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X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x
sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage:



sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7Zx.<x> = ZZ[]
# now Zx 1s a class
# Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:



x.<x> = ZZI[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

kX + 2
tg # built-in add

3xx + b

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*2+fx(7*x)+f*x72
True

sage:




Z[]
S a class
ts are polys

h int coeffs

1,4])

7,11)

uilt—-in add

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72
True

sage:

. # replace
. # x7(N+1)

: def convol

return (



dd

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: f*xg == f*2+fx(7*x)+f*x72
True

sage:

: # replace x"N with
. # x"(N+1) with x, e

: def convolution(f,g

return (fxg) 7 (x



sage: f*x # built-in mul sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

S*xx"2 + 2%x + 6 sage:

sage: f*x(7*x)
28*%x"3 + 7*x72 + 21*x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: fx(7*x) sage:

28*%x"3 + T*x"2 + 21%x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: f*xg sage:
4*xx"4 + 29%x"3 + 18*x"2 + 23*x

+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage:

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:




sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage: convolution(f,g)

sage: fxg == f*x2+fx(7*x)+f*x72 18*%x~2 + 27*x + 35
True sage:

sage:




kX # built-in mul

X"2 + 3%X

kX~ 2

Xx"3 + 3*%x72

k2

2%x + 6

¥ (7*x)

t 7Txx72 + 21%x

g

29%x73 + 18*%x72 + 23%X

kg == f*2+fx (7*xx)+f*x"2

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
... return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4%x + 1

sage: convolution(f,g)

18%x72 + 27*x + 35

sage:




ilt-1in mul sage: # replace x"N with 1, sage: def random

X sage: # x"(N+1) with x, etc. c.o..: £ = 1list
sage: def convolution(f,g): Cee for j

X" 2 ...t return (fxg) % (x"N-1) ....: return Z
sage: N = 3 # global variable sage:

sage: convolution(f,x)
21%x X"2 + 3xx + 4

sage: convolution(f,x"2)
18*%x72 + 23%*x 3xx"2 + 4*x + 1

sage: convolution(f,g)
+fx (7*x)+f*x"2 18%x"2 + 27*x + 35

sage:




1 sage: # replace x"N with 1, sage: def randomsecret():
sage: # x"(N+1) with x, etc. ....: f = list(randrang
sage: def convolution(f,g): - for j in range(
....: return (fxg) % (x"N-1) ....: return Zx(f)
sage: N = 3 # global variable sage:

sage: convolution(f,x)
X2 + 3xx + 4

sage: convolution(f,x"2)
- 23%*X 3xx"2 + 4%x + 1

sage: convolution(f,g)
Txx™2 18%x72 + 27*x + 35

sage:




sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)



sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)



sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

. def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)

: randomsecret ()

- x"2-x -1



sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()
-x"3 - x2-x-1

sage: randomsecret ()
X6 + x5+ x"3 - x

sage:



sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x"2 +
x + 1

sage:



replace x"N with 1,
x~(N+1) with x, etc.
ef convolution(f,g):

return (f*xg) % (x"N-1)

= 3 # global variable
onvolution(f,x)

kx + 4
onvolution(f,x~2)

4dxx + 1
onvolution(f,g)

+ 27*x + 35

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5 +x"3 - x

sage: randomsecret ()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:
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x"N with 1,
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ution(f,g):
fxg) % (x"N-1)

lobal wvariable

n(f,x)

n(f,x"2)

n(f,g)
35

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

Wil use bigger N
1998 NTRU papel

Some choices of N
iIn NISTPQC subn

e.g. N =701 for |
e.g. N =743 for |
e.g. N =761 for |
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sage: def randomsecret():

....: f = list(randrange(3)-1
Ceel for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

sage: randomsecret()
-Xx"6 + x5 + x4 - x"3 - x"2+
x + 1

sage:

Will use bigger N for securit

1998 NTRU paper took N =
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iIn NISTPQC submissions:

e.g. N =701 for
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sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.




sage: def randomsecret():

....: f = list(randrange(3)-1
Cee for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

-x"3 - x2-x-1

sage: randomsecret ()

sage: randomsecret ()
-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.



sage: def randomsecret():

....: f = list(randrange(3)-1
Cee for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

-x"3 - x2-x-1

sage: randomsecret ()

sage: randomsecret ()
-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.



of randomsecret():
f = list(randrange(3)-1
for j in range(N))

return Zx(f)

=7
andomsecret ()
x"2 - x - 1
andomsecret ()
b+ x"3 - X
andomsecret ()

x"b + x4 - x3 - x72 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.
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secret () :
(randrange(3)-1
in range(N))

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.
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e(3)-1
N))

X"2 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.
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Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.
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Public key is an element of Ry.

(Variants: e.g., prime Q.
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(Z/4591)[x]/(x"®! — x —1).)



bigger N for security.
"RU paper took N = 503.

oices of
PQC submissions:

- 701 for NTRU HRSS.
- 743 for NTRUEncrypt.
- 761 for NTRU Prime.

against attack algorithms
oday, even for future
with quantum computer.

here are faster attacks!
“guarantees’ are fake.
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N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

Rq = (Z/Q)[x]/(x" — 1)
is the ring of polynomials

with integer coeffs modulo
N 1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)
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ne ring of polynomials
n integer coeffs modulo @
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Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rg: e.g.,
(Z/4591)[x]/(x"®! — x —1).)
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NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNnad

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)
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N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.



