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sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:



5

NTRU secrets

Parameter: positive integer N.

Z[x ] is the ring of polynomials

with integer coeffs.

R = Z[x ]=(xN − 1) is

the ring of polynomials with

integer coeffs modulo xN − 1.

(Variants use other moduli:

e.g. xN − x − 1 in NTRU Prime.)

NTRU secrets are elements of

R with each coeff in {−1; 0; 1}.
(Variants: e.g., {−2;−1; 0; 1; 2}.)

6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:



6

sage: Zx.<x> = ZZ[]

sage: # now Zx is a class

sage: # Zx objects are polys

sage: # in x with int coeffs

sage: f = Zx([3,1,4])

sage: f

4*x^2 + x + 3

sage: g = Zx([2,7,1])

sage: g

x^2 + 7*x + 2

sage: f+g # built-in add

5*x^2 + 8*x + 5

sage:

7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:



7

sage: f*x # built-in mul

4*x^3 + x^2 + 3*x

sage: f*x^2

4*x^4 + x^3 + 3*x^2

sage: f*2

8*x^2 + 2*x + 6

sage: f*(7*x)

28*x^3 + 7*x^2 + 21*x

sage: f*g

4*x^4 + 29*x^3 + 18*x^2 + 23*x

+ 6

sage: f*g == f*2+f*(7*x)+f*x^2

True

sage:

8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.
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sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x

sage: randomsecret()

-x^6 + x^5 + x^4 - x^3 - x^2 +

x + 1

sage:

10

Will use bigger N for security.

1998 NTRU paper took N = 503.

Some choices of N

in NISTPQC submissions:

e.g. N = 701 for NTRU HRSS.

e.g. N = 743 for NTRUEncrypt.

e.g. N = 761 for NTRU Prime.



8

sage: # replace x^N with 1,

sage: # x^(N+1) with x, etc.

sage: def convolution(f,g):

....: return (f*g) % (x^N-1)

....:

sage: N = 3 # global variable

sage: convolution(f,x)

x^2 + 3*x + 4

sage: convolution(f,x^2)

3*x^2 + 4*x + 1

sage: convolution(f,g)

18*x^2 + 27*x + 35

sage:

9

sage: def randomsecret():

....: f = list(randrange(3)-1

....: for j in range(N))

....: return Zx(f)

....:

sage: N = 7

sage: randomsecret()

-x^3 - x^2 - x - 1

sage: randomsecret()

x^6 + x^5 + x^3 - x
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3be + ad in R = Z[x ]=(xN − 1).

Reduce modulo 3: ad in R3.

Multiply by 1=a in R3

to recover d in R3.

Coeffs are between −1 and 1,

so recover d in R.

24

sage: def decrypt(C,secretkey):

....: M = balancedmod

....: conv = convolution

....: a,a3,GQ = secretkey

....: u = M(conv(C,a),Q)

....: d = M(conv(u,a3),3)

....: b = M(conv(C-d,GQ),Q)

....: return b,d

....:

sage: decrypt(C,secretkey)

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

sage: b,d

(x^6 - x^5 - x^2 - x - 1, x^5 +

x^4 + x^3 + x^2 - x)

25

sage: N,Q,W = 7,256,5

sage:
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x
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sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1
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sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)
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-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x
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sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22
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-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x
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sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:

26

sage: b = randomweightw()

sage: d = randomsecret()

sage: C = M(conv(b,G)+d,Q)

sage: C

-120*x^6 - x^5 + 6*x^4 - 24*x^3

+ 56*x^2 - 98*x - 71

sage: u = M(conv(a,C),Q)

sage: u

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage: conv(b,e3)+conv(a,d)

8*x^6 - 2*x^5 - 7*x^4 + 4*x^3 -

6*x - 1

sage:

27

sage: # u is 3be+ad in R

sage: M(u,3)

-x^6 + x^5 - x^4 + x^3 - 1

sage:
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sage: N,Q,W = 7,256,5

sage: G,secretkey = keypair()

sage: G

44*x^6 - 97*x^5 - 62*x^4 -

126*x^3 - 10*x^2 + 14*x - 22

sage: a,a3,GQ = secretkey

sage: a

-x^6 - x^5 + x^3 + x - 1

sage: conv = convolution

sage: M = balancedmod

sage: e3 = M(conv(a,G),Q)

sage: e3

-3*x^6 + 3*x^5 + 3*x^4 - 3*x^3

+ 3*x

sage:
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sage: b = randomweightw()
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“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ RQ.

Alice generates A = aG + e in RQ

for small random a; e.
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in lattice generated by

(Q; 0; : : : ; 0; 0; 0; : : : ; 0) etc.

Attacker searches for short vector

in this lattice using (e.g.) BKZ.

Many speedups. e.g. rescaling:

set up lattice to contain (e; 10a)

if e is chosen 10× larger than a.

Exercise: Describe search for

(d; b) as a problem of finding

• a lattice vector near a point;

• a short vector in a lattice.
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Ring-LWE1 (attack ciphertext).

Product NTRU attack problems:

Ring-LWE1 (attack key) and

Ring-LWE2 (attack ciphertext).
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(search) Ring-LWE1 with
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Ring-LWE1 with the same amount

of noise (or slightly less!) could

be weaker than Ring-0LWE. Also,

Ring-LWE2 could be weaker.

So Product NTRU could be less

secure than Quotient NTRU.
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Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.
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all known proofs lose tightness

or make stronger assumptions

than one-wayness.
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Hülsing–Persichetti proves tight

QROM IND-CCA2 security for

one-way deterministic systems.

With FO derandomization,

all known proofs lose tightness

or make stronger assumptions

than one-wayness.

50

Disadvantage of Product

NTRU: more multiplications in

encapsulation and decapsulation.

Disadvantage of Quotient NTRU:

divisions in key generation are

much more expensive than mults.



49

Disadvantage of Product NTRU:

need FO derandomization,

not just FO reencryption.

Quotient NTRU is deterministic.

Why this (maybe) matters: 2019

Bindel–Hamburg–Hövelmanns–
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Product NTRU submissions:

Frodo, Kyber, LAC, NewHope,

NTRU LPRime, Round5, SABER,

ThreeBears. (All compressed.)

Quotient NTRU submissions:

NTRU, Streamlined NTRU Prime.


