Lattice-based cryptography, day 2: efficiency
D. J. Bernstein

University of Illinois at Chicago;
Ruhr University Bochum

2016: Google runs "CECPQ1" experiment, encrypting with elliptic curves and NewHope.

2019: Google+Cloudflare run "CECPQ2" experiment, encrypting with elliptic curves and NTRU HRSS.

2019: OpenSSH adds support for Streamlined NTRU Prime.

These lattice cryptosystems have $\approx 1 \mathrm{~KB}$ keys, ciphertexts; have ≈ 100000 cycles enc, dec; maybe resist quantum attacks.

ECC has much shorter keys and ciphertexts and similar speeds, but doesn't resist quantum attacks.

Isogeny-based crypto has shorter keys and ciphertexts, and maybe resists quantum attacks, but uses many more cycles.

All of the critical design ideas were introduced in the original Hoffstein-Pipher-Silverman NTRU\& cryptosystem.

Announced 20 August 1996 at Crypto 1996 rump session. Patent expired in 2017.

All of the critical design ideas
were introduced in the original Hoffstein-Pipher-Silverman NTRU\& cryptosystem.

Announced 20 August 1996 at Crypts 1996 rump session. Patent expired in 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: https://ntru.org/f/hps96.pdf

All of the critical design ideas
were introduced in the original Hoffstein-Pipher-Silverman NTRU』 cryptosystem.

Announced 20 August 1996 at Crypts 1996 rump session. Patent expired in 2017.

First version of NTRU paper, handed out at Crypto 1996, finally put online in 2016: https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys for 2^{80} security.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

1997 Coppersmith-Shamir:
better conversion (rescaling) + better attacks than LLL.
No clear quantification.
(Often incorrectly credited for first NTRU lattice attacks.)

1996 paper converted NTRU attack problem into a lattice problem (suboptimally), and then applied LLL (not state of the art) to attack the lattice problem.

1997 Coppersmith-Shamir:
better conversion (rescaling) + better attacks than LLL.

No clear quantification.
(Often incorrectly credited for first NTRU lattice attacks.)

NTRU paper, ANTS 1998: proposed 147-byte or 503-byte keys for 2^{77} or 2^{170} security.

NTRU secrets
Parameter: positive integer N.
$\mathbf{Z}[x]$ is the ring of polynomials with integer coeffs.
$R=\mathbf{Z}[x] /\left(x^{N}-1\right)$ is
the ring of polynomials with integer coeffs modulo $x^{N}-1$.

NTRU secrets
Parameter: positive integer N.
$\mathbf{Z}[x]$ is the ring of polynomials with integer coeffs.
$R=\mathbf{Z}[x] /\left(x^{N}-1\right)$ is
the ring of polynomials with integer coeffs modulo $x^{N}-1$.
(Variants use other moduli:
e.g. $x^{N}-x-1$ in NTRU Prime.)

NTRU secrets

Parameter: positive integer N.
$\mathbf{Z}[x]$ is the ring of polynomials with integer coeffs.
$R=\mathbf{Z}[x] /\left(x^{N}-1\right)$ is
the ring of polynomials with integer coeffs modulo $x^{N}-1$.
(Variants use other moduli: e.g. $x^{N}-x-1$ in NTRU Prime.)

NTRU secrets are elements of R with each coeff in $\{-1,0,1\}$. (Variants: e.g., $\{-2,-1,0,1,2\}$.)
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage:
sage: $\mathrm{Zx} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$ sage: f
$4 * x^{\wedge} 2+x+3$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$ sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Xx objects are polys sage: \# in x with int coeffs sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage:
sage: $\mathrm{Zx} .\langle\mathrm{X}\rangle=\mathrm{ZZ}[]$
sage: \# now Zx is a class
sage: \# Xx objects are polys
sage: \# in x with int coeffs
sage: $f=\operatorname{Zx}([3,1,4])$
sage: f
$4 * x^{\wedge} 2+x+3$
sage: $g=\operatorname{Zx}([2,7,1])$
sage: g
$x^{\wedge} 2+7 * x+2$
sage: fog \# built-in add
$5 * x^{\wedge} 2+8 * x+5$
sage:
sage: f*x \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage:
sage: $f * x$ \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$

$$
4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2
$$

sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $\mathrm{f} * \mathrm{x}^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage:
sage: $f * x$ \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$

$$
8 * x^{\wedge} 2+2 * x+6
$$

sage: $f *(7 * x)$

$$
28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x
$$

sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$ $+6$
sage:
sage: fox \# built-in mul
$4 * x^{\wedge} 3+x^{\wedge} 2+3 * x$
sage: $f * x^{\wedge} 2$
$4 * x^{\wedge} 4+x^{\wedge} 3+3 * x^{\wedge} 2$
sage: $f * 2$
$8 * x^{\wedge} 2+2 * x+6$
sage: $f *(7 * x)$
$28 * x^{\wedge} 3+7 * x^{\wedge} 2+21 * x$
sage: $f * g$
$4 * x^{\wedge} 4+29 * x^{\wedge} 3+18 * x^{\wedge} 2+23 * x$ $+6$
sage: $f * g==f * 2+f *(7 * x)+f * x^{\wedge} 2$ True
sage:
sage: \# replace $\mathrm{x}^{\wedge} \mathrm{N}$ with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{N}+1)$ with x , etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} N-1$)
sage:
sage: \# replace $\mathrm{x}^{\wedge} \mathrm{N}$ with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{N}+1)$ with x, etc. sage: def convolution (fig):: return (fog) \% ($x^{\wedge} N-1$)
. . . . :
sage: $N=3$ \# global variable sage:
sage: \# replace x^N with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{N}+1)$ with x , etc. sage: def convolution (fog):: return ($f * g$) $\% ~\left(x^{\wedge} N-1\right)$
. . . . :
sage: $N=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage:
sage: \# replace $\mathrm{x}^{\wedge} \mathrm{N}$ with 1, sage: \# $\mathrm{x}^{\wedge}(\mathrm{N}+1)$ with x, etc. sage: def convolution (fog):: return (fog) \% ($x^{\wedge} N-1$)
. . . . :
sage: $N=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage:
sage: \# replace x^N with 1, sage: \# $\mathrm{X}^{\wedge}(\mathrm{N}+1)$ with x , etc. sage: def convolution (fog):: return $(f * g) \%\left(x^{\wedge} N-1\right)$
. . . . :
sage: $N=3$ \# global variable sage: convolution (fix)
$x^{\wedge} 2+3 * x+4$
sage: convolution (f, $x^{\wedge} 2$)
$3 * x^{\wedge} 2+4 * x+1$
sage: convolution (fog)
$18 * x^{\wedge} 2+27 * x+35$
sage:
sage: def randomsecret():
....: $f=$ list (randrange (3)-1
....: for j in range(N))
....: return Zx (f)
sage:
sage: def randomsecret():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(N))
....: return $\mathrm{Zx}(\mathrm{f})$
. . . . :
sage: $N=7$
sage:
sage: def randomsecret():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(N))
....: return $\mathrm{Zx}(\mathrm{f})$

- - • -
sage: $N=7$
sage: randomsecret ()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage:
sage: def randomsecret():
....: $\quad f=$ list (randrange (3)-1
....: for j in range(N))
....: return Zx (f)
- - • -
sage: $\mathrm{N}=7$
sage: randomsecret()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randomsecret ()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage:
sage: def randomsecret():
....: $f=$ list (randrange (3)-1
....: for j in range(N))
....: return Zx (f)
. . . :
sage: $N=7$
sage: randomsecret ()
$-x^{\wedge} 3-x^{\wedge} 2-x-1$
sage: randomsecret ()
$x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 3-x$
sage: randomsecret ()
$-x^{\wedge} 6+x^{\wedge} 5+x^{\wedge} 4-x^{\wedge} 3-x^{\wedge} 2+$
$x+1$
sage:

Will use bigger N for security.
1998 NTRU paper took $N=503$.
Some choices of N in NISTPQC submissions: egg. $N=701$ for NTRU HRSS. e.g. $N=743$ for NTRUEncrypt. e.g. $N=761$ for NTRU Prime.

