Lattice-based cryptography,
day 2: efficiency

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2016: Google runs "CECPQ1"
experiment, encrypting with
elliptic curves and NewHope.

2019: Google+Cloudflare
run “CECPQ2" experiment,

encrypting with elliptic curves
and NTRU HRSS.

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

based cryptography,
fficiency

rnstein

ty of lllinois at Chicago;
Iversity Bochum

oogle runs "CECPQ1"
ent, encrypting with
urves and NewHope.

oogle+Cloudflare
CPQ2" experiment,
ng with elliptic curves

U HRSS.

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn't resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of th
were Int
Hoffsteir
NTRU%

Announ
at Crypt
Patent

tography,

is at Chicago;
ochum

; "CECPQLT”
oting with
NewHope.

udflare
periment,
iptic curves

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical «
were Introduced Ir
Hoffstein—Pipher—
NTRU%* cryptosy

Announced 20 Au
at Crypto 1996 ru
Patent expired ir

1g0;

1"

S

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn't resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical design ide:
were Introduced In the origi
Hoffstein—Pipher—Silverman
NTRU% cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump sessior
Patent expired in 2017.

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical design ideas
were Iintroduced in the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

2019: OpenSSH adds support for
Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;
maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds, but
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, and
maybe resists quantum attacks,
but uses many more cycles.

All of the critical design ideas
were Iintroduced in the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems
nave ~1KB keys, ciphertexts;

nave ~100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys anc

ciphertexts and similar speeds,
doesn’t resist quantum attacks.

Isogeny-based crypto has
shorter keys and ciphertexts, an
maybe resists quantum attacks,
but uses many more cycles.

DUt

d

All of the critical design ideas
were Iintroduced in the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

penSSH adds support for
ned NTRU Prime.

ttice cryptosystems

KB keys, ciphertexts;
00000 cycles enc, dec;
resist quantum attacks.

> much shorter keys anc

xts and similar speeds, but
resist quantum attacks.

based crypto has

ceys and ciphertexts, and
esists quantum attacks,
“many more cycles.

All of the critical design ideas

WETrE

introduced in the original

Hoffstein—Pipher—Silverman

NTRU% cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First
hand

final

https://ntru.org/f/hps96.pdf

version of NTRU paper,
ed out at Crypto 1996,
y put online in 2016:

Proposed 104-byte public keys

for 280 security.

1996 pa
attack p
problem
applied

to attac

dds support for
J Prime.

tosystems
ciphertexts;

cles enc, dec;

ntum attacks.

orter keys anc

nilar speeds, but
1tum attacks.

bto has
iphertexts, and
1tum attacks,
re cycles.

All of the critical design ideas
were introduced in the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

280

for security.

1996 paper conver
attack problem int
problem (suboptin
applied LLL (not ¢
to attack the latti

rt for

XtS:

dec:

acks.

dNnad

s
~ks.

an
cks,

out

d

All of the critical design ideas
were Introduced In the original
Hoffstein—Pipher—Silverman
NTRU% cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted NTRL
attack problem into a lattice

problem (suboptimally), anc
applied LLL (not state of th
to attack the lattice problen

All of the critical design ideas
were introduced in the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted
attack problem into a

NTRU
attice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

All of the critical design ideas
were Introduced In the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
petter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

All of the critical design ideas
were Introduced In the original
Hoffstein—Pipher—Silverman
NTRU%* cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.
Patent expired in 2017.

First version of NTRU paper,
handed out at Crypto 1996,

finally put online in 2016:
https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys
for 280 security.

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
petter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

e critical design ideas
roduced in the original
1—Pipher—Silverman

' cryptosystem.

“ed 20 August 1996
0 1996 rump session.
expired in 2017.

sion of NTRU paper,

out at Crypto 1996,

ut online in 2016:
'/ntru.org/f/hps96.pdf

d 104-byte public keys
ecurity.

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
vetter conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU s

Paramet

Z|x] is t
with inte
R = Z|x
the ring
Integer «

lesign ideas
 the original
Silverman

stem.

oust 1996
mp session.
 2017.

[RU paper,

pto 1996,

n 2016:
~g/f/hps96 . pdf

> public keys

1996 paper converted NTRU
attack problem into a lattice

problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited
for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positi\

Z|x]| is the ring of
with integer coeffs

R=2Z[x]/(x" —1
the ring of polyno
integer coeffs moc

1S
1al

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
netter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer

Z|x]| is the ring of polynomi
with integer coeffs.

R=2Z[x]/(xN —1)is

the ring of polynomials with

integer coeffs modulo xV —

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
vetter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is

the ring of polynomials with

integer coeffs modulo xV — 1.

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
vetter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

1996 paper converted NTRU
attack problem into a lattice
problem (suboptimally), and then
applied LLL (not state of the art)
to attack the lattice problem.

1997 Coppersmith—Shamir:
better conversion (rescaling) +
vetter attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:
proposed 147-byte or 503-byte
keys for 277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

per converted N TRU
roblem into a lattice

(suboptimally), and then
_LL (not state of the art)
K the lattice problem.

ppersmith—Shamir:
onversion (rescaling) +
ttacks than LLL.
“quantification.

ncorrectly credited
NTRU lattice attacks.)

aper, ANTS 1998:
1 147-byte or 503-byte
277 or 2170 security.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0, 1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:

sage:

H+ O H N

ted NTRU
0 a lattice

1ally), and then
tate of the art)
ce problem.

—~Shamir:

(rescaling) +
n LLL.

tion.
credited
tice attacks.)

'S 1998:

or 503-byte

0 secu rity.

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:

sage:

ZX.<x> = 7
now Z4x 1
Zx objec

1n x wit

' then
e art)

s.)

te

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are po

1n x with 1nt coe

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:

sage:

Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with 1nt coeffs

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:

sage:

Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with 1nt coeffs

f = Zx([3,1,4])

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:

sage:

7x.<x> = ZZ[]

now Zx 1s a class

Zx objects are polys
in x with int coeffs
f = Zx([3,1,4])

f

Axx"2 + x + 3

sage:

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4*xx "2
sage:

sage:

Zx.<x> = ZZ[]
now Zx 1s a class
ZX objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H = H® =

x + 3

= Zx([2,7,1])

09

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4*xx "2
sage:

sage:

7x.<x> = ZZ[]

+ H H = H® =

g
g

now Zx 18 a class
ZX objects are polys
in x with 1nt coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

x"2 + 7*xx + 2

sage:

NTRU secrets

Parameter: positive integer N.

Z|x]| is the ring of polynomials
with integer coeffs.

R=2Z[x]/(xN —1)is
the ring of polynomials with

integer coeffs modulo xV — 1.

(Variants use other moduli:
e.g. X —x —1in NTRU Prime.)

NTRU secrets are elements of
R with each coeff in {—1,0,1}.
(Variants: e.g., {—2,-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5%x”2

sage:

Zx.<x> = ZZ[]
now Zx 1s a class
ZX objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H = H® =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

ecrets

er: positive integer .

he ring of polynomials
ger coeffs.

1/(xVN —1) is
of polynomials with

-oeffs modulo xNV — 1.

s use other moduli:
— x — 1 in NTRU Prime.)

ecrets are elements of
ach coeff in {—1,0,1}.
s: eg.,{1—-2,—1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx”~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

7x.<x> = Z7Z|[]

now Zx 1s a class

Zx objects are polys
in x with 1nt coeffs
f = Zx([3,1,4])

f

+ x + 3

g = Zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: 1
4*x"3 +
sage:

/e integer V.

polynomials

’I

) is
mials with

lulo xV — 1.

r moduli:

NTRU Prime.)

elements of
in{—1,0,1}.
-2,—-1,0,1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx "2
sage:
sage:
Xx"2 +

sage:

7x.<x> = ZZ[]

+ H H = = =

g
g
7*x

f+g

now Zx 1s a class
ZX objects are polys

1n X with int coeffs

Zx([3,1,4])

+ 3
Zx([2,7,1])

+ 2
built-in add

bkx"2 + 8*%xx + b

sage:

sage: f*x # bu
4*x~"3 + x72 + 3%

sage:

als

rime.)

of

1,2}.)

sage:
sage:
sage:
sage:
sage:
sage:
4xx~2
sage:
sage:
Xx"2 +
sage:
5*x” 2

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ +H H 3

X + 3
g = zZx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mu
4*x"3 + x72 + 3*x

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx "2
sage:
sage:
Xx"2 +

sage:

7x.<x> = Z7Z[]

+ H H = H® =

g
g
7*x

f+g

now Zx 1s a class
ZX objects are polys

1n X with int coeffs

Zx([3,1,4])

+ 3
Zx([2,7,1])

+ 2
built-1in add

bkx"2 + 8*%xx + b

sage:

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7x.<x> = Z7Z[]

now Zx 1s a class

Zx objects are polys
in X with int coeffs
f = Zx([3,1,4])

f

+ x + 3

g = Zx([2,7,1])

g

7*x + 2

f+g # built-1in add

+ 8*xx + 5

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage: f*xx"2

4*x"4 + x°3 + 3*x72

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7x.<x> = Z7Z[]

now Zx 1s a class

Zx objects are polys
in X with int coeffs
f = Zx([3,1,4])

f

+ x + 3

g = Zx([2,7,1])

g

7*x + 2

f+g # built-1in add

+ 8*xx + 5

sage: f*x # built-in mul
4*x"3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx "2
sage:
sage:
Xx"2 +

sage:

7x.<x> = Z7Z[]

now Zx 1s a class

Zx objects are polys
in X with int coeffs
f = Zx([3,1,4])

f

+ x + 3

g = Zx([2,7,1])

g

7*x + 2

f+g # built-1in add

bkx"2 + 8*%xx + b

sage:

sage: f*x # built-in mul
4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + T*xx"2 + 21%*x

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x
sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage:

sage:
sage:
sage:
sage:
sage:
sage:
4xx"2
sage:
sage:
Xx"2 +
sage:
5*x”2

sage:

7Zx.<x> = ZZ[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

+ H H =

X + 3
g = zx([2,7,1])

g

7*x + 2

f+g # built-in add

+ 8*xx + 5

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72

True

sage:

x.<x> = ZZI[]
now Zx 1s a class
Zx objects are polys

1n X with int coeffs

= Zx([3,1,4])

x + 3

= Zx([2,7,1])

kX + 2
tg # built-in add

3xx + b

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*2+fx(7*x)+f*x72
True

sage:

Z[]
S a class
ts are polys

h int coeffs

1,4])

7,11)

uilt—-in add

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*xx"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*%x"3 + 7*x72 + 21*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: fxg == f*x2+f*x(7*x)+f*xx72
True

sage:

. # replace
. # x7(N+1)

: def convol

return (

dd

sage: f*x # built-in mul

4*x~3 + x72 + 3*x

sage: f*x"2

4*xx"4 + x°3 + 3*x72

sage: f*2

3*x"2 + 2%xx + 6

sage: f*x(7*x)

28*xx"3 + T*x72 + 21%*x

sage: f*xg

4*xx"4 + 29%x"3 + 18*x"2 + 23*x
+ 6

sage: f*xg == f*2+fx(7*x)+f*x72
True

sage:

: # replace x"N with
. # x"(N+1) with x, e

: def convolution(f,g

return (fxg) 7 (x

sage: f*x # built-in mul sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

S*xx"2 + 2%x + 6 sage:

sage: f*x(7*x)
28*%x"3 + 7*x72 + 21*x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:

sage: f*x # built-in mul sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: fx(7*x) sage:

28*%x"3 + T*x"2 + 21%x

sage: f*xg
4xx"4 + 20%x"3 + 18*%x72 + 23*x
+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:

sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: f*xg sage:
4*xx"4 + 29%x"3 + 18*x"2 + 23*x

+ 6

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:

sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage:

sage: fxg == f*x2+fx(7*x)+f*x72
True

sage:

sage: f*x # built-in mul 7 sage: # replace x"N with 1,
4xx"3 + x72 + 3*x sage: # x"(N+1) with x, etc.
sage: f*x"2 sage: def convolution(f,g):
4xx"4 + x73 + 3%x72 ...t return (fxg) % (x"N-1)
sage: f*2 Cee

3xx"2 + 2*xx + 6 sage: N = 3 # global variable
sage: f*x(7*x) sage: convolution(f,x)

28*%x"3 + 7T*x"2 + 21%*x X"2 + 3xx + 4

sage: fx*xg sage: convolution(f,x"2)
4*xx"4 + 29%x"3 + 18*x"2 + 23*x 3xx"2 + 4*%x + 1

+ 6 sage: convolution(f,g)

sage: fxg == f*x2+fx(7*x)+f*x72 18*%x~2 + 27*x + 35
True sage:

sage:

kX # built-in mul

X"2 + 3%X

kX~ 2

Xx"3 + 3*%x72

k2

2%x + 6

¥ (7*x)

t 7Txx72 + 21%x

g

29%x73 + 18*%x72 + 23%X

kg == f*2+fx (7*xx)+f*x"2

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
... return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4%x + 1

sage: convolution(f,g)

18%x72 + 27*x + 35

sage:

ilt-1in mul sage: # replace x"N with 1, sage: def random

X sage: # x"(N+1) with x, etc. c.o..: £ = 1list
sage: def convolution(f,g): Cee for j

