S-unit attacks

Daniel J. Bernstein

University of Illinois at Chicago; Ruhr University Bochum

Includes new joint work with Kirsten Eisenträger, Tanja Lange, Karl Rubin, Alice Silverberg, and Christine van Vredendaal. Builds upon vast previous literature; see upcoming paper for credits. Algebraic geometry: the line over C $f = x^4 + 6x^3 + 5x^2 = (x+1)^1(x+5)^1x^2 \in \mathbf{C}[x]$: $f(10) = f \mod x - 10 = 16500$ $\operatorname{ord}_{10} f = 0$ $f(-1) = f \mod x + 1 = 0$ $ord_{-1} f = 1$ $f(-5) = f \mod x + 5 = 0$ $ord_{-5} f = 1$ $f(0) = f \mod x - 0 = 0$ $\operatorname{ord}_0 f = 2$... and consider $\mathbf{C}[1/x] \subset \mathbf{C}(x)$: $\operatorname{ord}_{\infty} f = -4$

"ord, f" = x - r exponent in f. "ord_{∞}" = -deg. This f is an "S-unit" if { ∞ , 0, -1, -5} $\subseteq S$.

Fundamental thm of algebra: $\sum_{\rho \in \mathbf{C} \cup \{\infty\}} \operatorname{ord}_{\rho} f = 0$. f is almost determined by the vector $\rho \mapsto \operatorname{ord}_{\rho} f$.

Daniel J. Bernstein

Intermediate: the line over \mathbf{F}_7 $f = x^4 + 3x^3 + x^2 + 5x + 2 = (x-2)^2(x^2-3)^1 \in \mathbf{F}_7[x]$:

$$\begin{array}{ll} f \ \mathrm{mod} \ x - 0 = 2 & \mathrm{ord}_{x} \ f = 0 & |f|_{x} = 1 \\ f \ \mathrm{mod} \ x - 2 = 0 & \mathrm{ord}_{x-2} \ f = 2 & |f|_{x-2} = 1/7^{2} \\ f \ \mathrm{mod} \ x^{2} + 1 \neq 0 & \mathrm{ord}_{x^{2}+1} \ f = 0 & |f|_{x^{2}+1} = 1 \\ f \ \mathrm{mod} \ x^{2} - 3 = 0 & \mathrm{ord}_{x^{2}-3} \ f = 1 & |f|_{x^{2}-3} = 1/7^{2} \\ & \mathrm{ord}_{\infty} \ f = -4 & |f|_{\infty} = 7^{4} \end{array}$$

 $|f|_{P} = 1/\#(\mathbf{F}_{7}[x]/P)^{\operatorname{ord}_{P}f} \text{ for "finite place" } P.$ "Product formula": $\prod_{\rho} |f|_{\rho} = 1$; $\sum_{\rho} \log |f|_{\rho} = 0$; here ρ ranges over {monic irreds in $\mathbf{F}_{7}[x]$ } $\cup \{\infty\}$. f is almost determined by the vector $\rho \mapsto \operatorname{ord}_{\rho} f$. Daniel J. Bernstein S-unit attacks Number theory: Z $f = -50421 = -3^{1}7^{5} \in Z$:

- $f \mod 2 = 1 \quad \operatorname{ord}_2 f = 0 \quad |f|_2 = 1$
- $f \mod 3 = 0$ ord₃ f = 1 $|f|_3 = 1/3^1$
- $f \mod 5 = 4$ ord₅ f = 0 $|f|_5 = 1$
- $f \mod 7 = 0$ ord₇ f = 5 $|f|_7 = 1/7^5$ $|f|_{\infty} = 50421$

$$\begin{split} |f|_{P} &= 1/\# (\mathbf{Z}/P)^{\operatorname{ord}_{P}f} \text{ for "finite place" } P. \\ \text{"Product formula": } \prod_{\rho} |f|_{\rho} &= 1; \sum_{\rho} \log |f|_{\rho} = 0; \\ \text{here } \rho \text{ ranges over } \{ \text{prime numbers} \} \cup \{\infty\}. \\ f \text{ is almost determined by the vector } \rho \mapsto \operatorname{ord}_{\rho} f. \\ \text{Daniel J. Bernstein} & S-\text{unit attacks} \end{split}$$

Lattice-based cryptography

2010 LPR proved "very strong hardness guarantees":

Assume "worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms"

"the ring-LWE distribution is pseudorandom"

security for a "truly practical lattice-based public-key cryptosystem"

Concrete parameters in cryptosystems are chosen assuming much more than polynomial hardness.

Daniel J. Bernstein

What's the supposedly hard problem?

Parameters: Define $R = \mathbb{Z}[x]/(x^n + 1)$ for some $n \in \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... \}$. [Can generalize, but this talk focuses on these rings R.]

Problem: Given a nonzero ideal $I \subseteq R$, find a "short" nonzero element $g \in I$.

"Given" *I*: given $v_1, v_2, \ldots, v_n \in R$ such that $I = \mathbb{Z}v_1 + \mathbb{Z}v_2 + \cdots + \mathbb{Z}v_n$.

e.g.
$$v_1 = x^3 + 817 \longrightarrow g = 2v_1 + 3v_2 - 5v_3 - 2v_4$$

 $v_2 = x^2 + 540 = 2x^3 + 3x^2 - 5x + 1$
 $v_3 = x + 247$
 $v_4 = 1009$

Daniel J. Bernstein

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

817	0	0	1
540	0	1	0
247	1	0	0
1009	0	0	0

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

817	0	0	1
540	0	1	0
247	1	0	0
192	0	0	-1

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

277	0	-1	1
540	0	1	0
247	1	0	0
192	0	0	-1

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

277	0	-1	1
263	0	2	-1
247	1	0	0
192	0	0	-1

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
263	0	2	-1
247	1	0	0
192	0	0	-1

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

14	0	-3	2
16	-1	2	-1
247	1	0	0
192	0	0	-1

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

Naive lattice-basis reduction: Reduce largest row by subtracting closest multiple of another row.