Will use bigger N for security.
1998 NTRU paper took $N=503$.
Some choices of N in NISTPQC submissions:
egg. $N=701$ for NTRU HRSS. e.g. $N=743$ for NTRUEncrypt. e.g. $N=761$ for NTRU Prime.

Overkill against attack algorithms known today, even for future attacker with quantum computer.

Will use bigger N for security.
1998 NTRU paper took $N=503$.
Some choices of N in NISTPQC submissions:
egg. $N=701$ for NTRU HRSS.
e.g. $N=743$ for NTRUEncrypt.
e.g. $N=761$ for NTRU Prime.

Overkill against attack algorithms known today, even for future attacker with quantum computer.

Maybe there are faster attacks!
Claimed "guarantees" are fake.

NTRU public keys
Parameter Q, power of 2: e.g., 4096 for NTRU HRSS.
$R_{Q}=(\mathbf{Z} / Q)[x] /\left(x^{N}-1\right)$
is the ring of polynomials
with integer coeffs modulo Q and modulo $x^{N}-1$.

Public key is an element of R_{Q}.
(Variants: e.g., prime Q.
NTRU Prime has field R_{Q} : e.g., $\left.(\mathbf{Z} / 4591)[x] /\left(x^{761}-x-1\right).\right)$

NTRU encryption
Ciphertext: $b G+d \in R_{Q}$ where $G \in R_{Q}$ is public key and $b, d \in R$ are secrets.

NTRU encryption
Ciphertext: $b G+d \in R_{Q}$ where $G \in R_{Q}$ is public key and $b, d \in R$ are secrets. Usually G is invertible in R_{Q}. Easy to recover b from $b G$ by, e.g., linear algebra. But noise in $b G+d$ spoils linear algebra.

NTRU encryption

Ciphertext: $b G+d \in R_{Q}$
where $G \in R_{Q}$ is public key
and $b, d \in R$ are secrets.
Usually G is invertible in R_{Q}.
Easy to recover b from $b G$ by,
e.g., linear algebra. But noise in $b G+d$ spoils linear algebra.

Problem of finding b given
$G, b G+d$ (or given $G_{1}, b G_{1}+d_{1}$,
$\left.G_{2}, b G_{2}+d_{2}, \ldots\right)$ was renamed "Ring-LWE problem" by 2010 Lyubashevsky-Peikert-Regev, without credit to NTRU.

Variant: require d to have "weight W " : W nonzero coeffs, $N-W$ zero coeffs. (Generate in constant time via sorting.)
W is another parameter: e.g., 467 for NTRU HRSS.

Variant: require d to have "weight W ": W nonzero coeffs, $N-W$ zero coeffs. (Generate in constant time via sorting.)
W is another parameter: e.g., 467 for NTRU HRSS.

More traditional variant: require $W / 2$ coeffs 1 and $W / 2$ coeffs -1 .

Variant: require d to have
"weight W": W nonzero coeffs,
$N-W$ zero coeffs. (Generate in constant time via sorting.)
W is another parameter: e.g., 467 for NTRU HRSS.

More traditional variant: require $W / 2$ coeffs 1 and $W / 2$ coeffs -1 .

Variant I'll use in these slides:
choose b to have weight W.

Variant: require d to have
"weight W": W nonzero coeffs,
$N-W$ zero coeffs. (Generate in constant time via sorting.)
W is another parameter: e.g., 467 for NTRU HRSS.

More traditional variant: require $W / 2$ coeffs 1 and $W / 2$ coeffs -1 .

Variant I'll use in these slides:
choose b to have weight W.
Another variant: deterministically round $b G$ to $b G+d$ by rounding each coeff to multiple of 3 .
sage: def randomweightw():
$R=$ randrange
....: assert $\mathrm{W}<=\mathrm{N}$
$\ldots \quad \mathrm{s}=\mathrm{N} *[0]$
....: for j in range (W):
while True:

$$
r=R(N)
$$

if not $s[r]:$ break

$$
s[r]=1-2 * R(2)
$$

....: return Zx (s)
sage: $W=5$
sage: randomweightw()
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x^{\wedge} 2$
sage:

NTRU key generation
Secret e, weight-W secret a.
Require e, a invertible in R_{Q}.
Require a invertible in R_{3}.

NTRU key generation
Secret e, weight-W secret a.
Require e, a invertible in R_{Q}. Require a invertible in R_{3}.

Public key: $G=3 e / a$ in R_{Q}.

NTRU key generation
Secret e, weight-W secret a.
Require e, a invertible in R_{Q}.
Require a invertible in R_{3}.
Public key: $G=3 e / a$ in R_{Q}.
Ring-OLWE problem: find a given $G / 3$ and $a(G / 3)-e=0$.

NTRU key generation
Secret e, weight- W secret a. Require e, a invertible in R_{Q}. Require a invertible in R_{3}.

Public key: $G=3 e / a$ in R_{Q}.
Ring-0LWE problem: find a given $G / 3$ and $a(G / 3)-e=0$. Homogeneous slice of Ring-LWE ${ }_{1}$ (find b given G and $b G+d$).

NTRU key generation

Secret e, weight- W secret a.
Require e, a invertible in R_{Q}.
Require a invertible in R_{3}.
Public key: $G=3 e / a$ in R_{Q}.
Ring-OLWE problem: find a given $G / 3$ and $a(G / 3)-e=0$. Homogeneous slice of Ring-LWE ${ }_{1}$ (find b given G and $b G+d$).

