Lattice-based cryptography, day 1 : simplicity
D. J. Bernstein

University of Illinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2 Z$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.
pased cryptography,
implicity
rnstein
ty of Illinois at Chicago;
iversity Bochum

2000 Cohen cryptosystem

Public key: vector of integers $K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.

Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2 \mathbf{Z}$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2 Z$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

2000 Cohen cryptosystem

How can receiver decrypt?
Public key: vector of integers $K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.

Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2 Z$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext $C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

2000 Cohen cryptosystem

How can receiver decrypt?
Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means
$N \in 2 \mathbf{Z}$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

2000 Cohen cryptosystem

Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means
$N \in 2 Z$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\}$;
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.

2000 Cohen cryptosystem

Public key: vector of integers
$K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means
$N \in 2 \mathbf{Z}$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext $C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.

2000 Cohen cryptosystem

Public key: vector of integers $K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.

Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means
$N \in 2 \mathbf{Z}$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.
Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.

2000 Cohen cryptosystem

Public key: vector of integers $K=\left(K_{1}, \ldots, K_{N}\right) \in\{-X, \ldots, X\}^{N}$.

Encryption:

1. Input message $m \in\{0,1\}$.
2. Generate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
i.e. $r=\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
(Cohen says pick "half of the integers in the public key at random": I guess this means
$N \in 2 \mathbf{Z}$ and $\sum r_{i}=N / 2$.)
3. Compute and send ciphertext
$C=(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.
Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

hen cryptosystem

ey: vector of integers $\left.K_{N}\right) \in\{-X, \ldots, X\}^{N}$.
on:
message $m \in\{0,1\}$.
rate $r_{1}, \ldots, r_{N} \in\{0,1\}$.
$\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$.
says pick "half of the in the public key at : I guess this means and $\sum r_{i}=N / 2$.) oute and send ciphertext $)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s \mathbf{Z}\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.
Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

Let's try
Debian:
Fedora:
Source:
Web (us
sagece]
Sage is

+ many
+ a few
sage: 1
1000000
sage: f
3172135
sage:
of integers
$\in\{-X, \ldots, X\}^{N}$.
$m \in\{0,1\}$.
,$r_{N} \in\{0,1\}$.
) $\in\{0,1\}^{N}$.
"half of the olic key at this means
$=N / 2$.)
end ciphertext
$\left.+\cdots+r_{N} K_{N}\right)$.

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.
Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

Let's try this on tl
Debian: apt inst
Fedora: dnf inst
Source: www.sage
Web (use print sagecell.sagem

Sage is Python 3

+ many math libr
+ a few syntax di
sage: 10^6 \# pow 1000000
sage: factor (314 317213509 * 9903 sage:

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} ;$
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$; otherwise $m=1$.

Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

Let's try this on the comput
Debian: apt install sage Fedora: dnf install sage Source: www.sagemath.or\& Web (use print(X) to see sagecell.sagemath.org Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not 1000000
sage: factor(314159265358 317213509 * 990371647
sage:

How can receiver decrypt?
Key generation:
Generate $s \in\{1, \ldots, Y\}$;
$u_{1}, \ldots, u_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\}$;
$K_{i} \in\left(u_{i}+s Z\right) \cap\{-X, \ldots, X\}$.
Decryption:
$m=0$ if $C \bmod s \leq(s-1) / 2$;
otherwise $m=1$.
Why this works:
$K_{i} \bmod s=u_{i} \leq(s-1) / 2 N$ so
$r_{1} K_{1}+\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
(Be careful! What if all $r_{i}=0$?)

Let's try this on the computer.
Debian: apt install sagemath Fedora: dnf install sagemath Source: www.sagemath.org Web (use print(X) to see X): sagecell.sagemath.org

Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not xor 1000000
sage: factor(314159265358979323) 317213509 * 990371647
sage:
receiver decrypt?

eration:

$$
\begin{aligned}
& s \in\{1, \ldots, Y\} ; \\
& N_{N} \in\left\{0, \ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} \\
& +s Z) \cap\{-X, \ldots, X\}
\end{aligned}
$$

on:
$C \bmod s \leq(s-1) / 2 ;$
e $m=1$.
s works:
$s=u_{i} \leq(s-1) / 2 N$ so
$\cdots+r_{N} K_{N} \bmod s \leq \frac{s-1}{2}$.
ful! What if all $r_{i}=0$?)

Let's try this on the computer.
Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print(X) to see X):
sagecell.sagemath.org
Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not xor 1000000
sage: factor(314159265358979323) 317213509 * 990371647
sage:

For inte
Sage's
outputs
Matches
$C \bmod s$

decrypt?

$$
\begin{aligned}
& \ldots, Y\} \\
& \left.\ldots,\left\lfloor\frac{s-1}{2 N}\right\rfloor\right\} \\
& \{-X, \ldots, X\}
\end{aligned}
$$

$$
\leq(s-1) / 2
$$

$$
(s-1) / 2 N \text { so }
$$

$$
\bmod s \leq \frac{s-1}{2}
$$

$$
\text { if all } r_{i}=0 \text { ?) }
$$

Let's try this on the computer.
Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print(X) to see X):
sagecell.sagemath.org
Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not xor 1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:

For integers C, s Sage's "C\%s" alwa outputs between

Matches standard
$C \bmod s=C-\lfloor C$

Let's try this on the computer.
Debian: apt install sagemath Fedora: dnf install sagemath Source: www.sagemath.org Web (use print(X) to see X): sagecell.sagemath.org Sage is Python 3

+ many math libraries
+ a few syntax differences:
sage: 10^6 \# power, not xor 1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:

For integers C , s with $\mathrm{s}>0$ Sage's "C\%s" always produc outputs between 0 and s -

Matches standard math defi
$C \bmod s=C-\lfloor C / s\rfloor s$.

Let's try this on the computer.
Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org Web (use print(X) to see X): sagecell.sagemath.org Sage is Python 3

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.

Let's try this on the computer.
Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org Web (use print(X) to see X): sagecell.sagemath.org Sage is Python 3

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces C\%s <0 in lower-level languages, so nonzero output leaks input sign.

Let's try this on the computer.
Debian: apt install sagemath Fedora: dnf install sagemath Source: www.sagemath.org Web (use print(X) to see X): sagecell.sagemath.org Sage is Python 3

+ many math libraries
+ a few syntax differences:

```
sage: 10^6 # power, not xor
1000000
sage: factor(314159265358979323)
317213509 * 990371647
sage:
```

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces C\%s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
this on the computer.
apt install sagemath dnf install sagemath www.sagemath.org
e print (X) to see X):
l.sagemath.org

Python 3
math libraries
syntax differences:
0~6 \# power, not xor
actor (314159265358979323)
09 * 990371647

For integers C, s with $s>0$,
outputs between 0 and $s-1$.
Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically
C <0 produces C\%s <0
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
e computer.
all sagemath
all sagemath
math.org
X) to see X):
ath.org
aries
fferences:
er, not xor
159265358979323)

71647

For integers C, s with $s>0$, outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces C\%s <0
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

4
For integers C, s with $\mathrm{s}>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically
$\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage:

For integers C, s with $s>0$,
Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically C <0 produces C\%s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

For integers C, s with $s>0$, Sage's "C\%s" always produces
sage: $N=10$
sage:

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0
in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $N=10$
sage: $X=2 \sim 50$
sage: $Y=2 \sim 20$
sage:

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $N=10$
sage: $X=2 \wedge 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage:

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $N=10$
sage: $X=2 \wedge 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: s=randrange $(1, Y+1)$
sage:

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $N=10$
sage: $X=2^{\wedge} 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: $s=r a n d r a n g e(1, Y+1)$
sage: s
359512
sage:

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $\mathrm{N}=10$
sage: $X=2 \sim 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: s=randrange (1,Y+1)
sage: s
359512
sage: $u=[r a n d r a n g e($
....: $\quad(s-1) / /(2 * N)+1)$
....: for i in range(N)]
sage:

For integers C, s with $s>0$, Sage's "C\%s" always produces outputs between 0 and $s-1$.

Matches standard math definition:
$C \bmod s=C-\lfloor C / s\rfloor s$.
Warning: Typically $\mathrm{C}<0$ produces $\mathrm{C} \%$ s <0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.
sage: $N=10$
sage: $X=2 \sim 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: $s=r a n d r a n g e(1, Y+1)$
sage: s
359512
sage: $u=$ [randrange (
....: $\quad(s-1) / /(2 * N)+1)$
....: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
gers C, s with $s>0$, C\%s" always produces between 0 and $\mathrm{s}-1$.
standard math definition:
$=C-\lfloor C / s\rfloor s$.
: Typically
oduces C\%s < 0
level languages, so output leaks input sign.

For polynomials C , make the same mistake.

```
sage: N=10
sage: X=2~50
sage: Y=2~ 20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u= [randrange(
...: (s-1)//(2*N)+1)
....: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
```

vith $s>0$, ys produces and $\mathrm{s}-1$.
math definition:
$-/ s\rfloor S$.
$10 s<0$
uages, so
ks input sign.
nomials C,
e same mistake.
sage: $N=10$
sage: $X=2 \sim 50$
sage: $Y=2^{\wedge} 20$
sage: Y
1048576
sage: $s=r a n d r a n g e(1, Y+1)$
sage: s
359512
sage: u=[randrange(
$\ldots . \operatorname{l} \quad(s-1) / /(2 * N)+1)$
$\ldots: \quad$ for i in range $(N)]$
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: $K=[u i+s * r a$
. . . .:
ceil
floor for ui
sage:


```
sage: N=10
sage: X=2^50
sage: Y=2^20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u= [randrange(
...: (s-1)//(2*N)+1)
....: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
```

```
sage: N=10
sage: X=2~50
sage: Y=2^20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u= [randrange(
...: (s-1)//(2*N)+1)
....: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
```

sage: $\mathrm{K}=[\mathrm{ui}+\mathrm{s} *$ randrange(
....: ceil(-(X+ui)/s),
....: floor((X-ui)/s)+1)
....: for ui in u]
sage: K
[870056918917829,
822006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
501543495923784,
-583064075392587,
46109390243834]

```
=10
=2^50
=2^20
```

$=$ randrange $(1, Y+1)$
$=$ [randrange (
$(s-1) / /(2 * N)+1)$
for i in range(N)]

7039, 6945, 15890, 17333, 1397, 8656, 6370]
sage:
[14485, 10493, 8213,
sage: u [14485, 10493, 8213, sage:
$e(1, Y+1)$
ge (
$/ /(2 * N)+1)$
n range(N)]

