Exploring the parameter space in lattice attacks

Daniel J. Bernstein
Tanja Lange

Based on attack survey from 2019 Bernstein-Chuengsatiansup-Lange-van Vredendaal.

Some hard lattice meta-problems:

- Analyze cost of known attacks.
- Optimize attack parameters.
- Compare different attacks.
- Evaluate crypto parameters.
- Evaluate crypto designs.
sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:
lgnoring cost of memory:
368185 enum, ignoring hybrid
230169 enum, including hybrid
153139 sieving, ignoring hybrid
153139 sieving, including hybrid
Accounting for cost of memory: 368185 enum, ignoring hybrid 277169 enum, including hybrid 208208 sieving, ignoring hybrid 208180 sieving, including hybrid

Security levels:
| ... |pre-quantum
post-quantum
sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:
Ignoring cost of memory:

368	185	enum, ignoring hybrid
230	169	enum, including hybrid
153	139	sieving, ignoring hybrid
153	139	sieving, including hybrid

Accounting for cost of memory: 368185 enum, ignoring hybrid 277169 enum, including hybrid 208208 sieving, ignoring hybrid 208180 sieving, including hybrid

Security levels:
|... $\left\lvert\, \begin{aligned} & \text { pre-quantum } \\ & \ldots\end{aligned}\right.$

Analysis has com and at it This tall
meter space
urvey from quengsatiansupdaal.
meta-problems: known attacks. parameters. it attacks. parameters. designs.
sntrup761 evaluations from "NTRU Prime: round 2" Table 2:

Ignoring cost of memory:

368	185	enum, ignoring hybrid
230	169	enum, including hybrid
153	139	sieving, ignoring hybrid
153	139	sieving, including hybrid

Accounting for cost of memory: | 368 | 185 | enum, ignoring hybrid |
| :--- | :--- | :--- | 277169 enum, including hybrid 208208 sieving, ignoring hybrid 208180 sieving, including hybrid

Security levels:
| . . . |pre-quantum
... |post-quantum

Analysis of typical has complications and at interfaces This talk emphasi

Analysis 0 to attack cry

Model of cc
sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:
Ignoring cost of memory:
368185 enum, ignoring hybrid
230169 enum, including hybrid
153139 sieving, ignoring hybrid
153139 sieving, including hybrid
Accounting for cost of memory:
368185 enum, ignoring hybrid 277169 enum, including hybrid 208208 sieving, ignoring hybrid 208180 sieving, including hybrid

Security levels:
|... pre-quantum
... |post-quantum

Analysis of typical lattice at has complications at four la and at interfaces between la This talk emphasizes top lay

Analysis of lattices to attack cryptosysten
"Approximate-SVP" analysis
"SVP"
analysis
sntrup761 evaluations from "NTRU Prime: round 2" Table 2:

Ignoring cost of memory:
368185 enum, ignoring hybrid
230169 enum, including hybrid
153139 sieving, ignoring hybrid
153139 sieving, including hybrid
Accounting for cost of memory: 368185 enum, ignoring hybrid 277169 enum, including hybrid 208208 sieving, ignoring hybrid 208180 sieving, including hybrid

Security levels:
|... pre-quantum
... |post-quantum

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

61 evaluations from
Prime: round 2" Table 2:
cost of memory:
enum, ignoring hybrid enum, including hybrid sieving, ignoring hybrid sieving, including hybrid
ing for cost of memory:
enum, ignoring hybrid enum, including hybrid sieving, ignoring hybrid sieving, including hybrid
levels:
-quantum
post-quantum

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

Three ty
Define \mathcal{T} "small"
$w=286$
Attacker small we

Problem
$a G+e=$
Problem
$a G+e=$
Problem
Public a
Small se
tions from und 2" Table 2:
emory:
noring hybrid icluding hybrid ignoring hybrid including hybrid
st of memory:
noring hybrid icluding hybrid ignoring hybrid including hybrid

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

Three typical atta
Define $\mathcal{R}=\mathbf{Z}[x] /$
"small" = all coef
$w=286 ; q=459$
Attacker wants to small weight-w se

Problem 1: Public $a G+e=0$. Smal

Problem 2: Public $a G+e=A$. Sma

Problem 3: Public Public $a G_{1}+e_{1}$, a Small secrets e_{1}, ϵ

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

Three typical attack problen
Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x\right.$ "small" $=$ all coeffs in $\{-1$, $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$

Problem 1: Public $G \in \mathcal{R} / c$ $a G+e=0$. Small secret e

Problem 2: Public $G \in \mathcal{R} /$ $a G+e=A$. Small secret e Problem 3: Public $G_{1}, G_{2} \in$ Public $a G_{1}+e_{1}, a G_{2}+e_{2}$. Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.
of typical lattice attack plications at four layers, iterfaces between layers. k emphasizes top layer.