Known attacks: Ring-0LWE sometimes weaker than Ring-LWE ${ }_{1}$. Also, Ring-LWE 2 (using G_{1}, G_{2}) sometimes weaker than Ring-LWE ${ }_{1}$.
sage: def balancedmod(f,Q):
....: $\quad g=l i s t(((f[i]+Q / / 2) \% Q)$
....:
-Q//2 for i in range(N))
....: return Zx (g)
sage:
sage:
sage: def balancedmod(f,Q):
....: $\quad g=l i s t(((f[i]+Q / / 2) \% Q)$
....: -Q//2 for i in range(N))
....: return $\mathrm{Zx}(g)$
. . . . :
sage:
sage: $u=314-159 * x$
sage:
sage: def balancedmod(f,Q):
....: $\quad g=l i s t(((f[i]+Q / / 2) \% Q)$
....: -Q//2 for i in range (N))
....: return $\mathrm{Zx}(\mathrm{g})$
sage :
sage: $u=314-159 * x$
sage: u \% 200
$-159 * x+114$
sage:
sage: def balancedmod(f,Q):
....: $\quad g=1 i s t(((f[i]+Q / / 2) \% Q)$
....: -Q//2 for i in range (N))
....: return $\mathrm{Zx}(g)$
sage:
sage: $u=314-159 * x$
sage: u \% 200
$-159 * x+114$
sage: (u - 400) \% 200
$-159 * x-86$
sage:
sage: def balancedmod(f,Q):
....: $\quad g=1 i s t(((f[i]+Q / / 2) \% Q)$
....: -Q//2 for i in range (N))
....: return Zx (g)
. . . :
sage :
sage: $u=314-159 * x$
sage: u \% 200
$-159 * x+114$
sage: (u - 400) \% 200
$-159 * x-86$
sage: balancedmod (u, 200)
$41 * \mathrm{x}-86$
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
....: Fpx = Zx.change_ring (Fp)
....: $T=F p x . q u o t i e n t\left(x^{\wedge} N-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
$\ldots: \quad \mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
$\ldots: \quad \mathrm{T}=\mathrm{Fpx} . \mathrm{quotient}^{\left(\mathrm{x}^{\wedge} \mathrm{N}-1\right)}$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{N}=7$
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)
....: $T=F p x . q u o t i e n t\left(x^{\wedge} N-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{N}=7$
sage: f = randomsecret()
sage:
sage: def invertmodprime(f,p):
....: $F p=$ Integers (p)
....: Fpx = Zx.change_ring (Fp)
....: $T=F p x . q u o t i e n t\left(x^{\wedge} N-1\right)$
....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $\mathrm{N}=7$
sage: $f=$ randomsecret()
sage: f3 = invertmodprime (f,3)
sage:
sage: def invertmodprime(f,p):
....: $F p=\operatorname{Integers}(p)$
....: $\mathrm{Fpx}=\mathrm{Zx}$. change_ring (Fp)

$$
\mathrm{T}=\mathrm{Fpx} \cdot \text { quotient }\left(\mathrm{x}^{\wedge} \mathrm{N}-1\right)
$$

....: return $\mathrm{Zx}(\operatorname{lift}(1 / \mathrm{T}(\mathrm{f}))$)
sage: $N=7$
sage: $f=$ randomsecret()
sage: $\mathrm{f} 3=$ invertmodprime (fo)
sage: convolution (ff)
$6 * x^{\wedge} 6+6 * x^{\wedge} 5+3 * x^{\wedge} 4+3 * x^{\wedge} 3+$ $3 * x^{\wedge} 2+3 * x+4$
sage:
def invertmodpowerof2(f,Q): assert Q.is_power_of (2)
$\mathrm{g}=$ invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

$$
\begin{aligned}
& r=M(\operatorname{conv}(g, f), Q) \\
& \text { if } r==1: r e t u r n g \\
& g=M(\operatorname{conv}(g, 2-r), Q)
\end{aligned}
$$

Exercise: Figure out how invertmodpowerof 2 works. Hint: How many powers of 2 divide first $r-1$? Second $r-1$?
sage: $N=7$
sage: $Q=256$
sage:
sage: $N=7$
sage: $Q=256$
sage: f = randomsecret()
sage:
sage: $N=7$
sage: $Q=256$
sage: $f=$ randomsecret()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage:
sage: $N=7$
sage: $Q=256$
sage: $f=$ randomsecret()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (f, Q)
sage:
sage: $N=7$
sage: $Q=256$
sage: $f=r a n d o m s e c r e t()$
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (f, Q)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage:
sage: $\mathrm{N}=7$
sage: $Q=256$
sage: $f=$ randomsecret()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (f, Q)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage: convolution (fog)
$-256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257$
sage:
sage: $N=7$
sage: $Q=256$
sage: f = randomsecret()
sage: f
$-x^{\wedge} 6-x^{\wedge} 4+x^{\wedge} 2+x-1$
sage: $g=$ invertmodpowerof2 (f, Q)
sage: g
$47 * x^{\wedge} 6+126 * x^{\wedge} 5-54 * x^{\wedge} 4-$ $87 * x^{\wedge} 3-36 * x^{\wedge} 2-58 * x+61$
sage: convolution (fog)
$-256 * x^{\wedge} 5-256 * x^{\wedge} 4+256 * x+257$
sage: balancedmod (_, Q)
1
sage:
def keypair():
while True:
try:
a = randomweightw()
a3 = invertmodprime (a,3)
$\mathrm{aQ}=$ invertmodpowerof2(a, Q$)$
e = randomsecret()
G = balancedmod(3 * convolution (e, aQ), Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,GQ
return G,secretkey
except:
pass
sage: G,secretkey = keypair()

sage:

sage: G,secretkey = keypair() sage: G
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$ sage:
sage: G,secretkey = keypair() sage: G
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $a, a 3, G Q=$ secretkey
sage:
sage: G,secretkey = keypair() sage: G
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $\mathrm{a}, \mathrm{a} 3, \mathrm{GQ}=$ secretkey
sage: a
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage:
sage: G,secretkey = keypair()
sage: G
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $\mathrm{a}, \mathrm{a} 3, \mathrm{GQ}=$ secretkey
sage: a
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution (a,G)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage:
sage: G,secretkey = keypair()
sage: G
$-126 * x^{\wedge} 6-31 * x^{\wedge} 5-118 * x^{\wedge} 4-$ $33 * x^{\wedge} 3+73 * x^{\wedge} 2-16 * x+7$
sage: $\mathrm{a}, \mathrm{a} 3, \mathrm{GQ}=$ secretkey
sage: a
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: convolution (a,G)
$-3 * x^{\wedge} 6+253 * x^{\wedge} 5+253 * x^{\wedge} 3-$
$253 * x^{\wedge} 2-3 * x-3$
sage: balancedmod (_, Q)
$-3 * x^{\wedge} 6-3 * x^{\wedge} 5-3 * x^{\wedge} 3+3 * x^{\wedge} 2$
$-3 * \mathrm{x}-3$
sage:
sage: def encrypt(bd,G):
\ldots b, $\quad \mathrm{b}, \mathrm{d}=\mathrm{bd}$
$\ldots \quad b G=$ convolution (b, G)
....: $C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage:
sage: def encrypt(bd,G):
$\ldots: \quad b, d=b d$
$\ldots \quad b G=$ convolution (b, G)
....: $C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage: G,secretkey = keypair()
sage:
sage: def encrypt(bd,G):
$\ldots: \quad b, d=b d$
$\ldots: \quad b G=$ convolution (b, G)
$\ldots: \quad C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage: G,secretkey = keypair()
sage: $\mathrm{b}=$ randomweightw()
sage:
sage: def encrypt(bd,G):
$\ldots: \quad b, d=b d$
$\ldots: \quad b G=$ convolution (b, G)
$\ldots: \quad C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage: G,secretkey = keypair()
sage: $\mathrm{b}=$ randomweightw ()
sage: d = randomsecret()
sage :
sage: def encrypt(bd,G):
$\ldots: \quad b, d=b d$
$\ldots: \quad b G=$ convolution (b, G)
$\ldots: \quad C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage: G,secretkey = keypair()
sage: b = randomweightw()
sage: d = randomsecret()
sage: $C=\operatorname{encrypt}((b, d), G)$
sage:
sage: def encrypt(bd,G):
$\ldots: \quad b, d=b d$
$\ldots: \quad b G=$ convolution (b, G)
$\ldots: \quad C=b a l a n c e d m o d(b G+d, Q)$
....: return C
sage: G,secretkey = keypair()
sage: b = randomweightw()
sage: d = randomsecret()
sage: $C=\operatorname{encrypt}((b, d), G)$
sage: C
$120 * x^{\wedge} 6+7 * x^{\wedge} 5-116 * x^{\wedge} 4+$ $102 * x^{\wedge} 3+86 * x^{\wedge} 2-74 * x-95$
sage:

NTRU decryption
Given ciphertext $b G+d$, compute
$a(b G+d)=3 b e+a d$ in R_{Q}.

