Constant-time square-and-multiply

D. J. Bernstein
University of Illinois at Chicago; Ruhr University Bochum

```python
def pow256bit(x, e):
    y = 1
    for i in reversed(range(256)):
        y = y*y
        if 1&(e>>i):
            y = y*x
    return y
```
This code uses 256 squarings, plus 1 extra multiplication for each bit set in e. Problem when e is secret: time leaks number of bits set in e.
This code uses 256 squarings, plus 1 extra multiplication for each bit set in e.

Problem when e is secret: time leaks number of bits set in e.

“I’ll choose secret 256-bit e with exactly 128 bits set. There are enough of these e, and then there are no more leaks.”
This code uses 256 squarings, plus 1 extra multiplication for each bit set in e.

Problem when e is secret: time leaks number of bits set in e.

“I’ll choose secret 256-bit e with exactly 128 bits set. There are enough of these e, and then there are no more leaks.”

— Time still depends on e, even if each multiplication takes time independent of inputs.
Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost.
Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost. Example: “L1 cache” typically has 32KB of recently used data. This cache inspects RAM addresses, performs various computations on addresses to try to save time.
Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost. Example: “L1 cache” typically has 32KB of recently used data. This cache inspects RAM addresses, performs various computations on addresses to try to save time.

... so time is a function of RAM addresses. Avoid all data flow from secrets to RAM addresses.
Example: Avoid all data flow from secrets to branch conditions. Often described as a separate rule for software, but comes from the same hardware reality.
Example: Avoid all data flow from secrets to branch conditions. Often described as a separate rule for software, but comes from the same hardware reality.

How CPU runs a program (example of “code = data”):

```python
while True:
    insn = RAM[state.ip]
    state = execute(state, insn)
```

ip ("instruction pointer" or "program counter"): address in RAM of next instruction.
Standard square-and-multiply fix to follow these data-flow rules: Square and always multiply.

def pow256bit(x, e):
 y = 1
 for i in reversed(range(256)):
 y = y*y
 yx = y*x
 bit = 1&(e>>i)
 y = y+(yx-y)*bit
 return y

If bit is 0 then yx computation is an unused “dummy operation”.
Another approach, not well known:

def pow256bit(x,e):
 y,i,j = 1,255,0
 while i >= 0:
 if j == 0:
 y = y*y
 if 1&(e>>i):
 j = 1
 else:
 i = i-1
 else:
 y = y*x
 i,j = i-1,0
 return y
This is like CPU’s perspective on original square-and-multiply.

\(j \) is “instruction pointer”:
0 if at top of loop,
1 if in middle of loop.

Each “instruction” here includes exactly one multiply.
This is like CPU’s perspective on original square-and-multiply.

\(j \) is “instruction pointer”: 0 if at top of loop, 1 if in middle of loop.

Each “instruction” here includes exactly one multiply.

Try to choose instruction set with big useful operations, avoiding control overhead.

Analogous to designing CPU.
Following data-flow rules, assuming all arithmetic (including i shifts etc.) is constant-time, assuming e weight exactly 128:

def pow256bit(x,e):
 y,i,j = 1,255,0
 while i >= 0:
 z = y+(x-y)*j
 y = y*z
 bit = 1&(e>>i)
 i = i-(j|(1-bit))
 j = bit&(1-j)
 return y
Allowing any weight ≤ 128:

def pow256bitweightle128(x,e):
 y,i,j = 1,255,0
 for loop in range(384):
 z = y+(x-y)*j
 z = z+(1-z)*(i<0)
 y = y*z
 bit = 1&(e>>max(i,0))
 i = i-(j|(1-bit))
 j = bit&(1-j)
 assert i < 0
 return y
Allowing any weight ≤ 128:

```python
def pow256bitweightle128(x,e):
    y,i,j = 1,255,0
    for loop in range(384):
        z = y+(x-y)*j
        z = z+(1-z)*(i<0)
        y = y*z
        bit = 1&(e>>max(i,0))
        i = i-(j|(1-bit))
        j = bit&(1-j)
    assert i < 0
    return y
```

Exercise: constant-time ECC scalar mult with sliding windows.