3	2	-1	5
2	-1	5	-3
-5	3	2	-1
-1	5	-3	-2

But this doesn't reach "short" when *n* is large. [This difficulty is only for number theory, not geometry. Analogous short-vector problem for sublattice of $\mathbf{F}_7[y]^n$: naive algorithm gives shortest basis in poly time.]

Daniel J. Bernstein

Big picture: screenshot from 2019 DPW

Daniel J. Bernstein

How well the algorithms do

Given nonzero ideal $I \subseteq R = \mathbf{Z}[x]/(x^n + 1)$, algorithm finds nonzero $g = g_0 + \cdots + g_{n-1}x^{n-1} \in I$ with $(g_0^2 + \cdots + g_{n-1}^2)^{1/2} = \eta \cdot (\#(R/I))^{1/n}$.

Algorithms using only additive structure of *I*:

- LLL (fast): $\eta^{1/n} \approx 1.022.$
- BKZ-80 (not hard): $\eta^{1/n} \approx 1.010.$
- BKZ-160 (public attack):
- BKZ-300 (large-scale attack): $\eta^{1/n} pprox 1.005.$

Algorithms also using multiplicative structure of *R*: blue/red curves; $\eta \in 2^{n^{1/2+o(1)}}$ but worse η than LLL below "rank 1000". Thin curves: "lower bound".

Daniel J. Bernstein

S-unit attacks

 $\eta^{1/n} \approx 1.007.$

Major research directions

Many papers analyzing+optimizing BKZ- β : e.g.,

- Last century: $\exp(\Theta(\beta \log \beta))$ ops.
- 2001: $\exp((0.415...+o(1))\beta)$ ops.
- 2015: $\exp((0.292...+o(1))\beta)$ ops.
- 2015: $\exp((0.265...+o(1))\beta)$ quantum ops.
- 2021: $\exp((0.257...+o(1))\beta)$ quantum ops.
- Many more speedups hidden inside the o(1).

This talk focuses on multiplicative attacks:

- Part 2 of talk: How multiplicative attacks work.
- Part 3 of talk: Better multiplicative attacks.

Daniel J. Bernstein

Part 2 How multiplicative attacks work

Infinite places of $K = \mathbf{Q}[x]/(x^n + 1)$ Define $\zeta_m = \exp(2\pi i/m) \in \mathbf{C}$ for nonzero $m \in \mathbf{Z}$. For any $c \in 1 + 2\mathbf{Z}$ have $(\zeta_{2n}^c)^n + 1 = 0$ so there is a unique ring morphism $\iota_c : K \to \mathbf{C}$ taking x to ζ_{2n}^c . All $x^n + 1$ roots in **C**: $\zeta_{2n}^1, \ldots, \zeta_{2n}^{n-1}, \zeta_{2n}^{-(n-1)}, \ldots, \zeta_{2n}^{-1}$ All $\iota: K \to \mathbf{C}: \iota_1, \ldots, \iota_{n-1}, \iota_{-(n-1)}, \ldots, \iota_{-1}.$ Define $|g|_{c} = |\iota_{c}(g)|^{2} = \iota_{c}(g)\iota_{-c}(g)$. The maps $g \mapsto |g|_c$ are the **infinite places** of *K*. All places: $g \mapsto |g|_1, g \mapsto |g|_3, \dots, g \mapsto |g|_{n-1}$. Same as: $g \mapsto |g|_{-1}, g \mapsto |g|_{-3}, \dots, g \mapsto |g|_{-n-1}$. $\sum |g_0 + \cdots + g_{n-1}x^{n-1}|_c = \frac{n}{2}(g_0^2 + \cdots + g_{n-1}^2).$ $c \in \{1, 3, ..., n-1\}$

Daniel J. Bernstein

Finite places of $K = \mathbf{Q}[x]/(x^n + 1)$

Nonzero ideals of R factor into prime ideals.

For each nonzero prime ideal P of R, define $|g|_P = \#(R/P)^{-\operatorname{ord}_P g}$. "Norm of P" is #(R/P). The maps $g \mapsto |g|_P$ are the **finite places** of K.

For each prime number p: Factor $x^n + 1$ in $\mathbf{F}_p[x]$ to see the prime ideals of R containing p.

e.g. p = 2: Prime ideal 2R + (x + 1)R = (x + 1)R.

e.g. "unramified degree-1 primes": $p \in 1 + 2n\mathbb{Z} \Rightarrow$ exactly *n* nth roots r_1, \ldots, r_n of -1 in \mathbb{F}_p . $x^n + 1 = (x - r_1)(x - r_2) \ldots (x - r_n)$ in $\mathbb{F}_p[x]$. Prime ideals $pR + (x - r_1)R, \ldots, pR + (x - r_n)R$.