X" 2 ...t return (fxg) % (x"N-1): return Z
sage: N = 3 # global variable sage:

sage: convolution(f,x)
21%x X"2 + 3xx + 4

sage: convolution(f,x"2)
18*%x72 + 23%*x 3xx"2 + 4*x + 1

sage: convolution(f,g)
+fx (7*x)+f*x"2 18%x"2 + 27*x + 35

sage:

1 sage: # replace x"N with 1, sage: def randomsecret():
sage: # x"(N+1) with x, etc.: f = list(randrang
sage: def convolution(f,g): - for j in range(
....: return (fxg) % (x"N-1): return Zx(f)
sage: N = 3 # global variable sage:

sage: convolution(f,x)
X2 + 3xx + 4

sage: convolution(f,x"2)
- 23%*X 3xx"2 + 4%x + 1

sage: convolution(f,g)
Txx™2 18%x72 + 27*x + 35

sage:

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

. def randomsecret():

f = list(randrange(3)-1
for j in range(N))

return Zx(f)

: randomsecret ()

- x"2-x -1

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()
-x"3 - x2-x-1

sage: randomsecret ()
X6 + x5+ x"3 - x

sage:

sage: # replace x"N with 1,
sage: # x~(N+1) with x, etc.
sage: def convolution(f,g):
...t return (fxg) % (x"N-1)
sage: N = 3 # global variable
sage: convolution(f,x)

X"2 + 3xx + 4

sage: convolution(f,x"2)

3xx"2 + 4*x + 1

sage: convolution(f,g)

18*%x"2 + 27*x + 35

sage:

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x"2 +
x + 1

sage:

replace x"N with 1,
x~(N+1) with x, etc.
ef convolution(f,g):

return (f*xg) % (x"N-1)

= 3 # global variable
onvolution(f,x)

kx + 4
onvolution(f,x~2)

4dxx + 1
onvolution(f,g)

+ 27*x + 35

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

-Xx"3 - x2-x-1

sage: randomsecret ()

X6 + x5 +x"3 - x

sage: randomsecret ()

-Xx"6 + x5+ x4 - x"3 - x"2 +
x + 1

sage:

Will use
1998 N

Some ct
in NIST

e.g. N =
e.g. N =
e.g. N =

x"N with 1,
with x, etc.
ution(f,g):
fxg) % (x"N-1)

lobal wvariable

n(f,x)

n(f,x"2)

n(f,g)
35

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

Wil use bigger N
1998 NTRU papel

Some choices of N
iIn NISTPQC subn

e.g. N =701 for |
e.g. N =743 for |
e.g. N =761 for |

tcC.

“N-1)

1able

sage: def randomsecret():

....: f = list(randrange(3)-1
Ceel for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

sage: randomsecret()
-Xx"6 + x5 + x4 - x"3 - x"2+
x + 1

sage:

Will use bigger N for securit

1998 NTRU paper took N =

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for

eg. N =743

or
eg. N=761f

or

NTRU

NTRU

NTRU HR

Enci
Prir

sage: def randomsecret():
....: f = list(randrange(3)-1
Cee for j in range(N))

e return Zx(f)

sage: randomsecret ()

X6 + x5+ x"3 - x

sage: randomsecret ()

-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

sage: def randomsecret():

....: f = list(randrange(3)-1
Cee for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

-x"3 - x2-x-1

sage: randomsecret ()

sage: randomsecret ()
-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

sage: def randomsecret():

....: f = list(randrange(3)-1
Cee for j in range(N))
....: return Zx(f)

sage: N =7

sage: randomsecret ()

-x"3 - x2-x-1

sage: randomsecret ()

sage: randomsecret ()
-Xx"6 + x5 + x4 - x"3 - x72 +
x + 1

sage:

10
Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

of randomsecret():
f = list(randrange(3)-1
for j in range(N))

return Zx(f)

=7
andomsecret ()
x"2 - x - 1
andomsecret ()
b+ x"3 - X
andomsecret ()

x"b + x4 - x3 - x72 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

NTRU g

Paramet
e.g., 40¢€

RQ — (2
IS the rir

with 1nte

dNd MOC

Public k

(Variant
NTRU F
(Z/4591

secret () :
(randrange(3)-1
in range(N))

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

N TRU public keys

Parameter @), pow
e.g., 4096 for NTI

RQ
Is t

wit

= (Z/Q)[x]/(:
ne ring of poly

N integer coeffs
N

dNcG

modulo x"' —

Public key is an el

(Variants: e.g., pr

NT

RU Prime has

(Z/4591)[x]/(x"®’

e(3)-1
N))

X"2 +

Will use bigger N for security.
1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
=(Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo (

dNnad

modulo xV — 1.

Public key is an element of

(Variants: e.g., prime Q.

NT

RU Prime has field Rp:

(Z/4591)[x]/(x %! — x — 1)

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N
iIn NISTPQC submissions:

e.g. N =701 for NTRU HRSS.
e.g. N =743 for NTRUEncrypt.
e.g. N =761 for NTRU Prime.

Overkill against attack algorithms
known today, even for future
attacker with quantum computer.

Maybe there are faster attacks!
Claimed “guarantees” are fake.

10

11

N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

RQ
Is t

wit

=(Z/Q)Ix]/(x" = 1)
ne ring of polynomials
n integer coeffs modulo @

dNcG

modulo xV — 1.

Public key is an element of Ry.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)

bigger N for security.
"RU paper took N = 503.

oices of
PQC submissions:

- 701 for NTRU HRSS.
- 743 for NTRUEncrypt.
- 761 for NTRU Prime.

against attack algorithms
oday, even for future
with quantum computer.

here are faster attacks!
“guarantees’ are fake.

10

N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

Rq = (Z/Q)[x]/(x" — 1)
is the ring of polynomials

with integer coeffs modulo
N 1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

NTRU e

Cipherte
where G
and b, d

for security.
- took N = 503.

/
11SSIONS:

NTRU HRSS.
N TRUEncrypt.
N TRU Prime.

tack algorithms
 for future

1tum computer.

yster attacks!
es’ are fake.

10

N TRU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNd

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rg: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG +
where G € R Is |
and b,d € R are s

= 503.

SS.

ypt.
ne.

1thms

v

puter.

ks
|ke.

10

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNnad

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NT

RU Prime has field Rp: e.g.,

(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

11

N TRU public keys N TRU encryption
Parameter (), power of 2: Ciphertext: bG + d € Rg
e.g., 4096 for NTRU HRSS. where G € Ry is public key

Ro = (Z/Q)[x]/(xN 1) and b, d € R are secrets.

is the ring of polynomials

with integer coeffs modulo @
V1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

N TRU public keys

Parameter (), power of 2:
e.g., 4096 for NTRU HRSS.

Rq = (Z/Q)[x]/(x" — 1)
is the ring of polynomials

with integer coeffs modulo @
V1

and modulo x
Public key is an element of Ry.

(Variants: e.g., prime Q.
NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

12

NT

RU public keys

Parameter (), power of 2:

e.g.

RQ
Is t

wit

, 4096 for NTRU HRSS.
= (Z/Q)Ix]/(x" — 1)

ne ring of polynomials
n integer coeffs modulo @

dNd

Public key is an element of Ry.

modulo xV — 1.

(Variants: e.g., prime Q.

NTRU Prime has field Rp: e.g.,
(Z/4591)[x]/(x"®! — x —1).)

11

12
N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

ublic keys

er Q, power of 2:
)6 for NTRU HRSS.

Z/Q)[x]/(xN — 1)
g of polynomials
sger coeffs modulo @

julo xN — 1.

ey 1s an element of Rp.

s: e.g., prime Q.
’rime has field Rg: e.g.,

Jx]/(x™ = x = 1).)

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,

Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant:
“weight
N—W
In const;

W 1s an
e.g., 467

er of 2:
RU HRSS.

N —1)
romials

, modulo @
1.

ement of Ry.

ime Q.
field Rp: e.g.,
—x—1).)

11

12
N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

Variant: require d
“weight W": W n
N — W zero coeff:
In constant time v

W s another para
e.g., 467 for NTR

11

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d to have

“weight W": W nonzero co
N — W zero coeffs. (Generz
In constant time via sorting.

W Is another parameter:
e.g., 467 for NTRU HRSS.

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d to have

“weight W": W nonzero coeffs,

N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

13

12 13
N TRU encryption Variant: require d to have

Ciphertext: bG + d € R weight W": W nonzero coeffs,

where G € Rg is public key
and b, d € R are secrets.

N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:

Usually G is invertible in Rg. 467 for NTRU HRSS
e.g., or -

Easy to recover b from bG by,
e.g., linear algebra. But noise In More traditional variant: require
bG + d spoils linear algebra. W /2 coeffs 1 and W /2 coeffs —1.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,

Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

13
Variant: require d to have

“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require
W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

N TRU encryption

Ciphertext: bG + d € R
where G € Rg is public key
and b, d € R are secrets.

Usually G is invertible in Rg.
Easy to recover b from bG by,
e.g., linear algebra. But noise In

bG + d spoils linear algebra.

Problem of finding b given

G, bG + d (or given Gy, bGy + di,
Go, bGy + db, ...) was renamed
"Ring-LWE problem™ by 2010
Lyubashevsky—Peikert—Regev,
without credit to NTRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

ncryption

xt: bG + d € RQ
€ Ro 1s public key
€ R are secrets.

G is invertible in Rg.
recover b from bG by,
ar algebra. But noise In

spoils linear algebra.

of finding b given

d (or given G, bGy + di,
+ db, ...) was renamed
NE problem™ by 2010
evsky—Peikert—Regev,
credit to NTRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W/2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W'.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

(jéfl?Q
yublic key
ecrets.

ible in Rp.
from bG by,

. But noise In
ar algebra.

- b given

n G, bG1 + df,
was renamed
m~ by 2010
kert—Regev,

N TRU.

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

sage:

-X~6

def random

s [r]

return Z

. randomwelg

- xX°h + x74

Y,
e 1N

12

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W/2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W'.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

-X~6

: def randomweightw()

R = randrange
assert W <= N
s = Nx[0]

for j in range(W)
while True:
r = R(N)
if not slr]:
s[r] = 1-2%R(2)

return Zx(s)

: W =05
: randomweightw()

- x5+ x4 + x3 -

Variant: require d to have
“weight W": W nonzero coeffs,
N — W zero coeffs. (Generate
in constant time via sorting.)

W Is another parameter:
e.g., 467 for NTRU HRSS.

More traditional variant: require

W /2 coeffs 1 and W /2 coeffs —1.

Variant I'll use in these slides:
choose b to have weight W.

Another variant: deterministically
round bG to bG + d by rounding
each coeff to multiple of 3.

13

sage:

-X~6

def randomweightw() :
R =
assert W <= N
s = Nx[0]

randrange

for j in range(W):
while True:
r = R(N)
if not sl[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: randomweightw()

- X5+ x4 + x3 - x72

14

13 14

require d to have sage: def randomweightw() : NTRU k
W": W nonzero coeffs,: R = randrange
Secret e
zero coeffs. (Generate: assert W <= N .
| | | Require
ant time via sorting.) ...t s = Nx[0] .
Require

Cee f i DE
>ther parameter: or j in range (W)

" for NTRU HRSS.
el r = R(N)

while True:

yditional variant: require
ffs 1 and W /2 coeffs —1.

e if not sl[r]: break
e s[r] = 1-2%xR(2)

I'll use in these slides:t return Zx(s)

> to have weight W. e

variant: deterministically
G to bG + d by rounding
ff to multiple of 3.

sage: randomweightw()

-Xx"6 - xb+ x4 + x3 - x72

to have
onzero coeffs,
5. (Generate
ia sorting.)

meter:

U HRSS.

arlant: require

W /2 coeffs —1.

these slides:
weight W'

leterministically
- d by rounding
iple of 3.

13

sage: def randomweightw() :
- R = randrange

Cee assert W <= N
....: s = Nx[0]

....: for j in range(W):
- while True:

Cee r = R(N)

Cee if not sl[r]: break
Ceet s[r] = 1-2*%R(2)
....: return Zx(s)

sage: W = b

sage: randomweightw()

-Xx"6 - xXb+ x4 + x3 - x72

14

NTRU key genera

Secret e, weight-V

Rec

Rec

uire e, a invert
uire a invertibl

effs,
te

juire
fs —1.

tically
nding

13

: def randomweightw() :

R = randrange
assert W <= N
s = Nx[0O]
for j in range(W):
while True:
r = R(N)
if not sl[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: W =25

: randomweightw()

- x5+ x4 + x3 - x72

14

NTRU key generation

Secret e, weight-W secret a

Rec

Rec

uire e, a invertible in R
uire a invertible in R3.

: def randomweightw() :

R = randrange
assert W <= N
s = Nx[0]

for j in range(W):
while True:
r = R(N)
if not s[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: W =25

: randomweightw()

- X+ x4 + x3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.

: def randomweightw() :

R = randrange
assert W <= N
s = Nx[0]
for j in range(W):
while True:
r = R(N)
if not s[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: W =25

: randomweightw()

- X+ x4 + x3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.

