / n} \approx 1.007 \\
& \eta^{1 / n} \approx 1.005
\end{aligned}
$$

- BKZ-80 (not hard):
- BKZ-160 (public attack):
- BKZ-300 (large-scale attack):

Algorithms also using multiplicative structure of R : blue/red curves; $\eta \in 2^{n^{1 / 2+o(1)}}$ but worse η than LLL below "rank 1000". Thin curves: "lower bound".

Major research directions

Many papers analyzing+optimizing BKZ- β : e.g.,

- Last century: $\exp (\Theta(\beta \log \beta))$ ops.
- 2001: $\exp ((0.415 \ldots+o(1)) \beta)$ ops.
- 2015: $\exp ((0.292 \ldots+o(1)) \beta)$ ops.
- 2015: $\exp ((0.265 \ldots+o(1)) \beta)$ quantum ops.
- 2021: $\exp ((0.257 \ldots+o(1)) \beta)$ quantum ops.
- Many more speedups hidden inside the $o(1)$.

This talk focuses on multiplicative attacks:

- Part 2 of talk: How multiplicative attacks work.
- Part 3 of talk: Better multiplicative attacks.

Part 2

How multiplicative attacks work

Infinite places of $K=\mathbf{Q}[x] /\left(x^{n}+1\right)$

Define $\zeta_{m}=\exp (2 \pi i / m) \in \mathbf{C}$ for nonzero $m \in \mathbf{Z}$.
For any $c \in 1+2 \mathbf{Z}$ have $\left(\zeta_{2 n}^{c}\right)^{n}+1=0$ so there is a unique ring morphism $\iota_{c}: K \rightarrow \mathbf{C}$ taking x to $\zeta_{2 n}^{c}$.
All $x^{n}+1$ roots in $\mathbf{C}: \zeta_{2 n}^{1}, \ldots, \zeta_{2 n}^{n-1}, \zeta_{2 n}^{(n-1)}, \ldots, \zeta_{2 n}^{-1}$. All $\iota: K \rightarrow \mathbf{C}: \iota_{1}, \ldots, \iota_{n-1}, \iota_{-(n-1)}, \ldots, \iota_{-1}$.
Define $|g|_{c}=\left|\iota_{c}(g)\right|^{2}=\iota_{c}(g) \iota_{-c}(g)$.
The maps $g \mapsto|g|_{c}$ are the infinite places of K.
All places: $g \mapsto|g|_{1}, g \mapsto|g|_{3}, \ldots, g \mapsto|g|_{n-1}$. Same as: $g \mapsto|g|_{-1}, g \mapsto|g|_{-3}, \ldots, g \mapsto|g|_{-n-1}$.

$$
\sum_{1}\left|g_{0}+\cdots+g_{n-1} x^{n-1}\right|_{c}=\frac{n}{2}\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)
$$

$c \in\{1,3, \ldots, n-1\}$

Finite places of $K=\mathbf{Q}[x] /\left(x^{n}+1\right)$

Nonzero ideals of R factor into prime ideals.
For each nonzero prime ideal P of R, define $|g|_{P}=\#(R / P)^{-\operatorname{ord} p g}$. "Norm of $P^{\prime \prime}$ is $\#(R / P)$. The maps $g \mapsto|g|_{P}$ are the finite places of K.

For each prime number p : Factor $x^{n}+1$ in $\mathbf{F}_{p}[x]$ to see the prime ideals of R containing p.
e.g. $p=2$: Prime ideal $2 R+(x+1) R=(x+1) R$.
e.g. "unramified degree- 1 primes": $p \in 1+2 n \mathbf{Z} \Rightarrow$ exactly nth roots r_{1}, \ldots, r_{n} of -1 in \mathbf{F}_{p}. $x^{n}+1=\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$ in $\mathbf{F}_{p}[x]$. Prime ideals $p R+\left(x-r_{1}\right) R, \ldots, p R+\left(x-r_{n}\right) R$.