NTRU decryption
Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}. a, b, d, e have small coeffs, so $3 b e+$ ad is not very big.

NTRU decryption
Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}. a, b, d, e have small coeffs, so $3 b e+$ ad is not very big.
Assume that coeffs of $3 b e+a d$ are between $-Q / 2$ and $Q / 2-1$.

NTRU decryption
Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}. a, b, d, e have small coeffs, so $3 b e+$ ad is not very big.
Assume that coeffs of $3 b e+a d$ are between $-Q / 2$ and $Q / 2-1$.

Then 3be + ad in R_{Q} reveals $3 b e+a d$ in $R=\mathbf{Z}[x] /\left(x^{N}-1\right)$.

NTRU decryption
Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}.
a, b, d, e have small coeffs,
so $3 b e+$ ad is not very big.
Assume that coeffs of $3 b e+a d$ are between $-Q / 2$ and $Q / 2-1$.

Then 3be + ad in R_{Q} reveals $3 b e+a d$ in $R=\mathbf{Z}[x] /\left(x^{N}-1\right)$.
Reduce modulo 3: ad in R_{3}.

NTRU decryption
Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}.
a, b, d, e have small coeffs,
so $3 b e+$ ad is not very big.
Assume that coeffs of $3 b e+a d$ are between $-Q / 2$ and $Q / 2-1$.

Then 3be + ad in R_{Q} reveals $3 b e+a d$ in $R=\mathbf{Z}[x] /\left(x^{N}-1\right)$.
Reduce modulo 3: ad in R_{3}.
Multiply by 1 /a in R_{3}
to recover d in R_{3}.

NTRU decryption

Given ciphertext $b G+d$, compute $a(b G+d)=3 b e+a d$ in R_{Q}.
a, b, d, e have small coeffs,
so $3 b e+$ ad is not very big.
Assume that coeffs of $3 b e+a d$ are between $-Q / 2$ and $Q / 2-1$.

Then 3be + ad in R_{Q} reveals $3 b e+a d$ in $R=\mathbf{Z}[x] /\left(x^{N}-1\right)$.
Reduce modulo 3: ad in R_{3}.
Multiply by 1 /a in R_{3}
to recover d in R_{3}.
Coeffs are between -1 and 1 , so recover d in R.
sage: def decrypt(C,secretkey):
....: $M=$ balancedmod
....: conv = convolution
....: a, a3, GQ = secretkey
$\ldots: \quad u=M(\operatorname{conv}(C, a), Q)$
$\ldots: \quad d=M(\operatorname{conv}(u, a 3), 3)$
$\ldots: \quad b=M(\operatorname{conv}(C-d, G Q), Q)$
....: return b,d
sage:
sage: def decrypt(C,secretkey):
....: $M=$ balancedmod
....: conv = convolution
....: a, a3, GQ = secretkey
$\ldots: \quad u=M(\operatorname{conv}(C, a), Q)$
$\ldots: \quad d=M(\operatorname{conv}(u, a 3), 3)$
$\ldots: \quad b=M(\operatorname{conv}(C-d, G Q), Q)$
....: return b,d
sage: decrypt(C,secretkey)
$\left(x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 2-x-1, x^{\wedge} 5+\right.$ $\left.x^{\wedge} 4+x^{\wedge} 3+x^{\wedge} 2-x\right)$
sage:
sage: def decrypt(C,secretkey):
....: $M=$ balancedmod
.... conv = convolution
....: a, a3, GQ = secretkey
$\ldots: \quad u=M(\operatorname{conv}(C, a), Q)$
$\ldots: \quad d=M(\operatorname{conv}(u, a 3), 3)$
$\ldots \quad b=M(\operatorname{conv}(C-d, G Q), Q)$
....: return b,d
sage: decrypt(C,secretkey)
$\left(x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 2-x-1, x^{\wedge} 5+\right.$ $\left.x^{\wedge} 4+x^{\wedge} 3+x^{\wedge} 2-x\right)$
sage: b,d
$\left(x^{\wedge} 6-x^{\wedge} 5-x^{\wedge} 2-x-1, x^{\wedge} 5+\right.$ $\left.x^{\wedge} 4+x^{\wedge} 3+x^{\wedge} 2-x\right)$
sage: $N, Q, W=7,256,5$
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair() sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $\mathrm{a}, \mathrm{a} 3, \mathrm{GQ}=$ secretkey
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $a, a 3, G Q=$ secretkey
sage: a
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 3+x-1$
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $\mathrm{a}, \mathrm{a} 3, \mathrm{GQ}=$ secretkey
sage: a
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 3+x-1$
sage: conv = convolution
sage :
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $a, a 3, G Q=$ secretkey
sage: a
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$ $126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $a, a 3, G Q=$ secretkey
sage: a
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage: $e 3=M(\operatorname{conv}(a, G), Q)$
sage:
sage: $N, Q, W=7,256,5$
sage: G,secretkey = keypair()
sage: G
$44 * x^{\wedge} 6-97 * x^{\wedge} 5-62 * x^{\wedge} 4-$
$126 * x^{\wedge} 3-10 * x^{\wedge} 2+14 * x-22$
sage: $a, a 3, G Q=$ secretkey
sage: a
$-x^{\wedge} 6-x^{\wedge} 5+x^{\wedge} 3+x-1$
sage: conv = convolution
sage: $M=$ balancedmod
sage: $e 3=M(\operatorname{conv}(a, G), Q)$
sage: e3
$-3 * x^{\wedge} 6+3 * x^{\wedge} 5+3 * x^{\wedge} 4-3 * x^{\wedge} 3$
$+3 * x$
sage:
sage: b = randomweightw()

sage:

sage: b = randomweightw()
sage: d = randomsecret()
sage:
sage: b = randomweightw()
sage: d = randomsecret()
sage: $C=M(\operatorname{conv}(b, G)+d, Q)$
sage:
sage: b = randomweightw()
sage: d = randomsecret()
sage: $C=M(\operatorname{conv}(b, G)+d, Q)$
sage: C
$-120 * x^{\wedge} 6-x \wedge 5+6 * x \wedge 4-24 * x^{\wedge} 3$
$+56 * x^{\wedge} 2$ - $98 * x$ - 71
sage:
sage: $\mathrm{b}=$ randomweightw ()
sage: $d=$ randomsecret()
sage: $C=M(\operatorname{conv}(b, G)+d, Q)$
sage: C
$-120 * x^{\wedge} 6-x^{\wedge} 5+6 * x^{\wedge} 4-24 * x^{\wedge} 3$
$+56 * x^{\wedge} 2-98 * x-71$
sage: $u=M(\operatorname{conv}(a, C), Q)$
sage:
sage: b = randomweightw()
sage: $d=$ randomsecret()
sage: $C=M(\operatorname{conv}(b, G)+d, Q)$
sage: C
$-120 * x^{\wedge} 6-x^{\wedge} 5+6 * x^{\wedge} 4-24 * x^{\wedge} 3$
$+56 * x^{\wedge} 2-98 * x-71$
sage: $u=M(\operatorname{conv}(a, C), Q)$
sage: u
$8 * x^{\wedge} 6-2 * x^{\wedge} 5-7 * x^{\wedge} 4+4 * x^{\wedge} 3-$
$6 * \mathrm{x}-1$
sage:
sage: b = randomweightw()
sage: $d=$ randomsecret ()
sage: $C=M(\operatorname{conv}(b, G)+d, Q)$
sage: C
$-120 * x^{\wedge} 6-x^{\wedge} 5+6 * x^{\wedge} 4-24 * x^{\wedge} 3$
$+56 * x^{\wedge} 2-98 * x-71$
sage: $u=M(\operatorname{conv}(a, C), Q)$
sage: u
$8 * x^{\wedge} 6-2 * x^{\wedge} 5-7 * x^{\wedge} 4+4 * x^{\wedge} 3-$
$6 * \mathrm{x}-1$
sage: $\operatorname{conv}(b, e 3)+\operatorname{conv}(a, d)$
$8 * x^{\wedge} 6-2 * x^{\wedge} 5-7 * x^{\wedge} 4+4 * x^{\wedge} 3-$
$6 * \mathrm{x}-1$
sage:
sage: \# u is 3be+ad in R
sage: $M(u, 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$

sage:

sage: \# u is 3be+ad in R
sage: $M(u, 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $M(\operatorname{conv}(a, d), 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage:
sage: \# u is 3be+ad in R
sage: $M(u, 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $M(\operatorname{conv}(a, d), 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $\operatorname{conv}(M(u, 3), a 3)$
$-3 * x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x-3$
sage:
sage: \# u is 3be+ad in R
sage: $M(u, 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $M(\operatorname{conv}(a, d), 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $\operatorname{conv}(M(u, 3), a 3)$
$-3 * x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x-3$
sage: $M\left(_, 3\right)$
$x^{\wedge} 4+x^{\wedge} 3-x$
sage:
sage: \# u is 3be+ad in R
sage: $M(u, 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $M(\operatorname{conv}(a, d), 3)$
$-x^{\wedge} 6+x^{\wedge} 5-x^{\wedge} 4+x^{\wedge} 3-1$
sage: $\operatorname{conv}(M(u, 3), a 3)$
$-3 * x^{\wedge} 5+x^{\wedge} 4+x^{\wedge} 3-x-3$
sage: $M\left(_, 3\right)$
$x^{\wedge} 4+x^{\wedge} 3-x$
sage: d
$x^{\wedge} 4+x^{\wedge} 3-x$
sage:

Does decryption always work?
All coeffs of d are in $\{-1,0,1\}$. All coeffs of a are in $\{-1,0,1\}$, and exactly W are nonzero.

Does decryption always work?

All coeffs of d are in $\{-1,0,1\}$. All coeffs of a are in $\{-1,0,1\}$, and exactly W are nonzero.

Each coeff of ad in R
has absolute value at most W.

Does decryption always work?

All coeffs of d are in $\{-1,0,1\}$. All coeffs of a are in $\{-1,0,1\}$, and exactly W are nonzero.

Each coeff of ad in R
has absolute value at most W. (Same argument would work for a of any weight, d of weight W.)

Does decryption always work?

All coeffs of d are in $\{-1,0,1\}$. All coeffs of a are in $\{-1,0,1\}$, and exactly W are nonzero.

Each coeff of ad in R has absolute value at most W. (Same argument would work for a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of $3 b e+a d$ in R
has absolute value at most $4 W$.

Does decryption always work?

All coeffs of d are in $\{-1,0,1\}$. All coeffs of a are in $\{-1,0,1\}$, and exactly W are nonzero.

Each coeff of ad in R has absolute value at most W. (Same argument would work for a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of $3 b e+a d$ in R has absolute value at most $4 W$.
e.g. $W=467$: at most 1868 .

Decryption works for $Q=4096$.

What about $W=467, Q=2048 ?$

What about $W=467, Q=2048$?
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{W-1}:$
$3 b e+$ ad has a coeff $4 W>Q / 2$.

What about $W=467, Q=2048 ?$
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{W-1}:$
$3 b e+a d$ has a coeff $4 W>Q / 2$.
But coeffs are usually <1024
when a, d are chosen randomly.

What about $W=467, Q=2048$?
Same argument doesn't work.
$a=b=c=d=$
$1+x+x^{2}+\cdots+x^{W-1}$:
$3 b e+$ ad has a coeff $4 W>Q / 2$.
But coeffs are usually <1024 when a, d are chosen randomly.

1996 NTRU handout mentioned no-decryption-failure option, but recommended smaller Q with some chance of failures. 1998 NTRU paper: decryption failure "will occur so rarely that it can be ignored in practice".

Crypts 2003 Howgrave-Graham-Nguyen-Pointcheval-Proos-Silverman-Singer-Whyte "The impact of decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Crypts 2003 Howgrave-Graham-
Nguyen-Pointcheval-Proos-
Silverman-Singer-Whyte
"The impact of
decryption failures on the security of NTRU encryption":

Decryption failures imply that "all the security proofs known ... for various NTRU paddings may not be valid after all".

Even worse: Attacker who sees some random decryption failures can figure out the secret key!

Coeff of x^{N-1} in ad is
$a_{0} d_{N-1}+a_{1} d_{N-2}+\cdots+a_{N-1} d_{0}$.

This coeff is large \Leftrightarrow

$a_{0}, a_{1}, \ldots, a_{N-1}$ has
high correlation with
$d_{N-1}, d_{N-2}, \ldots, d_{0}$.

Coeff of x^{N-1} in ad is
$a_{0} d_{N-1}+a_{1} d_{N-2}+\cdots+a_{N-1} d_{0}$.
This coeff is large \Leftrightarrow
$a_{0}, a_{1}, \ldots, a_{N-1}$ has
high correlation with
$d_{N-1}, d_{N-2}, \ldots, d_{0}$.
Some coeff is large \Leftrightarrow
$a_{0}, a_{1}, \ldots, a_{N-1}$ has high
correlation with some rotation
of $d_{N-1}, d_{N-2}, \ldots, d_{0}$.

Coeff of x^{N-1} in ad is
$a_{0} d_{N-1}+a_{1} d_{N-2}+\cdots+a_{N-1} d_{0}$.
This coeff is large \Leftrightarrow
$a_{0}, a_{1}, \ldots, a_{N-1}$ has
high correlation with
$d_{N-1}, d_{N-2}, \ldots, d_{0}$.
Some coeff is large \Leftrightarrow
$a_{0}, a_{1}, \ldots, a_{N-1}$ has high
correlation with some rotation
of $d_{N-1}, d_{N-2}, \ldots, d_{0}$.
ie. a is correlated with
$x^{i} \operatorname{rev}(d)$ for some i, where
$\operatorname{rev}(d)=d_{0}+d_{1} x^{N-1}+\cdots+d_{N-1} x$.

Reasonable guesses given a random decryption failure:
a correlated with some $x^{i} \operatorname{rev}(d)$.