45, 15890, 397, 8656,
sage: $K=[u i+s * r a n d r a n g e($
....: ceil(-(X+ui)/s),
....: floor((X-ui)/s)+1)
....: for ui in u]
sage: K
[870056918917829, 822006576592695,
-294765544345815, -669275100080982, 528958455221029, 426006001074157, -641940176080531, 501543495923784,
-583064075392587, 46109390243834]
sage: [Ki\%s for [14485, 7039, 69 10493, 17333, 1 8213, 6370]
sage: u
[14485, 7039, 69 10493, 17333, 1 8213, 6370]
sage:
sage: $\mathrm{K}=[u i+s * r a n d r a n g e($
.... ceil (-(X+ui)/s),
....: floor ((X-ui)/s)+1)
....: for ui in u]
sage: K
[870056918917829, 822006576592695 ,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157 ,
-641940176080531,
501543495923784 ,
-583064075392587,
46109390243834]
sage: [Ki\%s for Ki in K] [14485, 7039, 6945, 15890 10493, 17333, 1397, 8656 8213, 6370]
sage: u
[14485, 7039, 6945, 15890
10493, 17333, 1397, 8656
8213, 6370]
sage:

sage: $\mathrm{K}=[u \mathrm{i}+\mathrm{s} *$ randrange (
. $\quad \operatorname{ceil}(-(X+u i) / s)$,
floor ($(X-u i) / s)+1)$
.: for ui in u]
sage: K
[870056918917829,
822006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
501543495923784,
-583064075392587,
$46109390243834]$

sage: [Ki\%s for Ki in K$]$ [14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage:

sage: $K=[u i+s * r a n d r a n g e(~$	
$\ldots:$	ceil $(-(X+u i) / s)$,
$\ldots:$	floor $((X-u i) / s)+1)$
\ldots.	for ui in $u]$

sage: K
[870056918917829, 822006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
501543495923784,
-583064075392587,
46109390243834]
sage: [Ki\%s for Ki in K] [14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: sum(K)\%s
96821
sage: sum(u)
96821
sage:

sage: $K=[u i+s * r a n d r a n g e(~$	
$\ldots:$	ceil $(-(X+u i) / s)$,
$\ldots:$	floor $((X-u i) / s)+1)$
\ldots.	for ui in $u]$

sage: K
[870056918917829, 822006576592695,
-294765544345815,
-669275100080982,
528958455221029,
426006001074157 ,
-641940176080531,
501543495923784,
-583064075392587,
46109390243834]
sage: [Ki\%s for Ki in K] [14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: sum(K)\%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
```

ndrange (
-(X+ui)/s), $((X-u i) / s)+1)$
in u]
sage: [Ki\%s for Ki in K]
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: u
[14485, 7039, 6945, 15890, 10493, 17333, 1397, 8656, 8213, 6370]
sage: sum(K)\%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
sage: m=randrang
sage:


```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

sage: m=randrange(2)
sage:

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

sage: m=randrange(2)
sage: r=[randrange(2)
....: for i in range(N)]
sage: $\mathrm{C}=(-1)^{\wedge} \mathrm{m} * \mathrm{sum}(\mathrm{r}[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range(N))
sage:

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

sage: m=randrange (2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage:

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

sage: m=randrange (2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage: C\%s
47024
sage:

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
    10493, 17333, 1397, 8656,
    8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

sage: [Ki\%s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
sage: sum (K) \%s
96821
sage: sum (u)
96821
sage: s//2
179756
sage:
sage: m=randrange (2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage: C\%s
47024
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
47024
sage:

Ki\%s for Ki in K] 7039, 6945, 15890, 17333, 1397, 8656, 6370]

7039, 6945, 15890, 17333, 1397, 8656, 6370]
um (K) \%s
um (u)
//2
sage: m=randrange (2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage: C\%s
47024
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
47024
sage:

Some pr

1. Func

System that hav

Ki in K]
45, 15890,
397, 8656,

45, 15890, 397, 8656,
sage: m=randrange (2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: $C=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
-202215856043576
sage: C\%s
47024
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
47024
sage:

Some problems wi

1. Functionality p System can't encr that have more th
```
sage: m=randrange(2)
sage: r= [randrange(2)
....: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i]
....: for i in range(N))
sage: C
-202215856043576
sage: C%s
47024
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
47024
sage:
```


Some problems with cryptos

1. Functionality problem: System can't encrypt messa that have more than 1 bit.
```
sage: m=randrange(2)
sage: r= [randrange(2)
....: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i]
....: for i in range(N))
```

1. Functionality problem: System can't encrypt messages that have more than 1 bit.
```
sage: m=randrange(2)
sage: r= [randrange (2)
....: for i in range(N)]
sage: C=(-1) ^m*sum(r[i]*K[i]
....: for i in range(N))
sage: C
-202215856043576
sage: C%s
4 7 0 2 4
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
4 7 0 2 4
sage:
```

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

```
sage: m=randrange(2)
sage: r= [randrange (2)
....: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i]
....: for i in range(N))
sage: C
-202215856043576
sage: C%s
4 7 0 2 4
sage: m
0
sage: sum(r[i]*u[i]
....: for i in range(N))
4 7 0 2 4
sage:
```

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)
$=r a n d r a n g e(2)$
$=$ [randrange (2)

```
    for i in range(N)]
```

$=(-1)^{\wedge} m * \operatorname{sum}(r[i] * K[i]$
for i in range(N))
856043576
\%s
$u m(r[i] * u[i]$
for i in range(N))

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist
"chosen-ciphertext attacks"
where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system:
Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Co fixing bc

1. Trans into mul encrypti Use new
n range (N)]
$u m(r[i] * K[i]$
range(N))
[i]
in range(N))

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system:
Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Cohen: cryp fixing both of thes

1. Transform 1-bi into multi-bit encr encrypting each bi Use new randomn

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist
"chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problem

1. Transform 1-bit encryptic into multi-bit encryption by encrypting each bit separate Use new randomness for eac

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.
Use new randomness for each bit.

Some problems with cryptosystem

1. Functionality problem:

System can't encrypt messages that have more than 1 bit.
2. Security problem:

We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.
(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.
Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.

oblems with cryptosystem

tionality problem:
can't encrypt messages
e more than 1 bit.
ity problem:
t cryptosystems to resist -ciphertext attacks"
tacker can see ons of other ciphertexts.
ciphertext attack this system:
$-C$. Flip result. whenever $C \neq 0$.)
2. Dera reencryp

This is a 1999 Fu
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
th cryptosystem roblem: ypt messages
an 1 bit.
m:
stems to resist
attacks"
1 see
er ciphertexts.
attack
१:
result.
$C \neq 0$.)
2. Derandomize e reencrypt during d

This is an example 1999 Fujisaki-Oka
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,

$$
(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)
$$

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.
Use new randomness for each bit.

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately. Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
exts. For each $i \in\{1, \ldots, B\}$: Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.

Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
2. Derandomize encryption, reencrypt during decryption.

This is an example of "FO", 1999 Fujisaki-Okamoto tran

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.
Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.
Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H. (Watch out: Is m guessable?)

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately. Use new randomness for each bit.
B-bit input message $m=\left(m_{1}, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
For each $i \in\{1, \ldots, B\}$:
Generate $r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$.
Ciphertext C :
$(-1)^{m_{1}}\left(r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$(-1)^{m_{B}}\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$.
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.
hen: cryptosystem
th of these problems.
form 1-bit encryption ti-bit encryption by ng each bit separately. randomness for each bit.
out message
$\left.1, \ldots, m_{B}\right) \in\{0,1\}^{B}$.
$i \in\{1, \ldots, B\}$:
$r_{i, 1}, \ldots, r_{i, N} \in\{0,1\}$
$x t C$:
$\left.r_{1,1} K_{1}+\cdots+r_{1, N} K_{N}\right)$,
$\left(r_{B, 1} K_{1}+\cdots+r_{B, N} K_{N}\right)$
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H.
(Watch out: Is m guessable?)
Decryption with reencryption:

1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-s
Attacker for (r_{1},. checks r against

This tak
e.g. 102
tosystem
e problems.
encryption
yption by
t separately.
ess for each bit.
ge
$\in\{0,1\}^{B}$
, B\}:
$r_{i, N} \in\{0,1\}$.
$\left.\cdots+r_{1, N} K_{N}\right)$
$\left.+r_{B, N} K_{N}\right)$
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H.
(Watch out: Is m guessable?)
Decryption with reencryption:

1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attach
Attacker searches for $\left(r_{1}, \ldots, r_{N}\right)$, checks $r_{1} K_{1}+\cdots$ against $\pm C_{1}$.

This takes 2^{N} eas e.g. 1024 operatio
2. Derandomize encryption, and

Subset-sum attacks

Attacker searches all possibi for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operatio e.g. 1024 operations for $N=$

Decryption with reencryption:

1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.
6. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$, checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H . (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$, checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."
2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H . (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$, checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash $H(m)$, using standard hash function H . (Watch out: Is m guessable?)

Decryption with reencryption: 1. Input C^{\prime}. (Maybe $C^{\prime} \neq C$.)
2. Decrypt to obtain m^{\prime}.
3. Recompute $r^{\prime}=H\left(m^{\prime}\right)$.
4. Recompute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}.
5. Abort if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.
ndomize encryption, and t during decryption.
in example of "FO", the jisaki-Okamoto transform.
mization: Generate r ographic hash $H(m)$, andard hash function H. out: Is m guessable?) on with reencryption: C^{\prime}. (Maybe $\left.C^{\prime} \neq C.\right)$ pt to obtain m^{\prime}. mpute $r^{\prime}=H\left(m^{\prime}\right)$. mpute $C^{\prime \prime}$ from m^{\prime}, r^{\prime}. if $C^{\prime \prime} \neq C^{\prime}$.

Subset-sum attacks
Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modifiec
For each $r_{1} K_{1}+$ containi
ncryption, and ecryption.
of "FO", the moto transform.

Generate r

ash $H(m)$,
sh function H. guessable?)
eencryption:
be $C^{\prime} \neq C$.)
ain m^{\prime}.
$=H\left(m^{\prime}\right)$.
from m^{\prime}, r^{\prime}.
C^{\prime}.

Subset-sum attacks
Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each (r_{1}, \ldots, $r_{1} K_{1}+\cdots+r_{N} K$ containing $\pm C_{1}, \pm$

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations:
e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash containing $\pm C_{1}, \pm C_{2}, \ldots, \pm$

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$, checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Subset-sum attacks

Attacker searches all possibilities for $\left(r_{1}, \ldots, r_{N}\right)$,
checks $r_{1} K_{1}+\cdots+r_{N} K_{N}$ against $\pm C_{1}$.

This takes 2^{N} easy operations: e.g. 1024 operations for $N=10$.
"This finds only one bit m_{1}."

- This is a problem in some applications. Should design encryption to leak no information.
- Also, can easily modify attack to find all bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.

um attacks

searches all possibilities
$\left.\ldots, r_{N}\right)$,
${ }_{1} K_{1}+\cdots+r_{N} K_{N}$ $\pm C_{1}$.
es 2^{N} easy operations:
4 operations for $N=10$.
ads only one bit m_{1}."
is a problem in some
ons. Should design
on to leak no information.
can easily modify attack
ll bits of message.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We car
$N=128$
day, and transfor

all possibilities

$+r_{N} K_{N}$
y operations:
ns for $N=10$.
ne bit m_{1}."
m in some
ald design
no information.
modify attack nessage.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop atta $N=128$, and cha day, and applying transform to each

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop attacks by tal $N=128$, and changing keys day, and applying all-or-noth transform to each message.'

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Modified attack:
For each $\left(r_{1}, \ldots, r_{N}\right)$, look up $r_{1} K_{1}+\cdots+r_{N} K_{N}$ in hash table containing $\pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.

Multi-target attack:
Apply this not just to B bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^{N} operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^{N}$ operations.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.
attack:
$\left(r_{1}, \ldots, r_{N}\right)$, look up
$\cdots+r_{N} K_{N}$ in hash table $\mathrm{ng} \pm C_{1}, \pm C_{2}, \ldots, \pm C_{B}$.
rget attack:
is not just to B bits in sage, but all bits in all s sent to this key.
all bits in all messages: operations.
1% of all bits in all
s, huge information leak:
$1 \cdot 2^{N}$ operations.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations
to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$
with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.
Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These structur one targ
N), look up
N in hash table $C_{2}, \ldots, \pm C_{B}$.
to B bits in all bits in all his key.
all messages:

IS.

bits in all formation leak: erations.