Example: $n=4 ; R=\mathbf{Z}[x] /\left(x^{4}+1\right)$

$$
\begin{aligned}
& \quad g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}, \quad \zeta_{8}=\exp (2 \pi i / 8): \\
& \iota_{-1}(g)=g_{0}+g_{1} \zeta_{8}^{-1}+g_{2} \zeta_{8}^{-2}+g_{3} \zeta_{8}^{-3} ; \\
& \iota_{1}(g)=g_{0}+g_{1} \zeta_{8}+g_{2} \zeta_{8}^{2}+g_{3} \zeta_{8}^{3} ; \quad|g|_{1}=\left|\iota_{1}(g)\right|^{2} . \\
& \iota_{-3}(g)=g_{0}+g_{1} \zeta_{8}^{-3}+g_{2} \zeta_{8}^{-6}+g_{3} \zeta_{8}^{-9} ; \\
& \iota_{3}(g)=g_{0}+g_{1} \zeta_{8}^{3}+g_{2} \zeta_{8}^{6}+g_{3} \zeta_{8}^{9} ; \quad|g|_{3}=\left|\iota_{3}(g)\right|^{2} . \\
& P_{17,2}=17 R+(x-2) R: \quad|g|_{17,2}=17^{-\operatorname{ord}_{17,2} g} . \\
& P_{17,8}=17 R+(x-8) R: \quad|g|_{17,8}=17^{-\operatorname{ord}_{17,8} g} . \\
& P_{17,-8}=17 R+(x+8) R: \quad|g|_{17,-8}=17^{-\operatorname{ord}_{17,-8} g} . \\
& P_{17,-2}=17 R+(x+2) R: \quad|g|_{17,-2}=17^{-\operatorname{ord}_{17,-2} g .} \\
& P_{41,3}=41 R+(x-3) R: \quad|g|_{41,3}=41^{-\operatorname{ord}_{P 41,3} g .} \\
& \text { etc. }
\end{aligned}
$$

S-units of $K=\mathbf{Q}[x] /\left(x^{n}+1\right)$

Assume $\infty \subseteq S \subseteq\{$ places of $K\}$. Useful special case: S has all primes \leq something. [Warning: Often people rename $S-\infty$ as S.]
$g \in K^{*}$ is an S-unit
$\Leftrightarrow g R=\prod_{P \in S} P^{e_{P}}$ for some e_{P}
$\Leftrightarrow|g|_{\rho}=1$ for all $\rho \in\{$ places of $K\}-S$ \Leftrightarrow the vector $\rho \mapsto \log |g|_{\rho}$ is 0 outside S.
S-unit lattice: set of such vectors $\rho \mapsto \log |g|_{\rho}$.
e.g. Temporarily allowing $n=1, K=\mathbf{Q}$: $\{\{\infty, 2,3\}$-units in $\mathbf{Q}\}= \pm 2^{\mathbf{z}} \mathbf{3}^{\mathbf{z}}$. ("3-smooth".) Lattice: $(\log 2,-\log 2,0) \mathbf{Z}+(\log 3,0,-\log 3) \mathbf{Z}$.

S-unit attacks

0 . Choose a finite set S of places.

1. Input a nonzero ideal I of R.
2. Find an S-generator of I :
some g with $g R=I \prod_{P \in S} P^{e p}$.
This has a poly-time quantum algorithm, and surprisingly fast non-quantum algorithms.
3. Find an S-unit u "close to g / I ".

This is an S-unit-lattice close-vector problem.
4. Output g / u.

Critical for Step 3 speed: constructing short vectors in the S-unit lattice. We'll see several constructions!

Special case: unit attacks

0 . Define $S=\infty$.
$\{\infty$-units of $K\}=\{$ units of $R\}=R^{*}$.

1. Input a nonzero ideal I of R.
2. Find a generator of I : some g with $g R=I$.
3. Find a unit u "close to g ".
4. Output g / u.

Questions coming up later in this talk:

- How small is g / u compared to I ?
- What happens if I isn't principal?
- Is this special case as good as the general case?
"Cyclotomic units" in $R=\mathbf{Z}[x] /\left(x^{n}+1\right)$
$\pm 1, \pm x, \pm x^{2}, \ldots, \pm x^{n-1}=\mp 1 / x$ are units.
$\left(1-x^{3}\right) /(1-x)=1+x+x^{2} \in R$. Unit since $(1-x) /\left(1-x^{3}\right)=\left(1-x^{2 n^{2}+1}\right) /\left(1-x^{3}\right) \in R$.
For $c \in 1+2 \mathbf{Z}: R$ has automorphism $\sigma_{c}: x \mapsto x^{c}$. $\sigma_{c}\left(1+x+x^{2}\right)=1+x^{c}+x^{2 c}$ is a unit. Useful to symmetrize: define $u_{c}=1+x^{c}+x^{-c}$. $x^{\mathbf{Z}} \prod_{c} u_{c}^{\mathbf{Z}}$ has finite index in R^{*}. Index is called h^{+}. Assume $h^{+}=1$. Proven, assuming GRH, for $n \in\{2,4,8, \ldots, 256\}$; heuristics say always true.
[Note to number theorists: This talk is only for powers of 2.]

Unit lattice for $n=8$

$$
\begin{aligned}
& \left|u_{1}\right|_{1}=\left|1+\zeta_{16}+\zeta_{16}^{-1}\right|^{2} \approx \exp 2.093 . \\
& \left|u_{1}\right|_{3}=\left|1+\zeta_{16}^{3}+\zeta_{16}^{-3}\right|^{2} \approx \exp 1.137 . \\
& \left|u_{1}\right|_{5}=\left|1+\zeta_{16}^{5}+\zeta_{16}^{-5}\right|^{2} \approx \exp -2.899 . \\
& \left|u_{1}\right|_{7}=\left|1+\zeta_{16}^{7}+\zeta_{16}^{-7}\right|^{2} \approx \exp -0.330 .
\end{aligned}
$$

