Constant-time square-and-multiply

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum
def pow256bit(x,e):
$y=1$
for i in reversed(range(256)):

$$
\begin{aligned}
& y=y * y \\
& \text { if } 1 \&(e \gg i): \\
& y=y * x
\end{aligned}
$$

return y

This code uses 256 squarings, plus 1 extra multiplication for each bit set in e.

Problem when e is secret: time leaks number of bits set in e.

This code uses 256 squarings,
plus 1 extra multiplication for each bit set in e.

Problem when e is secret: time leaks number of bits set in e.
"Ill choose secret 256-bit e with exactly 128 bits set. There are enough of these e, and then there are no more leaks."

This code uses 256 squarings,
plus 1 extra multiplication for each bit set in e.

Problem when e is secret: time leaks number of bits set in e.
"Ill choose secret 256-bit e with exactly 128 bits set. There are enough of these e, and then there are no more leaks."

- Time still depends on e, even if each multiplication takes time independent of inputs.

Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost.

Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost.
Example: "L1 cache" typically
has 32 KB of recently used data.
This cache inspects RAM addresses, performs various computations on addresses to try to save time.

Hardware reality: Accessing RAM is inherently expensive.

CPU designers try to reduce cost.
Example: "L1 cache" typically
has 32 KB of recently used data.
This cache inspects RAM addresses, performs various computations on addresses to try to save time.
... so time is a function of RAM addresses. Avoid all data flow from secrets to RAM addresses.

Example: Avoid all data flow from secrets to branch conditions.

Often described as a separate rule for software, but comes from the same hardware reality.

Example: Avoid all data flow from secrets to branch conditions.

Often described as a separate rule for software, but comes from the same hardware reality.

How CPU runs a program (example of "code = data"):
while True:
ins $=$ RAM[state.ip]
state $=$ execute (state,insn)
ip ("instruction pointer" or "program counter"): address in RAM of next instruction.

Standard square-and-multiply fix to follow these data-flow rules:
Square and always multiply.
def pow256bit(x,e):
$y=1$
for i in reversed(range(256)):

$$
\begin{aligned}
& y=y * y \\
& y x=y * x \\
& b i t=1 \&(e \gg i) \\
& y=y+(y x-y) * b i t
\end{aligned}
$$

return y
If bit is 0 then ax computation is an unused "dummy operation".

Another approach, not well known:

def pow256bit(x,e):

$$
\begin{gathered}
y, i, j=1,255,0 \\
\text { while i >= } 0 \\
\text { if } j==0: \\
y=y * y \\
\text { if } 1 \&(e \gg i): \\
j=1 \\
\text { else: } \\
i=i-1 \\
\text { else: } \\
y=y * x \\
i, j=i-1,0
\end{gathered}
$$

return y

This is like CPU's perspective on original square-and-multiply.
j is "instruction pointer": 0 if at top of loop,
1 if in middle of loop.
Each "instruction" here
includes exactly one multiply.

This is like CPU's perspective on original square-and-multiply.
j is "instruction pointer":
0 if at top of loop,
1 if in middle of loop.
Each "instruction" here includes exactly one multiply.

Try to choose instruction set with big useful operations, avoiding control overhead.

Analogous to designing CPU.

Following data-flow rules, assuming all arithmetic (including i shifts etc.) is constant-time, assuming e weight exactly 128 :
def pow256bit(x,e):

$$
\begin{aligned}
& y, i, j=1,255,0 \\
& \text { while } i=0: \\
& z=y+(x-y) * j \\
& y=y * z \\
& b i t=1 \&(e \gg i) \\
& i=i-(j \mid(1-b i t)) \\
& j=b i t \&(1-j)
\end{aligned}
$$

return y

Allowing any weight ≤ 128 :
def pow256bitweightle128(x,e):
$y, i, j=1,255,0$
for loop in range (384):

$$
\begin{aligned}
& z=y+(x-y) * j \\
& z=z+(1-z) *(i<0) \\
& y=y * z \\
& \text { bit }=1 \&(e \gg \max (i, 0)) \\
& i=i-(j \mid(1-b i t)) \\
& j=b i t \&(1-j)
\end{aligned}
$$

assert i < 0
return y

Allowing any weight ≤ 128 :
def pow256bitweightle128(x,e):

$$
\begin{aligned}
& y, i, j=1,255,0 \\
& \text { for loop in range (384): } \\
& z=y+(x-y) * j \\
& z=z+(1-z) *(i<0) \\
& y=y * z \\
& \text { bit }=1 \&(e \gg \max (i, 0)) \\
& i=i-(j \mid(1-b i t)) \\
& j=b i t \&(1-j)
\end{aligned}
$$

assert i < 0

return y

Exercise: constant-time ECC scalar mult with sliding windows.