These attacks exp structure of proble one target C into

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing $C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to con one target C into many targ
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.

Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets $\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)
"We can stop attacks by taking $N=128$, and changing keys every day, and applying all-or-nothing transform to each message."

- Standard subset-sum attacks take only $2^{N / 2}$ operations to find $\left(r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N}$ with $r_{1} K_{1}+\cdots+r_{N} K_{N}=C$.

Make hash table containing
$C-r_{N / 2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$ for all $\left(r_{N / 2+1}, \ldots, r_{N}\right)$.
Look up $r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in hash table for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets $\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.
stop attacks by taking
, and changing keys every applying all-or-nothing n to each message."
dard subset-sum attacks
y $2^{N / 2}$ operations

$$
\begin{aligned}
& \left.r_{1}, \ldots, r_{N}\right) \in\{0,1\}^{N} \\
& \widehat{1}_{1}+\cdots+r_{N} K_{N}=C
\end{aligned}
$$

sh table containing
${ }_{2+1} K_{N / 2+1}-\cdots-r_{N} K_{N}$
$\left.N / 2+1, \ldots, r_{N}\right)$.
$r_{1} K_{1}+\cdots+r_{N / 2} K_{N / 2}$ in
le for each $\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.

2010 Ho
claimed
May-M
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.
cks by taking nging keys every all-or-nothing message."
t-sum attacks erations

$$
\begin{aligned}
& \in\{0,1\}^{N} \\
& r_{N} K_{N}=C
\end{aligned}
$$

ontaining
$-\cdots-r_{N} K_{N}$
,$\left.r_{N}\right)$
$\cdot+r_{N / 2} K_{N / 2}$ in
$\left(r_{1}, \ldots, r_{N / 2}\right)$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets $\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-G claimed $2^{0.311 N}$ May-Meurer corre
king

These attacks exploit linear structure of problem to convert one target C into many targets. (Actually have $2 B$ targets $\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-JoI claimed $2^{0.311 \mathrm{~N}}$ operations. May-Meurer correction: $2^{0 .}$

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 N}$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.

These attacks exploit linear structure of problem to convert one target C into many targets.
(Actually have $2 B$ targets
$\pm C_{1}, \ldots, \pm C_{B}$ for one message. Convert into $B^{1 / 2} 2^{N / 2}$ targets: total $B^{1 / 2} 2^{N / 2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel-Shamir: $2^{N / 2}$ operations, space $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!
ttacks exploit linear e of problem to convert et C into many targets.
y have $2 B$ targets
,$\pm C_{B}$ for one message. into $B^{1 / 2} 2^{N / 2}$ targets: $/ 2^{N / 2}$ operations
Il B bits. Also, maybe re messages to attack.)
e even more ways to he linear structure.
hroeppel-Shamir:
erations, space $2^{N / 4}$.

Variants $2003 \operatorname{Re}$ (without $(-1)^{m}(r$ $m\left(K_{1} / 2\right.$

2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!
loit linear
m to convert many targets.
targets
one message.
$2^{N / 2}$ targets:
erations
Also, maybe es to attack.)
re ways to
tructure.
Shamir:
pace $2^{N / 4}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 N}$.

2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-

Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of crypto
2003 Regev: Cohe (without credit), $(-1)^{m}\left(r_{1} K_{1}+\cdots\right.$ $m\left(K_{1} / 2\right)+r_{1} K_{1}$

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011
May-Meurer correction: $2^{0.337 N}$.
2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptos (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N}$

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 \mathrm{~N}}$.

2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 \mathrm{~N}}$.

2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 \mathbf{Z}$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$. Also be careful with u_{i} bounds.

2010 Howgrave-Graham-Joux: claimed $2^{0.311 N}$ operations. 2011 May-Meurer correction: $2^{0.337 \mathrm{~N}}$.

2011 Becker-Coron-Joux:
$2^{0.291 N}$ operations.
2016 Ozerov: $2^{0.287 N}$ operations.
2019 Esser-May: claimed $2^{0.255 N}$ operations, but withdrew claim.

2020 Bonnetain-Bricout-
Schrottenloher-Shen: $2^{0.283 N}$.
Quantum attacks: various papers.
Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 \mathbf{Z}$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$. Also be careful with u_{i} bounds.

2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.
wgrave-Graham-Joux:
$2^{0.311 \mathrm{~N}}$ operations. 2011 eurer correction: $2^{0.337 N}$. cker-Coron-Joux:
operations.
erov: $2^{0.287 N}$ operations.
ser-May: claimed $2^{0.255 N}$
ns, but withdrew claim.
nnetain-Bricout-
nloher-Shen: $2^{0.283 N}$.
n attacks: various papers.
rget speedups: probably!

Homom
If u_{i} / s is DGHV s
$(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 Z$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$.
Also be careful with u_{i} bounds.
2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.
raham-Joux:
perations. 2011 ction: $2^{0.337 N}$.
n-Joux:
$87 N$ operations.
claimed $2^{0.255 \mathrm{~N}}$ thdrew claim.
ricout-
en: $2^{0.283 N}$.
various papers.
ups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 Z$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$.
Also be careful with u_{i} bounds.
2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Homomorphic enc
If u_{i} / s is small en DGHV system is h

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 \mathbf{Z}$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$.
Also be careful with u_{i} bounds.
2009 van Dijk-Gentry-Halevi-
Vaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Homomorphic encryption
If u_{i} / s is small enough then DGHV system is homomorp

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 Z$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 Z$. Also be careful with u_{i} bounds. 2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Homomorphic encryption

If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Homomorphic encryption

If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.

2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^{m}\left(r_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $m\left(K_{1} / 2\right)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.

To make this work, modify keygen to force $K_{1} \in 2 \mathbf{Z}$ and $\left(K_{1}-u_{1}\right) / s \in 1+2 \mathbf{Z}$. Also be careful with u_{i} bounds.

2009 van Dijk-Gentry-HaleviVaikuntanathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$C=m+r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$m=(C \bmod s) \bmod 2$.
Be careful to take $s \in 1+2 \mathbf{Z}$.

Homomorphic encryption

If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.

Homomorphic encryption

If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.

of cryptosystem

gev: Cohen cryptosystem credit), but replace $\left.{ }_{1} K_{1}+\cdots+r_{N} K_{N}\right)$ with $)+r_{1} K_{1}+\cdots+r_{N} K_{N}$.
this work,
keygen to force $K_{1} \in 2 Z$
$\left.-u_{1}\right) / s \in 1+2 Z$.
careful with u_{i} bounds.
(Dijk-Gentry-Halevianathan: $K_{i} \in 2 u_{i}+s \mathbf{Z}$; $-r_{1} K_{1}+\cdots+r_{N} K_{N}$;
$\bmod s) \bmod 2$.
ul to take $s \in 1+2 \mathbf{Z}$.

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: N sage:

system

n cryptosystem
ut replace
$\left.+r_{N} K_{N}\right)$ with
$+\cdots+r_{N} K_{N}$.
force $K_{1} \in 2 Z$
$=1+2 Z$.
th u_{i} bounds.
ntry-Halevi$K_{i} \in 2 u_{i}+s \mathbf{Z}$;
$\cdots+r_{N} K_{N}$
od 2 .
$s \in 1+2 \mathbf{Z}$.

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.
with
K_{N}.
Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$
$s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $\mathrm{N}=10$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.

$$
C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+
$$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.

$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $E=2 \sim 10$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $E=2 \sim 10$
sage: $Y=2^{\wedge} 50$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $E=2 \sim 10$
sage: $Y=2^{\wedge} 50$
sage: $X=2 \sim 80$
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $\mathrm{E}=2^{\wedge} 10$
sage: $Y=2^{\wedge} 50$
sage: $X=2 \sim 80$
sage: $s=1+2 *$ randrange $(Y / 4, Y / 2)$
sage: s
984887308997925
sage:

Homomorphic encryption
If u_{i} / s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:
$C=m+2 \epsilon+s q$,
$C^{\prime}=m^{\prime}+2 \epsilon^{\prime}+s q^{\prime}$
with small $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$C+C^{\prime}=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$ $s\left(q+q^{\prime}\right)$. This decrypts to $m+m^{\prime} \bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$C C^{\prime}=m m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ $s(\cdots)$. This decrypts to $m m^{\prime}$ if $\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $N=10$
sage: $\mathrm{E}=2^{\wedge} 10$
sage: $Y=2^{\wedge} 50$
sage: $X=2^{\wedge} 80$
sage: $s=1+2 *$ randrange $(Y / 4, Y / 2)$
sage: s
984887308997925
sage: $u=[r a n d r a n g e(E)$
....: for i in range(N)]
sage: u
[247, 418, 365, 738, 123, 735,
$772,209,673,47]$
sage:
orphic encryption
s small enough then 2009 ystem is homomorphic.
o ciphertexts:
$-2 \epsilon+s q$
$+2 \epsilon^{\prime}+s q^{\prime}$
all $\epsilon, \epsilon^{\prime} \in \mathbf{Z}$.
$=m+m^{\prime}+2\left(\epsilon+\epsilon^{\prime}\right)+$
). This decrypts to $\bmod 2$ if $\epsilon+\epsilon^{\prime}$ is small.
$n m^{\prime}+2\left(\epsilon m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$ This decrypts to
$m^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}$ is small.
sage: $\mathrm{E}=2$ ~ 10
sage: $Y=2 \sim 50$
sage: $X=2 \wedge 80$
sage: $s=1+2 *$ randrange $(Y / 4, Y / 2)$
sage: s
984887308997925
sage: $u=[r a n d r a n g e(E)$
....: for i in range(N)]
sage: u
[247, 418, 365, 738, 123, 735,
$772,209,673,47]$
sage:
ough then 2009 omomorphic. xts:
$+2\left(\epsilon+\epsilon^{\prime}\right)+$ crypts to
$+\epsilon^{\prime}$ is small.
$\left.\eta^{\prime}+\epsilon^{\prime} m+2 \epsilon \epsilon^{\prime}\right)+$
pts to
$+2 \epsilon \epsilon^{\prime}$ is small.

```
sage: \(\mathrm{N}=10\)
sage:
```

sage: N=10
sage: $\mathrm{E}=2^{\wedge} 10$
sage: $Y=2 ~ 50$
sage: $\mathrm{X}=2^{\wedge} 80$
sage: $s=1+2 *$ randrange ($\mathrm{Y} / 4, \mathrm{Y} / 2$)
sage: s
984887308997925
sage: $u=[r a n d r a n g e(E)$
....: for i in range(N)]
sage: u
[247, 418, 365, 738, 123, 735, $772,209,673,47]$
sage:
sage: $N=10$
sage:
sage: $N=10$
sage: $E=2 \sim 10$
sage: $Y=2^{\wedge} 50$
sage: $X=2^{\wedge} 80$
sage: $s=1+2 * r a n d r a n g e(Y / 4, Y / 2)$
sage: s
984887308997925
sage: $u=$ [randrange (E)
....: for i in range(N)]
sage: u
[247, 418, 365, 738, 123, 735,
$772,209,673,47]$
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($