Define $\log _{\infty} f=\left(\log |f|_{1}, \log |f|_{3}, \log |f|_{5}, \log |f|_{7}\right)$. $\log _{\infty} u_{1} \approx(2.093,1.137,-2.899,-0.330)$. $\log _{\infty} u_{3} \approx(1.137,-0.330,2.093,-2.899)$. $\log _{\infty} u_{5} \approx(-2.899,2.093,-0.330,1.137)$. $\log _{\infty} u_{7} \approx(-0.330,-2.899,1.137,2.093)$.
$\log _{\infty} R^{*}$ is lattice of $\operatorname{dim} n / 2-1=3$ in hyperplane $\left\{\left(\ell_{1}, \ell_{3}, \ell_{5}, \ell_{7}\right) \in \mathbf{R}^{4}: \ell_{1}+\ell_{3}+\ell_{5}+\ell_{7}=0\right\}$.
Short lattice basis: $\log _{\infty} u_{1}, \log _{\infty} u_{3}, \log _{\infty} u_{5}$.

Reducing mod units

Start with $g=g_{0}+g_{1} x+\cdots+g_{n-1} x^{n-1}$.
Compute $\log _{\infty} g=\left(\log |g|_{1}, \log |g|_{3}, \ldots, \log |g|_{n-1}\right)$.
Try to reduce $\log _{\infty} g$ modulo unit lattice: adjust $\log _{\infty} g$ by subtracting closest vector from some precomputed combinations of basis vectors; repeat several times; keep smallest $g_{0}^{2}+\cdots+g_{n-1}^{2}$.
Replacing g with $g u$ replaces $|g|_{c}$ with $|g|_{c}|u|_{c}$. Easy to track $\sum_{c}|g|_{c}=(n / 2)\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)$.
Note that unit hyperplane is orthogonal to norm: $\#(R / I)=\#(R / g)=\prod_{c}|g|_{c}=\exp \sum_{c} \log |g|_{c}$.

Experiments for small n

Geometric average of $\eta^{1 / n}$ over 100000 experiments:

n	Model	Attack	Tweak	Shortest
4	1.01516	1.01518	1.01518	1.01518
8	1.01968	1.01972	1.01696	1.01696
16	1.01861	1.01860	1.01628	1.01627

"Shortest": Take I, find a shortest nonzero vector g, output $\eta=\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)^{1 / 2} / \#(R / I)^{1 / n}$. [Assuming BKZ-n software produces shortest nonzero vector.]
"Attack": Same I, find a generator, reduce mod unit lattice $\rightarrow g$, output $\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)^{1 / 2} / \#(R / l)^{1 / n}$. "Model": Take a hyperplane point, reduce mod unit lattice $\rightarrow \log _{\infty} g$, output $\left(g_{0}^{2}+\cdots+g_{n-1}^{2}\right)^{1 / 2}$.

Daniel J. Bernstein

Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for $32,64,128,256,512,1024$: $1.01570,1.01332$, $1.01118,1.00950,1.00804,(10000:) 1.00667$. Why did 2019 DPW say >1.022 for n below 1000?

Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for $32,64,128,256,512,1024: 1.01570,1.01332$, $1.01118,1.00950,1.00804,(10000:) 1.00667$.
Why did 2019 DPW say >1.022 for n below 1000?
Aha: 2019 DPW applies unit attack to principal IJ.
Multiplying J into I
\Rightarrow multiplying $\#(R / J)$ into $\#(R / I)$
\Rightarrow multiplying $\#(R / J)^{1 / n}$ into $\#(R / I)^{1 / n}$
\Rightarrow expanding η by $\#(R / J)^{1 / n}$
\Rightarrow expanding $\eta^{1 / n}$ by $\#(R / J)^{1 / n^{2}}$.

Finding a close principal multiple IJ

Prime $p \in 1+2 n \mathbf{Z}$ is contained in n prime ideals P_{c}. "Augmented Stickelberger": known rank- n lattice $\Lambda \subseteq \mathbf{Z}^{n}$ with $e \in \Lambda \Rightarrow \prod_{c} P_{c}^{e_{c}}$ principal; e.g., $P_{c} P_{-c}$. Poly-time quantum algorithm + minor assumption \Rightarrow some vector v such that $/ \prod_{c} P_{c}^{v_{c}}$ is principal.
Search some $e \in \Lambda$, trying to minimize $\sum_{c}\left|v_{c}-e_{c}\right|$. Use principal $P_{c} P_{-c}$ to force $e_{c} \leq v_{c}$. Define $J=\prod_{c} P_{c}^{v_{c}-e_{c}}$. Then $I J$ is principal. Replace I with $I J$, and apply unit attack.
Contribution to $\eta^{1 / n}: \#(R / J)^{1 / n^{2}}=\left(p^{1 / n^{2}}\right)^{\sum_{c}\left|v_{c}-e_{c}\right|}$.