Reasonable guesses given a random decryption failure: a correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(a)$ correlated with $x^{-i} d$.

Reasonable guesses given a random decryption failure: a correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(a)$ correlated with $x^{-i} d$. $\operatorname{arev}(a) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Reasonable guesses given a random decryption failure: a correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(a)$ correlated with $x^{-i} d$. $a \operatorname{rev}(a) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Experimentally confirmed:
Average of $d \operatorname{rev}(d)$
over some decryption failures
is close to $\operatorname{arev}(a)$.
Round to integers: $\operatorname{arev}(a)$.

Reasonable guesses given a random decryption failure: a correlated with some $x^{i} \operatorname{rev}(d)$. $\operatorname{rev}(a)$ correlated with $x^{-i} d$. $a \operatorname{rev}(a) \operatorname{correlated}$ with $d \operatorname{rev}(d)$.

Experimentally confirmed:
Average of $d \operatorname{rev}(d)$
over some decryption failures
is close to $\operatorname{arev}(a)$.
Round to integers: $\operatorname{arev}(a)$.
Eurocrypt 2002 Gentry-Szydlo algorithm then finds a.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000
Hoffstein-Silverman, 2016
Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes d to $d \pm 1, d \pm x, \ldots, d \pm x^{N-1}$; $d \pm 2, d \pm 2 x, \ldots, d \pm 2 x^{N-1}$; $d \pm 3$, etc.

1999 Hall-Goldberg-Schneier,
2000 Jaulmes-Joux, 2000 Hoffstein-Silverman, 2016

Fluhrer, etc.: Even easier attacks using invalid messages.

Attacker changes d to $d \pm 1, d \pm x, \ldots, d \pm x^{N-1}$; $d \pm 2, d \pm 2 x, \ldots, d \pm 2 x^{N-1}$; $d \pm 3$, etc.

This changes $3 b e+a d$: adds $\pm a, \pm x a, \ldots, \pm x^{N-1} a$;
$\pm 2 a, \pm 2 x a, \ldots, \pm 2 x^{N-1} a$; $\pm 3 a$, etc.
e.g. $3 b e+a d=\cdots+390 x^{478}+\cdots$, all other coeffs in [-389, 389]; and $a=\cdots+x^{478}+\cdots$.
e.g. $3 b e+a d=\cdots+390 x^{478}+\cdots$, all other coeffs in [-389, 389]; and $a=\cdots+x^{478}+\cdots$.

Then $3 b e+a d+k a=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
e.g. $3 b e+a d=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $a=\cdots+x^{478}+\cdots$.

Then $3 b e+a d+k a=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that fails.
e.g. $3 b e+a d=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $a=\cdots+x^{478}+\cdots$.

Then $3 b e+a d+k a=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that fails.
Does $3 b e+a d+k x a$ also fail?
Yes if $x a=\cdots+x^{478}+\cdots$,
i.e., if $a=\cdots+x^{477}+\cdots$.
e.g. $3 b e+a d=\cdots+390 x^{478}+\cdots$, all other coeffs in $[-389,389]$; and $a=\cdots+x^{478}+\cdots$.

Then $3 b e+a d+k a=$
$\cdots+(390+k) x^{478}+\cdots$.
Decryption fails for big k.
Search for smallest k that fails.
Does $3 b e+a d+k x a$ also fail?
Yes if $x a=\cdots+x^{478}+\cdots$,
i.e., if $a=\cdots+x^{477}+\cdots$.

Try $k x^{2}, k x^{3}$, etc.
See pattern of a coeffs.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.
For each new sender, generate new public key.
Use signatures to ensure
that nobody else uses key.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.
For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

How to handle invalid messages

Approach 1: Tell user to constantly switch keys.

For each new sender, generate new public key. Use signatures to ensure that nobody else uses key.

If user reuses a key:
Blame user for the attacks.
Approach 2: FO. Modify encryption and decryption to eliminate invalid messages. Most submissions do this.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NISTPQC encryption submissions vary in failure rates.

How to handle decryption failures

Eliminating invalid messages is not enough: remember attack using decryption failures for random valid messages.

NISTPQC encryption submissions vary in failure rates.

LAC, NewHope, Round, SABER: conjectured failure rate is small enough that generic non-quantum attacks provably maintain some security. (Security loss? Wrong conjecture? Quantum attacks?)

ThreeBears: conjectured

 failure rate is small enough that generic non-quantum attacks provably maintain full security.ThreeBears: conjectured
failure rate is small enough that generic non-quantum attacks provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that generic non-quantum attacks provably maintain some security.

ThreeBears: conjectured
failure rate is small enough that generic non-quantum attacks provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that generic non-quantum attacks provably maintain some security.

NTRU, NTRU Prime:
proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.

ThreeBears: conjectured
failure rate is small enough that generic non-quantum attacks provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that generic non-quantum attacks provably maintain some security.

NTRU, NTRU Prime:
proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.
Bad for publishing attack papers.

Brute-force search

Attacker is given public key
$G=3 e / a$, ciphertext $C=b G+d$.
Can attacker find b ?

Brute-force search

Attacker is given public key
$G=3 e / a$, ciphertext $C=b G+d$.
Can attacker find b ?
Search $\binom{N}{W} 2^{W}$ choices of b. If $d=C-b G$ is small: done!

Brute-force search

Attacker is given public key
$G=3 e / a$, ciphertext $C=b G+d$.
Can attacker find b ?
Search $\binom{N}{W} 2^{W}$ choices of b. If $d=C-b G$ is small: done!
(Can this find two different secrets d ? Unlikely. This would also stop legitimate decryption.)

Brute-force search

Attacker is given public key
$G=3 e / a$, ciphertext $C=b G+d$.
Can attacker find b ?
Search $\binom{N}{W} 2^{W}$ choices of b. If $d=C-b G$ is small: done!
(Can this find two different secrets d ? Unlikely. This would also stop legitimate decryption.)

Or search through choices of a. If $e=a G / 3$ is small, use (a, e) to decrypt. Advantage: can reuse attack for many ciphertexts.

Equivalent keys

Secret key (a, e) is equivalent to secret key ($x a, x e$),
secret key $\left(x^{2} a, x^{2} e\right)$, etc.

Equivalent keys

Secret key (a, e) is equivalent to secret key ($x a, x e$),
secret key $\left(x^{2} a, x^{2} e\right)$, etc.
Search only $\approx\binom{N}{W} 2^{W} / N$ choices.