Daniel J. Bernstein
Example:
$$n = 4$$
; $R = \mathbf{Z}[x]/(x^4 + 1)$
 $g = g_0 + g_1 x + g_2 x^2 + g_3 x^3$, $\zeta_8 = \exp(2\pi i/8)$:
 $\iota_{-1}(g) = g_0 + g_1 \zeta_8^{-1} + g_2 \zeta_8^{-2} + g_3 \zeta_8^{-3}$;
 $\iota_1(g) = g_0 + g_1 \zeta_8 + g_2 \zeta_8^2 + g_3 \zeta_8^3$; $|g|_1 = |\iota_1(g)|^2$.
 $\iota_{-3}(g) = g_0 + g_1 \zeta_8^{-3} + g_2 \zeta_8^{-6} + g_3 \zeta_8^{-9}$;
 $\iota_3(g) = g_0 + g_1 \zeta_8^3 + g_2 \zeta_8^6 + g_3 \zeta_8^9$; $|g|_3 = |\iota_3(g)|^2$.
 $P_{17,2} = 17R + (x - 2)R$: $|g|_{17,2} = 17^{-\operatorname{ord}_{P_{17,8}g}}$.
 $P_{17,8} = 17R + (x - 8)R$: $|g|_{17,8} = 17^{-\operatorname{ord}_{P_{17,8}g}}$.
 $P_{17,-8} = 17R + (x + 8)R$: $|g|_{17,-8} = 17^{-\operatorname{ord}_{P_{17,-8}g}}$.
 $P_{17,-2} = 17R + (x + 2)R$: $|g|_{17,-2} = 17^{-\operatorname{ord}_{P_{17,-8}g}}$.
 $P_{41,3} = 41R + (x - 3)R$: $|g|_{41,3} = 41^{-\operatorname{ord}_{P_{41,3}g}}$.
etc.

Daniel J. Bernstein

S-units of $K = \mathbf{Q}[x]/(x^n + 1)$

Assume $\infty \subseteq S \subseteq \{ \text{places of } K \}$. Useful special case: *S* has all primes \leq something. [Warning: Often people rename $S - \infty$ as *S*.]

 $g \in \mathcal{K}^* \text{ is an } \boldsymbol{S}\text{-unit}$ $\Leftrightarrow gR = \prod_{P \in S} P^{e_P} \text{ for some } e_P$ $\Leftrightarrow |g|_{\rho} = 1 \text{ for all } \rho \in \{\text{places of } \mathcal{K}\} - S$ $\Leftrightarrow \text{ the vector } \rho \mapsto \log |g|_{\rho} \text{ is 0 outside } S.$

S-unit lattice: set of such vectors $\rho \mapsto \log |g|_{\rho}$.

e.g. Temporarily allowing n = 1, $K = \mathbf{Q}$: { $\{\infty, 2, 3\}$ -units in \mathbf{Q} } = $\pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$. ("3-smooth".) Lattice: (log 2, -log 2, 0) \mathbf{Z} + (log 3, 0, -log 3) \mathbf{Z} .

Daniel J. Bernstein

S-unit attacks

- 0. Choose a finite set S of places.
- 1. Input a nonzero ideal I of R.
- 2. Find an S-generator of I: some g with $gR = I \prod_{P \in S} P^{e_P}$. This has a poly-time quantum algorithm, and surprisingly fast non-quantum algorithms.
- 3. Find an S-unit u "close to g/I". This is an S-unit-lattice close-vector problem.
- 4. Output g/u.

Critical for Step 3 speed: constructing short vectors in the S-unit lattice. We'll see several constructions!

Special case: unit attacks

- Define S = ∞. {∞-units of K} = {units of R} = R*.
 Input a nonzero ideal I of R.
 Find a generator of I: some g with gR = I.
- 3. Find a unit u "close to g".
- 4. Output g/u.

Questions coming up later in this talk:

- How small is g/u compared to *I*?
- What happens if *I* isn't principal?
- Is this special case as good as the general case?

"Cyclotomic units" in $R = \mathbf{Z}[x]/(x^n + 1)$

$$\pm 1, \pm x, \pm x^2, \dots, \pm x^{n-1} = \mp 1/x$$
 are units.
 $(1 - x^3)/(1 - x) = 1 + x + x^2 \in R$. Unit since
 $(1 - x)/(1 - x^3) = (1 - x^{2n^2+1})/(1 - x^3) \in R$.
For $c \in 1 + 2\mathbb{Z}$: R has automorphism $\sigma_c : x \mapsto x^c$.
 $\sigma_c(1 + x + x^2) = 1 + x^c + x^{2c}$ is a unit.
Useful to symmetrize: define $u_c = 1 + x^c + x^{-c}$.
 $x^{\mathbb{Z}} \prod_c u_c^{\mathbb{Z}}$ has finite index in R^* . Index is called h^+ .
Assume $h^+ = 1$. Proven, assuming GRH, for
 $n \in \{2, 4, 8, \dots, 256\}$; heuristics say always true.

[Note to number theorists: This talk is only for powers of 2.]

Daniel J. Bernstein

Unit lattice for n = 8

$$\begin{aligned} |u_1|_1 &= |1 + \zeta_{16} + \zeta_{16}^{-1}|^2 \approx \exp 2.093. \\ |u_1|_3 &= |1 + \zeta_{16}^3 + \zeta_{16}^{-3}|^2 \approx \exp 1.137. \\ |u_1|_5 &= |1 + \zeta_{16}^5 + \zeta_{16}^{-5}|^2 \approx \exp -2.899. \\ |u_1|_7 &= |1 + \zeta_{16}^7 + \zeta_{16}^{-7}|^2 \approx \exp -0.330. \end{aligned}$$

Define $\log_{\infty} f = (\log |f|_1, \log |f|_3, \log |f|_5, \log |f|_7). \\ \log_{\infty} u_1 &\approx (2.093, 1.137, -2.899, -0.330). \\ \log_{\infty} u_3 &\approx (1.137, -0.330, 2.093, -2.899). \\ \log_{\infty} u_5 &\approx (-2.899, 2.093, -0.330, 1.137). \\ \log_{\infty} u_7 &\approx (-0.330, -2.899, 1.137, 2.093). \end{aligned}$
 $\log_{\infty} R^*$ is lattice of dim $n/2 - 1 = 3$ in hyperplane

 $\log_{\infty} R^*$ is lattice of dim n/2 - 1 = 3 in hyperplane $\{(\ell_1, \ell_3, \ell_5, \ell_7) \in \mathbf{R}^4 : \ell_1 + \ell_3 + \ell_5 + \ell_7 = 0\}.$ Short lattice basis: $\log_{\infty} u_1$, $\log_{\infty} u_3$, $\log_{\infty} u_5$.