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c}\left|v_{c}-e_{c}\right|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1 / 2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1 / 2} \eta$.
- Multiply by $n^{-1 / 2}$ to obtain η. Graph $\eta^{1 / n}$.

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c}\left|v_{c}-e_{c}\right|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1 / 2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1 / 2} \eta$.
- Multiply by $n^{-1 / 2}$ to obtain η. Graph $\eta^{1 / n}$.
- Typo: Omit the "-" in the previous line.

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c}\left|v_{c}-e_{c}\right|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1 / 2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1 / 2} \eta$.
- Multiply by $n^{-1 / 2}$ to obtain η. Graph $\eta^{1 / n}$.
- Typo: Omit the "-" in the previous line.

Big impact of typo: e.g., $n^{1 / n} \approx 1.012$ for $n=512$. Attack is much more effective than graph shows.

Part 3

Better multiplicative attacks

Prime factors of some random integers

$2 \cdot 3 \cdot 59 \cdot 73 \cdot 14051 \cdot 57977 \cdot 1492315939$
$136652609 \cdot 229896280545203$
$2^{2} \cdot 43973 \cdot 2825227 \cdot 63219409867$
$3 \cdot 7 \cdot 13 \cdot 115076653977648103973$
$2 \cdot 5 \cdot 41 \cdot 4259 \cdot 17991127274751277$
$11 \cdot 17 \cdot 167407 \cdot 3365381 \cdot 298195039$
$2^{3} \cdot 3^{4} \cdot 29 \cdot 92401 \cdot 150959 \cdot 119850869$
$43 \cdot 730602942695300753131$
$2 \cdot 79 \cdot 379 \cdot 577 \cdot 5009 \cdot 382979 \cdot 473971$
3.5.2094395102393195492309
$2^{2} \cdot 7 \cdot 337 \cdot 3329369069086258201$
$23 \cdot 4363 \cdot 14153 \cdot 22120162700921$

Traditional method to find S-units

Take random small element $u \in R$:
e.g. $u=x^{31}-x^{41}+x^{59}+x^{26}-x^{53}$.

1. Does $\#(R / u)$ factor into primes $\leq y$?
2. Is u an S-unit for $S=\infty \cup\{P: \#(R / P) \leq y\}$?

Small primes \Rightarrow fast non-quantum factorization. [Helpful speedups: $\#(R / P) \in 1+2 n \mathbf{Z}$. Batch factorization.]
Standard heuristics $\Rightarrow y^{2+o(1)}$ choices of u include $y^{1+o(1)} S$-units, spanning all S-units, for

- appropriate $n^{1 / 2+o(1)}$ choice for $\log y$,
- appropriate $n^{1 / 2+o(1)}$ choice for $\sum_{i} u_{i}^{2}$.

Total time $\exp \left(n^{1 / 2+o(1)}\right)$. [Extension NFS: $1 / 3+o(1)$?]

Automorphisms and subrings

Apply each σ_{c} to quickly amplify each u found into, typically, n independent S-units.
What if u is invariant under (say) two σ_{c} ? Great! Start with u from proper subrings. Makes $\#(R / u)$ much more likely to factor into small primes.
Examples of useful subrings of $R=\mathbf{Z}[x] /\left(x^{n}+1\right)$:

- $\mathbf{Z}\left[x^{2}\right] /\left(x^{n}+1\right)=\left\{u \in R: \sigma_{n+1}(u)=u\right\}$.
- $R^{+}=\left\{u \in R: \sigma_{-1}(u)=u\right\}$.

Also use subrings to speed up $\#(R / u)$ computation for any $u \in R: v=u \sigma_{n+1}(u), w=v \sigma_{n / 2+1}(v), \ldots$ $n^{1+o(1)}$ times faster than "fast" resultant methods.

More cyclotomic fun: Gauss sums

For each prime number $p \in 1+2 n \mathbf{Z}$, and each group morphism $\chi: \mathbf{F}_{p}^{*} \rightarrow \zeta_{2 n}{ }_{n}$, define

$$
\operatorname{Gauss}(\chi)=\sum_{a \in \mathbf{F}_{p}^{*}} \chi(a) \zeta_{p}^{a}
$$

Exercise: $\left|\operatorname{Gauss} \Sigma_{p}(\chi)\right|^{2}=p$ if $\chi \neq 1$.
So Gauss $\Sigma_{p}(\chi)$ is an S-unit for $S=\infty \cup p$.
e.g. $n=16, \zeta_{2 n}=\zeta_{32}, p=97 \in 1+2 n \mathbf{Z}$:

There is a morphism $\chi: \mathbf{F}_{97}^{*} \rightarrow \zeta_{32}^{Z}$ with $\chi(5)=\zeta_{32}$.
$\operatorname{Gauss}(\chi)=\zeta_{32}^{0} \zeta_{97}^{1}+\zeta_{32}^{1} \zeta_{97}^{5}+\zeta_{32}^{2} \zeta_{97}^{25}+\cdots$.
Gauss $\Sigma_{p}\left(\chi^{2}\right)=\zeta_{32}^{0} \zeta_{97}^{1}+\zeta_{32}^{2} \zeta_{97}^{5}+\zeta_{32}^{4} \zeta_{97}^{25}+\cdots$.

