
1

Lattice-based cryptography,

day 2: efficiency

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2016: Google runs “CECPQ1”

experiment, encrypting with

elliptic curves and NewHope.

2019: Google+Cloudflare

run “CECPQ2” experiment,

encrypting with elliptic curves

and NTRU HRSS.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

1

Lattice-based cryptography,

day 2: efficiency

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2016: Google runs “CECPQ1”

experiment, encrypting with

elliptic curves and NewHope.

2019: Google+Cloudflare

run “CECPQ2” experiment,

encrypting with elliptic curves

and NTRU HRSS.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

1

Lattice-based cryptography,

day 2: efficiency

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2016: Google runs “CECPQ1”

experiment, encrypting with

elliptic curves and NewHope.

2019: Google+Cloudflare

run “CECPQ2” experiment,

encrypting with elliptic curves

and NTRU HRSS.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

1

Lattice-based cryptography,

day 2: efficiency

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2016: Google runs “CECPQ1”

experiment, encrypting with

elliptic curves and NewHope.

2019: Google+Cloudflare

run “CECPQ2” experiment,

encrypting with elliptic curves

and NTRU HRSS.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

2

2019: OpenSSH adds support for

Streamlined NTRU Prime.

These lattice cryptosystems

have ≈1KB keys, ciphertexts;

have ≈100000 cycles enc, dec;

maybe resist quantum attacks.

ECC has much shorter keys and

ciphertexts and similar speeds, but

doesn’t resist quantum attacks.

Isogeny-based crypto has

shorter keys and ciphertexts, and

maybe resists quantum attacks,

but uses many more cycles.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

3

All of the critical design ideas

were introduced in the original

Hoffstein–Pipher–Silverman

NTRUj cryptosystem.

Announced 20 August 1996

at Crypto 1996 rump session.

Patent expired in 2017.

First version of NTRU paper,

handed out at Crypto 1996,

finally put online in 2016:

https://ntru.org/f/hps96.pdf

Proposed 104-byte public keys

for 280 security.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

4

1996 paper converted NTRU

attack problem into a lattice

problem (suboptimally), and then

applied LLL (not state of the art)

to attack the lattice problem.

1997 Coppersmith–Shamir:

better conversion (rescaling) +

better attacks than LLL.

No clear quantification.

(Often incorrectly credited

for first NTRU lattice attacks.)

NTRU paper, ANTS 1998:

proposed 147-byte or 503-byte

keys for 277 or 2170 security.

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

5

NTRU secrets

Parameter: positive integer N.

Z[x] is the ring of polynomials

with integer coeffs.

R = Z[x]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.

Overkill against attack algorithms

known today, even for future

attacker with quantum computer.

Maybe there are faster attacks!

Claimed “guarantees” are fake.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

11

NTRU public keys

Parameter Q, power of 2:

e.g., 4096 for NTRU HRSS.

RQ = (Z=Q)[x]=(xN − 1)

is the ring of polynomials

with integer coeffs modulo Q

and modulo xN − 1.

Public key is an element of RQ.

(Variants: e.g., prime Q.

NTRU Prime has field RQ: e.g.,

(Z=4591)[x]=(x761 − x − 1).)

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

12

NTRU encryption

Ciphertext: bG + d ∈ RQ

where G ∈ RQ is public key

and b; d ∈ R are secrets.

Usually G is invertible in RQ.

Easy to recover b from bG by,

e.g., linear algebra. But noise in

bG + d spoils linear algebra.

Problem of finding b given

G; bG + d (or given G1; bG1 + d1,

G2; bG2 + d2, : : :) was renamed

“Ring-LWE problem” by 2010

Lyubashevsky–Peikert–Regev,

without credit to NTRU.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

13

Variant: require d to have

“weight W”: W nonzero coeffs,

N −W zero coeffs. (Generate

in constant time via sorting.)

W is another parameter:

e.g., 467 for NTRU HRSS.

More traditional variant: require

W=2 coeffs 1 and W=2 coeffs −1.