Daniel J. Bernstein

Reducing mod units

Start with $g = g_0 + g_1 x + \dots + g_{n-1} x^{n-1}$. Compute $\log_{\infty} g = (\log |g|_1, \log |g|_3, \dots, \log |g|_{n-1})$.

Try to reduce $\log_{\infty} g$ modulo unit lattice: adjust $\log_{\infty} g$ by subtracting closest vector from some precomputed combinations of basis vectors; repeat several times; keep smallest $g_0^2 + \cdots + g_{n-1}^2$.

Replacing g with gu replaces $|g|_c$ with $|g|_c|u|_c$. Easy to track $\sum_c |g|_c = (n/2)(g_0^2 + \cdots + g_{n-1}^2)$.

Note that unit hyperplane is orthogonal to norm: $\#(R/I) = \#(R/g) = \prod_c |g|_c = \exp \sum_c \log |g|_c.$

Daniel J. Bernstein

Experiments for small n

Geometric average of $\eta^{1/n}$ over 100000 experiments:

п	Model	Attack	Tweak	Shortest
4	1.01516	1.01518	1.01518	1.01518
8	1.01968	1.01972	1.01696	1.01696
16	1.01861	1.01860	1.01628	1.01627

"Shortest": Take *I*, find a shortest nonzero vector *g*, output $\eta = (g_0^2 + \cdots + g_{n-1}^2)^{1/2} / \# (R/I)^{1/n}$. [Assuming BKZ-*n* software produces shortest nonzero vector.]

"Attack": Same I, find a generator, reduce mod unit lattice $\rightarrow g$, output $(g_0^2 + \cdots + g_{n-1}^2)^{1/2} / \# (R/I)^{1/n}$.

"Model": Take a hyperplane point, reduce mod unit lattice $\rightarrow \log_{\infty} g$, output $(g_0^2 + \cdots + g_{n-1}^2)^{1/2}$. Daniel J. Bernstein S-unit attacks

Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for 32, 64, 128, 256, 512, 1024: 1.01570, 1.01332, 1.01118, 1.00950, 1.00804, (10000:) 1.00667.

Why did 2019 DPW say >1.022 for *n* below 1000?

Wasn't this attack supposed to be useless?

Geometric average of 100000 runs of model for 32, 64, 128, 256, 512, 1024: 1.01570, 1.01332, 1.01118, 1.00950, 1.00804, (10000:) 1.00667.

Why did 2019 DPW say >1.022 for *n* below 1000?

Aha: 2019 DPW applies unit attack to principal IJ.

Multiplying J into I

- \Rightarrow multiplying #(R/J) into #(R/I)
- \Rightarrow multiplying $\#(R/J)^{1/n}$ into $\#(R/I)^{1/n}$
- \Rightarrow expanding η by $\# (R/J)^{1/n}$
- \Rightarrow expanding $\eta^{1/n}$ by $\#(R/J)^{1/n^2}$.

Daniel J. Bernstein

Finding a close principal multiple *IJ*

Prime $p \in 1+2n\mathbb{Z}$ is contained in *n* prime ideals P_c . "Augmented Stickelberger": known rank-*n* lattice $\Lambda \subseteq \mathbb{Z}^n$ with $e \in \Lambda \Rightarrow \prod_c P_c^{e_c}$ principal; e.g., P_cP_{-c} .

Poly-time quantum algorithm + minor assumption \Rightarrow some vector v such that $I \prod_{c} P_{c}^{v_{c}}$ is principal.

Search some $e \in \Lambda$, trying to minimize $\sum_{c} |v_{c} - e_{c}|$. Use principal $P_{c}P_{-c}$ to force $e_{c} \leq v_{c}$. Define $J = \prod_{c} P_{c}^{v_{c}-e_{c}}$. Then *IJ* is principal. Replace *I* with *IJ*, and apply unit attack.

Contribution to $\eta^{1/n}$: $\#(R/J)^{1/n^2} = (p^{1/n^2})^{\sum_c |v_c - e_c|}$.

Daniel J. Bernstein

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c} |v_{c} e_{c}|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1/2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1/2}\eta$.
- Multiply by $n^{-1/2}$ to obtain η . Graph $\eta^{1/n}$.

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c} |v_{c} e_{c}|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1/2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1/2}\eta$.
- Multiply by $n^{-1/2}$ to obtain η . Graph $\eta^{1/n}$.
- Typo: Omit the "-" in the previous line.

Constructing the 2019 DPW graph

Reverse-engineered procedure to build the graph:

- Experiments for $\sum_{c} |v_{c} e_{c}|$ (for red curve; blue: limit search; thin: "lower bound").
- Experiments for reducing mod unit lattice.
- Insert $n^{1/2}$ factor because of notation choices.
- Combine appropriately to obtain $n^{1/2}\eta$.
- Multiply by $n^{-1/2}$ to obtain η . Graph $\eta^{1/n}$.