Public key: G =3e/a in Rp.

15

: def randomweightw() :

R = randrange
assert W <= N
s = Nx[0]
for j in range(W):
while True:
r = R(N)
if not s[r]: break
s[r] = 1-2%R(2)

return Zx(s)

: W =25

: randomweightw()

- X+ x4 + x3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

15

sage: def randomweightw() :

- R = randrange
..... assert W <= N
..... s = Nx[0]

for j in range(W):

while True:

r = R(N)

if not sl[r]: break

1-2%R(2)

s[r] =

return Zx(s)

sage: W = b
sage: randomweightw()
-Xx"6 - x°5 + x4 +x"3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

15

sage: def randomweightw() :
- R = randrange

Cee assert W <= N

....: s = Nx[0]

....: for j in range(W):
- while True:

Cee r = R(N)

Cee if not sl[r]: break
Ceet s[r] = 1-2*%R(2)

el return Zx(s)

sage: randomweightw()

-Xx"6 - xXb+ x4 + x3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G)

sometimes weaker than Ring-LWE;.

15

of randomweightw() :
R = randrange
assert W <= N
s = Nx[0]
for j in range(W):
while True:
r = R(N)
if not slr]: break
s[r] = 1-2xR(2)

return Zx(s)

= B
andomweightw ()

x"b + x4 + x°3 - x72

14

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in Rg.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G»)

sometimes weaker than Ring-LWE;.

15

ot s[r]: break
1-2%R(2)
x(s)

htw ()

+ x°3 - x72

14

N TRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G>)

sometimes weaker than Ring-LWE;.

15

sage: def balanc
st g=list ((
el -Q//2 £

e e el return Z

break

x~2

14

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in Rg.

Require a invertible in R3.
Public key: G =3e/a in Rp.

Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.
Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE

sometimes weaker than Ring-LWE;.

Also, Ring-LWE> (using G1, G»)

sometimes weaker than Ring-LWE;.

15

sage: def balancedmod(f,Q

g=1ist (((£[i]1+Q//
-Q//2 for i in r
return Zx(g)

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16

sage: def balancedmod(f,Q):

g=list (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16

. def balancedmod(f,Q):

g=list (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

. u = 314-159%x

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16
sage: def balancedmod(f,Q):

oo g=list (C((EL11+Q//72)%Q)
Ce -Q//2 for i in range(N))
....: return Zx(g)

sage: u = 314-159%x
sage: u /4 200
-159%x + 114

sage:

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16
. def balancedmod(f,Q):

g=list (((£[1]1+Q//2)%Q)
-Q//2 for i in range(N))

return Zx(g)

sage
sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage:

NTRU key generation

Secret e, weight-W secret a.
Require e, a invertible in R.

Require a invertible in R3.
Public key: G =3e/a in Rp.
Ring-OLWE problem: find a
given G/3 and a(G/3) — e = 0.

Homogeneous slice of Ring-LWE/
(find b given G and bG + d).

Known attacks: Ring-OLWE
sometimes weaker than Ring-LWE;.
Also, Ring-LWE> (using Gi, G)
sometimes weaker than Ring-LWE;.

15

16
. def balancedmod(f,Q):

g=list (((£[1]1+Q//2)%Q)
-Q//2 for i in range(N))

return Zx(g)

sage
sage: u = 314-159%x
sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200
-159*%x - 86

sage: balancedmod(u,200)
41*%x — 86

sage:

ey generation

, weight-W secret a.
e, a invertible in Rp.
a invertible in R3.

ey: G =3e/ain Rp.

NE problem: find a

/3 and a(G/3) — e =0.
neous slice of Ring-LWE;
riven G and bG + d).

ttacks: Ring-0LWE

es weaker than Ring-L\WE;.
g-LWE> (using G1, Go)

es weaker than Ring-LWE;.

15

sage: def balancedmod(f,Q): ’
..... g=list (((£[1]1+Q//2)7%Q)
..... -Q//2 for i in range(N))
..... return Zx(g)

sage

sage: u = 314-159%x

sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200

-159*%x - 86

sage: balancedmod(u,200)

41*x — 36

sage:

tion : sage: def balancedmod(f,Q): ’ sage: def invert
/ <ecret a oo g=list (((£[11+Q//2)%Q): Fp = Int
ible in Ro. -Q//2 for i in range(N)) |: Fpx = Zx
e in Ra.: return Zx(g): T = Fpx.
- - return Z
e/ain Rq. sage:
m- find a3 sage: u = 314-159%*x sage:
5/3) —e =0. sage: u /4 200
> of Ring-LWE; ~1o9%x + 114
d bG + d). sage: (u - 400) 7 200
-159*x - 36
ing-OLWE sage: balancedmod(u,200)
than Ring-LWE1. ' 4144 - g6
using Gi, Go) sage:
than Ring-LWE;.

15

sage: def balancedmod(f,Q): ’
..... g=list (((£[1]1+Q//2)%Q)
..... -Q//2 for i in range(N))
..... return Zx(g)

sage

sage: u = 314-159%x

sage: u /4 200

-159*%x + 114

sage: (u - 400) % 200

-159*%x - 86

sage: balancedmod(u,200)

41*%x — 36

sage:

sage: def invertmodprime (
....: Fp = Integers(p)

- Fpx = Zx.change_r
....: T = Fpx.quotient(
....: return Zx(lift(1/

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: -
sage: u = 314-159%x sage:
sage: u /4 200

-169xx + 114

sage: (u - 400) % 200

-159*%x - 86

sage: balancedmod(u,200)
41*%x - 86

sage:

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: Cee
sage: u = 314-159%x sage: N =7
sage: u /4 200 sage:
-159*%x + 114

sage: (u - 400) % 200

-159*%x - 86

sage: balancedmod(u,200)
41*%x - 86

sage:

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: Cee
sage: u = 314-159%x sage: N =7

sage: u /4 200 sage: f = randomsecret()
-159*%x + 114 sage:

sage: (u - 400) % 200

-159*%x - 86

sage: balancedmod(u,200)
41*%x - 86

sage:

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: Cee
sage: u = 314-159%x sage: N =7

sage: u /4 200 sage: f = randomsecret()
-159%x + 114 sage: f3 = invertmodprime(f,3)
sage: (u - 400) % 200 sage:

-159*%x - 86

sage: balancedmod(u,200)
41*%x - 86

sage:

16 17

sage: def balancedmod(f,Q): sage: def invertmodprime(f,p):
coeot o g=list ((CEL1]+Q//2)%Q): Fp = Integers(p)

Cee -Q//2 for i in range(N)): Fpx = Zx.change_ring(Fp)
....: return Zx(g): T = Fpx.quotient (x"N-1)

e e return Zx(1ift(1/T(£f)))

sage: L
sage: u = 314-159%*x sage: N =7

sage: u /4 200 sage: f = randomsecret()

-159%x + 114 sage: f3 = invertmodprime(f,3)
sage: (u - 400) % 200 sage: convolution(f,f3)

-159%x - 86 6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
sage: balancedmod(u,200) 3*%x72 + 3xx + 4

41*x — 86 sage:

sage:

16
of balancedmod(f,Q):

g=1ist (((£[11+Q//2)%Q)
-Q//2 for i in range(N))
return Zx(g)

= 314-159%*x

% 200

+ 114

1 - 400) 7% 200

- 36
alancedmod (u, 200)
36

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
.e..: return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret ()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +
3*¥x72 + 3xx + 4

sage:

17

def 1inv
asser

g = 1I

M = b
conv
while

r =

if

g =

Exercise
invertn
Hint: H
divide fi

16
edmod (£,Q) :

(£[11+Q//72)7%Q)

or i in range(N))

x(g)

O%x

% 200

d(u,200)

sage: def invertmodprime(f,p):
..... Fp = Integers(p)

..... Fpx = Zx.change_ring(Fp)
..... T = Fpx.quotient(x~"N-1)
..... return Zx(1ift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*%x"b + 3*xx"4 + 3*%xx"3 +
3xx"2 + 3*%xx + 4

sage:

17

def invertmodpow
assert (J.is_po

g:
M = balancedmo

invertmodp
conv = convolu
while True:
r = M(conv(g
1f r == 1: r

g = M(conv(g

Exercise: Figure o
invertmodpowerc«
Hint: How many |
divide first r-17 ¢

16 17

) sage: def invertmodprime(f,p): def invertmodpowerof2(f,Q
2)7%Q): Fp = Integers(p) assert Q.is_power_of(2)
ange(N)) |: Fpx = Zx.change_ring(Fp) g = invertmodprime(f,2)
....: T = Fpx.quotient (x"N-1) M = balancedmod
... return Zx(1ift(1/T(£))) conv = convolution

. while True:

sage: N =7 r = M(conv(g,f),Q)
sage: f = randomsecret() if r == 1: return g
sage: f3 = invertmodprime(f,3) g = M(conv(g,2-r),Q)

sage: convolution(f,f3)
6*xx"6 + 6*xx"5 + 3*x"4 + 3*x"3 +

3*x"2 + 3*%xx + 4

Exercise: Figure out how
invertmodpowerof2 works
Hint: How many powers of

Sage: divide first r-17 Second r-

sage: def invertmodprime(f,p):
....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)
....: T = Fpx.quotient (x"N-1)
... return Zx(lift(1/T(£)))
sage: N =7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)
sage: convolution(f,f3)

6*xx"6 + 6*xx”5 + 3*x"4 + 3*x"3 +
3*¥x"2 + 3xx + 4

sage:

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

of invertmodprime(f,p):
Fp = Integers(p)

Fpx = Zx.change_ring(Fp)
T = Fpx.quotient(x“N-1)
return Zx(1ift(1/T(£)))

7

randomsecret ()

3 = invertmodprime(f,3)
onvolution(f,f3)
6*xx"5 + 3*%*x"4 + 3%xx"3 +

+ 3xx + 4

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

modprime (f,p) :
egers (p)
.change_ring(Fp)
quotient (x"N-1)
x(Lift (1/T(£)))

secret ()
tmodprime (f,3)
n(f,£3)

3*x"4 + 3*xx°3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256

ing (Fp)
x"N-1)
T(£)))

(£,3)

*x~3 +

17

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r ==

. return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:

sage:

N

256

19

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage: (
sage:

sage:

7
256

randomsecret ()

19

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx6 - x4 + x2 +x -1

sage:

19

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage:
sage:
sage:

sage:

7
256

randomsecret ()

H H O =
Il

-Xx6 - x4 + x2 +x -1

sage:

sage:

g = invertmodpowerof2(f,Q)

19

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - b4d*x"4 -
87xx"3 - 36*xx"2 - b8*x + 61

sage:

19

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257

sage:

def invertmodpowerof2(f,Q):
assert Q.is_power_of(2)
g = invertmodprime(f,2)
M = balancedmod
conv = convolution
while True:
r = M(conv(g,f),Q)
if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how
invertmodpowerof2 works.
Hint: How many powers of 2
divide first r-17 Second r-17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

ortmodpowerof2(f,Q) :

t Q.is_power_of (2)

nvertmodprime (f,2)

alancedmod

= convolution
True:
M(conv(g,f),Q)

r == 1: return g

M(conv(g,2-r),Q)

. Figure out how
1odpowerof2 works.
oW many powers of 2
st r-17 Second r-17

18

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x72+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47*x"6 + 126*xx"5 - bd*x"4 -
87*xx"3 - 36*xx"2 - b8*x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x"4 + 256%x + 257

sage: balancedmod(_,Q)
1

sage:

def key;

while

Gl
S
T

exXC

erof2(£f,Q):
wer_of (2)
rime(£f,2)

d

tion

’f) ,Q)

eturn g

,2-1),Q)

ut how

f2 works.
yowers of 2
econd r—17

18

19

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-X"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 120%x"b5 - b4*xx"4 -
87*x"3 - 36*x"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b - 2b6*%x74 + 2b6*xx + 257
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:

try:

a = random

a3

inver

aj = 1nver

random
G = balanc
con
GQ = 1inver
secretkey

return G,s

except:

pass

18

19

sage: N =7

sage: = 256

sage: f = randomsecret ()
sage: f

-Xx"6 - x4 +x"2+x -1

sage: g = invertmodpowerof2(f,Q)
sage: g

47xx"6 + 1206%x"0 - b4*xx"4 -
87*x"3 — 36*xx"2 - b8*xx + 61
sage: convolution(f,g)

-256*%x"b5 - 2b6*x74 + 2b6*xx + 2b7
sage: balancedmod(_,Q)

1

sage:

def keypair():
while True:
try:
a = randomweightw()
a3 = 1nvertmodprime

al = invertmodpower

randomsecret ()
G = balancedmod(3 *
convolution(
GQ = invertmodpower
secretkey = a,ad,G(
return G,secretkey
except:

pass

sage: N =7

sage: = 256

sage: f = randomsecret()
sage: f

-Xx"6 - x4 + x2 +x -1

sage: g = invertmodpowerof2(f,Q)

sage: g
4'7xx"6 + 126*xx"5 - bd*xx"4 -

87T*x"3 — 36%x"2 - 58*%x + 61

sage: convolution(f,g)

19

-256%x"5 - 256%x74 + 2b56%x + 257

sage: balancedmod(_,Q)
1

sage:

20

def keypair():
while True:

try:

a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,G(

return G,secretkey

except:

pass

19

-
256

randomsecret ()

x4 + x"2 +x -1

= invertmodpowerof2(f,Q)

+ 126*%x"b5 - bd*xx"4 -

- 36*%x72 - b8*x + 61
onvolution(f,g)

b — 2b6*%x74 + 2b6*xx + 2b7
vlancedmod (_, Q)

20

def keypair():
while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret ()

G = balancedmod(3 *
convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q

return G,secretkey

except:

pass

sage:

sage:

G

19

secret ()

+ x - 1

modpowerof2(f,Q)

- b4*xx"4 -

- 53*x + 061
n(f,g)

"4 + 256*%x + 257
d(_,Q)

20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey

except:

pass

sage:

sage:

G,secretke

19
f2(£,Q)
- 61
X + 257

def keypair():
while True:
try:
a = randomweightw()

a3 = invertmodprime(a,3)

20

a = invertmodpowerof2(a,Q)

randomsecret ()

G = balancedmod (3 x

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3d,G(Q
return G,secretkey
except:

pass

sage: G,secretkey = keypa

sage:

20
def keypair():

while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)

a = invertmodpowerof2(a,Q)

randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()

sage:

21

20
def keypair():

while True:

try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)
e = randomsecret ()
G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey

except:

pass

sage: G,secretkey = keypair()
sage: G

-126*x"6 - 31*xx"5 - 118*x"4 -
33*x"3 + 73*x"2 - 16*%x + 7

sage:

21

def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*%x"6 - 31*x"b - 118*%x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey

sage:

def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*x"6 - 31*%x"5 - 118%xx74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-XxX6 + x’b - x4 +x°3 -1

sage:

def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

21
sage: G,secretkey = keypair()

sage: G

-126*%x"6 - 31*x"b - 118*%x"4 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253*%x72 - 3*%x - 3

sage:

def keypair(): :
while True:
try:
a = randomweightw()
a3 = invertmodprime(a,3)
aQ = invertmodpowerof2(a,Q)

e = randomsecret ()
G = balancedmod (3 x
convolution(e,aQ),Q)
GQ = invertmodpowerof2(G,Q)
secretkey = a,a3,G(
return G,secretkey
except:

pass

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-XxX6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

263*xx"2 - 3*x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72

- 3%x - 3

sage:

21

20
pair () :

True:

= randomweightw()
3 =
) =

invertmodprime(a,3)

invertmodpowerof2(a, Q)

randomsecret ()

balancedmod (3

convolution(e,aQ),Q)
) =
acretkey = a,a3,G(

invertmodpowerof2(G,Q)

eturn G,secretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + x’b-x"4+x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253*%x72 - 3*%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21

20

weightw ()
tmodprime (a, 3)
tmodpowerof2(a,Q)
secret ()

edmod (3 *
volution(e,aQ),q)
tmodpowerof2(G,Q)
= a,a3,Gq

ecretkey

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,Gl = secretkey
sage: a
-XxX6 + x’b - x4 +x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253%x72 - 3%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%xX°5 - 3*%x"3 + 3%x72

- 3%x - 3

sage:

21

sage: def encryp
b,d = bd
bG =
C = bala

..... con

return C

20

(a,3)
0f2(a,qQ)

e,aQ),q)
0f2(G,Q)

sage: G,secretkey = keypair()
sage: G

33*%x"3 + 73*x"2 - 16*xx + 7
sage: a,a3,G) = secretkey
sage: a
-Xx"6 + xb-x"4+x"3 -1
sage: convolution(a,G)
-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -

253*%x72 - 3%x - 3
sage: balancedmod(_,Q)

-3*%x"6 - 3*%x°b - 3%xx"3 + 3%x72

- 3%x - 3

sage:

21

sage: def encrypt(bd,G):
et b,d = bd

....: bG = convolution/(
e C = balancedmod(kt

e el return C

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

22

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage:

def encrypt(bd,G):
b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

: G,secretkey = keypair()

22

21

sage: G,secretkey = keypair() sage: def encrypt(bd,G):

sage: G - b,d = bd

-126*%x"6 - 31*%x"5 - 118*%x"4 - Ce bG = convolution(b,G)
33%x"3 + 73*%x"2 - 16*%xx + 7 Ce C = balancedmod(bG+d,Q)
sage: a,a3,G) = secretkey Ce el return C

sage: a Cee

-Xx"6 + x5 - x74 + x°3 - 1 sage: G,secretkey = keypair()
sage: convolution(a,G) sage: b = randomweightw()
-3*x"6 + 263*%x"5 + 263*x"3 - sage:

203*%x72 — 3*x - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

. G,
N o
- d

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()

= randomsecret ()

22

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

22

sage: G,secretkey = keypair()
sage: G

-126*%x"6 - 31*%x"5 - 118*x74 -
33*%x"3 + 73*%x"2 - 16%xx + 7
sage: a,a3,G) = secretkey
sage: a

-Xx6 + x’b - x4 +x°3 -1
sage: convolution(a,G)

-3*%x"6 + 2b3%x"5 + 2b3*%x"3 -
253%x72 - 3%xx - 3

sage: balancedmod(_,Q)

-3*%x"6 - 3*%x"b - 3*%x"3 + 3*x72
- 3%x - 3

sage:

21

sage: def encrypt(bd,G): .
..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:

,secretkey = keypair() : sage: def encrypt(bd,G): : NTRU c
- b,d = bd | Given ci
5 — 31*%x"5 - 118*x74 - Ce bG = convolution(b,G) a(bC?%—
+ 73*%x"2 - 16%x + 7 Ce C = balancedmod (bG+d, Q)
,a3,G = secretkey Ce et return C
Xx"b - x4 + x°3 - 1 sage: G,secretkey = keypair()
onvolution(a,G) sage: b = randomweightw()
+ 263*%x7"5 + 2B3*x"3 - sage: d = randomsecret ()
2 - 3*%x - 3 sage: C = encrypt((b,d),G)
alancedmod (_, Q) sage: C
- 3*%X"b5 - 3*%x°3 + 3*x72 120*x"6 + 7*x"b - 116*xx74 +
- 3 102%x"3 + 86*x"2 - 74*xx - 9b
sage:

y = keypair()

5 - 118xx"4 -
- 16%x + 7

secretkey

+ x°3 -1
n(a,G)

+ 2b3*%x73 -

3

d(_,Q)
3*%x"3 + 3*x"2

21

sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx"2 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext £
a(bG + d) = 3be

ir()

4 -

3%x"2

21

sage:

. G,
. b
. d
: C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod (bG+d, Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120*%x76 + 7*x"b5 - 116*xx74 +
102*%x~3 + 86*xx72 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, co
a(bG 4+ d) =3be + ad in R

sage:

. G,
. b
. d
. C

C

: def encrypt(bd,G):

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.

23

sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x"6 + 7*x"b - 116*xx74 +
102*%x"3 + 86*x"2 - 74*xx - 9b

sage:

22

N TRU decryption

23

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.

a, b, d, e have sma

| coeffs,

so 3be + ad I1s not very big.

22 23
sage: def encrypt(bd,G): N TRU decryption

Ce el b,d = bd
Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

e et return C

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

,secretkey = keypair ()

G
sage: b = randomweightw()
d = randomsecret ()
C = encrypt((b,d),G)
sage: C
120%x"6 + 7*x"b - 116*x74 +
102%x"3 + 86*x"2 - 7T4xx - 95

sage:

sage: def encrypt(bd,G):

sage: G,
sage: b
sage: d
sage: C
sage: C
120*x76

b,d = bd
bG = convolution(b,G)
C = balancedmod(bG+d,Q)

return C

secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7*x"b - 116*x"4 +

102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).

sage: def encrypt(bd,G):

- b,d = bd

Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)
Cee return C

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120%x"6 + 7*x"b - 116*xx74 +
102*%x"3 + 86*x"2 - 74*xx - 9b

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

22 23
sage: def encrypt(bd,G): N TRU decryption

Ce el b,d = bd
Ce bG = convolution(b,G)
C C = balancedmod(bG+d,Q)

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

e et return C

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret () Then 3be + ad in Rp reveals
sage: C = encrypt((b,d),G) 3be+ ad in R = Z[X]/(XN — 1).
sage: C Reduce modulo 3: ad in R3.
120*%x"6 + 7*x"b - 116*x"4 + MUltIply by 1/3 in R3

102%xx"3 + 86*xx"2 - 74*x - 95 to recover d In R3

sage:

sage: def encrypt(bd,G):

..... b,d = bd

..... bG = convolution(b,G)
..... C = balancedmod(bG+d,Q)
..... return C

sage: G,secretkey = keypair()
sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)
sage: C

120%x76 + 7*x"b5 - 116*xx74 +
102*%x"3 + 86*xx72 - 74*x - 95

sage:

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rp reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

ef encrypt(bd,G):

b,d = bd

bG = convolution(b,G)

C = balancedmod (bG+d, Q)

return C

,secretkey = keypair ()
= randomweightw()
= randomsecret ()

= encrypt((b,d),G)

+ 7xx"b - 116*x"4 +
3 + 86*%x"2 - T4*x - 95

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad Is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

t(bd,G):

volution(b,G)
ncedmod (bG+d, Q)

y = keypair ()
weightw()
secret ()

t ((b,d),G)

- 1ll6*x"4 +
2 - 74xx - 95

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R = Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d in R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decryp

..... M = bala
..... conv = C
..... a,ald, Gy

..... u = M(co
..... d = M(co
..... b = M(co
..... return b

b,G)
G+d, Q)

ir()

22

23
N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
a, b, d, e have small coeffs,

so 3be + ad is not very big.
Assume that coeffs of 3be + ad
are between —@/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d In R3.

Coeffs are between —1 and 1,
so recover d in R.

sage: def decrypt(C,secre
- M = balancedmod

- conv = convolutio
Ce et a,a3,Gl = secretk
Ce u = M(conv(C,a),Q
Ce d = M(conv(u,a3),
Ce b = M(conv(C-d,GQ

C et return b,d

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

el u = M(conv(C,a),Q)
..... d = M(conv(u,a3),3)
....: b= M(conv(C-d,GR),Q)

return b,d

24

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):
M = balancedmod

conv = convolution

a,a3,GQ = secretkey
u = M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

return b,d

e e e d =
e e b =

sage: decrypt(C,secretkey)
(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage:

24

N TRU decryption

Given ciphertext bG + d, compute
a(bG + d) = 3be + ad in Rp.
| coetfs,

a, b, d, e have sma
so 3be + ad is not very big.

Assume that coeffs of 3be + ad
are between —Q/2 and Q/2 — 1.

Then 3be + ad in Rg reveals
3be+ad in R =Z[x]/(x" —1).
Reduce modulo 3: ad in R3.

Multiply by 1/a in R3

to recover d Iin R3.

Coeffs are between —1 and 1,
so recover d in R.

23

sage: def decrypt(C,secretkey):

M = balancedmod

conv = convolution

a,a3,GQ = secretkey

... u = M(conv(C,a),Q)
C d = M(conv(u,a3),3)
..... b = M(conv(C-d,GQR),Q)

return b,d

sage: decrypt(C,secretkey)

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24

lecryption

phertext bG + d, compute
d) = 3be + ad in Ryp.
have small coeffs,

- ad Is not very big.
' that coeffs of 3be + ad
een —Q/2 and Q/2 — 1.

e + ad in Rp reveals
din R =Z[x]/(xN —1).
modulo 3: ad in R3.

by 1/3 In R3

er d In Rb.

re between —1 and 1,
er d in R.

23

24

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce e a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u =
e e d =
e e e b =

C et return b,d

sage: decrypt(C,secretkey)

(x"6 - x5 -
x4 + x°3 +
sage: b,d

(x"6 - x5 -

x"4 + x°3 +

x~2
x~2

x~2
x~2

x - 1, x5 +

sage:

sage:

N

G + d, compute
——eufin Rz}
|l coeffs,

- very big.
fs of 3be + ad
> and Q/2 — 1.

Ro reveals
Z[x]/(xN —1).
ad In R@.