Three typical attack problems
Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$;
"small" = all coeffs in $\{-1,0,1\}$;
$w=286 ; q=4591$.
Attacker wants to find
small weight-w secret $a \in \mathcal{R}$.
Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Example
Secret k
Public k and app

Public k Hoffsteir
$G=-e$
lattice attack at four layers, petween layers. zes top layer.
f lattices ptosystems
ysis
ysis

Three typical attack problems
Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$;
"small" = all coeffs in $\{-1,0,1\}$;
$w=286 ; q=4591$.
Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Examples of targe

Secret key: small
Public key reveals and approximatior

Public key for " N " Hoffstein-Pipher-$G=-e / a$, and A

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$. Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Examples of target cryptosy

Secret key: small a; small e
Public key reveals multiplier and approximation $A=a G$

Public key for "NTRU" (199 Hoffstein-Pipher-Silverman) $G=-e / a$, and $A=0$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$;
"small" = all coeffs in $\{-1,0,1\}$;
$w=286 ; q=4591$.
Attacker wants to find
small weight-w secret $a \in \mathcal{R}$.
Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Examples of target cryptosystems

Secret key: small a; small e.
Public key reveals multiplier G and approximation $A=a G+e$.

Public key for "NTRU" (1996 Hoffstein-Pipher-Silverman):
$G=-e / a$, and $A=0$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Examples of target cryptosystems

Secret key: small a; small e.
Public key reveals multiplier G and approximation $A=a G+e$.

Public key for "NTRU" (1996 Hoffstein-Pipher-Silverman):
$G=-e / a$, and $A=0$.
Public key for "Ring-LWE" (2010 Lyubashevsky-Peikert-Regev): random G, and $A=a G+e$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Examples of target cryptosystems

Secret key: small a; small e.
Public key reveals multiplier G and approximation $A=a G+e$.

Public key for "NTRU" (1996 Hoffstein-Pipher-Silverman):
$G=-e / a$, and $A=0$.
Public key for "Ring-LWE" (2010 Lyubashevsky-Peikert-Regev): random G, and $A=a G+e$.

Recognize similarity + credits: "NTRU" \Rightarrow Quotient NTRU. "Ring-LWE" \Rightarrow Product NTRU.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Encryption for Quotient NTRU:
Input small b, small d.
Ciphertext: $B=3 b G+d$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Encryption for Quotient NTRU: Input small b, small d.
Ciphertext: $B=3 b G+d$.
Encryption for Product NTRU: Input encoded message M. Randomly generate small b, small d, small c.
Ciphertext: $B=b G+d$ and $C=b A+M+c$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Encryption for Quotient NTRU: Input small b, small d.
Ciphertext: $B=3 b G+d$.
Encryption for Product NTRU: Input encoded message M.
Randomly generate small b, small d, small c.
Ciphertext: $B=b G+d$ and $C=b A+M+c$.

2019 Bernstein "Comparing proofs of security for lattice-based encryption" includes survey of G, a, e, c, M details and variants in NISTPQC submissions.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight- w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight- w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$ with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Three typical attack problems

Define $\mathcal{R}=\mathbf{Z}[x] /\left(x^{761}-x-1\right)$; "small" = all coeffs in $\{-1,0,1\}$; $w=286 ; q=4591$.

Attacker wants to find small weight-w secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R} / q$ with $a G+e=0$. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R} / q$ and $a G+e=A$. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_{1}, G_{2} \in \mathcal{R} / q$.
Public $a G_{1}+e_{1}, a G_{2}+e_{2}$.
Small secrets $e_{1}, e_{2} \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$ with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Problem 3: Find
$\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.
$Z=\mathbf{Z}[x] /\left(x^{761}-x-1\right) ;$
$=$ all coeffs in $\{-1,0,1\}$;
; $q=4591$.
wants to find ight-w secret $a \in \mathcal{R}$.

1: Public $G \in \mathcal{R} / q$ with $=0$. Small secret $e \in \mathcal{R}$.

2: Public $G \in \mathcal{R} / q$ and $=A$. Small secret $e \in \mathcal{R}$.

3: Public $G_{1}, G_{2} \in \mathcal{R} / q$. $G_{1}+e_{1}, a G_{2}+e_{2}$.
crets $e_{1}, e_{2} \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$
with $a G+e=A t$,
given $G, A \in \mathcal{R} / q$.
Problem 3: Find
$\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with
$a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recogni as a full.