11

N TRU public keys N TRU encryption
Parameter (), power of 2: Ciphertext: bG + d € Rg
e.g., 4096 for NTRU HRSS. where G € Ry is public key

Ro = (Z/Q)[x]/(xN 1) and b, d € R are secrets.

is the ring of polynomials

with integer coeffs modulo @
V1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)




N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

Rq = (Z/Q)[x]/(x" — 1)
is the ring of polynomials

with integer coeffs modulo @
V1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

12



NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNd

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11
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N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.
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-159%x - 86 6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
sage: balancedmod(u,200) 3*%x72 + 3xx + 4

41*x — 86 sage:

sage:




16
of balancedmod(f,Q):

g=1ist (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

= 314-159%*x

% 200

+ 114

1 - 400) 7% 200

- 36
alancedmod (u, 200)
36

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
.e..: return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret ()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
3*¥x72 + 3xx + 4

sage:

17

def 1inv
asser

g = 1I

M = b
conv
while

r =

if

g =

Exercise
invertn
Hint: H
divide fi



16
edmod (£,Q) :

(£[11+Q//72)7%Q)

or i in range(N))

x(g)

O%x

% 200

d(u,200)

sage: def invertmodprime(f,p):
..... Fp = Integers(p)

..... Fpx = Zx.change_ring(Fp)
..... T = Fpx.quotient(x~"N-1)
..... return Zx(1ift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*%x"b + 3*xx"4 + 3*%xx"3 +
3xx"2 + 3*%xx + 4

sage:

17

def invertmodpow
assert (J.is_po

g:
M = balancedmo

invertmodp
conv = convolu
while True:
r = M(conv(g
1f r == 1: r

g = M(conv(g

Exercise: Figure o
invertmodpowerc«
Hint: How many |
divide first r-17 ¢



16 17

) sage: def invertmodprime(f,p): def invertmodpowerof2(f,Q
2)7%Q) ....: Fp = Integers(p) assert Q.is_power_of(2)
ange(N)) | ....: Fpx = Zx.change_ring(Fp) g = invertmodprime(f,2)
....: T = Fpx.quotient (x"N-1) M = balancedmod
... return Zx(1ift(1/T(£))) conv = convolution

. while True:

sage: N =7 r = M(conv(g,f),Q)
sage: f = randomsecret() if r == 1: return g
sage: f3 = invertmodprime(f,3) g = M(conv(g,2-r),Q)

sage: convolution(f,f3)
6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +

3*x"2 + 3*%xx + 4

Exercise: Figure out how
invertmodpowerof2 works
Hint: How many powers of

Sage: divide first r-17 Second r-




sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
... return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx”5 + 3*x"4 + 3*x"3 +
3*¥x"2 + 3xx + 4

sage:

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18



of invertmodprime(f,p):
Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x“N-1)
return Zx(1ift(1/T(£)))

7

randomsecret ()

3 = invertmodprime(f,3)
onvolution(f,f3)
6*xx"5 + 3*%*x"4 + 3%xx"3 +

+ 3xx + 4

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N



modprime (f,p) :
egers (p)
.change_ring(Fp)
quotient (x"N-1)
x(Lift (1/T(£)))

secret ()
tmodprime (f,3)
n(f,£3)

3*x"4 + 3*xx°3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256



ing (Fp)
x"N-1)
T(£)))

(£,3)

*x~3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256



def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256

19



def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage: (
sage:

sage:

7
256

randomsecret ()

19



def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx6 - x4 + x2 +x -1

sage:

19



def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:
sage:

sage:

7
256

randomsecret ()

H H O =
Il

-Xx6 - x4 + x2 +x -1

sage:

sage:

g = invertmodpowerof2(f,Q)

19



def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - b4d*x"4 -
87xx"3 - 36*xx"2 - b8*x + 61

sage:

19



def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257

sage:



def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:



ortmodpowerof2(f,Q) :

t Q.is_power_of (2)

nvertmodprime (f,2)

alancedmod

= convolution
True:
M(conv(g,f),Q)

r == 1: return g

M(conv(g,2-r),Q)

. Figure out how
1odpowerof2 works.
oW many powers of 2
st r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*xx"3 - 36*xx"2 - b8*x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x"4 + 256%x + 257

sage: balancedmod(_,Q)
1

sage:

def key;

while

Gl
S
T

exXC



erof2(£f,Q):
wer_of (2)
rime(£f,2)

d

tion

’f) ,Q)

eturn g

,2-1),Q)

ut how

f2 works.
yowers of 2
econd r—17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b - 2b6*%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:

try:

a = random

a3

inver

aj = 1nver

random
G = balanc
con
GQ = 1inver
secretkey

return G,s

except:

pass



18

19

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 1206%x"0 - b4*xx"4 -
87*x"3 — 36*xx"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6*x74 + 2b6*xx + 2b7
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:
try:
a = randomweightw()
a3 = 1nvertmodprime

al = invertmodpower

randomsecret ()
G = balancedmod(3 *
convolution(
GQ = invertmodpower
secretkey = a,ad,G(
return G,secretkey
except:

pass



sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 + x2 +x -1

sage: g = invertmodpowerof2(f,Q)

sage: g
4'7xx"6 + 126*xx"5 - bd*xx"4 -

87T*x"3 — 36%x"2 - 58*%x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x74 + 2b56%x + 257

sage: balancedmod(_,Q)
1

sage:

20

def keypair():
while True:

try:

a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,G(

return G,secretkey

except:

pass



19

-
256

randomsecret ()

x4 + x"2 +x -1

= invertmodpowerof2(f,Q)

+ 126*%x"b5 - bd*xx"4 -

- 36*%x72 - b8*x + 61
onvolution(f,g)

b — 2b6*%x74 + 2b6*xx + 2b7
vlancedmod (_, Q)

20

def keypair():
while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret ()

G = balancedmod(3 *
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q

return G,secretkey

except:

pass

sage:

sage:

G



19

secret ()

+ x - 1

modpowerof2(f,Q)

- b4*xx"4 -

- 53*x + 061
n(f,g)

"4 + 256*%x + 257
d(_,Q)

20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey

except:

pass

sage:

sage:

G,secretke



19
f2(£,Q)
- 61
X + 257

def keypair():
while True:
try:
a = randomweightw()

a3 = invertmodprime(a,3)

20

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q
return G,secretkey
except:

pass

sage: G,secretkey = keypa

sage:



20
def keypair():

while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()

sage:

21



20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey

except:

pass

sage: G,secretkey = keypair()
sage: G

-126*x"6 - 31*xx"5 - 118*x"4 -
33*x"3 + 73*x"2 - 16*%x + 7

sage:

21



def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*%x"6 - 31*x"b - 118*%x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey

sage:



def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*x"6 - 31*%x"5 - 118%xx74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-XxX6 + x’b - x4 +x°3 -1

sage:



def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*%x"6 - 31*x"b - 118*%x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253*%x72 - 3*%x - 3

sage:



def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21



20
pair () :

True:

= randomweightw()
3 =
) =

invertmodprime(a,3)

invertmodpowerof2(a, Q)

randomsecret ()

balancedmod (3

convolution(e,aQ),Q)
) =
acretkey = a,a3,G(

invertmodpowerof2(G,Q)

eturn G,secretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + x’b-x"4+x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253*%x72 - 3*%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21




20

weightw ()
tmodprime (a, 3)
tmodpowerof2(a,Q)
secret ()

edmod (3 *
volution(e,aQ),q)
tmodpowerof2(G,Q)
= a,a3,Gq

ecretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,Gl = secretkey
sage: a
-XxX6 + x’b - x4 +x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253%x72 - 3%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%xX°5 - 3*%x"3 + 3%x72

- 3%x - 3

sage:

21

sage: def encryp
b,d = bd
bG =
C = bala

..... con

return C



20

(a,3)
0f2(a,qQ)

e,aQ),q)
0f2(G,Q)

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*x"2 - 16*xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + xb-x"4+x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253*%x72 - 3%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21

sage: def encrypt(bd,G):
et b,d = bd

....: bG = convolution/(
e C = balancedmod(kt

e el return C



sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

22



sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage:

def encrypt(bd,G):
b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

: G,secretkey = keypair()

22



21

sage: G,secretkey = keypair() sage: def encrypt(bd,G):

sage: G - b,d = bd

-126*%x"6 - 31*%x"5 - 118*%x"4 - Ce bG = convolution(b,G)
33%x"3 + 73*%x"2 - 16*%xx + 7 Ce C = balancedmod(bG+d,Q)
sage: a,a3,G) = secretkey Ce el return C

sage: a Cee

-Xx"6 + x5 - x74 + x°3 - 1 sage: G,secretkey = keypair()
sage: convolution(a,G) sage: b = randomweightw()
-3*x"6 + 263*%x"5 + 263*x"3 - sage:

203*%x72 — 3*x - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:




sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

. G,
N o
- d

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()

= randomsecret ()

22



sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

22



sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G): .
..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:



,secretkey = keypair() : sage: def encrypt(bd,G): : NTRU c
- b,d = bd | Given ci
5 — 31*%x"5 - 118*x74 - Ce bG = convolution(b,G) a(bC?%—
+ 73*%x"2 - 16%x + 7 Ce C = balancedmod (bG+d, Q)
,a3,G = secretkey Ce et return C
Xx"b - x4 + x°3 - 1 sage: G,secretkey = keypair()
onvolution(a,G) sage: b = randomweightw()
+ 263*%x7"5 + 2B3*x"3 - sage: d = randomsecret ()
2 - 3*%x - 3 sage: C = encrypt((b,d),G)
alancedmod (_, Q) sage: C
- 3*%X"b5 - 3*%x°3 + 3*x72 120*x"6 + 7*x"b - 116*xx74 +
- 3 102%x"3 + 86*x"2 - 74*xx - 9b
sage:




y = keypair()

5 - 118xx"4 -
- 16%x + 7

secretkey

+ x°3 -1
n(a,G)

+ 2b3*%x73 -

3

d(_,Q)
3*%x"3 + 3*x"2

21

sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx"2 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext £
a(bG + d) = 3be



ir()

4 -

3%x"2
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sage:

. G,
. b
. d
: C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod (bG+d, Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120*%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, co
a(bG 4+ d) =3be + ad in R



sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.

23



sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x"6 + 7*x"b - 116*xx74 +
102*%x"3 + 86*x"2 - 74*xx - 9b

sage:

22

N TRU decryption

23

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.

a, b, d, e have sma

| coeffs,

so 3be + ad I1s not very big.



22 23
sage: def encrypt(bd,G): N TRU decryption

Ce el b,d = bd
Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

e et return C

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

,secretkey = keypair ()

G
sage: b = randomweightw()
d = randomsecret ()
C = encrypt((b,d),G)
sage: C
120%x"6 + 7*x"b - 116*x74 +
102%x"3 + 86*x"2 - 7T4xx - 95

sage:




sage: def encrypt(bd,G):

sage: G,
sage: b
sage: d
sage: C
sage: C
120*x76

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7*x"b - 116*x"4 +

102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).



sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x"6 + 7*x"b - 116*xx74 +
102*%x"3 + 86*x"2 - 74*xx - 9b

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.



22 23
sage: def encrypt(bd,G): N TRU decryption

Ce el b,d = bd
Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

e et return C

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret () Then 3be + ad in Rp reveals
sage: C = encrypt((b,d),G) 3be+ ad in R = Z[X]/(XN — 1).
sage: C Reduce modulo 3: ad in R3.
120*%x"6 + 7*x"b - 116*x"4 + MUltIply by 1/3 in R3

102%xx"3 + 86*xx"2 - 74*x - 95 to recover d In R3

sage:




sage: def encrypt(bd,G):

..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)
sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.



ef encrypt(bd,G):

b,d = bd

bG = convolution(b,G)

C = balancedmod (bG+d, Q)

return C

,secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7xx"b - 116*x"4 +
3 + 86*%x"2 - T4*x - 95

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad Is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.




t(bd,G):

volution(b,G)
ncedmod (bG+d, Q)

y = keypair ()
weightw()
secret ()

t ((b,d),G)

- 1ll6*x"4 +
2 - 74xx - 95

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R = Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decryp

..... M = bala
..... conv = C
..... a,ald, Gy

..... u = M(co
..... d = M(co
..... b = M(co
..... return b



b,G)
G+d, Q)

ir()

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decrypt(C,secre
- M = balancedmod

- conv = convolutio
Ce et a,a3,Gl = secretk
Ce u = M(conv(C,a),Q
Ce d = M(conv(u,a3),
Ce b = M(conv(C-d,GQ

C et return b,d



N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

el u = M(conv(C,a),Q)
..... d = M(conv(u,a3),3)
....: b= M(conv(C-d,GR),Q)

return b,d

24



N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):
M = balancedmod

conv = convolution

a,a3,GQ = secretkey
u = M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

return b,d

e e e d =
e e b =

sage: decrypt(C,secretkey)
(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage:

24



N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

... u = M(conv(C,a),Q)
C d = M(conv(u,a3),3)
..... b = M(conv(C-d,GQR),Q)

return b,d

sage: decrypt(C,secretkey)

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24



lecryption

phertext bG + d, compute
d) = 3be + ad in Ryp.
have small coeffs,

- ad Is not very big.
' that coeffs of 3be + ad
een —Q/2 and Q/2 — 1.

e + ad in Rp reveals
din R =Z[x]/(xN —1).
modulo 3: ad in R3.

by 1/3 In R3

er d In Rb.

re between —1 and 1,
er d in R.