Many S-units for $S=\infty \cup p$

Magic fact: $\operatorname{Gauss} \Sigma_{p}(\chi)^{3} / \operatorname{Gauss}^{\Sigma_{p}}\left(\chi^{3}\right) \in \mathbf{Z}\left[\zeta_{2 n}\right]$.
Pull back via ι_{1} to an element of $R=\mathbf{Z}[x] /\left(x^{n}+1\right)$.
Factor element into prime ideals for, e.g., $n=16$: $P_{11} P_{13} P_{15} P_{-15} P_{-13} P_{-11} P_{-9}^{2} P_{-7}^{2} P_{-5}^{2} P_{-3}^{2} P_{-1}^{2}$ where $P_{ \pm 1}, P_{ \pm 3}, \ldots, P_{ \pm 15}$ are the prime ideals containing p.
Similarly Gauss $\Sigma_{p}(\chi)^{5} /$ Gauss $^{p}\left(\chi^{5}\right)$ etc. \Rightarrow More principal products of powers of $P_{ \pm 1}, P_{ \pm 3}, \ldots, P_{ \pm 15}$.
Λ is generated by exponent vectors for (1) these S-units and (2) $P_{c} P_{-c}$ (principal since $h^{+}=1$).
[Note to number theorists: labeling here is $P_{c}=\sigma_{c}^{-1}\left(P_{1}\right)$.]

Explaining the magic: Jacobi sums

Define $\operatorname{Jacobi} \Sigma_{p}\left(\chi_{1}, \chi_{2}\right)=\sum \chi_{1}(a) \chi_{2}(1-a)$.

$$
a \in \overline{\mathbf{F}_{p}^{*}-\{1\}}
$$

Exercise: If $\chi_{1} \chi_{2} \neq 1$ then $\operatorname{Jacobi} \Sigma_{p}\left(\chi_{1}, \chi_{2}\right)=$ $\operatorname{Gauss} \Sigma_{p}\left(\chi_{1}\right) \operatorname{Gauss} \Sigma_{p}\left(\chi_{2}\right) / \operatorname{Gauss}_{p}\left(\chi_{1} \chi_{2}\right)$.
So $\left|\operatorname{Jacobi} \Sigma_{p}\left(\chi_{1}, \chi_{2}\right)\right|^{2}=p$ if $1 \notin\left\{\chi_{1}, \chi_{2}, \chi_{1} \chi_{2}\right\}$.
e.g. $n=16, \zeta_{2 n}=\zeta_{32}, p=97, \chi(5)=\zeta_{32}$:

Jacobi $\Sigma_{p}(\chi, \chi)=\zeta_{32}^{1+20}+\zeta_{32}^{2+28}+\zeta_{32}^{3+66}+\cdots$,
Jacobi $\Sigma_{p}\left(\chi^{2}, \chi\right)=\zeta_{32}^{2+20}+\zeta_{32}^{4+28}+\zeta_{32}^{6+66}+\cdots$
since $1-5^{1}=5^{20}, 1-5^{2}=5^{28}$, etc. in \mathbf{F}_{97}.

Λ^{\prime}, improving Λ by a factor 2

Jacobi $\Sigma_{p}\left(\chi^{i}, \chi\right)$ for $i=1, i=2$, etc.:
$\operatorname{Gauss} \Sigma_{p}(\chi)^{2} / \operatorname{Gauss} \Sigma_{p}\left(\chi^{2}\right)$,
Gauss $\Sigma_{p}\left(\chi^{2}\right) \operatorname{Gauss} \Sigma_{p}(\chi) / \operatorname{Gauss} \Sigma_{p}\left(\chi^{3}\right)$,
$\operatorname{Gauss} \Sigma_{p}\left(\chi^{3}\right) \operatorname{Gauss} \Sigma_{p}(\chi) / \operatorname{Gauss} \Sigma_{p}\left(\chi^{4}\right)$,
Gauss $\Sigma_{p}\left(\chi^{4}\right) \operatorname{Gauss} \Sigma_{p}(\chi) / \operatorname{Gauss} \Sigma_{p}\left(\chi^{5}\right)$, etc.
Multiply:
Gauss $\Sigma_{p}(\chi)^{2} / \operatorname{Gauss} \Sigma_{p}\left(\chi^{2}\right)$ (wasn't used in Λ), Gauss $\Sigma_{p}(\chi)^{3} / \operatorname{Gauss} \Sigma_{p}\left(\chi^{3}\right)$ (was used in Λ), Gauss $\Sigma_{p}(\chi)^{4} / \operatorname{Gauss} \Sigma_{p}\left(\chi^{4}\right)$ (wasn't used in Λ), Gauss $\Sigma_{p}(\chi)^{5} / \operatorname{Gauss} \Sigma_{p}\left(\chi^{5}\right)$ (was used in Λ), etc.
Define Λ^{\prime} using all Jacobi sums: all base-field combinations of Gauss sums. $\#\left(\mathbf{Z}^{n} / \Lambda\right)=2 \#\left(\mathbf{Z}^{n} / \Lambda^{\prime}\right)$.