$\ldots .:$	$\operatorname{ceil}(-(X+2 * u i) / s)$,
\ldots.	$f l o o r((X-2 * u i) / s)+1)$
$\ldots .$.	for ui in $u]$

sage:

```
sage: N=10
sage: E=2~10
sage: Y=2^50
sage: X=2^80
sage: s=1+2*randrange(Y/4,Y/2)
sage: s
984887308997925
sage: u=[randrange(E)
....: for i in range(N)]
sage: u
[247, 418, 365, 738, 123, 735,
    772, 209, 673, 47]
sage:
```

$=10$
$=2^{\wedge} 10$
$=2^{\wedge} 50$
$=2^{\wedge} 80$
$=1+2 * r a n d r a n g e(Y / 4, Y / 2)$

08997925
$=$ [randrange (E)
for i in range(N)]

18, 365, 738, 123, 735,
09, 673, 47]
sage: $K=[2 * u i+s * r a n d r a n g e($
.... ceil (-(X+2*ui)/s),
.... floor ($(X-2 * u i) / s)+1)$
....: for $u i$ in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751, 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 , -1109674862276222495587129,
-235628937785003770523381]
sage: m sage: r
. . . . :
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($
... \quad ceil $(-(X+2 * u i) / s)$,
....: floor ((X-2*ui)/s)+1)
....: for $u i$ in $u]$
sage: K
[587473338058640662659869,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrang sage: $r=$ [randran: for i i sage:
sage: $K=[2 * u i+s * r a n d r a n g e($ $\quad \operatorname{ceil}(-(X+2 * u i) / s)$, ...: floor $((X-2 * u i) / s)+1)$
....: for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339, 794301459533783434896055, 68817802108374958901751, 742362470968200823035396 , 735 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrange(2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range (N
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($
.... $\quad \operatorname{ceil}(-(X+2 * u i) / s)$,
....: floor ((X-2*ui)/s)+1)
....: for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795 ,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381]

$$
\begin{aligned}
& \text { sage: K=[2*ui+s*randrange(} \\
& \ldots \ldots: \quad \text { ceil }(-(X+2 * u i) / s), \\
& \ldots \ldots: \quad \text { floor }((X-2 * u i) / s)+1) \\
& \ldots \ldots: \quad \text { for ui in u] } \\
& \text { sage: K } \\
& \text { [587473338058640662659869, } \\
& -1111539179100720083770339, \\
& 794301459533783434896055, \\
& 68817802108374958901751, \\
& 742362470968200823035396, \\
& 1023345827831539515054795, \\
& -357168679398558876730006, \\
& 1121421619119964601051443, \\
& -1109674862276222495587129, \\
& -235628937785003770523381]
\end{aligned}
$$

sage: m=randrange (2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=m+s u m(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($
.... $\quad \operatorname{ceil}(-(X+2 * u i) / s)$,
floor $((X-2 * u i) / s)+1)$
for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795 ,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrange(2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: C=m+sum(r[i]*K[i]
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C\%s
2703
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($
.... $\quad \operatorname{ceil}(-(X+2 * u i) / s)$,
floor $((X-2 * u i) / s)+1)$
for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795 ,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrange(2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: C=m+sum(r[i]*K[i]
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C\%s
2703
sage: (C\%s) \% 2
1
sage:
sage: $K=[2 * u i+s * r a n d r a n g e($
.... $\quad \operatorname{ceil}(-(X+2 * u i) / s)$,
floor $((X-2 * u i) / s)+1)$
for ui in u]
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795 ,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381]
sage: m=randrange(2)
sage: r=[randrange(2)
....: for i in range(N)]
sage: C=m+sum(r[i]*K[i]
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C\%s
2703
sage: (C\%s) \% 2
1
sage: m
1
sage:

$$
\begin{aligned}
& =[2 * u i+s * r a n d r a n g e(\\
& \quad \operatorname{ceil}(-(X+2 * u i) / s), \\
& \quad \text { floor }((X-2 * u i) / s)+1) \\
& \text { for ui in u] }
\end{aligned}
$$

338058640662659869 , 39179100720083770339, 459533783434896055 , 02108374958901751 , 470968200823035396 , 5827831539515054795 , 3679398558876730006, 1619119964601051443, 74862276222495587129 , 8937785003770523381]
sage: m=randrange (2)
sage: r=[randrange (2)
....: for i in range(N)]
sage: $C=m+s u m(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C\%s
2703
sage: (C\%s) \% 2
1
sage: m
1
sage:
randrange (
$-(X+2 * u i) / s)$,
$((X-2 * u i) / s)+1)$
in u]

662659869, 20083770339,

434896055, 58901751, 823035396, 9515054795, 8876730006 , 4601051443, 22495587129,

3770523381]
sage: m=randrange (2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: $\mathrm{C}=\mathrm{m}+\operatorname{sum}(\mathrm{r}[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C \% s
2703
sage: (C\%s) \% 2
1
sage: m
1
sage:
sage: m2=randran sage: r2=[randra: for i
sage:
sage: m=randrange(2)
sage: $r=$ [randrange (2)
....: for i in range (N)]
sage: $C=m+s u m(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C $\%$ s
2703
sage: ($\mathrm{C} \%$ s) $\% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange (2)
....: for i in range
sage:
sage: m=randrange(2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=m+\operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: $\mathrm{C} \%$ s
2703
sage: ($\mathrm{C} \%$ s) $\% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage:
sage: m=randrange(2)
sage: $r=[r a n d r a n g e(2)$
....: for i in range(N)]
sage: $C=m+\operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C\%s
2703
sage: (C\%s) \% 2
1
sage: m
1
sage:
sage: m2=randrange(2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
....: for i in range(N))
sage: C2
-51722353737982737270129
sage:
sage: m=randrange(2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=m+\operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: $\mathrm{C} \%$ s
2703
sage: ($\mathrm{C} \%$ s) $\% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range (N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(r 2[i] * K[i]$
....: for i in range (N))
sage: C2
-51722353737982737270129
sage: $\mathrm{C} 2 \%$ s
4971
sage:
sage: m=randrange(2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=m+\operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: C $\%$ s
2703
sage: ($\mathrm{C} \%$ s) $\% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range (N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(r 2[i] * K[i]$
....: for i in range (N))
sage: C2
-51722353737982737270129
sage: $\mathrm{C} 2 \%$ s
4971
sage: ($\mathrm{C} 2 \% \mathrm{~s}$) $\% 2$
1
sage:
sage: m=randrange(2)
sage: $r=$ [randrange (2)
....: for i in range(N)]
sage: $C=m+\operatorname{sum}(r[i] * K[i]$
....: for i in range(N))
sage: C
2094088748748247210016703
sage: $\mathrm{C} \%$ s
2703
sage: ($\mathrm{C} \%$ s) $\% 2$
1
sage: m
1
sage:
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range (N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(r 2[i] * K[i]$
....: for i in range (N))
sage: C2
-51722353737982737270129
sage: $\mathrm{C} 2 \%$ s
4971
sage: ($\mathrm{C} 2 \% \mathrm{~s}$) $\% 2$
1
sage: m2
1
sage:
$=r a n d r a n g e(2)$
$=$ [randrange (2)
for i in range(N)]
$=m+\operatorname{sum}(r[i] * K[i]$
for i in range(N))

748748247210016703
\%s

C\%s) \% 2
sage: m2=randrange (2)
sage: $r 2=$ [randrange (2)
....: for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2\%s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: 7674
sage:
1343661 sage:
e(2)
ge(2)
n range(N)]
i] $* \mathrm{~K}[\mathrm{i}]$
n range(N))

210016703
sage: m2=randrange(2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2\%s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: (C+C2) \%s
7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
sage: m2=randrange(2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2\%s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: (C+C2) \%s
7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
sage: m2=randrange(2)
sage: $r 2=$ [randrange(2)
....: for i in range(N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+$ sum ($\mathrm{r} 2[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2\%s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: (C+C2) \%s
7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
sage: m2=randrange(2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(\mathrm{r} 2[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2\%s
4971
sage: (C2\%s) \% 2
1
sage: m2
1
sage:
sage: (C+C2) \%s
7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.
sage: m2=randrange (2)
sage: r2=[randrange(2)
....: for i in range(N)]
sage: $\mathrm{C} 2=\mathrm{m} 2+\operatorname{sum}(\mathrm{r} 2[\mathrm{i}] * \mathrm{~K}[\mathrm{i}]$
....: for i in range (N))
sage: C2
-51722353737982737270129
sage: $\mathrm{C} 2 \% \mathrm{~s}$
4971
sage: ($\mathrm{C} 2 \%$ s $) \% 2$
1
sage: m2
1
sage:
sage: $(\mathrm{C}+\mathrm{C} 2) \%$ s
7674
sage: $(\mathrm{C} * \mathrm{C} 2) \%$ s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.
sage: $(\mathrm{C}+\mathrm{C} 2) \%$ s
7674
sage: (C*C2) \%s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.
sage: $(\mathrm{C}+\mathrm{C} 2) \%$ s
7674
sage: (C*C2) \%s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.
sage: (C+C2) \%s
7674
sage: ($\mathrm{C} * \mathrm{C} 2$) \% s
13436613
sage:
Because $C \bmod s$ and $C^{\prime} \bmod s$ are small enough compared to s, have $C+C^{\prime} \bmod s=(C \bmod s)+$ $\left(C^{\prime} \bmod s\right)$ and $C C^{\prime} \bmod s=$ $(C \bmod s)\left(C^{\prime} \bmod s\right)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

Lattices
This is a lettuce:

Lattices

This is a lettuce:

This is a lattice:

$C \bmod s$ and $C^{\prime} \bmod s$ I enough compared to s,
$C^{\prime} \bmod s=(C \bmod s)+$
s) and $C C^{\prime} \bmod s=$
$s)\left(C^{\prime} \bmod s\right)$.
ents: add more noise rtexts, bootstrap (2009 to control noise, etc.

Lattices,
Assume are R-lir i.e., $\mathbf{R} V_{1}$ $\left\{r_{1} V_{1}+\right.$ is a $D-\mathrm{d}$

This is a lattice:

Lattices

This is a lettuce:

This is a lattice:

Lattices, mathem
Assume that V_{1},. are \mathbf{R}-linearly inde i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{F}$ $\left\{r_{1} V_{1}+\cdots+r_{D} V\right.$ is a D-dimensiona
$s)$
more noise otstrap (2009 noise, etc.

Lattices
This is a lettuce:

This is a lattice:

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}$ are \mathbf{R}-linearly independent, i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$ $\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}\right.$, is a D-dimensional vector sp

This is a lettuce:

This is a lattice:

Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent, i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$ $\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$ is a D-dimensional vector space.

Lattices

This is a lettuce:

This is a lattice:

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent, i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$ $\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$ is a D-dimensional vector space.
$\mathbf{Z} \mathbf{V}_{1}+\cdots+\mathbf{Z} \mathbf{V}_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
is a rank- D length $-N$ lattice.