23

24

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce e a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u =
e e d =
e e e b =

C et return b,d

sage: decrypt(C,secretkey)

(x"6 - x5 -
x4 + x°3 +
sage: b,d

(x"6 - x5 -

x"4 + x°3 +

x~2
x~2

x~2
x~2

x - 1, x5 +

sage:

sage:

N



G + d, compute
——eufin Rz}
|l coeffs,

- very big.
fs of 3be + ad
> and Q/2 — 1.

Ro reveals
Z[x]/(xN —1).
ad In R@.

R3

1 —1 and 1,

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xb-x"2-x-1, x°b +
Xx"4 + x”3 + x"2 - x)

sage: b,d

(x6 - xb-x"2-x-1, xb +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,

sage:



mpute

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce e a,a3,G = secretkey

Ce u = M(conv(C,a),Q)

Ce d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)

C et return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x5 +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x5 +

x4 + x°3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage:



sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage:

25



sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5
sage: G,secretkey = keypair()

sage:

25



sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*x"3 - 10*%x"2 + 14*%x - 22

sage:

25



sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey

sage:

25



sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey

sage: a

-X"6 - xb+x"3+x -1

sage:

25



24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution
sage: decrypt(C,secretkey) sage:

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)




24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution
sage: decrypt(C,secretkey) sage: M = balancedmod
(x6 - x5 - x"2 -x -1, x75 + sage:

x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)




24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution

sage: decrypt(C,secretkey) sage: M = balancedmod
(x"6 - xbh-x"2-x-1, x5 + sage: e3 = M(conv(a,G),Q)
x4 + x"3 + x72 - x) sage:

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)




sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x°b +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x°b +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25



of decrypt(C,secretkey):
M = balancedmod

conv = convolution
a,a3,GQ = secretkey

u = M(conv(C,a),Q)

d = M(conv(u,a3),3)

b = M(conv(C-d,GQ),Q)

return b,d

ecrypt (C,secretkey)

X" b - x2-x-1, xb +
Xx"3 + X°2 - X)

,d

X" - x2-x-1, xb +

x"3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x°b + 3*x"4 - 3*x73
+ 3*X

sage:

25

sage:

sage:

b



24 25

t (C,secretkey) : sage: N,Q,W = 7,256,5 sage: b = random
ncedmod sage: G,secretkey = keypair() sage:

onvolution sage: G

= secretkey 44xx"6 - 97*x"b - 62%x"4 -

nv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22

nv(u,a3),3) sage: a,a3,GQ = secretkey

nv(C-d,GQ),Q) sage: a

,d -x’6 - xb+x"3+x -1

sage: conv = convolution
secretkey) sage: M = balancedmod

- x -1, x5 + sage: e3 = M(conv(a,G),Q)

- X) sage: €3
-3*%*x"6 + 3%x"b + 3*%x74 - 3%x"3
-x -1, x5 + + 3%*X

- X) sage:




24 25

tkey) : sage: N,Q,W = 7,256,5 sage: b = randomweightw()
sage: G,secretkey = keypair() sage:

n sage: G

ey 44xx"6 — 97*x"5 - 62*%x"4 -

) 126*xx~3 - 10*x"2 + 14%xx - 22

3) sage: a,a3,GQ = secretkey

),Q) sage: a

-Xx"6 - x5 +x"3+x -1
sage: conv = convolution
) sage: M = balancedmod

Xx"5 + sage: e3 = M(conv(a,G),Q)
sage: ed
-3*x"6 + 3*%x°b + 3*x"4 - 3*%x”3
X" 5 + + 3*X

sage:




25

sage: N,Q,W = 7,256,5 sage: b = randomweightw()
sage: G,secretkey = keypair() sage:
sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey
sage: a

-X"6 - x"0+x3+x -1
sage: conv = convolution
sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*%x"6 + 3*%x°b + 3*x"4 - 3*%x"3
+ 3%X

sage:




sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage:
sage:

sage:

b
d

randomweightw ()

randomsecret ()

26



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b
sage: d
sage: C

sage:

randomweightw ()

randomsecret ()

M(conv(b,G)+d,Q)

26



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x5 + 6*%x74 - 24%x"3
+ 56*%x"2 - 98*xx - 71

sage:

26



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

—120*%x"6 - x75 + 6*%x"4 - 24%x73
+ B6*x~2 - 98%x - T1
sage: u = M(conv(a,C),Q)

sage:

26



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56*xx"2 - 98xx - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x°b - T*x"4 + 4%x"3 -
6*x - 1

sage:

26



sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26



,Q,W = 7,256,5
,secretkey = keypair ()

- O7xx"b5 - 62%x"4 -
3 — 10xx"2 + 14%x - 22
,a3,G = secretkey

x"b + x°3 +x -1

onv = convolution

= balancedmod

3 = M(conv(a,G),Q)

3

t 3*%x°b + 3*%x74 - 3*x”3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 - 2%x"b - T*x"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)
3*X"6 — 2%x"b - T*xx"4 + 4*%x"3 -
6*x - 1

sage:

26

sage:

sage: M

-X~6

sage:



256,5
y = keypair()

- 62%x74 -
2 + 14%xx - 22

secretkey

+ x -1
volution

edmod

v(a,G),Q)

3*%x"4 - 3*%x~3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24*%x”3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 — 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

sage:

sage:

-X~6

sage:

# u 1s 3be
M(u,3)

+ x°b - x74



ir()

3*xx~3

25

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x"5 + 6*%x74 - 24*x"3
+ 56*x"2 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*x"6 — 2%x"b5 - T*x"4 + 4%x"3 -
6xx — 1

sage: conv(b,e3)+conv(a,d)
SxX"6 — 2%x°5 - Txx"4 + 4%x°3 -
6xx - 1

sage:

26

sage:

sage:

-X~6

sage:

# u 1s 3be+ad in R
M(u,3)

+ x°b - x4 + x°3 -



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage:

sage:

-X~6

sage:

# u 1s 3bet+ad in R
M(u,3)

+ x°b - x4 + x3 -1

27



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage:

sage:

-X~6

sage:

-X~6

sage:

# u is 3bet+ad 1n R
M(u,3)

+ X0 - x4 +x"3 -1
M(conv(a,d),3)

+ x°b - x4 + x3 -1

27



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"5 + x°4 + x°3 - X

sage:

R

27



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage:

R

27



sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

27



~

O

~

1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)
- x°5 + 6%xx"4 - 24%x"3
2 - 98xx - 71

= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

onv(b,e3)+conv(a,d)

1

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

27

Does de

A
A

coeff
coeff

and exa



26 27
weightw () sage: # u is 3be+ad in R Does decryption a

secret () sage: M(u,3)
(b,G)+d,Q) -x"6 + x°6b - x4 +x"3 -1

All coeffs of d are

All coeffs of a are

. M ,d ,3
sage: M(conv(a,d),3) and exactly W are

6*%x"4 - 24%x°3 -X"6 + X0 - x4 +x"3 -1
- 71 sage: conv(M(u,3),a3)
(a,C),Q) -3%x"5 + x74 + x°3 - x - 3
sage: M(_,3)
7*x"4 + 4%xx"3 - x4 + X3 - X
sage: d
+conv(a,d) X4 + x°3 - x

(xx"4 + 4xx~3 - sage:




24%x”"3

:*XAB -

:*XAS -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does decryption always worl

All coeffs of d are in {—1,0
All coeffs of a are in {—1, 0,
and exactly W are nonzero.




sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

Does decryption always work?

A
A

coef
coef

s of aarein {—1,0,1},

and exactly W are nonzero.

s of d arein {—1,0,1}.

23



sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

Does decryption always work?

All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad iIn R
has absolute value at most W.

All coeffs of d are in {—1,0,1}.

23



sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)



sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.



sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.
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has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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Does decryption always work? What about W = 467, Q = 20487
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and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
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a of any weight, d of weight W .)
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e.g. W =467: at most 1868.
Decryption works for Q = 4096.
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a=b=c=d=
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3be + ad has a coeff 4W > Q/2.
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Attacker changes d to

d -

-1, d

d -

-2, d

d -

- 3, etc.

X,...,d::

XN_l;

2X,...,d:

B 2XN—1.

33



Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hal

2000 J

Fluhrer, etc.: Even easier attacks

—Goldberg—Schneier,

aulmes—Joux, 2000
Hoffstein—Silverman, 2016

using invalid messages.

Attacker changes d to
d X,”.,d::XN_%
d+2x, ..., d::2XN_1;

d—+1,
d+ 2
d + 3,

etc.

This changes 3be + ad: adds

T—d, Xa, ...

::23,:

:2X3,...

+34a, etc.

, X

N—la;

:ZXN_la;

33



ble guesses given a
decryption failure:

ted with some x' rev(d).

orrelated with x~'d.

correlated with drev(d).

entally confirmed:

of drev(d)

1e decryption failures
to arev(a).

o integers: arev(a).

ot 2002 Gentry—Szydlo
n then finds a.

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d+2x, ..., d 2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be
all other
and a =



S given a
1 failure:

some x' rev(d).

vith x~'d.

with d rev(d).

nfirmed:

/)
ion failures

arev(a).

antry—Szydlo
ds a.

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = --
all other coeffs in
and a = - - - + x*#"



1lo

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = - -+390x*
all other coeffs in [—389, 38



1999 Hal

2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to
d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;

d + 3, etc.

This changes 3be 4+ ad: adds
T—a, T—Xa, ... ::XN_la;
+2a, +2xa, ..., ::2XN_13;

+34a, etc.

33

e.g. 3betad = ---+390x48+. ..
all other coeffs in [—389, 389];

34



1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

34



1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

34



1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...




1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...

Try kx2, kx3, etc.
See pattern of a coeffs.



|l-Goldberg—Schneier,
1Imes—Joux, 2000

1-Silverman, 2016
etc.: Even easier attacks

/alid messages.

- changes d to

'+ x, ..., d::XN_l;
'+ 2x, ..., d::2XN_1;
{C.

nges 3be + ad: adds
3, ..., ::XN_la;

'Xa, ..., ::2XN_13;

33

e.g. 3be+ad = -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa—=---4+ x*% 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to

Approac
constant

For eact
generate
Use sign

that nok



-g—Schneier,

x, 2000

n, 2016

1 easler attacks
ages.

d to
d =+ XN_l'
d =+ 2XN_1;

33

e.g. 3be+ad = - -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle inv

Approach 1: Tell i
constantly switch

For each new senc
generate new publ
Use signatures to

that nobody else 1



T,

tacks

[—1.

Is

33

e.g. 3be+ad = -+390x48 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---4+ x4 1 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid mess:

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.



e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

35



e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

and a=---+ x*% 1 ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k th

Does 3be + ad + kxa a

at fails.

so fail?

Yes if xa = --- 4+ x*8 _
e ifa= .- - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

35



e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

35
How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.



tad = ---+390x*8 4. . .

“coeffs in [—389, 389];

e+ ad + ka =
)0 + k)x*8 ...
on fails for big k.

or smallest k that fails.

e + ad + kxa also fail?

AT

| kx3, etc.
ern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to

Eliminat
Nnot enol
using de
random



+390x478 . ...

[—389, 389);
L.

ka =
8 4 ...
r big k.

t k that fails.

kxa also fail?

A8

ATT |

oeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption

to eliminate invalid messages.

Most submissions do this.

35

How to handle des

Eliminating invalic
not enough: reme
using decryption f.
random valid mes:



1ls.

ail?

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to handle decryption fz

Eliminating invalid message:s
not enough: remember atta
using decryption failures for
random valid messages.



35
How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

36



How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

36
How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.



How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36



handle invalid messages

h 1: Tell user to
ly switch keys.

' new sender,

' new public key.
atures to ensure
ody else uses key.