• Typo: Omit the "-" in the previous line. Big impact of typo: e.g., $n^{1/n} \approx 1.012$ for n = 512. Attack is much more effective than graph shows.

Part 3 Better multiplicative attacks

Prime factors of some random integers

 $2 \cdot 3 \cdot 59 \cdot 73 \cdot 14051 \cdot 57977 \cdot 1492315939$ $136652609 \cdot 229896280545203$ $2^2 \cdot 43973 \cdot 2825227 \cdot 63219409867$ $3 \cdot 7 \cdot 13 \cdot 115076653977648103973$ $2 \cdot 5 \cdot 41 \cdot 4259 \cdot 17991127274751277$ 11 · 17 · 167407 · 3365381 · 298195039 $2^3 \cdot 3^4 \cdot 29 \cdot 92401 \cdot 150959 \cdot 119850869$ 43 · 730602942695300753131 $2 \cdot 79 \cdot 379 \cdot 577 \cdot 5009 \cdot 382979 \cdot 473971$ $3 \cdot 5 \cdot 2094395102393195492309$ $2^2 \cdot 7 \cdot 337 \cdot 3329369069086258201$ 23 · 4363 · 14153 · 22120162700921

Daniel J. Bernstein

Traditional method to find S-units

Take random small element $\mu \in R$: e.g. $u = x^{31} - x^{41} + x^{59} + x^{26} - x^{53}$. 1. Does #(R/u) factor into primes $\leq y$? 2. Is *u* an *S*-unit for $S = \infty \cup \{P : \#(R/P) < y\}$? Small primes \Rightarrow fast non-quantum factorization. [Helpful speedups: $\#(R/P) \in 1 + 2n\mathbf{Z}$. Batch factorization.] Standard heuristics $\Rightarrow y^{2+o(1)}$ choices of u include $y^{1+o(1)}$ S-units, spanning all S-units, for • appropriate $n^{1/2+o(1)}$ choice for log y, • appropriate $n^{1/2+o(1)}$ choice for $\sum_i u_i^2$. Total time $\exp(n^{1/2+o(1)})$. [Extension NFS: 1/3 + o(1)?]

Daniel J. Bernstein

Automorphisms and subrings

Apply each σ_c to quickly amplify each u found into, typically, n independent *S*-units.

What if u is invariant under (say) two σ_c ? Great! Start with u from proper subrings. Makes #(R/u) much more likely to factor into small primes.

Examples of useful subrings of $R = \mathbf{Z}[x]/(x^n + 1)$:

•
$$\mathbf{Z}[x^2]/(x^n+1) = \{u \in R : \sigma_{n+1}(u) = u\}.$$

• $R^+ = \{ u \in R : \sigma_{-1}(u) = u \}.$

Also use subrings to speed up #(R/u) computation for any $u \in R$: $v = u\sigma_{n+1}(u)$, $w = v\sigma_{n/2+1}(v)$, ... $n^{1+o(1)}$ times faster than "fast" resultant methods.

Daniel J. Bernstein

More cyclotomic fun: Gauss sums

For each prime number $p \in 1 + 2n\mathbf{Z}$, and each group morphism $\chi : \mathbf{F}_p^* \to \zeta_{2n}^{\mathbf{Z}}$, define

$$\mathsf{Gauss}\Sigma_{
ho}(\chi) = \sum_{a\in \mathsf{F}_{
ho}^*}\chi(a)\zeta_{
ho}^a.$$

Exercise: $|Gauss\Sigma_{p}(\chi)|^{2} = p$ if $\chi \neq 1$. So $Gauss\Sigma_{p}(\chi)$ is an *S*-unit for $S = \infty \cup p$. e.g. n = 16, $\zeta_{2n} = \zeta_{32}$, $p = 97 \in 1 + 2n\mathbb{Z}$: There is a morphism $\chi : \mathbb{F}_{97}^{*} \to \zeta_{32}^{\mathbb{Z}}$ with $\chi(5) = \zeta_{32}$. $Gauss\Sigma_{p}(\chi) = \zeta_{32}^{0}\zeta_{97}^{1} + \zeta_{32}^{1}\zeta_{97}^{5} + \zeta_{32}^{2}\zeta_{97}^{25} + \cdots$. $Gauss\Sigma_{p}(\chi^{2}) = \zeta_{32}^{0}\zeta_{97}^{1} + \zeta_{32}^{2}\zeta_{97}^{5} + \zeta_{32}^{4}\zeta_{97}^{25} + \cdots$.

Daniel J. Bernstein

Many *S*-units for $S = \infty \cup p$

Magic fact: Gauss $\Sigma_p(\chi)^3/$ Gauss $\Sigma_p(\chi^3) \in \mathbb{Z}[\zeta_{2n}]$. Pull back via ι_1 to an element of $R = \mathbb{Z}[x]/(x^n+1)$.

Factor element into prime ideals for, e.g., n = 16: $P_{11}P_{13}P_{15}P_{-15}P_{-13}P_{-11}P_{-9}^2P_{-7}^2P_{-5}^2P_{-3}^2P_{-1}^2$ where $P_{\pm 1}, P_{\pm 3}, \ldots, P_{\pm 15}$ are the prime ideals containing p. Similarly Gauss $\Sigma_p(\chi)^5$ /Gauss $\Sigma_p(\chi^5)$ etc. \Rightarrow More principal products of powers of $P_{\pm 1}, P_{\pm 3}, \ldots, P_{\pm 15}$.

Λ is generated by exponent vectors for (1) these S-units and (2) $P_c P_{-c}$ (principal since $h^+ = 1$).

[Note to number theorists: labeling here is $P_c = \sigma_c^{-1}(P_1)$.]