Equivalent keys

Secret key (a, e) is equivalent to secret key ($x a, x e$),
secret key $\left(x^{2} a, x^{2} e\right)$, etc.
Search only $\approx\binom{N}{W} 2^{W} / N$ choices.
$N=701, W=467:$

$$
\begin{aligned}
\binom{N}{W} 2^{W} & \approx 2^{1106.09} \\
\binom{N}{W} 2^{W} / N & \approx 2^{1096.64}
\end{aligned}
$$

Equivalent keys

Secret key (a, e) is equivalent to secret key ($x a, x e$),
secret key $\left(x^{2} a, x^{2} e\right)$, etc.
Search only $\approx\binom{N}{W} 2^{W} / N$ choices.

$$
\begin{aligned}
& N=701, W=467: \\
& \binom{N}{W} 2^{W} \approx 2^{1106.09} \\
& \binom{N}{W} 2^{W} / N \approx 2^{1096.64}
\end{aligned}
$$

$N=701, W=200:$

$$
\begin{aligned}
& \binom{N}{W} 2^{W} \approx 2^{799.76} \\
& \binom{N}{W} 2^{W} / N \approx 2^{790.31}
\end{aligned}
$$

Equivalent keys

Secret key (a, e) is equivalent to secret key ($x a, x e$),
secret key $\left(x^{2} a, x^{2} e\right)$, etc.
Search only $\approx\binom{N}{W} 2^{W} / N$ choices.
$N=701, W=467:$

$$
\begin{aligned}
\binom{N}{W} 2^{W} & \approx 2^{1106.09} \\
\binom{N}{W} 2^{W} / N & \approx 2^{1096.64}
\end{aligned}
$$

$N=701, W=200$:

$$
\begin{aligned}
& \binom{N}{W} 2^{W} \approx 2^{799.76} \\
& \binom{N}{W} 2^{W} / N \approx 2^{790.31}
\end{aligned}
$$

Exercise: Find more equivalences!

Collision attacks

Write a as $a_{1}+a_{2}$ where
$a_{1}=$ bottom $\lceil N / 2\rceil$ terms of a, $a_{2}=$ remaining terms of a.

Collision attacks

Write a as $a_{1}+a_{2}$ where
$a_{1}=$ bottom $\lceil N / 2\rceil$ terms of a, $a_{2}=$ remaining terms of a.
$e=(G / 3) a=(G / 3) a_{1}+(G / 3) a_{2}$
so $e-(G / 3) a_{2}=(G / 3) a_{1}$.

Collision attacks

Write a as $a_{1}+a_{2}$ where
$a_{1}=$ bottom $\lceil N / 2\rceil$ terms of a, $a_{2}=$ remaining terms of a.
$e=(G / 3) a=(G / 3) a_{1}+(G / 3) a_{2}$
so $e-(G / 3) a_{2}=(G / 3) a_{1}$.
Eliminate e: almost certainly
$H\left(-(G / 3) a_{2}\right)=H\left((G / 3) a_{1}\right)$ for
$H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)$.

Collision attacks

Write a as $a_{1}+a_{2}$ where $a_{1}=$ bottom $\lceil N / 2\rceil$ terms of a, $a_{2}=$ remaining terms of a.
$e=(G / 3) a=(G / 3) a_{1}+(G / 3) a_{2}$
so $e-(G / 3) a_{2}=(G / 3) a_{1}$.
Eliminate e: almost certainly
$H\left(-(G / 3) a_{2}\right)=H\left((G / 3) a_{1}\right)$ for
$H(f)=\left(\left[f_{0}<0\right], \ldots,\left[f_{k-1}<0\right]\right)$.
Enumerate all $H\left(-(G / 3) a_{2}\right)$.
Enumerate all $H\left((G / 3) a_{1}\right)$.
Search for collisions.
Only about $3^{N / 2}$ operations:
$\approx 2^{555.52}$ for $N=701$.

Lattice view of NTRU

Given public key $G=3 e / a$.
Compute $H=G / 3=e / a$ in R_{Q}.

Lattice view of NTRU

Given public key $G=3 e / a$.
Compute $H=G / 3=e / a$ in R_{Q}.
$a \in R$ is obtained from
$1, x, \ldots, x^{N-1}$
by a few additions, subtractions.

Lattice view of NTRU

Given public key $G=3 e / a$.
Compute $H=G / 3=e / a$ in R_{Q}.
$a \in R$ is obtained from
$1, x, \ldots, x^{N-1}$
by a few additions, subtractions.
$a H \in R_{Q}$ is obtained from
$H, x H, \ldots, x^{N-1} H$
by a few additions, subtractions.

Lattice view of NTRU

Given public key $G=3 e / a$.
Compute $H=G / 3=e / a$ in R_{Q}.
$a \in R$ is obtained from
$1, x, \ldots, x^{N-1}$
by a few additions, subtractions.
$a H \in R_{Q}$ is obtained from
$H, x H, \ldots, x^{N-1} H$
by a few additions, subtractions.
$e \in R$ is obtained from
$Q, Q x, Q x^{2}, \ldots, Q x^{N-1}$,
$H, x H, \ldots, x^{N-1} H$
by a few additions, subtractions.
$(e, a) \in R^{2}$ is obtained from
$(Q, 0)$,
(Qu, 0),
$\left(Q x^{N-1}, 0\right)$,
$(H, 1)$,
$(x H, x)$,
$\left(x^{N-1} H, x^{N-1}\right)$
by a few additions, subtractions.
$(e, a) \in R^{2}$ is obtained from
$(Q, 0)$,
(Qu, 0),
$\left(Q x^{N-1}, 0\right)$,
$(H, 1)$,
$(x H, x)$,
$\left(x^{N-1} H, x^{N-1}\right)$
by a few additions, subtractions.
Write H as
$H_{0}+H_{1} x+\cdots+H_{N-1} x^{N-1}$.
$\left(e_{0}, e_{1}, \ldots, e_{N-1}, a_{0}, a_{1}, \ldots, a_{N-1}\right)$ is obtained from
$(Q, 0, \ldots, 0,0,0, \ldots, 0)$,
$(0, Q, \ldots, 0,0,0, \ldots, 0)$,
:
$(0,0, \ldots, Q, 0,0, \ldots, 0)$,
$\left(H_{0}, H_{1}, \ldots, H_{N-1}, 1,0, \ldots, 0\right)$,
$\left(H_{N-1}, H_{0}, \ldots, H_{N-2}, 0,1, \ldots, 0\right)$,
:
$\left(H_{1}, H_{2}, \ldots, H_{0}, 0,0, \ldots, 1\right)$
by a few additions, subtractions.
$\left(e_{0}, e_{1}, \ldots, e_{N-1}, a_{0}, a_{1}, \ldots, a_{N-1}\right)$
is a surprisingly short vector
in lattice generated by
$(Q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
$\left(e_{0}, e_{1}, \ldots, e_{N-1}, a_{0}, a_{1}, \ldots, a_{N-1}\right)$
is a surprisingly short vector in lattice generated by
$(Q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using (e.g.) BKZ.
$\left(e_{0}, e_{1}, \ldots, e_{N-1}, a_{0}, a_{1}, \ldots, a_{N-1}\right)$
is a surprisingly short vector in lattice generated by
$(Q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling: set up lattice to contain (e, 10a) if e is chosen $10 \times$ larger than a.
$\left(e_{0}, e_{1}, \ldots, e_{N-1}, a_{0}, a_{1}, \ldots, a_{N-1}\right)$
is a surprisingly short vector in lattice generated by
$(Q, 0, \ldots, 0,0,0, \ldots, 0)$ etc.
Attacker searches for short vector in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling: set up lattice to contain (e, 10a) if e is chosen $10 \times$ larger than a.

Exercise: Describe search for (d, b) as a problem of finding - a lattice vector near a point;

- a short vector in a lattice.

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name) is the structure we've seen:

Alice generates $G=3 e / a$ in R_{Q} for small random e, a :

$$
\text { i.e., } a G / 3-e=0 \text { in } R_{Q} .
$$

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
is the structure we've seen:
Alice generates $G=3 e / a$ in R_{Q}
for small random e, a :
ie., $a G / 3-e=0$ in R_{Q}.
Bob sends $C=b G+d$ in R_{Q}.
Alice computes $a C$ in R_{Q},
i.e., $3 b e+a d$ in R_{Q}.