R3

1 —1 and 1,

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xb-x"2-x-1, x°b +
Xx"4 + x”3 + x"2 - x)

sage: b,d

(x6 - xb-x"2-x-1, xb +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,

sage:

mpute

23

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce e a,a3,G = secretkey

Ce u = M(conv(C,a),Q)

Ce d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)

C et return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x5 +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x5 +

x4 + x°3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage:

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage:

25

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5
sage: G,secretkey = keypair()

sage:

25

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*x"3 - 10*%x"2 + 14*%x - 22

sage:

25

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey

sage:

25

sage: def decrypt(C,secretkey):

e el M = balancedmod

conv

= convolution

Ce et a,a3,GQ = secretkey
M(conv(C,a),Q)
M(conv(u,a3),3)
M(conv(C-d,GQ),Q)

e el u
e e d
e e b

- return b,d

sage: decrypt(C,secretkey)
(x"6 - x°5 - x72 -

x4 + x°3 + x72 -

sage: b,d

(x"6 - x5 - x°2 -

x4 + x°3 + x72 -

x — 1, x°b +

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey

sage: a

-X"6 - xb+x"3+x -1

sage:

25

24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution
sage: decrypt(C,secretkey) sage:

(x"6 - xbh-x"2-x-1, x5 +
x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution
sage: decrypt(C,secretkey) sage: M = balancedmod
(x6 - x5 - x"2 -x -1, x75 + sage:

x"4 + x°3 + x72 - x)

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

24

sage: def decrypt(C,secretkey): sage: N,Q,W = 7,256,5

....: M = balancedmod sage: G,secretkey = keypair()
- conv = convolution sage: G

Ce el a,a3,GQ = secretkey A4xx"6 — 97*xx"b - 62*%x"4 -

Ce u = M(conv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22
Ce d = M(conv(u,a3),3) sage: a,a3,GQ = secretkey
....: b= M(conv(C-d,GR),Q) sage: a

Ce el return b,d -Xx"6 - X5+ x"3 +x -1

- sage: conv = convolution

sage: decrypt(C,secretkey) sage: M = balancedmod
(x"6 - xbh-x"2-x-1, x5 + sage: e3 = M(conv(a,G),Q)
x4 + x"3 + x72 - x) sage:

sage: b,d

(x"6 - xb-x"2-x-1, x5 +

x4 + x°3 + x72 - x)

sage: def decrypt(C,secretkey):
- M = balancedmod

- conv = convolution

Ce et a,a3,GQ = secretkey

C u = M(conv(C,a),Q)

C d = M(conv(u,a3),3)

Ce b = M(conv(C-d,GQ),Q)
- return b,d

sage: decrypt(C,secretkey)

(x6 - xbh-x"2-x-1, x°b +
Xx"4 + x"3 + x"2 - x)

sage: b,d

(x6 - xbh-x"2-x-1, x°b +

x4 + x°3 + x72 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

of decrypt(C,secretkey):
M = balancedmod

conv = convolution
a,a3,GQ = secretkey

u = M(conv(C,a),Q)

d = M(conv(u,a3),3)

b = M(conv(C-d,GQ),Q)

return b,d

ecrypt (C,secretkey)

X" b - x2-x-1, xb +
Xx"3 + X°2 - X)

,d

X" - x2-x-1, xb +

x"3 + x°2 - x)

24

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 — 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x°b + 3*x"4 - 3*x73
+ 3*X

sage:

25

sage:

sage:

b

24 25

t (C,secretkey) : sage: N,Q,W = 7,256,5 sage: b = random
ncedmod sage: G,secretkey = keypair() sage:

onvolution sage: G

= secretkey 44xx"6 - 97*x"b - 62%x"4 -

nv(C,a),Q) 126*%x"3 - 10*x"2 + 14*xx - 22

nv(u,a3),3) sage: a,a3,GQ = secretkey

nv(C-d,GQ),Q) sage: a

,d -x’6 - xb+x"3+x -1

sage: conv = convolution
secretkey) sage: M = balancedmod

- x -1, x5 + sage: e3 = M(conv(a,G),Q)

- X) sage: €3
-3*%*x"6 + 3%x"b + 3*%x74 - 3%x"3
-x -1, x5 + + 3%*X

- X) sage:

24 25

tkey) : sage: N,Q,W = 7,256,5 sage: b = randomweightw()
sage: G,secretkey = keypair() sage:

n sage: G

ey 44xx"6 — 97*x"5 - 62*%x"4 -

) 126*xx~3 - 10*x"2 + 14%xx - 22

3) sage: a,a3,GQ = secretkey

),Q) sage: a

-Xx"6 - x5 +x"3+x -1
sage: conv = convolution
) sage: M = balancedmod

Xx"5 + sage: e3 = M(conv(a,G),Q)
sage: ed
-3*x"6 + 3*%x°b + 3*x"4 - 3*%x”3
X" 5 + + 3*X

sage:

25

sage: N,Q,W = 7,256,5 sage: b = randomweightw()
sage: G,secretkey = keypair() sage:
sage: G

44xx"6 — 97*xX"b5 - 62*%x"4 -
126*%x"3 - 10*x"2 + 14%xx - 22

sage: a,a3,G) = secretkey
sage: a

-X"6 - x"0+x3+x -1
sage: conv = convolution
sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*%x"6 + 3*%x°b + 3*x"4 - 3*%x"3
+ 3%X

sage:

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage:
sage:

sage:

b
d

randomweightw ()

randomsecret ()

26

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22

sage: a,a3,G) = secretkey

sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b
sage: d
sage: C

sage:

randomweightw ()

randomsecret ()

M(conv(b,G)+d,Q)

26

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x5 + 6*%x74 - 24%x"3
+ 56*%x"2 - 98*xx - 71

sage:

26

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

—120*%x"6 - x75 + 6*%x"4 - 24%x73
+ B6*x~2 - 98%x - T1
sage: u = M(conv(a,C),Q)

sage:

26

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56*xx"2 - 98xx - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x°b - T*x"4 + 4%x"3 -
6*x - 1

sage:

26

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()
sage: G

44xx"6 - 97*x"b - 62%x"4 -
126*xx"3 - 10*x"2 + 14%x - 22
sage: a,a3,G) = secretkey
sage: a

-Xx"6 - x5 +x"3+x -1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: ed

-3*x"6 + 3*%x"b + 3*x"4 - 3*x”3
+ 3*X

sage:

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

,Q,W = 7,256,5
,secretkey = keypair ()

- O7xx"b5 - 62%x"4 -
3 — 10xx"2 + 14%x - 22
,a3,G = secretkey

x"b + x°3 +x -1

onv = convolution

= balancedmod

3 = M(conv(a,G),Q)

3

t 3*%x°b + 3*%x74 - 3*x”3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ B6*xx"2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 - 2%x"b - T*x"4 + 4*xx"3 -
6*x - 1

sage: conv(b,e3)+conv(a,d)
3*X"6 — 2%x"b - T*xx"4 + 4*%x"3 -
6*x - 1

sage:

26

sage:

sage: M

-X~6

sage:

256,5
y = keypair()

- 62%x74 -
2 + 14%xx - 22

secretkey

+ x -1
volution

edmod

v(a,G),Q)

3*%x"4 - 3*%x~3

25

sage: b = randomweightw()
sage: d = randomsecret ()
sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24*%x”3
+ B6*xx"2 - 98*%x - 71

sage: u = M(conv(a,C),Q)

sage: u

S*X"6 — 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*x - 1

sage:

26

sage:

sage:

-X~6

sage:

u 1s 3be
M(u,3)

+ x°b - x74

ir()

3*xx~3

25

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)
sage: C

-120*%x"6 - x"5 + 6*%x74 - 24*x"3
+ 56*x"2 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*x"6 — 2%x"b5 - T*x"4 + 4%x"3 -
6xx — 1

sage: conv(b,e3)+conv(a,d)
SxX"6 — 2%x°5 - Txx"4 + 4%x°3 -
6xx - 1

sage:

26

sage:

sage:

-X~6

sage:

u 1s 3be+ad in R
M(u,3)

+ x°b - x4 + x°3 -

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage:

sage:

-X~6

sage:

u 1s 3bet+ad in R
M(u,3)

+ x°b - x4 + x3 -1

27

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage:

sage:

-X~6

sage:

-X~6

sage:

u is 3bet+ad 1n R
M(u,3)

+ X0 - x4 +x"3 -1
M(conv(a,d),3)

+ x°b - x4 + x3 -1

27

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"5 + x°4 + x°3 - X

sage:

R

27

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage:

R

27

sage: b = randomweightw()

sage: C = M(conv(b,G)+d,Q)

b

sage: d = randomsecret ()

C

sage: C

-120*%x"6 - x°5 + 6*%x"4 - 24%x"3
+ 56%x72 - 98%x - 71

sage: u = M(conv(a,C),Q)

sage: u

3*X"6 - 2%x"b - T*x"4 + 4*%x"3 -
6*xx - 1

sage: conv(b,e3)+conv(a,d)

3*X"6 — 2%x"b - T*xx"4 + 4*xx"3 -
6*%x - 1

sage:

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

27

~

O

~

1

= randomweightw()

= randomsecret ()

= M(conv(b,G)+d,Q)
- x°5 + 6%xx"4 - 24%x"3
2 - 98xx - 71

= M(conv(a,C),Q)

2%x"5 = T*x"4 + 4%x°3 -

onv(b,e3)+conv(a,d)

1

2*%x"h - T*x"4 + 4%x"3 -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + x°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

27

Does de

A
A

coeff
coeff

and exa

26 27
weightw () sage: # u is 3be+ad in R Does decryption a

secret () sage: M(u,3)
(b,G)+d,Q) -x"6 + x°6b - x4 +x"3 -1

All coeffs of d are

All coeffs of a are

. M ,d ,3
sage: M(conv(a,d),3) and exactly W are

6*%x"4 - 24%x°3 -X"6 + X0 - x4 +x"3 -1
- 71 sage: conv(M(u,3),a3)
(a,C),Q) -3%x"5 + x74 + x°3 - x - 3
sage: M(_,3)
7*x"4 + 4%xx"3 - x4 + X3 - X
sage: d
+conv(a,d) X4 + x°3 - x

(xx"4 + 4xx~3 - sage:

24%x”"3

:*XAB -

:*XAS -

26

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + x’b - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x50 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX°3 - X
sage: M(_,3)

x4 + xX°3 - X

sage: d

x4 + X3 - X

sage:

R

27

Does decryption always worl

All coeffs of d are in {—1,0
All coeffs of a are in {—1, 0,
and exactly W are nonzero.

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

Does decryption always work?

A
A

coef
coef

s of aarein {—1,0,1},

and exactly W are nonzero.

s of d arein {—1,0,1}.

23

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

Does decryption always work?

All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad iIn R
has absolute value at most W.

All coeffs of d are in {—1,0,1}.

23

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

sage: # u 1s 3betad 1in
sage: M(u,3)

-X"6 + xb - x4 + x73
sage: M(conv(a,d),3)
-X"6 + x°5 - x4 + x73
sage: conv(M(u,3),a3)
-3*%x"b + x4 + xX"3 - X
sage: M(_,3)

x4 + X3 - X

sage: d

x4 + x°3 - X

sage:

R

21

28
Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad iIn R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

u is 3bet+ad 1in
(u,3)

x5 - x74 + x73
(conv(a,d),3)
x5 - x4 + x~3
onv(M(u,3) ,a3)

t x74 + x°3 - X
(_,3)

"3 - X

"3 - X

27

Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad In R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

28

What akt

+ad 1n

21

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W.)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W =

27

Does decryption always work?

All coeffs of d are in {—1,0, 1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be 4+ ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

28

What about W = 467, Q =

28 29
Does decryption always work? What about W = 467, Q = 20487

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

29

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

29

Does decryption always work?

All coeffs of d are in {—1,0,1}.
All coeffs of a are in {—1,0, 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W'.
(Same argument would work for
a of any weight, d of weight W .)

Similar comments for e, b.
Each coeff of 3be + ad in R
has absolute value at most 4.

e.g. W =467: at most 1868.
Decryption works for Q = 4096.

23

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

29

cryption always work?

sof d arein {—1,0,1}.
sof aarein {—1,0,1},
tly W are nonzero.

eff of ad Iin R

lute value at most W'
rgument would work for
weight, d of weight W.)

omments for e, b.
off of 3be +ad in R
lute value at most 4W'.

— 467: at most 1868.
on works for Q = 4096.

28

29
What about W = 467, Q) = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+--+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.

Crypto -
Nguyen-
Silverms
“The Im
decrypti
security

Decrypti
“all the
for vario
may not

Iways work?

in {—1,0,1}
in{—1,0,1},

' NONZEroO.

n R
-at most .

vould work for
" of weight W)

for e, b.
+ad in R
-at most 4W/.

most 1868.
for Q = 4096.

23

29
What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice”.

Crypto 2003 Howsg
Nguyen—Pointche\
Silverman—Singer-
“The impact of

decryption failures
security of NTRU

Decryption failure:
“all the security p

for various NTRU
may not be valid :

V.

)96.

28

29
What about W = 467,) = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 NTRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
it can be ignored In practice’.

Crypto 2003 Howgrave-Gral
Nguyen—Pointcheval-Proos-
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryptiot

Decryption failures imply th.
“all the security proofs know
for various NTRU paddings
may not be valid after all”.

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

29

30
Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings

may not be valid after all”.

What about W = 467, QQ = 20487

Same argument doesn't work.
a=b=c=d=

14+ x+x2+---+xV-1

3be + ad has a coeff 4W > Q/2.

But coeffs are usually <1024
when a, d are chosen randomly.

1996 N TRU handout mentioned
no-decryption-failure option,
but recommended smaller Q
with some chance of failures.
1998 NTRU paper: decryption
failure “will occur so rarely that
It can be ignored In practice”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

out W = 467, = 20487

gument doesn't work.
c=d=
d has a coeff 4W > Q/2.

fs are usually <1024
d are chosen randomly.

"RU handout mentioned
ption-failure option,
mmended smaller Q

ne chance of failures.
"RU paper: decryption
will occur so rarely that
> Ignored In practice’”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of
aodn—1

This coe
dp, dl, - -
high cor
dn-—1, d

467, Q = 20487

yesn't work.