Variant I’ll use in these slides:

choose b to have weight W .

Another variant: deterministically

round bG to bG + d by rounding

each coeff to multiple of 3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage:

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage:

14

sage: def randomweightw():

....: R = randrange

....: assert W <= N

....: s = N*[0]

....: for j in range(W):

....: while True:

....: r = R(N)

....: if not s[r]: break

....: s[r] = 1-2*R(2)

....: return Zx(s)

....:

sage: W = 5

sage: randomweightw()

-x^6 - x^5 + x^4 + x^3 - x^2

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage:

15

NTRU key generation

Secret e, weight-W secret a.

Require e; a invertible in RQ.

Require a invertible in R3.

Public key: G = 3e=a in RQ.

Ring-0LWE problem: find a

given G=3 and a(G=3)− e = 0.

Homogeneous slice of Ring-LWE1

(find b given G and bG + d).

Known attacks: Ring-0LWE

sometimes weaker than Ring-LWE1.

Also, Ring-LWE2 (using G1; G2)

sometimes weaker than Ring-LWE1.

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

16

sage: def balancedmod(f,Q):

....: g=list(((f[i]+Q//2)%Q)

....: -Q//2 for i in range(N))

....: return Zx(g)

....:

sage:

sage: u = 314-159*x

sage: u % 200

-159*x + 114

sage: (u - 400) % 200

-159*x - 86

sage: balancedmod(u,200)

41*x - 86

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage:

17

sage: def invertmodprime(f,p):

....: Fp = Integers(p)

....: Fpx = Zx.change_ring(Fp)

....: T = Fpx.quotient(x^N-1)

....: return Zx(lift(1/T(f)))

....:

sage: N = 7

sage: f = randomsecret()

sage: f3 = invertmodprime(f,3)

sage: convolution(f,f3)

6*x^6 + 6*x^5 + 3*x^4 + 3*x^3 +

3*x^2 + 3*x + 4

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

18

def invertmodpowerof2(f,Q):

assert Q.is_power_of(2)

g = invertmodprime(f,2)

M = balancedmod

conv = convolution

while True:

r = M(conv(g,f),Q)

if r == 1: return g

g = M(conv(g,2-r),Q)

Exercise: Figure out how

invertmodpowerof2 works.

Hint: How many powers of 2

divide first r-1? Second r-1?

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage:

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage:

19

sage: N = 7

sage: Q = 256

sage: f = randomsecret()

sage: f

-x^6 - x^4 + x^2 + x - 1

sage: g = invertmodpowerof2(f,Q)

sage: g

47*x^6 + 126*x^5 - 54*x^4 -

87*x^3 - 36*x^2 - 58*x + 61

sage: convolution(f,g)

-256*x^5 - 256*x^4 + 256*x + 257

sage: balancedmod(_,Q)

1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage:

20

def keypair():

while True:

try:

a = randomweightw()

a3 = invertmodprime(a,3)

aQ = invertmodpowerof2(a,Q)

e = randomsecret()

G = balancedmod(3 *

convolution(e,aQ),Q)

GQ = invertmodpowerof2(G,Q)

secretkey = a,a3,GQ

return G,secretkey

except:

pass

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

21

sage: G,secretkey = keypair()

sage: G

-126*x^6 - 31*x^5 - 118*x^4 -

33*x^3 + 73*x^2 - 16*x + 7

sage: a,a3,GQ = secretkey

sage: a

-x^6 + x^5 - x^4 + x^3 - 1

sage: convolution(a,G)

-3*x^6 + 253*x^5 + 253*x^3 -

253*x^2 - 3*x - 3

sage: balancedmod(_,Q)

-3*x^6 - 3*x^5 - 3*x^3 + 3*x^2

- 3*x - 3

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage:

22

sage: def encrypt(bd,G):

....: b,d = bd

....: bG = convolution(b,G)

....: C = balancedmod(bG+d,Q)

....: return C

....:

sage: G,secretkey = keypair()

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = encrypt((b,d),G)

sage: C

120*x^6 + 7*x^5 - 116*x^4 +

102*x^3 + 86*x^2 - 74*x - 95

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage:

23

NTRU decryption

Given ciphertext bG + d , compute

a(bG + d) = 3be + ad in RQ.

a; b; d; e have small coeffs,

so 3be + ad is not very big.