Problem the map from \mathcal{R}^{2}
$\left(x^{761}-x-1\right) ;$
fs in $\{-1,0,1\}$;
1.
find
cret $a \in \mathcal{R}$.
$G \in \mathcal{R} / q$ with secret $e \in \mathcal{R}$.
$G \in \mathcal{R} / q$ and II secret $e \in \mathcal{R}$.
$G_{1}, G_{2} \in \mathcal{R} / q$
$G_{2}+e_{2}$.
$2 \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$
with $a G+e=A t$,
given $G, A \in \mathcal{R} / q$.
Problem 3: Find
$\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recognize each so as a full-rank latti

Problem 1: Lattic the map $(\bar{a}, \bar{r}) \mapsto$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Lattices
Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$ with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Problem 3: Find $\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recognize each solution spa as a full-rank lattice:

Problem 1: Lattice is image the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a}$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$ with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Problem 3: Find $\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$ with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Problem 3: Find $\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R} / q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^{2}$ with $a G+e=0$, given $G \in \mathcal{R} / q$.

Problem 2: Find $(a, t, e) \in \mathcal{R}^{3}$
with $a G+e=A t$, given $G, A \in \mathcal{R} / q$.

Problem 3: Find
$\left(a, t_{1}, t_{2}, e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with $a G_{1}+e_{1}=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$, given $G_{1}, A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$, $\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module
Each of module, many in

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$,
$\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

1: Find $(a, e) \in \mathcal{R}^{2}$ $+e=0$, given $G \in \mathcal{R} / q$.

2: Find $(a, t, e) \in \mathcal{R}^{3}$
$+e=A t$,
$A \in \mathcal{R} / q$.
3: Find
$\left., e_{1}, e_{2}\right) \in \mathcal{R}^{5}$ with
$=A_{1} t_{1}, a G_{2}+e_{2}=A_{2} t_{2}$,
, $A_{1}, G_{2}, A_{2} \in \mathcal{R} / q$.
each problem as finding onzero solution to system geneous \mathcal{R} / q equations.
lem as finding tion to system ℓ / q equations.
$a, e) \in \mathcal{R}^{2}$
given $G \in \mathcal{R} / q$.
$a, t, e) \in \mathcal{R}^{3}$
\mathcal{R}^{5} with

$$
\begin{aligned}
& G_{2}+e_{2}=A_{2} t_{2}, \\
& t_{2} \in \mathcal{R} / q .
\end{aligned}
$$

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$, $\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these latt module, and thus many independent

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$,
$\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these lattices is an module, and thus has, gener many independent short vec

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$, $\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$,
$\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$).
Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ from \mathcal{R}^{2} to \mathcal{R}^{2}.

Problem 2: Lattice is image of the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $(\bar{a}, \bar{t}, A \bar{t}+q \bar{r}-\bar{a} G)$.

Problem 3: Lattice is image of the map $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$ $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}\right.$, $\left.A_{2} \overline{t_{2}}+q \overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$).
Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.
ze each solution space rank lattice:

1: Lattice is image of
$(\bar{a}, \bar{r}) \mapsto(\bar{a}, q \bar{r}-\bar{a} G)$ to \mathcal{R}^{2}.

2: Lattice is the map $(\bar{a}, \bar{t}, \bar{r}) \mapsto$ $+q \bar{r}-\bar{a} G)$.

3: Lattice is image of $\left(\bar{a}, \overline{t_{1}}, \overline{t_{2}}, \overline{r_{1}}, \overline{r_{2}}\right) \mapsto$, $A_{1} \overline{t_{1}}+q \overline{r_{1}}-\bar{a} G_{1}$, $\left.\overline{r_{2}}-\bar{a} G_{2}\right)$.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$).
Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 M
a stretch be 0 . T speeding despite I
lution space
ce:
e is image of
$(\bar{a}, q \bar{r}-\bar{a} G)$
e is
$(\bar{a}, \bar{t}, \bar{r}) \mapsto$
7).
e is image of
$\left.\overline{r_{1}}, \overline{r_{2}}\right) \mapsto$
$\overline{r_{1}}-\bar{a} G_{1}$,

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$).
Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 May, for Pro a stretch of coeffic be 0 . This reduce speeding up variou despite lower succ

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$). Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 May, for Problem 1: F a stretch of coefficients of a be 0 . This reduces lattice ra speeding up various attacks, despite lower success chance

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$). Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$). Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.
e.g. in Problem 2:

Lattice has short (a, t, e).
Lattice has short ($x a, x t, x e$).
Lattice has short $\left(x^{2} a, x^{2} t, x^{2} e\right)$. etc.