—XW_li
eff 4W > Q/Q

ally <1024
sen randomly.

but mentioned
Ire option,
smaller Q

of failures.

. decryption
so rarely that
n practice”.

29

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of xN—1 in .
apdy_1 + airdy_»

This coeff is large

., dN—-1 h
high correlation w

dpo, dl, - -

d/\/_l, d/\/_z, ooy @

29 30
20487 Crypto 2003 Howgrave-Graham— Coeff of xN=1in ad is

Nguyen—Pointcheval-Proos— apdn_1+ a1dy_o + - -+ a

Silverman—Singer—-Whyte This coeff is large <

“The impact of
ap, a1,...,ayN_1 has

decryption failures on the

Q/2. | | high correlation with
security of NTRU encryption™:

1 dy_1,dyn_o, ..., dp.

aly Decryption failures imply that

“all the security proofs known . ..
oned for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees

on some random decryption failures

hat

can figure out the secret key!

30
Crypto 2003 Howgrave-Graham-—

Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte
“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that
“all the security proofs known . ..
for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

Coeff of xN=1 in ad is
aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

31

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

30

Coeff of xN=1 in ad is
aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

31

Crypto 2003 Howgrave-Graham-—
Nguyen—Pointcheval-Proos—
Silverman—Singer—Whyte

“The impact of

decryption failures on the
security of NTRU encryption™:

Decryption failures imply that

“all the security proofs known . ..

for various NTRU paddings
may not be valid after all”.

Even worse: Attacker who sees
some random decryption failures
can figure out the secret key!

30

31
Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixV 14+ +dy_1x.

003 Howgrave-Graham-—
-Pointcheval-Proos—
n—Singer—\Whyte

pact of

on failures on the

of NTRU encryption”:

on failures imply that

security proofs known . ..

us NTRU paddings
be valid after all”.

rse: Attacker who sees
rdom decryption failures
re out the secret key!

30

31
Coeff of xN=1 in ad is

aody_1+ ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

apg, a1, ..., an_1 has high
correlation with some rotation
of d/\/_l, d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.

Reasona
random
a correlz

rrave-Graham-—

ral—Proos—
Whyte

on the
encryption’ :

s Imply that

-oofs known . ..

paddings
fter all” .

ker who sees
yption failures
secret key!

30

31
Coeff of xN=1 in ad is

aody_1 +aidy_o+ -+ an_1do.

This coeff is large <
ap, a1,...,ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = dp+dixVN 14+ +dy_1x.

Reasonable guesse
random decryptior
a correlated with ¢

1d M —

at

/n ...

ees
lures

30

31
Coeff of xN=1 in ad is

aody_1+ar1dy_o+ -+ any_1do.

This coeff is large <
ap, a1,...,anN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of d/\/_l, d/\/_z, C e do.

l.e. a Is correlated with
x! rev(d) for some i, where
rev(d) = do+dixVN 14 +dy_1x.

Reasonable guesses given a
random decryption failure:
a correlated with some x' re

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:
a correlated with some x' rev(d).

32

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixV 1+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).
rev(a) correlated with x~'d.

32

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

32

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <

ap, a1, ..., an_1 has high
correlation with some rotation
of dN—11 d/\/_z, C e do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

32

Coeff of xN=1 in ad is

aody_1 +airdy_o+ -+ an_1do.

This coeff is large <
ap, a1, ..., ayN_1 has
high correlation with

dy_1,dy_o, ..., do.

Some coeff is large <
ap, a1, ..., an_1 has high
correlation with some rotation

of dN—11 d/\/_z, Cee do.

l.e. a is correlated with
x' rev(d) for some i, where

31

rev(d) = do+dixVN 14+ +dy_1x.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

xN=1in ad is

+ai1dy_o+---+any_1do.

ff Is large <
., apn_1 has
relation with

Vo do.

eff is large <
., an_1 has high
on with some rotation

dy_o, ..., do.

correlated with
) for some i, where

- do+dixN I dy g x

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Ha
2000 Ja
Hoffsteir
Fluhrer,

using 1n

d IS
+ -+ ay_1dp.

as
ith

b.
SR
as high

yme rotation
. dp.

with
I, where
V—1
+ - Fdy_1x.

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hal
2000 Jau

—Goldbel
mes—Jou

Hoffstein—Silverms:

Fluhrer, etc.: Evel

using invalid mess

v—1d0.

on

-d/\/_lx.

31

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x~'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—-Szydlo
algorithm then finds a.

32

1999 Hall-Goldberg—Schneie
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier at

using invalid messages.

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

33

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d -

-1, d

d -

-2, d

d -

- 3, etc.

X,...,d::

XN_l;

2X,...,d:

B 2XN—1.

33

Reasonable guesses given a
random decryption failure:

a correlated with some x' rev(d).

rev(a) correlated with x™'d.

arev(a) correlated with drev(d).

Experimentally confirmed:
Average of drev(d)

over some decryption failures
is close to arev(a).

Round to integers: arev(a).

Eurocrypt 2002 Gentry—Szydlo
algorithm then finds a.

32

1999 Hal

2000 J

Fluhrer, etc.: Even easier attacks

—Goldberg—Schneier,

aulmes—Joux, 2000
Hoffstein—Silverman, 2016

using invalid messages.

Attacker changes d to
d X,”.,d::XN_%
d+2x, ..., d::2XN_1;

d—+1,
d+ 2
d + 3,

etc.

This changes 3be + ad: adds

T—d, Xa, ...

::23,:

:2X3,...

+34a, etc.

, X

N—la;

:ZXN_la;

33

ble guesses given a
decryption failure:

ted with some x' rev(d).

orrelated with x~'d.

correlated with drev(d).

entally confirmed:

of drev(d)

1e decryption failures
to arev(a).

o integers: arev(a).

ot 2002 Gentry—Szydlo
n then finds a.

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d+2x, ..., d 2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be
all other
and a =

S given a
1 failure:

some x' rev(d).

vith x~'d.

with d rev(d).

nfirmed:

/)
ion failures

arev(a).

antry—Szydlo
ds a.

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d=+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = --
all other coeffs in
and a = - - - + x*#"

1lo

32

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d+1 d+x, ..., d::XN_l;
d+2 d+2x, ..., d::2XN_1;
d + 3, etc.

This changes 3be + ad: adds
T—a, rXa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = - -+390x*
all other coeffs in [—389, 38

1999 Hal

2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to
d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;

d + 3, etc.

This changes 3be 4+ ad: adds
T—a, T—Xa, ... ::XN_la;
+2a, +2xa, ..., ::2XN_13;

+34a, etc.

33

e.g. 3betad = ---+390x48+. ..
all other coeffs in [—389, 389];

34

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

34

1999 Hall-Goldberg—Schneier,
2000 Jaulmes—Joux, 2000
Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d 1,d::X,...,d::XN_1;
d 2,d::2X,...,d::2XN_1;
d + 3, etc.

This changes 3be 4+ ad: adds
T—a, —Xa, ..., ::XN_la;

+2a, +2xa, ..., ::2XN_13;
+3a, etc.

33

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

34

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...

1999 Hal
2000 Jau

—Goldberg—Schneier,
mes—Joux, 2000

Hoffstein—Silverman, 2016
Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d

d

d

1, d-

:X,...,d::

2, d -

:2X,...,d:

XN_l;

B 2XN—1.

3, etc.

This changes 3be 4+ ad: adds

1Td,
::23, -

T—Xa, ...

:XN_la

-2xa, ..., ::2XN_13;
+3a, etc.

33

34
e.g. 3betad = ---+390x48+. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa = --- 4+ x478
e fa=- .-+ x4 1+ ...

Try kx2, kx3, etc.
See pattern of a coeffs.

|l-Goldberg—Schneier,
1Imes—Joux, 2000

1-Silverman, 2016
etc.: Even easier attacks

/alid messages.

- changes d to

'+ x, ..., d::XN_l;
'+ 2x, ..., d::2XN_1;
{C.

nges 3be + ad: adds
3, ..., ::XN_la;

'Xa, ..., ::2XN_13;

33

e.g. 3be+ad = -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa—=---4+ x*% 4 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to

Approac
constant

For eact
generate
Use sign

that nok

-g—Schneier,

x, 2000

n, 2016

1 easler attacks
ages.

d to
d =+ XN_l'
d =+ 2XN_1;

33

e.g. 3be+ad = - -+390x48 ...

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle inv

Approach 1: Tell i
constantly switch

For each new senc
generate new publ
Use signatures to

that nobody else 1

T,

tacks

[—1.

Is

33

e.g. 3be+ad = -+390x48 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---4+ x4 1 ...
i.e., ifa:---—|—x477_|_..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid mess:

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

35

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

and a=---+ x*% 1 ..

Then 3be + ad + ka =
-+ (390 + k)x*78 .

Decryption fails for big k.

Search for smallest k th

Does 3be + ad + kxa a

at fails.

so fail?

Yes if xa = --- 4+ x*8 _
e ifa= .- - +x%" 4+

Try kx2, kx3, etc.
See pattern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

35

e.g. 3be+ad = ---+390x*8 4. ..

all other coeffs in [—389, 389];

Then 3be + ad + ka =
4+ (390 + K)x*H8 4.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?
Yes if xa=---+x*8 ...
i.e., ifa:---+x477+..._

Try kx2, kx3, etc.
See pattern of a coeffs.

34

35
How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

tad = ---+390x*8 4. . .

“coeffs in [—389, 389];

e+ ad + ka =
)0 + k)x*8 ...
on fails for big k.

or smallest k that fails.

e + ad + kxa also fail?

AT

| kx3, etc.
ern of a coeffs.

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to

Eliminat
Nnot enol
using de
random

+390x478

[—389, 389);
L.

ka =
8 4 ...
r big k.

t k that fails.

kxa also fail?

A8

ATT |

oeffs.

34

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

t

Use signatures to ensure

nat nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption

to eliminate invalid messages.

Most submissions do this.

35

How to handle des

Eliminating invalic
not enough: reme
using decryption f.
random valid mes:

1ls.

ail?

34

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to handle decryption fz

Eliminating invalid message:s
not enough: remember atta
using decryption failures for
random valid messages.

35
How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

36

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

36
How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

How to handle invalid messages

Approach 1: Tell user to
constantly switch keys.

For each new sender,
generate new public key.
Use signatures to ensure

that nobody else uses key.

If user reuses a key:
Blame user for the attacks.

Approach 2: FO. Modify
encryption and decryption
to eliminate invalid messages.
Most submissions do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

handle invalid messages

h 1: Tell user to
ly switch keys.

' new sender,

' new public key.
atures to ensure
ody else uses key.

2uses a key:
ser for the attacks.

h 2: FO. Modify
on and decryption
1ate invalid messages.
bmissions do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Roundb, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBe
failure r:
generic |
provably

alid messages

iser to
keys.

ler,

ic key.
ensure
Ises key.

V:
» attacks.

Modity
cryption

d messages.
do this.

35

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conje
failure rate is sma
generic non-quant
provably maintain

35

How to handle decryption failures

Eliminating invalid messages iIs
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Roundb, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough -
generic non-quantum attack
provably maintain full securi

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

37

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

37

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.

37

How to handle decryption failures

Eliminating invalid messages Is
not enough: remember attack
using decryption failures for
random valid messages.

NISTPQC encryption submissions
vary in failure rates.

LAC, NewHope, Round5, SABER:
conjectured failure rate is small
enough that generic non-quantum
attacks provably maintain some
security. (Security loss? Wrong
conjecture? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that
generic non-quantum attacks
provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

handle decryption failures

Ing invalid messages Is
1igh: remember attack
cryption failures for
valid messages.

)C encryption submissions
ailure rates.

'wHope, Roundb, SABER:
red failure rate is small
that generic non-quantum
provably maintain some
(Security loss? Wrong
re? Quantum attacks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-fo

Attacket
G = 3e/
Can att:

“ryption failures

| messages Is
mber attack
ailures for
ages.

1on submissions
S.

oundb, SABER:
> rate 1s small
IC non-quantum
naintain some
loss? Wrong
tum attacks?)

36

37
ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

Brute-force search

Attacker Is given
G = 3e/a, ciphert
Can attacker find

1lures

1S
ck

SSIONS

\BER:
nall

antum
me
ong
ks?)

36

ThreeBears: conjectured

failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = b
Can attacker find b?

ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

38

ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.

Much simpler security review.
Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

ThreeBears: conjectured
failure rate is small enough that
generic non-quantum attacks
provably maintain full security.

Frodo, Kyber: proven
failure rate is small enough that
generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.
Small impact on efficiency.
Much simpler security review.

Bad for publishing attack papers.

37

38
Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

ars: conjectured

ate Is small enough that
non-quantum attacks
“maintain full security.

\yber: proven

ate Is small enough that
non-quantum attacks
“maintain some security.

N TRU Prime:

no decryption failures.
ipact on efficiency.
mpler security review.

publishing attack papers.

37

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG +d.

Can attacker find b?

Search (VA&) oW choices of b.
If d = C — bG is small: done!