$\Lambda^{\prime \prime}$, improving Λ by a factor $2^{n / 2}$

Fact: More products $\prod_{c} P_{c}^{e_{c}}$ are principal if $n \geq 4$. Typical case: P_{c} generates the "class group"; then Λ^{\prime} has index $2^{n / 2-1}$ inside lattice of "class relations". Class group $=\{$ ideals $\neq 0\} /\{$ principal ideals $\neq 0\}$. Start from all known S-units: group generated by cyclotomic units, Jacobi sums, generators of $P_{c} P_{-c}$. Successively extend set by adjoining square roots. How to find square products of powers of current generators? Map the group in many ways to \mathbf{F}_{2} : use known exponents of P_{c}; use random quadratic characters (squareness mod random prime ideals Q). Then fast linear algebra over \mathbf{F}_{2} finds squares.

Example: $n=8$

Take $p=17, \chi(3)=\zeta_{16}, u_{c}=1+x^{c}+x^{-c}$.
Find generator $g_{7}=x^{6}-x^{5}+x^{3}-x^{2}-1$ of $P_{7} P_{-7}$.
Compute $\Sigma_{i}=\operatorname{Jacobi} \Sigma_{p}\left(\chi^{i}, \chi\right)$ pulled back to R.
S-unit $\Sigma_{1}=2 x^{7}+2 x^{6}-x^{4}+2 x^{2}-2 x$
$\Sigma_{2}=x^{7}-2 x^{6}-3 x^{5}+x^{4}-x^{3}-x$

$$
P_{7} P_{-5} P_{-3} P_{-1}
$$ Σ_{2} / Σ_{1}

$$
P_{7} / P_{-7}
$$

g_{7}

$$
P_{7} P_{-7}
$$

$g_{7} \Sigma_{2} / \Sigma_{1}$
$\left(u_{5} g_{7} \Sigma_{2} / \Sigma_{1}\right)^{1 / 2}=x^{7}-x^{4}+x^{3}$ ideal factorization

$$
P_{-7} P_{-5} P_{-3} P_{-1}
$$

P_{7}^{2}
P_{7}
Scaling up to $n=256$: All sqrts in 10 minutes.

End of the story for $n=4, n=8, n=16$

For $n=16: \#\left(\mathbf{Z}^{16} / \Lambda\right)=256$. "Lower bound" $2 \Rightarrow$ expand $\#(R / I)^{1 / n^{2}}$ by $p^{2 / n^{2}}=97^{2 / n^{2}} \approx 1.03639$, on top of ≈ 1.01861 for unit-lattice model.

End of the story for $n=4, n=8, n=16$

For $n=16: \#\left(\mathbf{Z}^{16} / \Lambda\right)=256$. "Lower bound" $2 \Rightarrow$ expand $\#(R / I)^{1 / n^{2}}$ by $p^{2 / n^{2}}=97^{2 / n^{2}} \approx 1.03639$, on top of ≈ 1.01861 for unit-lattice model.
Instead construct more S-units: $\#\left(\mathbf{Z}^{16} / \Lambda^{\prime \prime}\right)=1$. The input ideal was principal in the first place! Find generator of I. Reduce mod units.
"Tweak": Multiply by $x+1$, reduce, repeat for $I,(x+1) I,(x+1)^{2} I,(x+1)^{3} I,(x+1)^{4} I, \ldots$
Often $(x+1)^{e} g$ is closer to unit lattice than g. Take smallest generator found across all $(x+1)^{e} /$. When to stop? Compare $2^{e} \#(R / I)$ to best g.
[Faster: reduce in \log space mod units and $x+1$.]

Recap: Constructing small S-units

Impact for larger values of n

$$
\begin{aligned}
& \text { For } n=32: \#\left(\mathbf{Z}^{32} / \Lambda\right)=1114112 . \\
& \text { "Lower bound" } 5 \Rightarrow \text { expand by } \approx 1.02603, \\
& \text { on top of } \approx 1.01570 \text { for unit-lattice model. }
\end{aligned}
$$

Impact for larger values of n

For $n=32: \#\left(\mathbf{Z}^{32} / \Lambda\right)=1114112$.
"Lower bound" $5 \Rightarrow$ expand by ≈ 1.02603, on top of ≈ 1.01570 for unit-lattice model.
Instead construct more S-units: $\#\left(\mathbf{Z}^{32} / \Lambda^{\prime \prime}\right)=17$.
"Class number" $=\#($ class group $)=17$.
Chance $1 / 17$: I principal. Expansion factor 1.
Chance 16/17: I non-principal. IP principal for some prime ideal P with $\#(R / P)=193$. Expansion factor $193^{1 / n^{2}} \approx 1.00515$.
[Note to number theorists: upcoming labels use $P_{p, c}=\sigma_{c}\left(P_{p, 1}\right)$, with $P_{p, 1}=p R+(x+a) R$ for smallest a in $\{0,1, \ldots, p-1\}$.]