Daniel J. Bernstein

Explaining the magic: Jacobi sums

Define Jacobi
$$\Sigma_p(\chi_1,\chi_2) = \sum_{a\in \mathbf{F}_p^*-\{1\}} \chi_1(a)\chi_2(1-a).$$

Exercise: If $\chi_1\chi_2 \neq 1$ then $\operatorname{Jacobi}\Sigma_p(\chi_1, \chi_2) = \operatorname{Gauss}\Sigma_p(\chi_1) \operatorname{Gauss}\Sigma_p(\chi_2)/\operatorname{Gauss}\Sigma_p(\chi_1\chi_2)$. So $|\operatorname{Jacobi}\Sigma_p(\chi_1, \chi_2)|^2 = p$ if $1 \notin \{\chi_1, \chi_2, \chi_1\chi_2\}$.

e.g. n = 16, $\zeta_{2n} = \zeta_{32}$, p = 97, $\chi(5) = \zeta_{32}$: Jacobi $\Sigma_p(\chi, \chi) = \zeta_{32}^{1+20} + \zeta_{32}^{2+28} + \zeta_{32}^{3+66} + \cdots$, Jacobi $\Sigma_p(\chi^2, \chi) = \zeta_{32}^{2+20} + \zeta_{32}^{4+28} + \zeta_{32}^{6+66} + \cdots$ since $1 - 5^1 = 5^{20}$, $1 - 5^2 = 5^{28}$, etc. in **F**₉₇.

Daniel J. Bernstein

Λ' , improving Λ by a factor 2

Jacobi
$$\Sigma_{\rho}(\chi^{i}, \chi)$$
 for $i = 1$, $i = 2$, etc.:
Gauss $\Sigma_{\rho}(\chi)^{2}/Gauss\Sigma_{\rho}(\chi^{2})$,
Gauss $\Sigma_{\rho}(\chi^{2})Gauss\Sigma_{\rho}(\chi)/Gauss\Sigma_{\rho}(\chi^{3})$,
Gauss $\Sigma_{\rho}(\chi^{3})Gauss\Sigma_{\rho}(\chi)/Gauss\Sigma_{\rho}(\chi^{4})$,
Gauss $\Sigma_{\rho}(\chi^{4})Gauss\Sigma_{\rho}(\chi)/Gauss\Sigma_{\rho}(\chi^{5})$, etc.

Multiply: Gauss $\Sigma_p(\chi)^2$ /Gauss $\Sigma_p(\chi^2)$ (wasn't used in Λ), Gauss $\Sigma_p(\chi)^3$ /Gauss $\Sigma_p(\chi^3)$ (was used in Λ), Gauss $\Sigma_p(\chi)^4$ /Gauss $\Sigma_p(\chi^4)$ (wasn't used in Λ), Gauss $\Sigma_p(\chi)^5$ /Gauss $\Sigma_p(\chi^5)$ (was used in Λ), etc. Define Λ' using *all* Jacobi sums: all base-field combinations of Gauss sums. $\#(\mathbf{Z}^n/\Lambda) = 2\#(\mathbf{Z}^n/\Lambda')$.

Daniel J. Bernstein

Λ'' , improving Λ by a factor $2^{n/2}$

Fact: More products $\prod_{c} P_{c}^{e_{c}}$ are principal if $n \geq 4$. Typical case: P_c generates the "class group"; then Λ' has index $2^{n/2-1}$ inside lattice of "class relations". Class group = {ideals \neq 0}/{principal ideals \neq 0}. Start from all known S-units: group generated by cyclotomic units, Jacobi sums, generators of $P_{c}P_{-c}$. Successively extend set by adjoining square roots. How to find square products of powers of current generators? Map the group in many ways to \mathbf{F}_2 : use known exponents of P_c ; use random quadratic characters (squareness mod random prime ideals Q). Then fast linear algebra over \mathbf{F}_2 finds squares.

Daniel J. Bernstein

Example: n = 8

Take p = 17, $\chi(3) = \zeta_{16}$, $u_c = 1 + x^c + x^{-c}$. Find generator $g_7 = x^6 - x^5 + x^3 - x^2 - 1$ of $P_7 P_{-7}$. Compute $\Sigma_i = \text{Jacobi}\Sigma_p(\chi^i, \chi)$ pulled back to R. ideal factorization S-unit $\Sigma_1 = 2x^7 + 2x^6 - x^4 + 2x^2 - 2x$ $P_{-7}P_{-5}P_{-3}P_{-1}$ $\Sigma_2 = x^7 - 2x^6 - 3x^5 + x^4 - x^3 - x$ $P_7 P_{-5} P_{-3} P_{-1}$ Σ_2/Σ_1 P_7/P_{-7} $P_{7}P_{-7}$ σ_{-}

$$g_7 \sum_2 / \sum_1 P_7^2 (u_5 g_7 \sum_2 / \sum_1)^{1/2} = x^7 - x^4 + x^3 P_7$$

Scaling up to n = 256: All sqrts in 10 minutes.

Daniel J. Bernstein

End of the story for n = 4, n = 8, n = 16For n = 16: $\#(\mathbf{Z}^{16}/\Lambda) = 256$. "Lower bound" $2 \Rightarrow$ expand $\#(R/I)^{1/n^2}$ by $p^{2/n^2} = 97^{2/n^2} \approx 1.03639$, on top of ≈ 1.01861 for unit-lattice model.

Daniel J. Bernstein

End of the story for n = 4, n = 8, n = 16For n = 16: $\#(\mathbf{Z}^{16}/\Lambda) = 256$. "Lower bound" $2 \Rightarrow$ expand $\#(R/I)^{1/n^2}$ by $p^{2/n^2} = 97^{2/n^2} \approx 1.03639$, on top of ≈ 1.01861 for unit-lattice model.