Assume that coeffs of 3be + ad

are between −Q=2 and Q=2− 1.

Then 3be + ad in RQ reveals

3be + ad in R = Z[x]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage:

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:

25

sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: M(conv(a,d),3)

-x^6 + x^5 - x^4 + x^3 - 1

sage: conv(M(u,3),a3)

-3*x^5 + x^4 + x^3 - x - 3

sage: M(_,3)

x^4 + x^3 - x

sage: d

x^4 + x^3 - x

sage:

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

28

Does decryption always work?

All coeffs of d are in {−1; 0; 1}.
All coeffs of a are in {−1; 0; 1},
and exactly W are nonzero.

Each coeff of ad in R

has absolute value at most W .

(Same argument would work for

a of any weight, d of weight W .)

Similar comments for e; b.

Each coeff of 3be + ad in R

has absolute value at most 4W .

e.g. W = 467: at most 1868.

Decryption works for Q = 4096.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

29

What about W = 467, Q = 2048?

Same argument doesn’t work.

a = b = c = d =

1 + x + x2 + · · ·+ xW−1:

3be + ad has a coeff 4W > Q=2.

But coeffs are usually <1024

when a; d are chosen randomly.

1996 NTRU handout mentioned

no-decryption-failure option,

but recommended smaller Q

with some chance of failures.

1998 NTRU paper: decryption

failure “will occur so rarely that

it can be ignored in practice”.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

30

Crypto 2003 Howgrave-Graham–

Nguyen–Pointcheval–Proos–

Silverman–Singer–Whyte

“The impact of

decryption failures on the

security of NTRU encryption”:

Decryption failures imply that

“all the security proofs known : : :

for various NTRU paddings

may not be valid after all”.

Even worse: Attacker who sees

some random decryption failures

can figure out the secret key!

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

31

Coeff of xN−1 in ad is

a0dN−1 + a1dN−2 + · · ·+ aN−1d0.

This coeff is large ⇔
a0; a1; : : : ; aN−1 has

high correlation with

dN−1; dN−2; : : : ; d0.

Some coeff is large ⇔
a0; a1; : : : ; aN−1 has high

correlation with some rotation

of dN−1; dN−2; : : : ; d0.

i.e. a is correlated with

x i rev(d) for some i , where

rev(d) = d0+d1x
N−1+ · · ·+dN−1x .

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

32

Reasonable guesses given a

random decryption failure:

a correlated with some x i rev(d).

rev(a) correlated with x−id .

a rev(a) correlated with d rev(d).

Experimentally confirmed:

Average of d rev(d)

over some decryption failures

is close to a rev(a).

Round to integers: a rev(a).

Eurocrypt 2002 Gentry–Szydlo

algorithm then finds a.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

33

1999 Hall–Goldberg–Schneier,

2000 Jaulmes–Joux, 2000

Hoffstein–Silverman, 2016

Fluhrer, etc.: Even easier attacks

using invalid messages.

Attacker changes d to

d ± 1, d ± x , : : : , d ± xN−1;

d ± 2, d ± 2x , : : : , d ± 2xN−1;

d ± 3, etc.

This changes 3be + ad : adds

±a, ±xa, : : : , ±xN−1a;

±2a, ±2xa, : : : , ±2xN−1a;

±3a, etc.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

34

e.g. 3be+ad = · · ·+390x478+· · ·,
all other coeffs in [−389; 389];

and a = · · ·+ x478 + · · ·.

Then 3be + ad + ka =

· · ·+ (390 + k)x478 + · · ·.
Decryption fails for big k.

Search for smallest k that fails.

Does 3be + ad + kxa also fail?