Broader $n=32$ search example, part 1

 32 prime ideals $P_{193, c}$ have $\#\left(R / P_{193, c}\right)=193$. 32 prime ideals $P_{257, c}$ have $\#\left(R / P_{257, c}\right)=257$. 32 prime ideals $P_{449, c}$ have $\#\left(R / P_{449, c}\right)=449$. Note $449^{1 / n^{2}} \approx 1.00598$ vs. $193^{1 / n^{2}} \approx 1.00515$.Precompute S-units, including generators $\gamma_{193}, \gamma_{257}, \gamma_{449}, \gamma_{577}, \gamma_{641}, \gamma_{769}, \ldots$ of $P_{193,31} P_{193,1}^{-1}, P_{257,-19} P_{193,1}^{-1}, P_{449,-19} P_{193,1}^{-1}$, $P_{577,15} P_{193,1}^{-1}, P_{641,19} P_{193,1}^{-1}, P_{769,5} P_{193,1}^{-1}, \ldots$.

Broader $n=32$ search example, part 1

 32 prime ideals $P_{193, c}$ have $\#\left(R / P_{193, c}\right)=193$. 32 prime ideals $P_{257, c}$ have $\#\left(R / P_{257, c}\right)=257$. 32 prime ideals $P_{449, c}$ have $\#\left(R / P_{449, c}\right)=449$. Note $449^{1 / n^{2}} \approx 1.00598$ vs. $193^{1 / n^{2}} \approx 1.00515$.Precompute S-units, including generators $\gamma_{193}, \gamma_{257}, \gamma_{449}, \gamma_{577}, \gamma_{641}, \gamma_{769}, \ldots$ of $P_{193,31} P_{193,1}^{-1}, P_{257,-19} P_{193,1}^{-1}, P_{449,-19} P_{193,1}^{-1}$, $P_{577,15} P_{193,1}^{-1}, P_{641,19} P_{193,1}^{-1}, P_{769,5} P_{193,1}^{-1}, \ldots$
Random example of a target: $I=$ $3141592653589793238462643383280129 R+$ $(x+13443234652173688219737012017423) R$. Initial S-generator computation: $g R=I P_{193,13}$.

Broader $n=32$ search example, part 2

Multiply by precomputed S-units for more S-gens of I. (Don't repeat the quantum computations!) $g R=I P_{193,13} . \quad$ Attack: 1.02549; tweak: 1.01901.
$g \sigma_{13}\left(\gamma_{193}\right) R=I P_{193,19}$.
$g \sigma_{13}\left(\gamma_{257}\right) R=I P_{257,9} . \quad 1.02179 ; 1.02103$. $g \sigma_{13}\left(\gamma_{193}\right) \sigma_{19}\left(\gamma_{257}\right) R=I P_{257,23} . \quad 1.02517 ; 1.01588$.
$g \sigma_{13}\left(\gamma_{449}\right) R=I P_{449,9}$. $g \sigma_{13}\left(\gamma_{193}\right) \sigma_{19}\left(\gamma_{449}\right) R=I P_{449,23} . \quad 1.02584 ; 1.01830$.
$g \sigma_{13}\left(\gamma_{577}\right) R=I P_{577,3} . \quad 1.02634 ; 1.02456$.
$g \sigma_{13}\left(\gamma_{193}\right) \sigma_{19}\left(\gamma_{577}\right) R=I P_{577,29 .}$ 1.02682; 1.02224.
$g \sigma_{13}\left(\gamma_{641}\right) R=I P_{641,-9} \quad 1.01810 ; 1.01810$.
$g \sigma_{13}\left(\gamma_{193}\right) \sigma_{19}\left(\gamma_{641}\right) R=I P_{641,-23} .1 .00990 ; 1.00990$.
Daniel J. Bernstein S-unit attacks

End of the story for $n=32$

Geometric average of $\eta^{1 / n}$ over 10000 experiments:

n	Attack10	Attack12	Attack14	Shortest
32	1.01660	1.01622	1.01599	1.01576

"Attack10": Tweaked unit attack starting from 12 gens of ideals $I P_{p, c}$ with $p<2^{10}$.
"Attack12": Tweaked unit attack starting from same I pool, 32 gens of ideals $I P_{p, c}$ with $p<2^{12}$.
"Attack14": Tweaked unit attack starting from same I pool, 124 gens of ideals $I P_{p, c}$ with $p<2^{14}$.
(If I is principal, take gen of I. Could also try $I J$.)