2uses a key:
ser for the attacks.

h 2: FO. Modify
on and decryption
1ate invalid messages.
bmissions do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Roundb, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBe
failure r:
generic |
provably



alid messages

iser to
keys.

ler,

ic key.
ensure
Ises key.

V:
» attacks.

Modity
cryption

d messages.
do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conje
failure rate is sma
generic non-quant
provably maintain



35

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Roundb, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough -
generic non-quantum attack
provably maintain full securi



How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

37



How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

37



How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.

37



How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that
generic non-quantum attacks
provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37



handle decryption failures

Ing invalid messages Is
1igh: remember attack
cryption failures for
valid messages.

)C encryption submissions
ailure rates.

'wHope, Roundb, SABER:
red failure rate is small
that generic non-quantum
provably maintain some
(Security loss? Wrong
re? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-fo

Attacket
G = 3e/
Can att:



“ryption failures

| messages Is
mber attack
ailures for
ages.

1on submissions
S.

oundb, SABER:
> rate 1s small
IC non-quantum
naintain some
loss? Wrong
tum attacks?)

36

37
ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

Brute-force search

Attacker Is given
G = 3e/a, ciphert
Can attacker find



1lures

1S
ck

SSIONS

\BER:
nall

antum
me
ong
ks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = b
Can attacker find b?



ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

38



ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel



ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)



ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.

Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.



ars: conjectured

ate Is small enough that
non-quantum attacks
“maintain full security.

\yber: proven

ate Is small enough that
non-quantum attacks
“maintain some security.

N TRU Prime:

no decryption failures.
ipact on efficiency.
mpler security review.

publishing attack papers.

37

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG +d.

Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: done!

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivale

Secret k
secret ke
secret ke



ctured

| enough that
um attacks
full security.

ven
| enough that
um attacks

some security.

me:
tion failures.
fficiency:.

Irity review.

“attack papers.

37

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, €) i
secret key (xa, xe
secret key (x2a, x°



37 38
Brute-force search Equivalent keys
Fhat Attacker is given public key Secret key (a, ) is equivaler
> G = 3e/a, ciphertext C = bG + d. secret key (xa, xe),
ty. Can attacker find b? secret key (xza,xze), etc.
Search (N)ZW choices of b.
that Wi
If d = C — bG is small: done!
S
irity. (Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)
es.
Or search through choices of a.
v If e = aG/3 is small, use (a, e)
pers. to decrypt. Advantage: can reuse
attack for many ciphertexts.




Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

39



Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

39



Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

39



Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:
(\%) W 2799.76;

(x)QW/N ~ 2790.31

39



Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

39

(V/\é) 2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(x)QW/N ~ 2790.31

secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.
If e = aG/3 is small, use (a, e)
to decrypt. Advantage: can reuse

| Exercise: Find more equivalences!
attack for many ciphertexts.




rce search

~1s given public key

a, ciphertext C = bG + d.

\cker find b?

VA&) oW choices of b.
" — bG i1s small: donel!

s find two different
1?7 Unlikely. This would

) legitimate decryption.)

h through choices of a.

G /3 is small, use (a, e)
pt. Advantage: can reuse
Or many ciphertexts.

38

39
Equivalent keys

Secret key (a, e) is equivalent to

secret key (xa, xe),

2 2

secret key (x“a, x“e), etc.

Search only %(%)2W/N choices.

N =701 W = 467:
(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

Collision

Write a
a1 = bo
ar = rer



yublic key

ext C = bG +d.

b?

vices of b.
mall: donel

different
y. This would
e decryption.)

choices of a.
all, use (a, €)
tage: can reuse
phertexts.

38

39
Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N = 701, W = 200:
(%)2‘/‘/ ~ 2799.76;

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

Collision attacks

Write a as a1 + a;
a1 = bottom [N/
d) = remaining te



uld
on.)

f a.

reusSe

38

39
Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(%)2W/N choices.

N =701 W = 467:
(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

Collision attacks

Write a as a; + a» where
a1 = bottom | N/2| terms o
a> = remaining terms of a.



Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N =701, W = 200:
(%)2‘/‘/ ~ 2799.76;

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

39

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

40



39 40

Equivalent keys Collision attacks

Secret key (a, e) is equivalent to Write a as a; + a» where

secret key (xa, xe), a; = bottom [N/2] terms of a,
secret key (x°a, x°e), etc. a> = remaining terms of a.
Search only %(VA\;)ZW/N choices. e=(G/3)a=(G/3)a1 + (G/3)a

N = 701, W = 467: so e — (G/3)ax = (G/3)a.
(V/\é)Qw ~ 21106.09.
(\;\V/)QW/N ~ 21096.64

N =701, W = 200:
(%)QW ~ 2799.76.

(V/\|§)2W/N ~ 2790.31

Exercise: Find more equivalences!




Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

(V/\é) 2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:

N
W

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

39

40
Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])



Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

(V/\é) 2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N =701, W = 200:

N
W

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

39

40
Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)a1).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.



nt keys

ey (a, e) is equivalent to
2y (xa, xe),
y (x%a, x°e), etc.

nly ~(V/\|§) 2W' /N choices.

W =467:

(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

, W =200:

N
W

(VA\;)ZW/N ~ 2790.31

. Find more equivalences!

(NYoW s 279976,

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < 0])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice \

Given pt
Comput



5 equivalent to

I

e), etc.
2W /N choices.

[

\oW ~, 51106.09.
/)27 = 2 ,
W /N ~ 2109664

0:

N
/N

W /N ~ 279031

re equivalences!

W ~ »799.76.
)W ~ 279976,

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of N1

Given public key (
Compute H=G/.



1t to

)ICES.

1106.09.
096.64

2799.76.
2790.31.

snces!

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < 0])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢/air



Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.

41



Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

41



Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.



Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] ..... [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.



_attacks

as a; + a» where
ttom | N/2| terms of a,
naining terms of a.

3)a=(G/3)a; + (G/3)ay
G/3)ap = (G/3)ay.
e e: almost certainly

3)as) = H((G/3)ay) for

ite all H(—(G/3)ay).
ite all H((G/3)a1).

or collisions.

sut 3N/2 operations:
for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =e¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.




gvvhere
)| terms of a,
rms of a.