Yes if xa = · · ·+ x478 + · · ·,
i.e., if a = · · ·+ x477 + · · ·.

Try kx2, kx3, etc.

See pattern of a coeffs.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

35

How to handle invalid messages

Approach 1: Tell user to

constantly switch keys.

For each new sender,

generate new public key.

Use signatures to ensure

that nobody else uses key.

If user reuses a key:

Blame user for the attacks.

Approach 2: FO. Modify

encryption and decryption

to eliminate invalid messages.

Most submissions do this.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

36

How to handle decryption failures

Eliminating invalid messages is

not enough: remember attack

using decryption failures for

random valid messages.

NISTPQC encryption submissions

vary in failure rates.

LAC, NewHope, Round5, SABER:

conjectured failure rate is small

enough that generic non-quantum

attacks provably maintain some

security. (Security loss? Wrong

conjecture? Quantum attacks?)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

37

ThreeBears: conjectured

failure rate is small enough that

generic non-quantum attacks

provably maintain full security.

Frodo, Kyber: proven

failure rate is small enough that

generic non-quantum attacks

provably maintain some security.

NTRU, NTRU Prime:

proof of no decryption failures.

Small impact on efficiency.

Much simpler security review.

Bad for publishing attack papers.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

38

Brute-force search

Attacker is given public key

G = 3e=a, ciphertext C = bG + d .

Can attacker find b?

Search
`N
W

´
2W choices of b.

If d = C − bG is small: done!

(Can this find two different

secrets d? Unlikely. This would

also stop legitimate decryption.)

Or search through choices of a.

If e = aG=3 is small, use (a; e)

to decrypt. Advantage: can reuse

attack for many ciphertexts.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

39

Equivalent keys

Secret key (a; e) is equivalent to

secret key (xa; xe),

secret key (x2a; x2e), etc.

Search only ≈
`N
W

´
2W =N choices.

N = 701, W = 467:`N
W

´
2W ≈ 21106:09;`N

W

´
2W =N ≈ 21096:64.

N = 701, W = 200:`N
W

´
2W ≈ 2799:76;`N

W

´
2W =N ≈ 2790:31.

Exercise: Find more equivalences!

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

40

Collision attacks

Write a as a1 + a2 where

a1 = bottom dN=2e terms of a,

a2 = remaining terms of a.

e = (G=3)a = (G=3)a1 + (G=3)a2

so e − (G=3)a2 = (G=3)a1.

Eliminate e: almost certainly

H(−(G=3)a2) = H((G=3)a1) for

H(f) = ([f0 < 0]; : : : ; [fk−1 < 0]).

Enumerate all H(−(G=3)a2).

Enumerate all H((G=3)a1).

Search for collisions.

Only about 3N=2 operations:

≈2555:52 for N = 701.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

41

Lattice view of NTRU

Given public key G = 3e=a.

Compute H = G=3 = e=a in RQ.

a ∈ R is obtained from

1; x; : : : ; xN−1

by a few additions, subtractions.

aH ∈ RQ is obtained from

H; xH; : : : ; xN−1H

by a few additions, subtractions.

e ∈ R is obtained from

Q;Qx;Qx2; : : : ; QxN−1,

H; xH; : : : ; xN−1H

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

42

(e; a) ∈ R2 is obtained from

(Q; 0),

(Qx; 0),
...

(QxN−1; 0),

(H; 1),

(xH; x),
...

(xN−1H; xN−1)

by a few additions, subtractions.

Write H as

H0 + H1x + · · ·+ HN−1x
N−1.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

43

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is obtained from

(Q; 0; : : : ; 0; 0; 0; : : : ; 0),

(0; Q; : : : ; 0; 0; 0; : : : ; 0),
...

(0; 0; : : : ; Q; 0; 0; : : : ; 0),

(H0; H1; : : : ; HN−1; 1; 0; : : : ; 0),

(HN−1; H0; : : : ; HN−2; 0; 1; : : : ; 0),
...