Instead construct more *S*-units: $\#(\mathbf{Z}^{16}/\Lambda'') = 1$. The input ideal was principal in the first place! Find generator of *I*. Reduce mod units.

"Tweak": Multiply by x + 1, reduce, repeat for $I, (x + 1)I, (x + 1)^2I, (x + 1)^3I, (x + 1)^4I, ...$ Often $(x + 1)^e g$ is closer to unit lattice than g. Take smallest generator found across all $(x + 1)^eI$. When to stop? Compare $2^e \# (R/I)$ to best g. [Faster: reduce in log space mod units and x + 1.]

Daniel J. Bernstein

Recap: Constructing small S-units

Daniel J. Bernstein

Impact for larger values of n

For n = 32: $\#(\mathbf{Z}^{32}/\Lambda) = 1114112$. "Lower bound" 5 \Rightarrow expand by ≈ 1.02603 , on top of ≈ 1.01570 for unit-lattice model.

Daniel J. Bernstein

Impact for larger values of n

For n = 32: $\#(\mathbf{Z}^{32}/\Lambda) = 1114112$. "Lower bound" 5 \Rightarrow expand by ≈ 1.02603 , on top of ≈ 1.01570 for unit-lattice model.

Instead construct more *S*-units: $\#(\mathbf{Z}^{32}/\Lambda'') = 17$. "Class number" = #(class group) = 17.

Chance 1/17: I principal. Expansion factor 1.

Chance 16/17: *I* non-principal. *IP* principal for some prime ideal *P* with #(R/P) = 193. Expansion factor $193^{1/n^2} \approx 1.00515$.

[Note to number theorists: upcoming labels use $P_{p,c} = \sigma_c(P_{p,1})$, with $P_{p,1} = pR + (x + a)R$ for smallest *a* in $\{0, 1, \dots, p - 1\}$.]

Daniel J. Bernstein

Broader n = 32 search example, part 1

32 prime ideals $P_{193,c}$ have $\#(R/P_{193,c}) = 193$. 32 prime ideals $P_{257,c}$ have $\#(R/P_{257,c}) = 257$. 32 prime ideals $P_{449,c}$ have $\#(R/P_{449,c}) = 449$. Note $449^{1/n^2} \approx 1.00598$ vs. $193^{1/n^2} \approx 1.00515$.

Precompute *S*-units, including generators γ_{193} , γ_{257} , γ_{449} , γ_{577} , γ_{641} , γ_{769} , ... of $P_{193,31}P_{193,1}^{-1}$, $P_{257,-19}P_{193,1}^{-1}$, $P_{449,-19}P_{193,1}^{-1}$, $P_{577,15}P_{193,1}^{-1}$, $P_{641,19}P_{193,1}^{-1}$, $P_{769,5}P_{193,1}^{-1}$, ...

Daniel J. Bernstein

Broader n = 32 search example, part 1

32 prime ideals $P_{193,c}$ have $\#(R/P_{193,c}) = 193$. 32 prime ideals $P_{257,c}$ have $\#(R/P_{257,c}) = 257$. 32 prime ideals $P_{449,c}$ have $\#(R/P_{449,c}) = 449$. Note $449^{1/n^2} \approx 1.00598$ vs. $193^{1/n^2} \approx 1.00515$.

Precompute S-units, including generators $\gamma_{193}, \gamma_{257}, \gamma_{449}, \gamma_{577}, \gamma_{641}, \gamma_{769}, \ldots$ of $P_{193,31}P_{193,1}^{-1}$, $P_{257,-19}P_{193,1}^{-1}$, $P_{449,-19}P_{193,1}^{-1}$, $P_{577,15}P_{193,1}^{-1}, P_{641,19}P_{193,1}^{-1}, P_{769,5}P_{193,1}^{-1}, \dots$ Random example of a target: I =3141592653589793238462643383280129*R* + (x + 13443234652173688219737012017423)R. Initial S-generator computation: $gR = IP_{193,13}$.

Daniel J. Bernstein

Broader n = 32 search example, part 2

Multiply by precomputed *S*-units for more *S*-gens of *I*. (Don't repeat the quantum computations!)

 $gR = IP_{193,13}$. Attack: 1.02549; tweak: 1.01901. 1.01709; 1.01709. $g\sigma_{13}(\gamma_{193})R = IP_{193,19}.$ $g\sigma_{13}(\gamma_{257})R = IP_{257.9}$. 1.02179; 1.02103. $g\sigma_{13}(\gamma_{193})\sigma_{19}(\gamma_{257})R = IP_{257,23}$. 1.02517; 1.01588. $g\sigma_{13}(\gamma_{449})R = IP_{4499}$. 1.02100: 1.02100. $g\sigma_{13}(\gamma_{193})\sigma_{19}(\gamma_{449})R = IP_{449,23}$. 1.02584; 1.01830. $g\sigma_{13}(\gamma_{577})R = IP_{577,3}$. 1.02634; 1.02456. $g\sigma_{13}(\gamma_{193})\sigma_{19}(\gamma_{577})R = IP_{577,29}.$ 1.02682; 1.02224. $g\sigma_{13}(\gamma_{641})R = IP_{641,-9}$. 1.01810; 1.01810. $g\sigma_{13}(\gamma_{193})\sigma_{19}(\gamma_{641})R = IP_{641,-23}.$ 1.00990; 1.00990.