3)a; + (G/3)ar
(G/3)a1.

st certainly
1((G/3)ay) for
S [fk—l < O])

-(G/3)a2).
G/3)a1).

perations:
701.

40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtz
(Q,0),
(Qx,0),

kClXAL_l,O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions



40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =e¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(Q,0),
(Qx,0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtract



Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

42



Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

42



siew of NTRU

iblic key G = 3¢/ a.

e H=G/3 =¢e/ain Ryp.

obtained from
XN—l

additions, subtractions.

) Is obtained from
. ,XN_lH
additions, subtractions.

obtained from

additions, subtractions.

41

42
(e, a) € R? is obtained from

(Q,0),
(Qx, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

(ep, €1, .
IS obtair
(Q,0,..
(0,Q, ..

(0,0, ...
(Ho, H1,

(Hn-1,

(Hy1, Ha,
by a few



R

; = 3e/a.

3 = e/a N RQ.

from

. subtractions.

ied from
!

. subtractions.

from
XN_l,

!

. subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

42

(eg, €1, ..., en_1
Is obtained from
(Q,0,...,0,0,0,.
(0,Q,...,0,0,0,.
(0,0,..., Q,0,0,.
(Ho, H1, ..., Hp

by a few additions



 Rp.

onSs.

onSs.

onSs.

41

42
(e, a) € R? is obtained from

(Q,0),
(@x, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtract



(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_xN—1.

42

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.



R? is obtained from

,XN—l)

additions, subtractions.

as
X4+ Hy_1xN—1

42

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

(ep, €1, .
IS @ Surg
In lattice

(@Q.0,..



ined from

. subtractions.

H/\/_1X

N—-1

42

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly sh
in lattice generate
(Q,0,...,0,0,0,.



onSs.

42

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.



Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.



Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.



Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.



Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.



.,e/\/_l,ao,al,...,a/\/_l)
ed from

,0,0,0,...,0),
,0,0,0,...,0),
'Q,0,0,...,0),

HN 1,1,0,...,0),
Hy,...,Hny—2,0,1,...,0),

.,Ho,0,0,...,l)
additions, subtractions.

43

(ep,€1,...,eN—1,30,31,--.,aN—-1)
Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector in a lattice.

44

Quotien

“Quotiel
Is the st

Alice ge
for smal

l.e., aG/



30, 31, -+ -+ AN—_1)

., 0),

., 0),

o),
,1,0,...,0),
v—2,0,1,...,0),
0,...,1)

. subtractions.

43

(eg,€1,...,€eN—1,30,31,--.,aN—-1)
IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

44

Quotient NTRU v

“Quotient NTRU"
Is the structure we

Alice generates G
for small random «

e, aG/3 —e =0



an_1)

onSs.

43

(ep,€1,...,eN—1,30,31,--.,aN—-1)
Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for
(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector in a lattice.

44

Quotient NTRU vs. Product

“Quotient NTRU"” (new nar
Is the structure we've seen:

Alice generates G = 3e/a in
for small random e, a:

i.e.,, aG/3 —e=0in Rp.



44 45
(eg,€1,...,€eN—1,30,31,--.,aN—_1) Quotient NTRU vs. Product NTRU

IS a surprisingly short vector

"Quotient NTRU" (new name)

In lattice generated b . ,
& y Is the structure we've seen:

(Q,0,...,0,0,0,...,0) etc.

Alice generates G = 3e/a in Rp
Attacker searches for short vector

_ | _ | for small random e, a:
in this lattice using (e.g.) BKZ.

i.e.,, aG/3 —e=0in Rp.
Many speedups. e.g. rescaling:

set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.




44 45
(eg,€1,...,€eN—1,30,31,--.,aN—_1) Quotient NTRU vs. Product NTRU

IS a surprisingly short vector

“Quotient NTRU" (new name)

In lattice generated b . ,
& y Is the structure we've seen:

(Q,0,...,0,0,0,...,0) etc.

Alice generates G = 3e/a in Rp
Attacker searches for short vector

_ | _ | for small random e, a:
in this lattice using (e.g.) BKZ.

i.e.,, aG/3 —e=0in Rp.

Many speedups. e.g. rescaling: Bob sends C = bG + d in Rg.

Alice computes aC in Ry,
l.e., 3be + ad in Ry.

set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.




(eg,€1,...,eN—1,40, a1, ..
IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

S, aN-_1)

44

45

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.



., €eN—-1,80,81,...,aN—1)

risingly short vector

> generated by
.,0,0,0,...,0) etc.

- searches for short vector
ttice using (e.g.) BKZ.

eedups. e.g. rescaling:
ttice to contain (e, 10a)
10sen 10x larger than a.

. Describe search for

; a problem of finding
ce vector near a point;
t vector In a lattice.

44

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Rp.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“Produc
2010 Ly

Everyon
Alice ge
for smal



ort vector

d by
.., 0) etc.

for short vector
o (e.g.) BKZ.

g. rescaling:
ontain (e, 10a)
larger than a.

' search for
n of finding
1ear a point;
a lattice.

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“"Product NTRU"
2010 Lyubashevsk

Everyone knows rz
Alice generates A
for small random .



an_1)

/ector
KZ.

\g:
10a)

1N 4.

Nt;

44

Quotient NTRU vs. Product NTRU

“"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Rp.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad in R3,

deduces d, deduces b.

45

“Product NTRU" (new nan
2010 Lyubashevsky—Peikert-

Everyone knows random G ¢
Alice generates A = aG + e
for small random a, e.



Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad in R,
using smallness of a, b, d, e.

Alice computes ad In R3,
deduces d, deduces b.

45

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

46



Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad in R,
using smallness of a, b, d, e.

Alice computes ad In R3,
deduces d, deduces b.

45

“Product NTRU"” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Rg
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

46



Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Rg
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

46



t NTRU vs. Product NTRU

it NTRU” (new name)
ructure we've seen:

nerates G = 3e/a in Ry
| random e, a:

'3—e:0in RQ.

ds C = bG + d in RQ.
mputes aC in Ry,
+ ad in RQ.

onstructs 3be + ad in R,
1allness of a, b, d, e.

mputes ad in R3,
d, deduces b.