Lattices

This is a lettuce:

This is a lattice:

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent, i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$ $\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$ is a D-dimensional vector space.
$\mathbf{Z} \mathbf{V}_{1}+\cdots+\mathbf{Z} \mathbf{V}_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
is a rank- D length- N lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.
lettuce:

lattice:

Lattices, mathematically

Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$ is a rank- D length $-N$ lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short ve
Given V_{1} what is in $L=\mathbf{Z}$

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are \mathbf{R}-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
is a rank- D length $-N$ lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in la
Given V_{1}, V_{2}, \ldots, l what is shortest ve in $L=\mathbf{Z} V_{1}+\cdots$

Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are \mathbf{R}-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} \mathbf{V}_{1}+\cdots+\mathbf{Z} \mathbf{V}_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
is a rank- D length- N lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$ is a D-dimensional vector space.
$\mathbf{Z} \mathbf{V}_{1}+\cdots+\mathbf{Z} \mathbf{V}_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$ is a rank- D length- N lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$, what is shortest vector in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
is a rank- D length $-N$ lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in lattices
Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$, what is shortest vector in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are R-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} \mathbf{V}_{1}+\cdots+\mathbf{Z} \mathbf{V}_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$ is a rank- D length- N lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in lattices
Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?

Lattices, mathematically
Assume that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$ are \mathbf{R}-linearly independent,
i.e., $\mathbf{R} V_{1}+\cdots+\mathbf{R} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
is a D-dimensional vector space.
$\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}=$
$\left\{r_{1} V_{1}+\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$ is a rank- D length $-N$ lattice.
V_{1}, \ldots, V_{D}
is a basis of this lattice.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

mathematically

that $V_{1}, \ldots, V_{D} \in \mathbf{R}^{N}$
early independent,
$+\cdots+\mathbf{R} V_{D}=$
$\left.\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
imensional vector space.
$\cdot+\mathbf{Z} V_{D}=$
$\left.\cdots+r_{D} V_{D}: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$
$-D$ length- N lattice.
s of this lattice.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$, what is shortest vector in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-s
One way where C
tically
.,$V_{D} \in \mathbf{R}^{N}$
pendent,
$V_{D}=$
$\left.p: r_{1}, \ldots, r_{D} \in \mathbf{R}\right\}$
vector space.
$\left.D: r_{1}, \ldots, r_{D} \in \mathbf{Z}\right\}$

- N lattice.
attice.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattice
One way to find (where $C=r_{1} K_{1}+$

Short vectors in lattices

Subset-sum lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Short vectors in lattices
Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Short vectors in lattices
Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$
where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:
Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.

Short vectors in lattices

Given $V_{1}, V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}$,
what is shortest vector
in $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{D}$?
0.
"SVP: shortest-vector problem":
What is shortest nonzero vector?
1982 Lenstra-Lenstra-Lovász
(LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D / 2}$ times length of shortest nonzero vector. Typically $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$
where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:
Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

ctors in lattices

$$
V_{2}, \ldots, V_{D} \in \mathbf{Z}^{N}
$$

shortest vector
$V_{1}+\cdots+\mathbf{Z} V_{D}$?
hortest-vector problem": shortest nonzero vector?
nstra-Lenstra-Lovász
gorithm runs in poly time,
s a nonzero vector in L gth at most $2^{D / 2}$ times f shortest nonzero vector. $\approx 1.02^{D}$ instead of $2^{D / 2}$.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is f finds thi
ttices
${ }_{D} \in \mathbf{Z}^{N}$,
ector
$Z V_{D}$? ctor problem":
onzero vector?
stra-Lovász
uns in poly time,
ro vector in L st $2^{D / 2}$ times
nonzero vector.
instead of $2^{D / 2}$.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is fast but alr finds this short ve

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is fast but almost never finds this short vector in L.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
$V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)$.
Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.
LLL is fast but almost never finds this short vector in L.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$ where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:

Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,
LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$
where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:
Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,

$$
V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)
$$

Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Subset-sum lattices

One way to find $\left(r_{1}, \ldots, r_{N}\right)$
where $C=r_{1} K_{1}+\cdots+r_{N} K_{N}$:
Choose λ. Define
$V_{0}=(-C, 0,0, \ldots, 0)$,
$V_{1}=\left(K_{1}, \lambda, 0, \ldots, 0\right)$,
$V_{2}=\left(K_{2}, 0, \lambda, \ldots, 0\right)$,

$$
V_{N}=\left(K_{N}, 0,0, \ldots, \lambda\right)
$$

Define $L=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
L contains the short vector
$V_{0}+r_{1} V_{1}+\cdots+r_{N} V_{N}=$
$\left(0, r_{1} \lambda, \ldots, r_{N} \lambda\right)$.

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

$$
\begin{aligned}
& \text { to find }\left(r_{1}, \ldots, r_{N}\right) \\
& =r_{1} K_{1}+\cdots+r_{N} K_{N}:
\end{aligned}
$$

λ. Define
C, 0, 0, ..., 0),
$1, \lambda, 0, \ldots, 0)$,
$2,0, \lambda, \ldots, 0)$,
$\left.{ }_{N}, 0,0, \ldots, \lambda\right)$.
$=\mathbf{Z} V_{0}+\cdots+\mathbf{Z} V_{N}$.
ns the short vector
$1+\cdots+r_{N} V_{N}=$ $\left.\ldots, r_{N} \lambda\right)$.

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ"

algorithm spends more time than
LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice
Recall
Each u_{i}
Note q_{j}
$\left.r_{1}, \ldots, r_{N}\right)$
$\cdots+r_{N} K_{N}:$
, 0),
, 0),
, 0),
, , λ).
$\cdots+\mathbf{Z} V_{N}$.
rt vector
$r_{N} V_{N}=$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on
Recall $K_{i}=2 u_{i}+$
Each u_{i} is small:
Note $q_{j} K_{i}-q_{i} K_{j}$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$ Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ"
algorithm spends more time than
LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV keys

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right) ;$
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$

$$
V_{N}=\left(0,0,0, \ldots,-K_{1}\right)
$$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent time-vs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV keys

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right) ;$
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
ast but almost never
s short vector in L.
hnorr-Euchner "BKZ"
n spends more time than ing shorter vectors in any Many subsequent timeness improvements.
hnorr-Shevchenko claim dern form of BKZ solves um problems faster than cker-Coron-Joux.
ue? Open: What's the t of this algorithm?

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
sage: V

Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
nost never ctor in L.
hner "BKZ"
nore time than
r vectors in any
sequent timeovements.
vchenko claim of BKZ solves ms faster than n-Joux.
: What's the |gorithm?

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right) ;$
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right) ;$
olves
than
the
sage: V=matrix.identity(N sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: $\mathrm{V}[0]=\mathrm{Vtop}$
sage:

Lattice attacks on DGHV keys
Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;
$V_{N}=\left(0,0,0, \ldots,-K_{1}\right)$.
Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: $\mathrm{V}[0]=\mathrm{Vtop}$
sage: $q 0=V . \operatorname{LLL}()[0][0] / E$
sage: q0
596487875
sage:

Lattice attacks on DGHV keys

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;

$$
V_{N}=\left(0,0,0, \ldots,-K_{1}\right)
$$

Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V[0]=Vtop
sage: $q 0=V . \operatorname{LLL}()[0][0] / E$
sage: q0
596487875
sage: round(K[0]/q0)
984887308997925
sage:

Lattice attacks on DGHV keys

Recall $K_{i}=2 u_{i}+s q_{i} \approx s q_{i}$.
Each u_{i} is small: $u_{i}<E$.
Note $q_{j} K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j}$.
Define
$V_{1}=\left(E, K_{2}, K_{3}, \ldots, K_{N}\right)$;
$V_{2}=\left(0,-K_{1}, 0, \ldots, 0\right)$;
$V_{3}=\left(0,0,-K_{1}, \ldots, 0\right)$;

$$
V_{N}=\left(0,0,0, \ldots,-K_{1}\right)
$$

Define $L=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}$.
L contains $q_{1} V_{1}+\cdots+q_{N} V_{N}=$
$\left(q_{1} E, q_{1} K_{2}-q_{2} K_{1}, \ldots\right)=$
$\left(q_{1} E, 2 q_{1} u_{2}-2 q_{2} u_{1}, \ldots\right)$.
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V[0]=Vtop
sage: $q 0=V . \operatorname{LLL}()[0][0] / E$
sage: q0
596487875
sage: round (K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
attacks on DGHV keys

$$
i=2 u_{i}+s q_{i} \approx s q_{i} .
$$

$$
\text { is small: } u_{i}<E \text {. }
$$

$$
K_{i}-q_{i} K_{j}=2 q_{j} u_{i}-2 q_{i} u_{j} .
$$

$$
\left., K_{2}, K_{3}, \ldots, K_{N}\right)
$$

$$
\left.-K_{1}, 0, \ldots, 0\right)
$$

$$
\left.0,-K_{1}, \ldots, 0\right) ;
$$

$$
\left., 0,0, \ldots,-K_{1}\right)
$$

$$
=\mathbf{Z} V_{1}+\cdots+\mathbf{Z} V_{N}
$$

$$
\text { ns } q_{1} V_{1}+\cdots+q_{N} V_{N}=
$$

$$
\left.K_{2}-q_{2} K_{1}, \ldots\right)=
$$

$$
\left.1 u_{2}-2 q_{2} u_{1}, \ldots\right) .
$$

sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V[0]=Vtop
sage: $q 0=\mathrm{V}$.LLL() [0] [0]/E
sage: q0
596487875
sage: round(K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
sage: V (1024, -11115 794301

688178
742362
102334
-35716
112142
-11096
-23562
sage:

DGHV keys

$$
\begin{aligned}
& s q_{i} \approx s q_{i} \\
& u_{i}<E \\
& =2 q_{j} u_{i}-2 q_{i} u_{j}
\end{aligned}
$$

$$
\left.\ldots, K_{N}\right)
$$

. , 0)
. , 0)

$$
\left.-K_{1}\right)
$$

$$
\cdots+\mathbf{Z} V_{N}
$$

$$
\cdots+q_{N} V_{N}=
$$

$$
1, \ldots)=
$$

$$
\left.u_{1}, \ldots\right)
$$

```
sage: V=matrix.identity(N)
sage: V=-K[0]*V
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V [0]=Vtop
sage: q0=V.LLL()[0][0]/E
sage: q0
596487875
sage: round(K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
```

sage: V [0] (1024,
-11115391791007
794301459533783 688178021083749

742362470968200
102334582783153
-35716867939855
112142161911996
-11096748622762
-23562893778500
sage:
sage: V=matrix.identity(N)
sage: $\mathrm{V}=-\mathrm{K}[0] * \mathrm{~V}$
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V[0]=Vtop
sage: $q 0=V . L L L()[0][0] / E$
sage: q0
596487875
sage: round (K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
sage: V[0]
(1024,
-11115391791007200837703
794301459533783434896055
68817802108374958901751,
742362470968200823035396
102334582783153951505479
-35716867939855887673000
112142161911996460105144
-11096748622762224955871
-23562893778500377052338
sage:

```
sage: V=matrix.identity(N)
sage: V=-K[0]*V
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V [0]=Vtop
sage: q0=V.LLL()[0][0]/E
sage: q0
596487875
sage: round(K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
```

sage: V [0]
(1024,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381)
sage:

```
sage: V=matrix.identity(N)
sage: V=-K[0]*V
sage: Vtop=copy(K)
sage: Vtop[0]=E
sage: V [0]=Vtop
sage: q0=V.LLL()[0][0]/E
sage: q0
596487875
sage: round(K[0]/q0)
984887308997925
sage: s
984887308997925
sage:
```

sage: V [0]
(1024,
-1111539179100720083770339,
794301459533783434896055 ,
68817802108374958901751 ,
742362470968200823035396 ,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
$=m a t r i x . i d e n t i t y(N)$
$=-\mathrm{K}[0] * \mathrm{~V}$
top $=\operatorname{copy}(\mathrm{K})$
top $[0]=E$
[0]=Vtop
$0=\mathrm{V} . \operatorname{LLL}()[0][0] / E$