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivale

Secret k
secret ke
secret ke

ctured

| enough that
um attacks
full security.

ven
| enough that
um attacks

some security.

me:
tion failures.
fficiency:.

Irity review.

“attack papers.

37

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, €) i
secret key (xa, xe
secret key (x2a, x°

37 38
Brute-force search Equivalent keys
Fhat Attacker is given public key Secret key (a,) is equivaler
> G = 3e/a, ciphertext C = bG + d. secret key (xa, xe),
ty. Can attacker find b? secret key (xza,xze), etc.
Search (N)ZW choices of b.
that Wi
If d = C — bG is small: done!
S
irity. (Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)
es.
Or search through choices of a.
v If e = aG/3 is small, use (a, e)
pers. to decrypt. Advantage: can reuse
attack for many ciphertexts.

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

39

Brute-force search

Attacker is given public key
G = 3e/a, ciphertext C = bG + d.
Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

39

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

39

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different
secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.

If e = aG/3 is small, use (a, e)

to decrypt. Advantage: can reuse
attack for many ciphertexts.

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:
(\%) W 2799.76;

(x)QW/N ~ 2790.31

39

Brute-force search

Attacker is given public key

G = 3e/a, ciphertext C = bG + d.

Can attacker find b?

Search (%)QW choices of b.
If d = C — bG is small: donel

(Can this find two different

38

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

39

(V/\é) 2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(x)QW/N ~ 2790.31

secrets d? Unlikely. This would
also stop legitimate decryption.)

Or search through choices of a.
If e = aG/3 is small, use (a, e)
to decrypt. Advantage: can reuse

| Exercise: Find more equivalences!
attack for many ciphertexts.

rce search

~1s given public key

a, ciphertext C = bG + d.

\cker find b?

VA&) oW choices of b.
" — bG i1s small: donel!

s find two different
1?7 Unlikely. This would

) legitimate decryption.)

h through choices of a.

G /3 is small, use (a, e)
pt. Advantage: can reuse
Or many ciphertexts.

38

39
Equivalent keys

Secret key (a, e) is equivalent to

secret key (xa, xe),

2 2

secret key (x“a, x“e), etc.

Search only %(%)2W/N choices.

N =701 W = 467:
(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

Collision

Write a
a1 = bo
ar = rer

yublic key

ext C = bG +d.

b?

vices of b.
mall: donel

different
y. This would
e decryption.)

choices of a.
all, use (a, €)
tage: can reuse
phertexts.

38

39
Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N = 701, W = 200:
(%)2‘/‘/ ~ 2799.76;

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

Collision attacks

Write a as a1 + a;
a1 = bottom [N/
d) = remaining te

uld
on.)

f a.

reusSe

38

39
Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(%)2W/N choices.

N =701 W = 467:
(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

N =701, W = 200:
(V/\DQW ~ 2799.76;

(VA\;)ZW/N ~ 2790.31

Exercise: Find more equivalences!

Collision attacks

Write a as a; + a» where
a1 = bottom | N/2| terms o
a> = remaining terms of a.

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701 W = 467:
(V/\é)2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N =701, W = 200:
(%)2‘/‘/ ~ 2799.76;

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

39

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

40

39 40

Equivalent keys Collision attacks

Secret key (a, e) is equivalent to Write a as a; + a» where

secret key (xa, xe), a; = bottom [N/2] terms of a,
secret key (x°a, x°e), etc. a> = remaining terms of a.
Search only %(VA\;)ZW/N choices. e=(G/3)a=(G/3)a1 + (G/3)a

N = 701, W = 467: so e — (G/3)ax = (G/3)a.
(V/\é)Qw ~ 21106.09.
(\;\V/)QW/N ~ 21096.64

N =701, W = 200:
(%)QW ~ 2799.76.

(V/\|§)2W/N ~ 2790.31

Exercise: Find more equivalences!

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

(V/\é) 2W ~ 21106.09;
(\/A\;)QW/N ~ 21096.64

N =701, W = 200:

N
W

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

39

40
Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

Equivalent keys

Secret key (a, e) is equivalent to
secret key (xa, xe),
secret key (x°a, x°e), etc.

Search only %(VA\;)ZW/N choices.

N =701, W =467

(V/\é) 2W ~ 21106.09;

(V/\J) 2W/N ~ 21096.64

N =701, W = 200:

N
W

(x)QW/N ~ 2790.31

Exercise: Find more equivalences!

(NYoW s 279976,

39

40
Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)a1).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

nt keys

ey (a, e) is equivalent to
2y (xa, xe),
y (x%a, x°e), etc.

nly ~(V/\|§) 2W' /N choices.

W =467:

(‘%V/)zW ~ 21106.09;
(V/\DQW/N ~ 21096.64

, W =200:

N
W

(VA\;)ZW/N ~ 2790.31

. Find more equivalences!

(NYoW s 279976,

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < 0])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice \

Given pt
Comput

5 equivalent to

I

e), etc.
2W /N choices.

[

\oW ~, 51106.09.
/)27 = 2 ,
W /N ~ 2109664

0:

N
/N

W /N ~ 279031

re equivalences!

W ~ »799.76.
)W ~ 279976,

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ay
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of N1

Given public key (
Compute H=G/.

1t to

)ICES.

1106.09.
096.64

2799.76.
2790.31.

snces!

39

Collision attacks

Write a as a; + a» where
a1 = bottom [N/2] terms of a,
a» = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e — (G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < 0])

Enumerate all H(—(G/3)a»).
Enumerate all H((G/3)ay).
Search for collisions.

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢/air

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.

41

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

41

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

Collision attacks

Write a as a; + a» where
a; = bottom [N/2] terms of a,
a> = remaining terms of a.

e =(G/3)a=(G/3)a; + (G/3)ap
so e —(G/3)ax = (G/3)ay.
Eliminate e: almost certainly
H(—(G/3)a2) = H((G/3)ay) for
H(f) — ([fo < O] [fk—l < O])

H(—(G/3)a2).
H((G/3)a1).
Search for collisions.

Enumerate a

Enumerate a

Only about 3N/2 gperations:
~229992 for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

_attacks

as a; + a» where
ttom | N/2| terms of a,
naining terms of a.

3)a=(G/3)a; + (G/3)ay
G/3)ap = (G/3)ay.
e e: almost certainly

3)as) = H((G/3)ay) for

ite all H(—(G/3)ay).
ite all H((G/3)a1).

or collisions.

sut 3N/2 operations:
for N = 701.

40

41
Lattice view of NTRU

Given public key G = 3e/a.
Compute H=G/3 =e¢e/ain Rp.
a € R is obtained from

1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

gvvhere
)| terms of a,
rms of a.

3)a; + (G/3)ar
(G/3)a1.

st certainly
1((G/3)ay) for
S [fk—l < O])

-(G/3)a2).
G/3)a1).

perations:
701.

40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtz
(Q,0),
(Qx,0),

kClXAL_l,O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions

40

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =e¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R i1s obtained from
H xH, ... xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(Q,0),
(Qx,0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtract

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

42

Lattice view of NTRU

Given public key G = 3e/a.

Compute H=G/3 =¢e/ain Rp.

a € R is obtained from
1 x,..., xN—1

by a few additions, subtractions.

aH € R 1s obtained from
H xH, ..., xN=1H
by a few additions, subtractions.

e € R is obtained from

by a few additions, subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

42

siew of NTRU

iblic key G = 3¢/ a.

e H=G/3 =¢e/ain Ryp.

obtained from
XN—l

additions, subtractions.

) Is obtained from
. ,XN_lH
additions, subtractions.

obtained from

additions, subtractions.

41

42
(e, a) € R? is obtained from

(Q,0),
(Qx, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

(ep, €1, .
IS obtair
(Q,0,..
(0,Q, ..

(0,0, ...
(Ho, H1,

(Hn-1,

(Hy1, Ha,
by a few

R

; = 3e/a.

3 = e/a N RQ.

from

. subtractions.

ied from
!

. subtractions.

from
XN_l,

!

. subtractions.

41

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_1xN—1.

42

(eg, €1, ..., en_1
Is obtained from
(Q,0,...,0,0,0,.
(0,Q,...,0,0,0,.
(0,0,..., Q,0,0,.
(Ho, H1, ..., Hp

by a few additions

 Rp.

onSs.

onSs.

onSs.

41

42
(e, a) € R? is obtained from

(Q,0),
(@x, 0),

.(QXN—I, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Ho + Hix+ -+ Hy_1xN—1.

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtract

(e, a) € R? is obtained from
(@, 0),
(Rx,0),

.(QXN_l, O),
(H, 1),
(xH, x),

(XN—l H XN—l)
by a few additions, subtractions.

Write H as
Hyo + Hix + -+ Hy_xN—1.

42

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

R? is obtained from

,XN—l)

additions, subtractions.

as
X4+ Hy_1xN—1

42

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

(ep, €1, .
IS @ Surg
In lattice

(@Q.0,..

ined from

. subtractions.

H/\/_1X

N—-1

42

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly sh
in lattice generate
(Q,0,...,0,0,0,.

onSs.

42

IS obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Is obtained from
(Q,0,...,0,0,0,...,0),
(0,Q,...,0,0,0,...,0),

(0,0,...,Q,0,0,...,0),

(H1, Ho, ..., Hp,0,0,...,1)
by a few additions, subtractions.

IS a surprisingly short vector
in lattice generated by

(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

.,e/\/_l,ao,al,...,a/\/_l)
ed from

,0,0,0,...,0),
,0,0,0,...,0),
'Q,0,0,...,0),

HN 1,1,0,...,0),
Hy,...,Hny—2,0,1,...,0),

.,Ho,0,0,...,l)
additions, subtractions.

43

(ep,€1,...,eN—1,30,31,--.,aN—-1)
Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector in a lattice.

44

Quotien

“Quotiel
Is the st

Alice ge
for smal

l.e., aG/

30, 31, -+ -+ AN—_1)

., 0),

., 0),

o),
,1,0,...,0),
v—2,0,1,...,0),
0,...,1)

. subtractions.

43

(eg,€1,...,€eN—1,30,31,--.,aN—-1)
IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

44

Quotient NTRU v

“Quotient NTRU"
Is the structure we

Alice generates G
for small random «

e, aG/3 —e =0

an_1)

onSs.

43

(ep,€1,...,eN—1,30,31,--.,aN—-1)
Is a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for
(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector in a lattice.

44

Quotient NTRU vs. Product

“Quotient NTRU"” (new nar
Is the structure we've seen:

Alice generates G = 3e/a in
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

44 45
(eg,€1,...,€eN—1,30,31,--.,aN—_1) Quotient NTRU vs. Product NTRU

IS a surprisingly short vector

"Quotient NTRU" (new name)

In lattice generated b . ,
& y Is the structure we've seen:

(Q,0,...,0,0,0,...,0) etc.

Alice generates G = 3e/a in Rp
Attacker searches for short vector

_ | _ | for small random e, a:
in this lattice using (e.g.) BKZ.

i.e.,, aG/3 —e=0in Rp.
Many speedups. e.g. rescaling:

set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

44 45
(eg,€1,...,€eN—1,30,31,--.,aN—_1) Quotient NTRU vs. Product NTRU

IS a surprisingly short vector

“Quotient NTRU" (new name)

In lattice generated b . ,
& y Is the structure we've seen:

(Q,0,...,0,0,0,...,0) etc.

Alice generates G = 3e/a in Rp
Attacker searches for short vector

_ | _ | for small random e, a:
in this lattice using (e.g.) BKZ.

i.e.,, aG/3 —e=0in Rp.

Many speedups. e.g. rescaling: Bob sends C = bG + d in Rg.

Alice computes aC in Ry,
l.e., 3be + ad in Ry.

set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

(eg,€1,...,eN—1,40, a1, ..
IS a surprisingly short vector

in lattice generated by
(Q,0,...,0,0,0,...,0) etc.

Attacker searches for short vector
in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:
set up lattice to contain (e, 10a)
if e is chosen 10x larger than a.

Exercise: Describe search for

(d, b) as a problem of finding
e a lattice vector near a point;
e a short vector In a lattice.

S, aN-_1)

44

45

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

., €eN—-1,80,81,...,aN—1)

risingly short vector

> generated by
.,0,0,0,...,0) etc.

- searches for short vector
ttice using (e.g.) BKZ.

eedups. e.g. rescaling:
ttice to contain (e, 10a)
10sen 10x larger than a.

. Describe search for

; a problem of finding
ce vector near a point;
t vector In a lattice.

44

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Rp.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“Produc
2010 Ly

Everyon
Alice ge
for smal

ort vector

d by
.., 0) etc.

for short vector
o (e.g.) BKZ.

g. rescaling:
ontain (e, 10a)
larger than a.

' search for
n of finding
1ear a point;
a lattice.

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“"Product NTRU"
2010 Lyubashevsk

Everyone knows rz
Alice generates A
for small random .

an_1)

/ector
KZ.

\g:
10a)

1N 4.

Nt;

44

Quotient NTRU vs. Product NTRU

“"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Rp.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad in R3,

deduces d, deduces b.

45

“Product NTRU" (new nan
2010 Lyubashevsky—Peikert-

Everyone knows random G ¢
Alice generates A = aG + e
for small random a, e.

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad in R,
using smallness of a, b, d, e.