45

46
“Product NTRU"” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Ry
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotien
Ring-0L\
Ring-LW

Product
Ring-LW\
Ring-LW\



s. Product NTRU

(new name)
've seen:

- 3e/a N RQ
o a;
in Rp.

 +d In RQ.

- In R,

Q-

3be+ ad in R,
a, b, d,e.

[ In R3,

S b.

45

“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.

Alice generates A = aG + e in R

for small random a, e.

Bob sends B = bG + d in R

and C = m

bA

cin RQ

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotient NTRU a
Ring-0LWE (attac
Ring-LWE{ (attac

Product NTRU at
Ring-LWE; (attac
Ring-LWE> (attac



- NTRU

ne)

in R,

45

46
“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in R
and C = m+ bA+ c in Ry

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotient NTRU attack prok
Ring-0LWE (attack key) anc
Ring-LWE; (attack cipherte

Product NTRU attack probl
Ring-LWE; (attack key) anc
Ring-LWE> (attack cipherte



“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.

Alice generates A = aG + e in R

for small random a, e.

Bob sends B = bG + d in R

and C = m

bA

cin RQ

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, ¢, d, e.

46
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Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).
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2016 Peikert: “Ring-LWE

Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with
considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,

Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.
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not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
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than one-wayness.

49



ikert: “Ring-LWE
st as hard as NTRU.”

is theorem actually says
an solve (decisional)
NE if you can solve
Ring-LWE{ with

ably more noise.

'E1 with the same amount
(or slightly less!) could
er than Ring-0LWE. Also,

'E> could be weaker.

uct NTRU could be less
1an Quotient NTRU.

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadval
NTRU:
encapsul



1g-LWE
as NTRU.”

1 actually says
decisional)
can solve

-1 with

noise.

he same amount
y less!) could
ng-0LWE. Also,

be weaker.

| could be less
ent NTRU.

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadvantage of F
NTRU: more mult
encapsulation and



says

mount

uld
Also,

less

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadvantage of Product
NTRU: more multiplications
encapsulation and decapsula



49
Disadvantage of Product NTRU:

need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

50



49
Disadvantage of Product NTRU:

need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.



Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.



Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.



1tage of Product NTRU.

' derandomization,
FO reencryption.

t NTRU Is deterministic.

s (maybe) matters: 2019
1amburg—Hovelmanns—
-Persichetti proves tight

IND-CCA2 security for
deterministic systems.

) derandomization,

n proofs lose tightness
stronger assumptions
>-Wayness.

49

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disad

doub

Val

€-S



roduct NTRU:

nization,

yption.
, deterministic.

matters: 2019
Hovelmanns—

1 proves tight
) security for
stic systems.

nization,
bse tightness
1ssumptions

49

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disad

doub

vantage of F
e-size cipher



[ RU:

Istic.

2019
NS—
ght
for

ns.

=SS
1S

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

Disac
doub

vantage of Product N°
e-size ciphertexts.



Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disac
doub

vantage of Product NTRU:
e-size ciphertexts.

51



Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

51



Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

51



Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51



tage of Product
more multiplications In
ation and decapsulation.

1tage of Quotient NTRU:
In key generation are
ore expensive than mults.

ou need to generate many
> Montgomery's trick

e D divisions with

n + 4(D — 1) mults.

rnstein—Brumley—Chen—
nowed how to integrate

OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented%® this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two' .

Ms,
anism

4
No.

Minor Ding tweak, same length.

b1

Disadval

2010.02
patent4
covers P



roduct
Iplications In
decapsulation.

)uotient NTRU:

neration are
sive than mults.

) generate many
nery's trick

ons with

- 1) mults.

-umley—Chen—

v to Integrate
~and TLS 1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two" .

Ms,
anism

1
No.

Minor Ding tweak, same length.

51

Disadvantage of F

2010.02 Gaborit—£
patent%®, before L
covers Product N



1N

tion.

TRU:

nults.

many

€N—

ate
1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented%*

this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two' .

Ms,
anism

4
No.

Minor Ding tweak, same length.

b1

Disadvantage of Product N

2010.02 Gaborit—Aguilar Me
patent%®, before LPR public
covers Product NTRU.



Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

52



Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

52



Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

52



1tage of Product NTRU.
1ze ciphertexts.

2 Ding compressed
xts to ~1/2 size.

;s: Ding patented® this.
tical of the idea that
vill avoid the patent.

ikert: “As compared with
lous most efficient ring-
ptosystems and KEMs,
reconciliation mechanism
the ciphertext length
No.

Iing tweak, same length.

v a factor of two" .

b1

52
Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6Db
Some interesting documents.

Disadval
NTRU:

Product
years of
(“strong
successf



roduct NTRU:
“exts.

mpressed
2 size.

atented%®* this.
e Idea that
he patent.

compared with
efficient ring-
s and KEMs,
tion mechanism
text length
No.

. same length.

of two' .

51

52
Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b
Some interesting documents.

Disadvantage (7) -
NTRU: much less

Product NTRU s
years of security e;

(“strong security ¢
successfully attrac



[ RU:

this.

| with

Ing-
Ms,
anism

b1

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6Db

Some interesting documents.

52

Disadvantage (7) of Quotier
NTRU: much less marketing

Product NTRU 1s backed by
years of security exaggeratio
(“strong security guarantees
successfully attracting intere



52 53
Disadvantage of Product NTRU: Disadvantage (7) of Quotient

2010.02 Gaborit—Aguilar Melchor NTRU: much less marketing.

patent®®, before LPR publication, Product NTRU is backed by 10
covers Product NTRU. years of security exaggeration

Rumors of patent-buyout offers ( “strong security guarantees” ),

successfully attracting interest.
have not shown results (yet?). Y &

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b
Some interesting documents.




Disadvantage of Product NTRU:
2010.02 Gaborit—Aguilar Melchor

patent%®, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b

Some interesting documents.

52

53
Disadvantage (7) of Quotient

NTRU: much less marketing.

Product NTRU 1s backed by 10
years of security exaggeration

( “strong security guarantees”),
successfully attracting interest.

Product NTRU submissions:
Frodo, Kyber, LAC, NewHope,
NTRU LPRime, Round5, SABER,
ThreeBears. (All compressed.)

Quotient NTRU submissions:
NTRU, Streamlined NTRU Prime.