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name) is the structure we've seen:

Alice generates $G=3 e / a$ in R_{Q} for small random e, a :
i.e., $a G / 3-e=0$ in R_{Q}.

Bob sends $C=b G+d$ in R_{Q}.
Alice computes aC in R_{Q}, i.e., $3 b e+$ ad in R_{Q}.

Alice reconstructs $3 b e+a d$ in R, using smallness of a, b, d, e.
Alice computes ad in R_{3},
deduces d, deduces b.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{Q}$.
Alice generates $A=a G+e$ in R_{Q} for small random a, e.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{Q}$.
Alice generates $A=a G+e$ in R_{Q} for small random a, e.

Bob sends $B=b G+d$ in R_{Q} and $C=m+b A+c$ in R_{Q} where b, c, d are small and each coeff of m is 0 or $Q / 2$.
"Product NTRU" (new name),
2010 Lyubashevsky-Peikert-Regev:
Everyone knows random $G \in R_{Q}$.
Alice generates $A=a G+e$ in R_{Q}
for small random a, e.
Bob sends $B=b G+d$ in R_{Q} and $C=m+b A+c$ in R_{Q} where b, c, d are small and each coeff of m is 0 or $Q / 2$.

Alice computes $C-a B$ in R_{Q}, i.e., $m+b e+c-a d$ in R_{Q}. Alice reconstructs m, using smallness of a, b, c, d, e.

Quotient NTRU attack problems:
Ring-0LWE (attack key) and Ring-LWE 1 (attack ciphertext).

Product NTRU attack problems:
Ring-LWE $_{1}$ (attack key) and
Ring-LWE 2 (attack ciphertext).

Quotient NTRU attack problems:
Ring-OLWE (attack key) and Ring-LWE 1 (attack ciphertext).

Product NTRU attack problems:
Ring-LWE $_{1}$ (attack key) and Ring-LWE 2 (attack ciphertext).

Disadantage of Quotient NTRU: maybe Ring-0LWE is a weakness.

Quotient NTRU attack problems:
Ring-OLWE (attack key) and Ring-LWE 1 (attack ciphertext).

Product NTRU attack problems:
Ring-LWE $_{1}$ (attack key) and Ring-LWE 2 (attack ciphertext).

Disadantage of Quotient NTRU: maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU: maybe Ring-LWE 2 is a weakness.

Quotient NTRU attack problems:
Ring-0LWE (attack key) and
Ring-LWE 1 (attack ciphertext).
Product NTRU attack problems:
Ring-LWE ${ }_{1}$ (attack key) and
Ring-LWE 2 (attack ciphertext).
Disadantage of Quotient NTRU: maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU: maybe Ring-LWE 2 is a weakness.

Disadantage of Product NTRU: extra m in $m+b e+c-a d$ needs smaller (weaker) noise.

2016 Peikert: "Ring-LWE is at least as hard as NTRU."

2016 Peikert: "Ring-LWE is at least as hard as NTRU."

What this theorem actually says is: you can solve (decisional) Ring-OLWE if you can solve (search) Ring-LWE ${ }_{1}$ with considerably more noise.

Ring-LWE ${ }_{1}$ with the same amount of noise (or slightly less!) could be weaker than Ring-0LWE. Also, Ring-LWE 2 could be weaker.

So Product NTRU could be less secure than Quotient NTRU.

Disadvantage of Product NTRU: need FO derandomization, not just FO reencryption.

Quotient NTRU is deterministic.

Disadvantage of Product NTRU: need FO derandomization, not just FO reencryption.

Quotient NTRU is deterministic.
Why this (maybe) matters: 2019
Bindel-Hamburg-Hövelmanns-Hülsing-Persichetti proves tight QROM IND-CCA2 security for one-way deterministic systems.

With FO derandomization,
all known proofs lose tightness or make stronger assumptions than one-wayness.

Disadvantage of Product NTRU: more multiplications in encapsulation and decapsulation.

Disadvantage of Product NTRU: more multiplications in encapsulation and decapsulation.

Disadvantage of Quotient NTRU: divisions in key generation are much more expensive than mults.

Disadvantage of Product
NTRU: more multiplications in encapsulation and decapsulation.

Disadvantage of Quotient NTRU: divisions in key generation are much more expensive than molts.

Fix: if you need to generate many keys, use Montgomery's trick to replace D divisions with 1 division $+4(D-1)$ muts.

Disadvantage of Product
NTRU: more multiplications in encapsulation and decapsulation.

Disadvantage of Quotient NTRU: divisions in key generation are much more expensive than mulls.

Fix: if you need to generate many keys, use Montgomery's trick to replace D divisions with 1 division $+4(D-1)$ mults.

2020 Bernstein-Brumley-ChenTuveri showed how to integrate this into OpenSSL and TLS 1.3.

Disadvantage of Product NTRU: double-size ciphertexts.

Disadvantage of Product NTRU: double-size ciphertexts.

Fix: 2012 Ding compressed ciphertexts to $\approx 1 / 2$ size.

Disadvantage of Product NTRU: double-size ciphertexts.

Fix: 2012 Ding compressed ciphertexts to $\approx 1 / 2$ size.

Bad news: Ding patented ${ }^{\wedge}$ this. I'm skeptical of the idea that tweaks will avoid the patent.

Disadvantage of Product NTRU: double-size ciphertexts.

Fix: 2012 Ding compressed ciphertexts to $\approx 1 / 2$ size.

Bad news: Ding patented ${ }^{\boldsymbol{\wedge}} \dot{\Delta}$ this.
I'm skeptical of the idea that tweaks will avoid the patent.

2014 Peikert: "As compared with the previous most efficient ringLWE cryptosystems and KEMs, the new reconciliation mechanism reduces the ciphertext length by nearly a factor of two". No. Minor Ding tweak, same length.

Disadvantage of Product NTRU:
2010.02 Gaborit-Aguilar Melchor patent ${ }^{\boldsymbol{\wedge}}{ }^{\boldsymbol{A}}$, before LPR publication, covers Product NTRU.

Disadvantage of Product NTRU:
2010.02 Gaborit-Aguilar Melchor patent ${ }^{\circ}{ }^{\circ}$, before LPR publication, covers Product NTRU.

Rumors of patent-buyout offers have not shown results (yet?).

Disadvantage of Product NTRU:
2010.02 Gaborit-Aguilar Melchor patent \AA, before LPR publication, covers Product NTRU.

Rumors of patent-buyout offers have not shown results (yet?).

A British law firm named Keltie, not saying who it is representing, has tried to kill the patent, and so far has failed.

To watch Keltie's ongoing appeal: https://tinyurl.com/y4e66y6b Some interesting documents.

Disadvantage (?) of Quotient NTRU: much less marketing. Product NTRU is backed by 10 years of security exaggeration ("strong security guarantees"), successfully attracting interest.

Disadvantage (?) of Quotient NTRU: much less marketing.

Product NTRU is backed by 10 years of security exaggeration ("strong security guarantees"), successfully attracting interest.

Product NTRU submissions:
Frodo, Kyber, LAC, NewHope, NTRU LPRime, Round5, SABER, ThreeBears. (All compressed.)

Quotient NTRU submissions:
NTRU, Streamlined NTRU Prime.