75
ound (K [0]/q0)
08997925

08997925
sage: V[0]
(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
sage: V (610803 370302
-22561 110012

135946 sage:
sage: V.LLL()[0] (610803584000, 1 37030242384,84 -225618319442, 1100126026284 , 1359463649048, sage:
sage: V [0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 ,

742362470968200823035396 , 1023345827831539515054795,
-357168679398558876730006, 1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
(610803584000, 1056189937
37030242384, 84589845469
-225618319442, 363547143
1100126026284, -31315097
1359463649048 , 174256676 sage:
sage: V[0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 , -1109674862276222495587129, -235628937785003770523381) sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384, 845898454698,
-225618319442, 363547143644, 1100126026284, -313150978512, 1359463649048, 174256676348) sage:
sage: V[0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 , -1109674862276222495587129, -235628937785003770523381) sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384, 845898454698,
$-225618319442,363547143644$, 1100126026284, -313150978512, 1359463649048, 174256676348)
sage: $q=[K i / / s$ for Ki in K] sage:
sage: V[0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381) sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage:
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384, 845898454698,
-225618319442, 363547143644, 1100126026284, -313150978512, 1359463649048, 174256676348)
sage: $q=[\mathrm{Ki} / / s$ for Ki in K$]$
sage: $q[0] * E$
610803584000
sage:
sage: V[0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 , -1109674862276222495587129, -235628937785003770523381) sage: V[1]
(0, -587473338058640662659869, $0,0,0,0,0,0,0,0)$ sage:
sage: V.LLL()[0]
(610803584000, 1056189937254, 37030242384, 845898454698,
$-225618319442,363547143644$,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: $q=[\mathrm{Ki} / / \mathrm{s}$ for Ki in K$]$
sage: q[0]*E
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$
1056189937254
sage:
sage: V[0]
(1024,
-1111539179100720083770339, 794301459533783434896055 , 68817802108374958901751 , 742362470968200823035396 , 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443 ,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
$0,0,0,0,0,0,0,0)$
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384, 845898454698,
$-225618319442,363547143644$,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$
1056189937254
sage: $\mathrm{q}[0] * \mathrm{~K}[9]-\mathrm{q}[9] * \mathrm{~K}[0]$
174256676348
sage:

39179100720083770339, 459533783434896055 , 02108374958901751 , 470968200823035396 , 5827831539515054795, 3679398558876730006, 1619119964601051443 , 74862276222495587129 , 8937785003770523381)
[1]
7473338058640662659869,
$0,0,0,0,0,0)$
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384, 845898454698, $-225618319442,363547143644$, 1100126026284, -313150978512, 1359463649048, 174256676348)
sage: $q=[K i / / s$ for Ki in K$]$
sage: q[0] *E
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$ 1056189937254
sage: $\mathrm{q}[0] * \mathrm{~K}[9]-\mathrm{q}[9] * \mathrm{~K}[0]$
174256676348
sage:

2009 DC
can cho these lat
sage: V.LLL() [0]
(610803584000, 1056189937254, 37030242384,845898454698 , -225618319442, 363547143644, 1100126026284, -313150978512, 1359463649048, 174256676348)
sage: $q=[K i / / s$ for $K i$ in K]
sage: q[0] $* \mathrm{E}$
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$
1056189937254
sage: $\mathrm{q}[0] * \mathrm{~K}[9]-\mathrm{q}[9] * \mathrm{~K}[0]$
174256676348
sage:

2009 DGHV analy can choose key siz these lattice attac37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: $q=[K i / / s$ for $K i$ in K]
sage: q[0] *E
610803584000
sage: $\mathrm{q}[0] * \mathrm{~K}[1]-\mathrm{q}[1] * \mathrm{~K}[0]$
1056189937254
sage: $\mathrm{q}[0] * \mathrm{~K}[9]-\mathrm{q}[9] * \mathrm{~K}[0]$
174256676348
sage:

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
    37030242384, 845898454698,
    -225618319442, 363547143644,
    1100126026284, -313150978512,
    1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
    37030242384, 845898454698,
    -225618319442, 363547143644,
    1100126026284, -313150978512,
    1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
    37030242384, 845898454698,
    -225618319442, 363547143644,
    1100126026284, -313150978512,
    1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
    37030242384, 845898454698,
    -225618319442, 363547143644,
    1100126026284, -313150978512,
    1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
    37030242384, 845898454698,
    -225618319442, 363547143644,
    1100126026284, -313150978512,
    1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack.
Need bigger DGHV/CMNT keys.
.LLL() [0]
584000, 1056189937254, 42384, 845898454698,
8319442, 363547143644,
6026284, -313150978512,
3649048 , 174256676348)
$=[\mathrm{Ki} / / \mathrm{s}$ for Ki in K$]$
[0] $*$ E
34000
[0] *K [1] -q[1] *K [0]
937254
[0] *K [9] -q [9] *K [0]
76348

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

Big atta
1991 Ch
Pfitzma define C for suita

Simple, Very eas finding computi

056189937254 , 5898454698, 363547143644 , -313150978512, 174256676348)
or Ki in K$]$
$\mathrm{q}[1] * \mathrm{~K}[0]$
$\mathrm{q}[9] * \mathrm{~K}[0]$

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-Naccache-

 Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

Big attack surface
1991 Chaum-van Pfitzmann: choos define $C(x, y)=4$ for suitable ranges

Simple, beautiful, Very easy security finding C collision computing a discr

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

Big attack surfaces are dang
1991 Chaum-van Heijst-
Pfitzmann: choose p sensib define $C(x, y)=4^{x} 9^{y} \bmod$ for suitable ranges of x and

Simple, beautiful, structurec Very easy security reduction finding C collision implies computing a discrete logarit

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-NaccacheTibouchi: reduce key sizes by modifying DGHV. "This
shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big attack surfaces are dangerous
1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction: finding C collision implies computing a discrete logarithm.

2009 DGHV analysis:
can choose key sizes where these lattice attacks fail.

2011 Coron-Mandal-Naccache-
Tibouchi: reduce key sizes by modifying DGHV. "This
shows that fully homomorphic encryption can be implemented with a simple scheme."
e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big attack surfaces are dangerous
1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction: finding C collision implies computing a discrete logarithm.

Typical exaggerations:
C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

HV analysis:
ose key sizes where tice attacks fail.
ron-Mandal-Naccache-
i: reduce key sizes fying DGHV. "This lat fully homomorphic on can be implemented imple scheme."
ttacks take $\geq 2^{72}$ cycles lic keys only 802MB.
en-Nguyen: faster attack.
ger DGHV/CMNT keys.

Big attack surfaces are dangerous
1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction: finding C collision implies computing a discrete logarithm.

Typical exaggerations:
C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

Security 1922 Kr 1986 Co Schroep 1993 Go 1993 Sc 1994 Sh many su from per pre-quar
C is very
No matt is, obtai
"unstruc function
sis:
es where
ks fail.
al-Naccache-
key sizes
IV. "This
omomorphic implemented me."
e $\geq 2^{72}$ cycles
nly 802MB.
n : faster attack.
V/CMNT keys.

Big attack surfaces are dangerous
1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction: finding C collision implies computing a discrete logarithm.

Typical exaggerations:
C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

Security losses in 1922 Kraitchik (in 1986 Coppersmith Schroeppel (NFS 1993 Gordon (gen 1993 Schirokauer 1994 Shor (quantı many subsequent from people who pre-quantum secu
C is very bad cryp No matter what u is, obtain better s "unstructured" co function designs s

Big attack surfaces are dangerous
1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction: finding C collision implies computing a discrete logarithm.

Typical exaggerations:
C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

Security losses in C include 1922 Kraitchik (index calcul 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecesso 1993 Gordon (general DL N 1993 Schirokauer (faster NF 1994 Shor (quantum poly ti many subsequent attack spe from people who care about pre-quantum security.
C is very bad cryptography. No matter what user's cost is, obtain better security wit "unstructured" compression function designs such as BL

Big attack surfaces are dangerous

1991 Chaum-van Heijst-
Pfitzmann: choose p sensibly; define $C(x, y)=4^{x} 9^{y} \bmod p$ for suitable ranges of x and y.

Simple, beautiful, structured. Very easy security reduction: finding C collision implies computing a discrete logarithm.

Typical exaggerations:
C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.
ck surfaces are dangerous
aum-van Heijst-
n: choose p sensibly;
$(x, y)=4^{x} 9^{y} \bmod p$
ble ranges of x and y.
beautiful, structured.
y security reduction:
E collision implies ng a discrete logarithm.
exaggerations:
ovably secure"; C is rraphically collision-free";
follows from rigorous atical proofs".

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For publ Some m seems tc but purs often lea
e p sensibly;
${ }^{x} 9^{y} \bmod p$
of x and y.
structured.
reduction:
implies
ete logarithm.
ons:
ure"; C is
collision-free";
rom rigorous
fs"

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For public-key enc Some mathematic seems to be unave but pursuing simp often leads to sect

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For public-key encryption:
Some mathematical structur seems to be unavoidable, but pursuing simple structur often leads to security disas

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-OdlyzkoSchroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.
C is very bad cryptography.
No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.
losses in C include aitchik (index calculus); ppersmith-Odlyzkopel (NFS predecessor); rdon (general DL NFS); hirokauer (faster NFS); or (quantum poly time); bsequent attack speedups ople who care about tum security.
bad cryptography.
er what user's cost limit
n better security with tured" compressiondesigns such as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-Joux-
Thomé: pre-quantum quasi-poly break of small-characteristic DH.

The stat against are muc than the

C include dex calculus);
-Odlyzkopredecessor); eral DL NFS); (faster NFS); um poly time); attack speedups
tare about ity.
tography.
ser's cost limit
ecurity with
mpressionuch as BLAKE.

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-a against Cohen's Cr are much more co than the cryptosys

For public-key encryption:

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosyste are much more complicated than the cryptosystem is. S

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-Joux-
Thomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For public-key encryption:
Some mathematical structure seems to be unavoidable, but pursuing simple structures often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu-Gaudry-JouxThomé: pre-quantum quasi-poly break of small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.
ic-key encryption:
athematical structure
be unavoidable, uing simple structures ds to security disasters.
ntum example: DH is than ECDH, but DH has many more security losses DH. State-of-the-art DH are very complicated. rbulescu-Gaudry-Joux-pre-quantum quasi-poly small-characteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQ NIST re 69 subm from hu 22 signa 47 encry
ryption:
al structure
idable,
le structures urity disasters.
nple: DH is
H, but DH has
e security losses e-of-the-art DH omplicated.

Gaudry-Jouxum quasi-poly racteristic DH.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors".
Attacks exploit this structure!
For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQC

NIST received 82 69 submissions in from hundreds of 22 signature subm
47 encryption sub

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors".
Attacks exploit this structure!
For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQC

NIST received 82 submissior 69 submissions in round 1, from hundreds of people; 22 signature submissions,
47 encryption submissions.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary! Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1 , from hundreds of people; 22 signature submissions, 47 encryption submissions.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary! Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1 , from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.