Generalizing to any n

Find S-unit lattice: generators of $\prod_{P \in S} P^{e_{P}}$. Typically see small $P_{\ell, 1} \in S$ generating class group; for each $Q \in S$, find generator of some $Q \prod_{c} P_{\ell, c}^{e_{c}}$.
Find S-generator of $I: g R=I \prod_{P \in S} P^{\nu P}$.
No more quantum steps required after this.
Try $J=R, J=Q, J=Q Q^{\prime}$, etc. For each J, immediately see generator of some $I J \prod_{c} P_{\ell, c}^{e_{c}}$. Fast reduction $\bmod \Lambda^{\prime \prime} \Rightarrow$ gen of small multiple of I. (For $n=32$, jumped to J with $I J$ principal.)
Fast reduction mod unit lattice and $x+1 \Rightarrow$ short.
Much shorter vectors than pure unit attack.

Using more primes for $n=64$

$\#\left(\mathbf{Z}^{64} / \Lambda^{\prime \prime}\right)=17 \cdot 21121=359057$.
Again precompute S-units.
Given I, compute S-generator: $g R=I \prod_{c} P_{257, c}^{v_{c}}$. Basic attack: Reduce exponent vector mod $\Lambda^{\prime \prime}$, finding generator of small $/ \prod_{c} P_{257, c}^{v_{c}-e_{c}}$.
"Small": 1000 experiments in $\sum_{c}\left|v_{c}-e_{c}\right|$ model \Rightarrow $25.2 \% 5,64.8 \% 4,9.6 \% 3,0.3 \% 2,0.1 \% 1$. $257^{4 / n^{2}} \approx 1.00543 ; 257^{1 / n^{2}} \approx 1.00136$.
Further options: $I \prod_{c} P_{641, c}^{v_{c}}$. Many more options: $I P_{641, b} \prod_{c} P_{257, c}^{\nu_{c}} ; I P_{769, a} P_{641, b} \prod_{c} P_{257, c}^{\nu_{c}} ;$ etc. Paying 2 primes gains many tries at closeness.

A meet-in-the-middle search for $n=64$

Efficiently index each ideal class by $e \in \mathbf{Z} / 359057$: I has class $e \Leftrightarrow I P_{257,1}^{-e}$ principal.
σ_{-1}, σ_{3} act as mults by $-1,29301$ on $\mathbf{Z} / 359057$.
Precompute classes of $P_{257,1}, P_{641,1}, P_{769,1}, P_{1153,1}$
(via small S-units): 1, 25489, 99282, 201437.
Start with S-generator of $I \Rightarrow$ class of I.
Tabulate 64^{2} classes of $I P_{1153, a} P_{769, b}$.
Tabulate 64^{2} classes of $P_{641, c}^{-1} P_{257, d}^{-1}$.
Rough estimate: $64^{4} / 359057 \approx 47$ collisions.
Collision $\Rightarrow I P_{1153, a} P_{769, b} P_{641, c} P_{257, d}$ principal. Reconstruct $I P_{1153, a} P_{769, b} P_{641, c} P_{257, d}$ generator. Reduce each generator mod units, and apply tweak.

A numerical example for $n=64$

Took ideal $I \subset R$ containing the random prime 31415926535897932384626433832795028841971710593. Examples of short $g \in I$ found by meet-in-the-middle search of principal $I J_{1} J_{2}$ with odd $\#\left(R / J_{j}\right)<2^{22}$:
Ideal generated by g
$\eta^{1 / n}$

$(1+x)^{8} I P_{641, \ldots} P_{769, \ldots} P_{78977, \ldots}$	1.01399
$(1+x)^{5} I P_{398977, \ldots}$	1.01389
$I P_{641, \ldots} P_{1340033, \ldots}$	1.01385
$(1+x)^{4} / P_{257, \ldots}$	1.01350
$(1+x)^{3} I P_{35969, \ldots}, \ldots P_{2350081, \ldots}$	1.01288

For comparison, shortest nonzero vector in I :
$(1+x) I P_{6525293171851009, \ldots}$
1.01243

Daniel J. Bernstein

Conjectured scalability: $\exp \left(n^{1 / 2+o(1)}\right)$

Simple algorithm variant, skipping many speedups:
Take traditional $\log y \in n^{1 / 2+o(1)}$.
Take $S=\infty \cup\{P: \#(R / P) \leq y\}$.
Precompute $\left\{S\right.$-unit $\left.u \in R: \sum_{i} u_{i}^{2} \leq n^{1 / 2+o(1)}\right\}$.
Compute S-generator g of I.
Replace g with $g u / v$ having log vector closest to I; repeat until stable \Rightarrow small S-generator of I. Multiply by $P_{c} P_{-c}$ gens \Rightarrow short element of I. Repeat $y^{O(1)}$ times, avoiding cycles; take shortest. Heuristics $\Rightarrow \eta \leq n^{1 / 2+o(1)}$, time $\exp \left(n^{1 / 2+o(1)}\right)$.
"Vector within ϵ of shortest in subexponential time."