Daniel J. Bernstein

End of the story for n = 32

Geometric average of $\eta^{1/n}$ over 10000 experiments:

 n
 Attack10
 Attack12
 Attack14
 Shortest

 32
 1.01660
 1.01622
 1.01599
 1.01576

"Attack10": Tweaked unit attack starting from 12 gens of ideals $IP_{p,c}$ with $p < 2^{10}$.

"Attack12": Tweaked unit attack starting from same I pool, 32 gens of ideals $IP_{p,c}$ with $p < 2^{12}$.

"Attack14": Tweaked unit attack starting from same *I* pool, 124 gens of ideals $IP_{p,c}$ with $p < 2^{14}$. (If *I* is principal, take gen of *I*. Could also try *IJ*.)

Daniel J. Bernstein

Generalizing to any *n*

Find *S*-unit lattice: generators of $\prod_{P \in S} P^{e_P}$. Typically see small $P_{\ell,1} \in S$ generating class group; for each $Q \in S$, find generator of some $Q \prod_c P^{e_c}_{\ell,c}$.

Find S-generator of I: $gR = I \prod_{P \in S} P^{v_P}$. No more quantum steps required after this.

Try J = R, J = Q, J = QQ', etc. For each J, immediately see generator of some $IJ \prod_c P_{\ell,c}^{e_c}$. Fast reduction mod $\Lambda'' \Rightarrow$ gen of small multiple of I. (For n = 32, jumped to J with IJ principal.) Fast reduction mod unit lattice and $x + 1 \Rightarrow$ short.

Much shorter vectors than pure unit attack.

Daniel J. Bernstein

Using more primes for n = 64

 $\#(\mathbf{Z}^{64}/\Lambda'') = 17 \cdot 21121 = 359057.$ Again precompute *S*-units.

Given *I*, compute *S*-generator: $gR = I \prod_{c} P_{257,c}^{v_c}$. Basic attack: Reduce exponent vector mod Λ'' , finding generator of small $I \prod_{c} P_{257,c}^{v_c-e_c}$.

"Small": 1000 experiments in $\sum_{c} |v_{c} - e_{c}| \mod \Rightarrow$ 25.2% 5, 64.8% 4, 9.6% 3, 0.3% 2, 0.1% 1. 257^{4/n²} \approx 1.00543; 257^{1/n²} \approx 1.00136.

Further options: $I \prod_{c} P_{641,c}^{v_c}$. Many more options: $IP_{641,b} \prod_{c} P_{257,c}^{v_c}$; $IP_{769,a}P_{641,b} \prod_{c} P_{257,c}^{v_c}$; etc. Paying 2 primes gains many tries at closeness.

Daniel J. Bernstein

A meet-in-the-middle search for n = 64

Efficiently index each ideal class by $e \in \mathbb{Z}/359057$: *I* has class $e \Leftrightarrow IP_{257,1}^{-e}$ principal. σ_{-1}, σ_3 act as mults by -1, 29301 on $\mathbb{Z}/359057$. Precompute classes of $P_{257,1}, P_{641,1}, P_{769,1}, P_{1153,1}$ (via small *S*-units): 1, 25489, 99282, 201437.

Start with *S*-generator of $I \Rightarrow$ class of *I*. Tabulate 64² classes of $IP_{1153,a}P_{769,b}$. Tabulate 64² classes of $P_{641,c}^{-1}P_{257,d}^{-1}$. Rough estimate: 64⁴/359057 \approx 47 collisions. Collision $\Rightarrow IP_{1153,a}P_{769,b}P_{641,c}P_{257,d}$ principal. Reconstruct $IP_{1153,a}P_{769,b}P_{641,c}P_{257,d}$ generator.

Reduce each generator mod units, and apply tweak.

Daniel J. Bernstein
A numerical example for n = 64

Took ideal $I \subset R$ containing the random prime 31415926535897932384626433832795028841971710593. Examples of short $g \in I$ found by meet-in-the-middle search of principal IJ_1J_2 with odd $\#(R/J_j) < 2^{22}$:

Ideal generated by $g \qquad \qquad \eta^{1/n}$

$$\begin{array}{ll} (1+x)^8 IP_{641,\ldots} P_{769,\ldots} P_{78977,\ldots} & 1.01399 \\ (1+x)^5 IP_{398977,\ldots} & 1.01389 \\ IP_{641,\ldots} P_{1340033,\ldots} & 1.01385 \\ (1+x)^4 IP_{257,\ldots} P_{1153,\ldots} P_{11777,\ldots} P_{39041,\ldots} & 1.01350 \\ (1+x)^3 IP_{35969,\ldots} P_{2350081,\ldots} & 1.01288 \end{array}$$

For comparison, shortest nonzero vector in *I*: $(1+x)IP_{6525293171851009,...}$ 1.01243

Daniel J. Bernstein

S-unit attacks

Conjectured scalability: $exp(n^{1/2+o(1)})$

Simple algorithm variant, skipping many speedups: Take traditional log $y \in n^{1/2+o(1)}$. Take $S = \infty \cup \{P : \#(R/P) \leq y\}$. Precompute $\{S$ -unit $u \in R$: $\sum_i u_i^2 \leq n^{1/2+o(1)}\}$. Compute S-generator g of I. Replace g with gu/v having log vector closest to I; repeat until stable \Rightarrow small S-generator of I. Multiply by $P_c P_{-c}$ gens \Rightarrow short element of I. Repeat $y^{O(1)}$ times, avoiding cycles; take shortest. Heuristics $\Rightarrow \eta \leq n^{1/2+o(1)}$, time $\exp(n^{1/2+o(1)})$. "Vector within ϵ of shortest in subexponential time."

Daniel J. Bernstein

S-unit attacks