The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary! Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors". Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1 , from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards

+ short backup list; and will overemphasize speed.
e-of-the-art attacks Cohen's cryptosystem h more complicated cryptosystem is. Scary! pased cryptosystems are ed as "algorithmically consisting mainly of perations on vectors". exploit this structure!
iency, lattice-based stems usually have that expand the attack even more: e.g.,
d decryption failures.

NISTPQC
NIST received 82 submissions.
69 submissions in round 1 , from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards

+ short backup list; and will
overemphasize speed.

Lattice-

- Dilithi
- DRS:
- FALC
- pqNT
- qTESI
"theor
paran

NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;
22 signature submissions,
47 encryption submissions.
26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards

+ short backup list; and will
overemphasize speed.
rt attacks yptosystem mplicated tem is. Scary!
tosystems are orithmically 5 mainly of on vectors".
is structure!
ice-based
ally have
nd the attack
e.g.,
on failures.

Lattice-based sign

- Dilithium: rounc
- DRS: broken; e
- FALCON^A.A: rol
- pqNTRUSign^A
- qTESLA: mistal "theorems"; rou parameters bro

NISTPQC
NIST received 82 submissions.
69 submissions in round 1, from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards + short backup list; and will overemphasize speed.

Lattice-based signature subr

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONÅA : round 2 .
- pqNTRUSign^Å : eliminat
- qTESLA: mistaken securit "theorems"; round 2; som parameters broken.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1, from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards + short backup list; and will overemphasize speed.

Lattice-based signature submissions:

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONÅA : round 2 .
- pqNTRUSign^Å: eliminated.
- qTESLA: mistaken security "theorems"; round 2; some parameters broken.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1, from hundreds of people; 22 signature submissions, 47 encryption submissions.

26 submissions in round 2 :
9 signature submissions;
17 encryption submissions.
Round 3 starting soon.
My guesses: NIST will announce short list of planned standards + short backup list; and will overemphasize speed.

Lattice-based signature submissions:

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONÅA : round 2.

- qTESLA: mistaken security "theorems"; round 2; some parameters broken.
A.A.: submitter claims patent on this submission. Warning: even without ${ }^{\wedge} \dot{\wedge}$, submission could be covered by other patents!
ceived 82 submissions. issions in round 1 , ndreds of people; ture submissions, ption submissions.
issions in round 2 :
ure submissions; ption submissions.
starting soon.
ses: NIST will announce of planned standards backup list; and will hasize speed.

Latticesubmissi
Kyber, NTRU

ThreeBe

- pqNTRUSign^Å : eliminated.
- qTESLA: mistaken security "theorems"; round 2; some parameters broken.
A.A.: submitter claims patent on this submission. Warning: even without ${ }^{\wedge} \dot{\Delta}$, submission could be covered by other patents!
submissions.
round 1 ,
people;
issions, missions.
round 2 :
ssions;
missions.
oon.
will announce ed standards
t; and will
ed.

Lattice-based signature submissions:

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONÅ : round 2.
- pqNTRUSign^Å : eliminated.
- qTESLA: mistaken security "theorems"; round 2; some parameters broken.
A.A: submitter claims patent on this submission. Warning: even without ${ }^{4}$, submission could be covered by other patents!

Lattice-based encryption submissions in round 2: Fro Kyber, LAC, NewHope, NT NTRU Prime, Round5^̊., S ThreeBears (\approx lattice).

Lattice-based signature submissions:

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONAA : round 2.
- pqNTRUSign^Å : eliminated.
- qTESLA: mistaken security "theorems"; round 2; some parameters broken.
A.A.: submitter claims patent on this submission. Warning: even without ${ }^{\wedge} \dot{\Delta}$, submission could be covered by other patents!

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^^A, SABER, ThreeBears (\approx lattice).

Lattice-based signature submissions:

- Dilithium: round 2.
- DRS: broken; eliminated.
- FALCONA\&: round 2.
- pqNTRUSign^A: eliminated.
- qTESLA: mistaken security "theorems"; round 2; some parameters broken.
A.A: submitter claims patent on this submission. Warning: even without Å, submission could be covered by other patents!

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^̊, SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions: Compact LWEÅ (broken), Ding^A. EMBLEM, KINDI, LIMA, Lizard ${ }^{\circ} \stackrel{A}{\circ}$, LOTUS, Mersenne (\approx lattice, big keys), Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL审, Ramstake (\approx lattice, big keys), Titanium.
oased signature submissions:
um: round 2.
broken; eliminated.
ONA: : round 2.
RUSign ${ }^{\wedge}$ © : eliminated.
A: mistaken security
ems" ; round 2; some teters broken.
nitter claims patent on nission. Warning: even
$\stackrel{\Delta}{\Delta}$, submission could be by other patents!
ature submissions:

± 2.

iminated.
nd 2.
eliminated.
en security
nd 2 ; some ken.
ms patent on Varning: even ssion could be atents!

Lattice-based encryption
submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^』, SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions:
Compact LWEA (broken),
Ding ${ }_{\mathbf{A}}^{\boldsymbol{A}}$, EMBLEM, KINDI,
LIMA, Lizard^̊^, LOTUS,
Mersenne (\approx lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL^A,
Ramstake (\approx lattice, big keys),
Titanium.

NTRU is merge of with NTRU HRSS

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5 ${ }^{\wedge} \AA$, SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions:
Compact LWEÅ (broken), Ding ${ }^{\text {À }}$, EMBLEM, KINDI, LIMA, Lizard^̊̀, LOTUS, Mersenne (\approx lattice, big keys), Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL**, Ramstake (\approx lattice, big keys), Titanium.

NTRU is merge of NTRUEn with NTRU HRSS.

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^̊ ${ }^{\wedge}$, SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions: Compact LWE A (broken), Ding ${ }_{\mathbf{A}}^{\boldsymbol{A}}$, EMBLEM, KINDI, LIMA, Lizard ${ }^{\wedge} \AA$, LOTUS, Mersenne (\approx lattice, big keys),
Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL^A, Ramstake (\approx lattice, big keys),
Titanium.

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^^^, SABER,
ThreeBears (\approx lattice).
Other round-1 lattice-based encryption submissions:
Compact LWE A (broken),
Ding ${ }_{\mathbf{A}}^{\boldsymbol{A}}$, EMBLEM, KINDI,
LIMA, Lizard ${ }^{\wedge} \AA$, LOTUS,
Mersenne (\approx lattice, big keys),
Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL^A,
Ramstake (\approx lattice, big keys),
Titanium.

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5 ${ }^{\circ} \dot{\circ}$ is merge of HILA5 with Round $2^{〔} \hat{A}^{\bullet}$. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round 2 broken after round 2 began.

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^̊ ${ }^{\wedge}$, SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions:
Compact LWE © (broken),
Ding^A, EMBLEM, KINDI,
LIMA, Lizard ${ }^{\wedge} \AA$, LOTUS,
Mersenne (\approx lattice, big keys),
Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL*A, Ramstake (\approx lattice, big keys), Titanium.

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5 ${ }^{\text {A. }}$ is merge of HILA5 with Round2^A. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

Lattice-based encryption submissions in round 2: Frodo, Kyber, LAC, NewHope, NTRU, NTRU Prime, Round5^̊., SABER, ThreeBears (\approx lattice).

Other round-1 lattice-based encryption submissions: Compact LWE ${ }_{\circ}^{\circ}$ © (broken), Ding^Å, EMBLEM, KINDI, LIMA, Lizard $\AA \stackrel{A}{\wedge}$, LOTUS, Mersenne (\approx lattice, big keys),
Odd Manhattan (big keys), OKCN/AKCN/CNKE/KCL审, Ramstake (\approx lattice, big keys), Titanium.

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5** is merge of HILA5 with Round2 ${ }^{\circ} \dot{A}$. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

All lattice submissions have suffered security losses.
sased encryption
ons in round 2: Frodo,
AC, NewHope, NTRU, Prime, Round5 ${ }^{\wedge}$, SABER,
ars (\approx lattice).
und-1 lattice-based
on submissions:
t LWE* (broken), EMBLEM, KINDI,
izard** LOTUS,
e (\approx lattice, big keys),
nhattan (big keys),
AKCN/CNKE/KCL**,
e ()lattice, big keys),

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5 ${ }^{\circ}$ is merge of HILA5 with Round2 ${ }^{\text {®i }}$. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

All lattice submissions have suffered security losses.

Example after be

2018 La
"betwee
sieving,
SVP att
2018 Ba variant, for the

2018 Ao quantun cryptogr than sie
yption
nd 2: Frodo, Hope, NTRU, und5 ${ }^{\wedge}$ © , SABER, ice).
tice-based
sions:
(broken),
, KINDI,
OTUS,
e, big keys),
oig keys),
IKE/KCL^A ,
e, big keys),

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5 ${ }^{\circ}{ }^{\circ}$ is merge of HILA5 with Round2**. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round 2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

All lattice submissions have suffered security losses.

Examples of attac after beginning of

2018 Laarhoven"between a factor sieving, asymptoti SVP attack knowr 2018 Bai-Stehlé-\ variant, "bases of for the "same cost

2018 Aono-Nguye quantum enumera cryptographic size than sieving in sor

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5*** is merge of HILA5 with Round2^A. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round 2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

All lattice submissions have suffered security losses.

Examples of attack improve after beginning of round 1 :

2018 Laarhoven-Mariano: s "between a factor 20 to 40" sieving, asymptotically faste SVP attack known.

2018 Bai-Stehlé-Wen: new variant, "bases of better qua for the "same cost" of SVP. 2018 Aono-Nguyen-Shen: quantum enumeration. For cryptographic sizes, costs le than sieving in some cost m

NTRU is merge of NTRUEncrypt with NTRU HRSS.

Round5 ${ }^{\wedge}{ }^{\wedge}$ is merge of HILA5 with Round2^̊. HILA5 CCA security claim broken. First Round5 version broken before round 2 began. Round 2 broken after round 2 began.

Mistaken security "theorems" have been identified for Frodo, Kyber, NewHope, Round5.

All lattice submissions have suffered security losses.

Examples of attack improvements after beginning of round 1 :

2018 Laarhoven-Mariano: saves "between a factor 20 to 40 " in sieving, asymptotically fastest SVP attack known.

2018 Bai-Stehlé-Wen: new BKZ variant, "bases of better quality" for the "same cost" of SVP.

2018 Aono-Nguyen-Shen: quantum enumeration. For cryptographic sizes, costs less than sieving in some cost metrics.
s merge of NTRUEncrypt RU HRSS.
is merge of HILA5 und2A. HILA5 CCA claim broken. First version broken before began. Round2 broken nd 2 began.
n security "theorems" en identified for Frodo, NewHope, Round5.
ce submissions have security losses.

Examples of attack improvements after beginning of round 1 :

2018 Laarhoven-Mariano: saves "between a factor 20 to 40 " in sieving, asymptotically fastest SVP attack known.

2018 Bai-Stehlé-Wen: new BKZ variant, "bases of better quality" for the "same cost" of SVP.

2018 Aono-Nguyen-Shen:
quantum enumeration. For cryptographic sizes, costs less than sieving in some cost metrics.

2018 An
Verbaun significa (Ring/M schemes high fail

Frodo,
Round5, have no

For LAC 2^{48} time
Failure r first vers

NTRUEncrypt

e of HILA5
IILA5 CCA
oken. First
oken before ound2 broken
n.
"theorems" ed for Frodo, Round5.
ssions have losses.