Alice computes ad In R3,
deduces d, deduces b.

45

“Product NTRU” (new name),
2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

46

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad in R,
using smallness of a, b, d, e.

Alice computes ad In R3,
deduces d, deduces b.

45

“Product NTRU"” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Rg
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

46

Quotient NTRU vs. Product NTRU

"Quotient NTRU" (new name)
Is the structure we've seen:

Alice generates G = 3e/a in Rp
for small random e, a:

i.e.,, aG/3 —e=0in Rp.

Bob sends C = bG + d in Rp.
Alice computes aC in Ry,

l.e., 3be + ad in Ry.

Alice reconstructs 3be + ad In R,
using smallness of a, b, d, e.
Alice computes ad In R3,

deduces d, deduces b.

45

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Rg
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

46

t NTRU vs. Product NTRU

it NTRU” (new name)
ructure we've seen:

nerates G = 3e/a in Ry
| random e, a:

'3—e:0in RQ.

ds C = bG + d in RQ.
mputes aC in Ry,
+ ad in RQ.

onstructs 3be + ad in R,
1allness of a, b, d, e.

mputes ad in R3,
d, deduces b.

45

46
“Product NTRU"” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in Ry
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotien
Ring-0L\
Ring-LW

Product
Ring-LW\
Ring-LW\

s. Product NTRU

(new name)
've seen:

- 3e/a N RQ
o a;
in Rp.

 +d In RQ.

- In R,

Q-

3be+ ad in R,
a, b, d,e.

[In R3,

S b.

45

“Product NTRU" (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Ryp.

Alice generates A = aG + e in R

for small random a, e.

Bob sends B = bG + d in R

and C = m

bA

cin RQ

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotient NTRU a
Ring-0LWE (attac
Ring-LWE{ (attac

Product NTRU at
Ring-LWE; (attac
Ring-LWE> (attac

- NTRU

ne)

in R,

45

46
“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in R
and C = m+ bA+ c in Ry

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, c, d, e.

Quotient NTRU attack prok
Ring-0LWE (attack key) anc
Ring-LWE; (attack cipherte

Product NTRU attack probl
Ring-LWE; (attack key) anc
Ring-LWE> (attack cipherte

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.

Alice generates A = aG + e in R

for small random a, e.

Bob sends B = bG + d in R

and C = m

bA

cin RQ

where b, ¢, d are small and
each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, ¢, d, e.

46

Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

47

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in R
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, ¢, d, e.

46

Quotient NTRU attack problems:
Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:
maybe Ring-OLWE i1s a weakness.

47

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in R
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, ¢, d, e.

46

47
Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:
maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:
maybe Ring-LWE> is a weakness.

“Product NTRU” (new name),

2010 Lyubashevsky—Peikert—Regev:

Everyone knows random G € Rp.
Alice generates A = aG + e in R
for small random a, e.

Bob sends B = bG + d in R
and C = m+ bA+ c in Ry
where b, ¢, d are small and

each coeff of mis 0 or Q/2.

Alice computes C — aB in Ry,
l.e., m+ be+c—ad in Rp.
Alice reconstructs m,

using smallness of a, b, ¢, d, e.

46

47
Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:
maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:
maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:
extra min m+ be + ¢ — ad
needs smaller (weaker) noise.

t NTRU” (new name),

ubashevsky—Peikert—Regev:

> knows random G € Ry.

nerates A = aG + e in RQ

| random a, e.

ds B = bG + d in Rg

=M

bA

cin R

¢, d are small and
ff of mis 0 or Q/2.

mputes C — aB in Ry,
-be+c—ad in Rp.
onstructs m,

1allness of a, b, ¢, d, e.

46

Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:

extra min m+ be 4 ¢ — ad
needs smaller (weaker) noise.

47

2016 Pe
Is at lea:

(new name),
y—Peikert—Regev:

\ndom G & RQ.
— aG 4+ e In RQ
3, e.

3 +d In RQ
- C In RQ

mall and

0or /2.
— aB In RQ,
~ad In RQ.
ml

a, b c, d,e.

46

Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:

extra min m+ be+ ¢ — ad
needs smaller (weaker) noise.

47

2016 Peikert: “Rii
Is at least as hard

46

Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:

extra min m+ be 4 ¢ — ad
needs smaller (weaker) noise.

47

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU

Quotient NTRU attack problems:
Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:
maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:
maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:

extra min m+ be+ ¢ — ad
needs smaller (weaker) noise.

47

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

43

Quotient NTRU attack problems:

Ring-OLWE (attack key) and
Ring-LWE; (attack ciphertext).

Product NTRU attack problems:
Ring-LWE; (attack key) and
Ring-LWE> (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-OLWE i1s a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE> is a weakness.

Disadantage of Product NTRU:

extra min m+ be+ ¢ — ad
needs smaller (weaker) noise.

47

48
2016 Peikert: “Ring-LWE

Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with
considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,

Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.

t NTRU attack problems:

NE (attack key) and
'E1 (attack ciphertext).

NTRU attack problems:
'E1 (attack key) and
'E> (attack ciphertext).

tage of Quotient NTRU:

(ng-0LWE is a weakness.

tage of Product NTRU:

Aing-LWE> Is a weakness.

tage of Product NTRU:
in m+ be + ¢ — ad
naller (weaker) noise.

47

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with

considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,

Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.

43

Disadval
need FQ
not just

Quotien

ttack problems:

k key) and
k ciphertext).

tack problems:
k key) and
k ciphertext).

1otient NTRU:

1S a weakness.

oduct NTRU:

I1s a weakness.

oduct NTRU:
+ ¢ — ad
ker) noise.

47

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with
considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,
Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.

43

Disadvantage of F
need FO derandon
not just FO reenct

Quotient NTRU s

lems:

Xt).

€Mms.:

Xt).

"RU:

(NESS.

47

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with

considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,

Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.

43

Disadvantage of Product N
need FO derandomization,
not just FO reencryption.

Quotient NTRU is determin

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-OLWE if you can solve
(search) Ring-LWE; with

considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could

be weaker than Ring-OLWE. Also,

Ring-LWE> could be weaker.

So Product NTRU cou

d be less

secure than Quotient NTRU.

43

Disadvantage of Product NTRU:

need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

49

2016 Peikert: “Ring-LWE
Is at least as hard as NTRU.”

What this theorem actually says
is: you can solve (decisional)
Ring-OLWE if you can solve
(search) Ring-LWE; with
considerably more noise.

Ring-LWE; with the same amount

of noise (or slightly less!) could
be weaker than Ring-OLWE. Also,
Ring-LWE> could be weaker.

So Product NTRU could be less
secure than Quotient NTRU.

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

ikert: “Ring-LWE
st as hard as NTRU.”

is theorem actually says
an solve (decisional)
NE if you can solve
Ring-LWE{ with

ably more noise.

'E1 with the same amount
(or slightly less!) could
er than Ring-0LWE. Also,

'E> could be weaker.

uct NTRU could be less
1an Quotient NTRU.

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadval
NTRU:
encapsul

1g-LWE
as NTRU.”

1 actually says
decisional)
can solve

-1 with

noise.

he same amount
y less!) could
ng-0LWE. Also,

be weaker.

| could be less
ent NTRU.

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadvantage of F
NTRU: more mult
encapsulation and

says

mount

uld
Also,

less

43

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

Disadvantage of Product
NTRU: more multiplications
encapsulation and decapsula

49
Disadvantage of Product NTRU:

need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

50

49
Disadvantage of Product NTRU:

need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight

QROM IND-CCA2 security for
one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

Disadvantage of Product NTRU:
need FO derandomization,
not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019
Bindel-Hamburg—Hovelmanns—
Hulsing—Persichetti proves tight
QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness
or make stronger assumptions
than one-wayness.

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

1tage of Product NTRU.

' derandomization,
FO reencryption.

t NTRU Is deterministic.

s (maybe) matters: 2019
1amburg—Hovelmanns—
-Persichetti proves tight

IND-CCA2 security for
deterministic systems.

) derandomization,

n proofs lose tightness
stronger assumptions
>-Wayness.

49

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disad

doub

Val

€-S

roduct NTRU:

nization,

yption.
, deterministic.

matters: 2019
Hovelmanns—

1 proves tight
) security for
stic systems.

nization,
bse tightness
1ssumptions

49

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disad

doub

vantage of F
e-size cipher

[RU:

Istic.

2019
NS—
ght
for

ns.

=SS
1S

49

50
Disadvantage of Product

N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

Disac
doub

vantage of Product N°
e-size ciphertexts.

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disac
doub

vantage of Product NTRU:
e-size ciphertexts.

51

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

51

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—

Tuveri showed how to integrate
this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

51

Disadvantage of Product
N TRU: more multiplications in
encapsulation and decapsulation.

Disadvantage of Quotient NTRU:
divisions in key generation are
much more expensive than mults.

Fix: if you need to generate many
keys, use Montgomery's trick

to replace D divisions with

1 division + 4(D — 1) mults.

2020 Bernstein—Brumley—Chen—
Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

tage of Product
more multiplications In
ation and decapsulation.

1tage of Quotient NTRU:
In key generation are
ore expensive than mults.

ou need to generate many
> Montgomery's trick

e D divisions with

n + 4(D — 1) mults.

rnstein—Brumley—Chen—
nowed how to integrate

OpenSSL and TLS 1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented%® this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two' .

Ms,
anism

4
No.

Minor Ding tweak, same length.

b1

Disadval

2010.02
patent4
covers P

roduct
Iplications In
decapsulation.

)uotient NTRU:

neration are
sive than mults.

) generate many
nery's trick

ons with

- 1) mults.

-umley—Chen—

v to Integrate
~and TLS 1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two" .

Ms,
anism

1
No.

Minor Ding tweak, same length.

51

Disadvantage of F

2010.02 Gaborit—£
patent%®, before L
covers Product N

1N

tion.

TRU:

nults.

many

€N—

ate
1.3.

50

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented%*

this.

I'm skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-

LWE cryptosystems and KE
the new reconciliation mech
reduces the ciphertext lengt
oy nearly a factor of two' .

Ms,
anism

4
No.

Minor Ding tweak, same length.

b1

Disadvantage of Product N

2010.02 Gaborit—Aguilar Me
patent%®, before LPR public
covers Product NTRU.

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

52

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

52

Disadvantage of Product NTRU:
double-size ciphertexts.

Fix: 2012 Ding compressed
ciphertexts to ~1/2 size.

Bad news: Ding patented®® this.
I'm skeptical of the idea that
tweaks will avoid the patent.

2014 Peikert: “As compared with
the previous most efficient ring-
LWE cryptosystems and KEMs,
the new reconciliation mechanism
reduces the ciphertext length
No.

Minor Ding tweak, same length.

oy nearly a factor of two" .

51

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

52

1tage of Product NTRU.
1ze ciphertexts.

2 Ding compressed
xts to ~1/2 size.

;s: Ding patented® this.
tical of the idea that
vill avoid the patent.

ikert: “As compared with
lous most efficient ring-
ptosystems and KEMs,
reconciliation mechanism
the ciphertext length
No.

Iing tweak, same length.

v a factor of two" .

b1

52
Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6Db
Some interesting documents.

Disadval
NTRU:

Product
years of
(“strong
successf

roduct NTRU:
“exts.

mpressed
2 size.

atented%®* this.
e Idea that
he patent.

compared with
efficient ring-
s and KEMs,
tion mechanism
text length
No.

. same length.

of two' .

51

52
Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b
Some interesting documents.

Disadvantage (7) -
NTRU: much less

Product NTRU s
years of security e;

(“strong security ¢
successfully attrac

[RU:

this.

| with

Ing-
Ms,
anism

b1

Disadvantage of Product NTRU:

2010.02 Gaborit—Aguilar Melchor
patent%®, before LPR publication,
covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6Db

Some interesting documents.

52

Disadvantage (7) of Quotier
NTRU: much less marketing

Product NTRU 1s backed by
years of security exaggeratio
(“strong security guarantees
successfully attracting intere

52 53
Disadvantage of Product NTRU: Disadvantage (7) of Quotient

2010.02 Gaborit—Aguilar Melchor NTRU: much less marketing.

patent®®, before LPR publication, Product NTRU is backed by 10
covers Product NTRU. years of security exaggeration

Rumors of patent-buyout offers (“strong security guarantees”),

successfully attracting interest.
have not shown results (yet?). Y &

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b
Some interesting documents.

Disadvantage of Product NTRU:
2010.02 Gaborit—Aguilar Melchor

patent%®, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers
have not shown results (yet?).

A British law firm named Keltie,
not saying who It Is representing,
has tried to kill the patent,

and so far has failed.

To watch Keltie's ongoing appeal:
https://tinyurl.com/y4e66y6b

Some interesting documents.

52

53
Disadvantage (7) of Quotient

NTRU: much less marketing.

Product NTRU 1s backed by 10
years of security exaggeration

(“strong security guarantees”),
successfully attracting interest.

Product NTRU submissions:
Frodo, Kyber, LAC, NewHope,
NTRU LPRime, Round5, SABER,
ThreeBears. (All compressed.)

Quotient NTRU submissions:
NTRU, Streamlined NTRU Prime.