(H1; H2; : : : ; H0; 0; 0; : : : ; 1)

by a few additions, subtractions.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

44

(e0; e1; : : : ; eN−1; a0; a1; : : : ; aN−1)

is a surprisingly short vector

in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

45

Quotient NTRU vs. Product NTRU

“Quotient NTRU” (new name)

is the structure we’ve seen:

Alice generates G = 3e=a in RQ

for small random e; a:

i.e., aG=3− e = 0 in RQ.

Bob sends C = bG + d in RQ.

Alice computes aC in RQ,

i.e., 3be + ad in RQ.

Alice reconstructs 3be + ad in R,

using smallness of a; b; d; e.

Alice computes ad in R3,

deduces d , deduces b.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

46

“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.

Bob sends B = bG + d in RQ

and C = m + bA + c in RQ

where b; c; d are small and

each coeff of m is 0 or Q=2.

Alice computes C − aB in RQ,

i.e., m + be + c − ad in RQ.

Alice reconstructs m,

using smallness of a; b; c; d; e.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

47

Quotient NTRU attack problems:

Ring-0LWE (attack key) and

Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).

Disadantage of Quotient NTRU:

maybe Ring-0LWE is a weakness.

Disadantage of Product NTRU:

maybe Ring-LWE2 is a weakness.

Disadantage of Product NTRU:

extra m in m + be + c − ad

needs smaller (weaker) noise.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

48

2016 Peikert: “Ring-LWE

is at least as hard as NTRU.”

What this theorem actually says

is: you can solve (decisional)

Ring-0LWE if you can solve

(search) Ring-LWE1 with

considerably more noise.

Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–

Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.

Fix: if you need to generate many

keys, use Montgomery’s trick

to replace D divisions with

1 division + 4(D − 1) mults.

2020 Bernstein–Brumley–Chen–

Tuveri showed how to integrate

this into OpenSSL and TLS 1.3.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

53

Disadvantage (?) of Quotient

NTRU: much less marketing.

Product NTRU is backed by 10

years of security exaggeration

(“strong security guarantees”),

successfully attracting interest.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

53

Disadvantage (?) of Quotient

NTRU: much less marketing.

Product NTRU is backed by 10

years of security exaggeration

(“strong security guarantees”),

successfully attracting interest.

51

Disadvantage of Product NTRU:

double-size ciphertexts.

Fix: 2012 Ding compressed

ciphertexts to ≈1=2 size.

Bad news: Ding patentedj this.

I’m skeptical of the idea that

tweaks will avoid the patent.

2014 Peikert: “As compared with

the previous most efficient ring-

LWE cryptosystems and KEMs,

the new reconciliation mechanism

reduces the ciphertext length

by nearly a factor of two”. No.

Minor Ding tweak, same length.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

53

Disadvantage (?) of Quotient

NTRU: much less marketing.

Product NTRU is backed by 10

years of security exaggeration

(“strong security guarantees”),

successfully attracting interest.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

53

Disadvantage (?) of Quotient

NTRU: much less marketing.

Product NTRU is backed by 10

years of security exaggeration

(“strong security guarantees”),

successfully attracting interest.

52

Disadvantage of Product NTRU:

2010.02 Gaborit–Aguilar Melchor

patentj, before LPR publication,

covers Product NTRU.

Rumors of patent-buyout offers

have not shown results (yet?).

A British law firm named Keltie,

not saying who it is representing,

has tried to kill the patent,

and so far has failed.

To watch Keltie’s ongoing appeal:

https://tinyurl.com/y4e66y6b

Some interesting documents.

53

Disadvantage (?) of Quotient

NTRU: much less marketing.

Product NTRU is backed by 10

years of security exaggeration

(“strong security guarantees”),

successfully attracting interest.

Product NTRU submissions:

Frodo, Kyber, LAC, NewHope,

NTRU LPRime, Round5, SABER,

ThreeBears. (All compressed.)

Quotient NTRU submissions:

NTRU, Streamlined NTRU Prime.