Examples of attack improvements after beginning of round 1 :

2018 Laarhoven-Mariano: saves "between a factor 20 to 40 " in sieving, asymptotically fastest SVP attack known.

2018 Bai-Stehlé-Wen: new BKZ variant, "bases of better quality" for the "same cost" of SVP.

2018 Aono-Nguyen-Shen:
quantum enumeration. For cryptographic sizes, costs less than sieving in some cost metrics.

2018 Anvers-Verc Verbauwhede: "ar significantly reduc (Ring/Module)-LV schemes that have high failure rate".

Frodo, Kyber, LA Round5, SABER, have nonzero failu

For LAC-128, "the 2^{48} times bigger t Failure rate is also first version of Ro

Examples of attack improvements after beginning of round 1 :

2018 Laarhoven-Mariano: saves "between a factor 20 to 40 " in sieving, asymptotically fastest SVP attack known.

2018 Bai-Stehlé-Wen: new BKZ variant, "bases of better quality" for the "same cost" of SVP.

2018 Aono-Nguyen-Shen: quantum enumeration. For cryptographic sizes, costs less than sieving in some cost metrics.

2018 Anvers-VercauterenVerbauwhede: "an attacker significantly reduce the secu (Ring/Module)-LWE/LWR schemes that have a relative high failure rate".

Frodo, Kyber, LAC, NewHo Round5, SABER, ThreeBear have nonzero failure rates.

For LAC-128, "the failure ra 2^{48} times bigger than estim Failure rate is also what bro first version of Round5.

Examples of attack improvements after beginning of round 1 :

2018 Laarhoven-Mariano: saves "between a factor 20 to 40 " in sieving, asymptotically fastest SVP attack known.

2018 Bai-Stehlé-Wen: new BKZ variant, "bases of better quality" for the "same cost" of SVP.

2018 Aono-Nguyen-Shen:
quantum enumeration. For cryptographic sizes, costs less than sieving in some cost metrics.

2018 Anvers-Vercauteren-
Verbauwhede: "an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate".

Frodo, Kyber, LAC, NewHope, Round5, SABER, ThreeBears have nonzero failure rates.

For LAC-128, "the failure rate is 2^{48} times bigger than estimated".
Failure rate is also what broke first version of Round5.
s of attack improvements rinning of round 1 :
arhoven-Mariano: saves
n a factor 20 to 40 " in
asymptotically fastest ack known.
i-Stehlé-Wen: new BKZ "bases of better quality" "same cost" of SVP.
no-Nguyen-Shen:
enumeration. For aphic sizes, costs less ving in some cost metrics.

2018 Anvers-Vercauteren-
Verbauwhede: "an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate".

Frodo, Kyber, LAC, NewHope, Round5, SABER, ThreeBears have nonzero failure rates.

For LAC-128, "the failure rate is 2^{48} times bigger than estimated". Failure rate is also what broke first version of Round5.

2019 Al
Kirshanc
Stevens: the SVP found 40 time rep challeng

2019 Pe broke cl approxin number-Ideal-SV
cycloton FHE in
k improvements round 1 :

Mariano: saves 20 to 40 " in cally fastest

Nen: new BKZ better quality" " of SVP.
n-Shen:
tion. For
s, costs less
ne cost metrics.

2018 Anvers-Vercauteren-
Verbauwhede: "an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate".

Frodo, Kyber, LAC, NewHope, Round5, SABER, ThreeBears have nonzero failure rates.

For LAC-128, "the failure rate is 2^{48} times bigger than estimated".
Failure rate is also what broke first version of Round5.

2019 Albrecht-Du Kirshanova-Postle Stevens: "Our sol the SVP-151 chall found 400 times f time reported for challenge, the pre 2019 Pellet-Marybroke claimed half approximation-fac number-theoretic Ideal-SVP. (These cyclotomic STOC FHE in quantum

2018 Anvers-VercauterenVerbauwhede: "an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate".

Frodo, Kyber, LAC, NewHope, Round5, SABER, ThreeBears have nonzero failure rates.

For LAC-128, "the failure rate is 2^{48} times bigger than estimated". Failure rate is also what broke first version of Round5.

2019 Albrecht-Ducas-Herol Kirshanova-PostlethwaiteStevens: "Our solution for the SVP-151 challenge was found 400 times faster than time reported for the SVP-1 challenge, the previous recor

2019 Pellet-Mary-Hanrot-S broke claimed half-exponent approximation-factor barrier number-theoretic attacks ag Ideal-SVP. (These attacks b cyclotomic STOC 2009 Gen FHE in quantum poly time.)

2018 Anvers-Vercauteren-
Verbauwhede: "an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate".

Frodo, Kyber, LAC, NewHope, Round5, SABER, ThreeBears have nonzero failure rates.

For LAC-128, "the failure rate is 2^{48} times bigger than estimated". Failure rate is also what broke first version of Round5.

2019 Albrecht-Ducas-Herold-Kirshanova-PostlethwaiteStevens: "Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record."

2019 Pellet-Mary-Hanrot-Stehlé broke claimed half-exponential approximation-factor barrier for number-theoretic attacks against Ideal-SVP. (These attacks broke cyclotomic STOC 2009 Gentry FHE in quantum poly time.)
vers-Vercauterenhede: "an attacker can ntly reduce the security of lodule)-LWE/LWR based that have a relatively ure rate".

Kyber, LAC, NewHope, SABER, ThreeBears zzero failure rates.
-128, "the failure rate is s bigger than estimated". ate is also what broke sion of Round5.

2019 Albrecht-Ducas-Herold-
Kirshanova-Postlethwaite-
Stevens: "Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record."

2019 Pellet-Mary-Hanrot-Stehlé broke claimed half-exponential approximation-factor barrier for number-theoretic attacks against Ideal-SVP. (These attacks broke cyclotomic STOC 2009 Gentry FHE in quantum poly time.)

2019 Gu faster at systems to reduc (Violate 2020 Da Gong-R attacks secrets

2020 All
Kirchner
exponen
quantum
auteren-
attacker can
e the security of
VE/LWR based
a relatively

C, NewHope, ThreeBears
re rates.
failure rate is han estimated". what broke und5.

2019 Albrecht-Ducas-Herold-Kirshanova-Postlethwaite-
Stevens: "Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record."

2019 Pellet-Mary-Hanrot-Stehlé broke claimed half-exponential approximation-factor barrier for number-theoretic attacks against Ideal-SVP. (These attacks broke cyclotomic STOC 2009 Gentry FHE in quantum poly time.)

2019 Guo-Johanss faster attacks aga systems that use ϵ to reduce decrypti (Violates security 2020 Dachman-So
Gong-Rossi: sligh attacks against co secrets (LAC, NTI 2020 Albrecht-Ba Kirchner-Stehlé-V exponent for enum quantum enumera

2019 Albrecht-Ducas-Herold-Kirshanova-PostlethwaiteStevens: "Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record."

2019 Pellet-Mary-Hanrot-Stehlé broke claimed half-exponential approximation-factor barrier for number-theoretic attacks against Ideal-SVP. (These attacks broke cyclotomic STOC 2009 Gentry FHE in quantum poly time.)

2019 Guo-Johansson-Yang: faster attacks against some systems that use error corre to reduce decryption failures (Violates security claims for 2020 Dachman-Soled-Ducas Gong-Rossi: slightly faster attacks against constant-sur secrets (LAC, NTRU, Rounc

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: bette exponent for enumeration al quantum enumeration.

2019 Albrecht-Ducas-Herold-Kirshanova-PostlethwaiteStevens: "Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record."

2019 Pellet-Mary-Hanrot-Stehlé broke claimed half-exponential approximation-factor barrier for number-theoretic attacks against Ideal-SVP. (These attacks broke cyclotomic STOC 2009 Gentry FHE in quantum poly time.)

2019 Guo-Johansson-Yang: faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.
orecht-Ducas-Herold-
jva-Postlethwaite-
"Our solution for

- 151 challenge was

0 times faster than the orted for the SVP-150 e, the previous record."

Ilet-Mary-Hanrot-Stehlé aimed half-exponential nation-factor barrier for theoretic attacks against
P. (These attacks broke nic STOC 2009 Gentry quantum poly time.)

2020 Dc de Wege methods vector p dimensic
cas-Herold-thwaite-
ution for
enge was
aster than the che SVP-150 jious record."

Hanrot-Stehlé
-exponential
tor barrier for
attacks against attacks broke 2009 Gentry soly time.)

2019 Guo-Johansson-Yang:
faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-
Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2020 Doulgerakisde Weger: "faster methods for solvin vector problem (S dimensional lattice
\qquad

2019 Guo-Johansson-Yang: faster attacks against some systems that use error correction to reduce decryption failures.

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2019 Guo-Johansson-Yang: faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".

2019 Guo-Johansson-Yang: faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".

> "Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2).

2019 Guo-Johansson-Yang: faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".

> "Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices.

2019 Guo-Johansson-Yang:
faster attacks against some systems that use error correction to reduce decryption failures. (Violates security claims for LAC.)

2020 Dachman-Soled-Ducas-Gong-Rossi: slightly faster attacks against constant-sum secrets (LAC, NTRU, Round5).

2020 Albrecht-Bai-Fouque-Kirchner-Stehlé-Wen: better exponent for enumeration and quantum enumeration.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.
o-Johansson-Yang:
tacks against some that use error correction e decryption failures. s security claims for LAC.) chman-Soled-Ducasossi: slightly faster
against constant-sum LAC, NTRU, Round5). orecht-Bai-Fouque-
-Stehlé-Wen: better
t for enumeration and l enumeration.

Lattice
"Strong worst-ca that "ha some of and com back at
son-Yang:
nst some
rror correction on failures.
claims for LAC.)
led-Ducas-
tly faster
nstant-sum
RU, Round5).
-Fouque-
Ven: better neration and tion.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices.
Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing
"Strong security g worst-case hardne that "have been d some of the great and computer scie back at least to G

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices.
Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees worst-case hardness" of prol that "have been deeply stud some of the great mathema and computer scientists goir back at least to Gauss".

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss".

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss". Plus: fully homomorphic encryption.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2).
This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss" . Plus: fully homomorphic encryption.

Facts: No NISTPQC submissions are homomorphic.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss". Plus: fully homomorphic encryption.

Facts: No NISTPQC submissions are homomorphic. Gauss never attacked these problems.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss" . Plus: fully homomorphic encryption.

Facts: No NISTPQC submissions are homomorphic. Gauss never attacked these problems. Our attacks keep getting better.

2020 Doulgerakis-Laarhovende Weger: "faster [sieving] methods for solving the shortest vector problem (SVP) on highdimensional lattices".
"Conservative lower bound" on cost of BKZ was claimed in various submission documents in 2017 (round 1), 2019 (round 2). This "bound" was broken in 2018 for high-dimensional lattices. Apparently nobody noticed until I pointed this out in 2020.

Lattice marketing

"Strong security guarantees from worst-case hardness" of problems that "have been deeply studied by some of the great mathematicians and computer scientists going back at least to Gauss". Plus: fully homomorphic encryption.

Facts: No NISTPQC submissions are homomorphic. Gauss never attacked these problems. Our attacks keep getting better.
The guarantees do not apply to any NISTPQC submissions.