Many more lattice vectors are fairly short combinations of independent vectors:
e.g., $((x+1) a,(x+1) t,(x+1) e)$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large?
Literature misses module option!)

structure

these lattices is an \mathcal{R} -
and thus has, generically, dependent short vectors.
roblem 2:
tas short (a, t, e).
as short ($x a, x t, x e$).
nas short $\left(x^{2} a, x^{2} t, x^{2} e\right)$.
ore lattice vectors short combinations endent vectors:
$+1) a,(x+1) t,(x+1) e)$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup.
e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large?
Literature misses module option!)

Standar
Uniform
secret a
ces is an \mathcal{R} -
has, generically, short vectors.

$$
\begin{aligned}
& (a, t, e) . \\
& (x a, x t, x e) . \\
& \left.x^{2} a, x^{2} t, x^{2} e\right) .
\end{aligned}
$$

vectors

nbinations
ctors:
$+1) t(x+1) e)$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large? Literature misses module option!)

Standard analysis

Uniform random s secret a has lengtl

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large? Literature misses module option!)

Standard analysis for Proble
Uniform random small weigh secret a has length $\sqrt{w} \approx 1$

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large?
Literature misses module option!)

Standard analysis for Problem 1
Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large?
Literature misses module option!)

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0 . This reduces lattice rank, speeding up various attacks, despite lower success chance.
(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0 .
(Slowdown if q is very large?
Literature misses module option!)

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509.
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.
ay, for Problem 1: Force of coefficients of a to nis reduces lattice rank, up various attacks, ower success chance.
a speedup? Seems to be wn if q is very large:
Kirchner-Fouque.)
oblems: same speedup. i-Galbraith embedding" lem 2: Force $t \in \mathbf{Z}$; force efficients of a to be 0 .
wn if q is very large?
re misses module option!)

Standard analysis for Problem 1

Uniform random small weight-w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509 .
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker another
blem 1: Force cients of a to
s lattice rank, s attacks, ess chance.
? Seems to be very large:
-Fouque.)
ame speedup.
h embedding"
rce $t \in \mathbf{Z}$; force
of a to be 0 .
very large?
nodule option!)

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret
e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of
variations? Partial answer: 2020
Dachman-Soled-Ducas-Gong-
Rossi. Is fixed weight safer?)
Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509 .
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as another solution s

Standard analysis for Problem 1
Uniform random small weight-w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509.
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as happy to another solution such as (x a

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret
e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509 .
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509.
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.)

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509 .
$\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.) Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Standard analysis for Problem 1

Uniform random small weight- w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to
$\sqrt{1522 / 3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled-Ducas-GongRossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761=1522$.
Attack parameter: $k=13$.
Force k positions in a to be 0 : restrict to sublattice of rank 1509 . $\operatorname{Pr}[a$ is in sublattice $] \approx 0.2 \%$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to
$\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

d analysis for Problem 1

random small weight-w has length $\sqrt{w} \approx 17$. random small secret ngth usually close to $\overline{3} \approx 23$. (Impact of
s? Partial answer: 2020 n-Soled-Ducas-Gongfixed weight safer?)
nas rank $2 \cdot 761=1522$.
arameter: $k=13$.
positions in a to be 0 :
to sublattice of rank 1509 .
n sublattice] $\approx 0.2 \%$

Attacker is just as happy to find another solution such as ($x a, x e$).

Write ec as 761 e

Standard analysis for, e.g., $\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to
$\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

for Problem 1

mall weight-w
$\sqrt{w} \approx 17$.
mall secret
ly close to Impact of
answer: 2020
ucas-Gong-
ght safer?)
$\cdot 761=1522$.
$k=13$.
in a to be 0 :
ce of rank 1509 .
e] $\approx 0.2 \%$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Write equation e as 761 equations

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$).
(How hard are these to find?)
Pretend this analysis applies to
$\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

Attacker is just as happy to find another solution such as ($x a, x e$).

Write equation $e=q r-a G$ as 761 equations on coeffici

Attacker is just as happy to find another solution such as ($x a, x e$).

Write equation $e=q r-a G$ as 761 equations on coefficients.

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right)$: Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.) Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right)$: Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.) Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions.
(1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attacker is just as happy to find another solution such as ($x a, x e$).

Standard analysis for, e.g.,
$\mathbf{Z}[x] /\left(x^{761}-1\right):$ Each $\left(x^{j} a, x^{j} e\right)$ has chance $\approx 0.2 \%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May-Silverman.) Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $\mathbf{Z}[x] /\left(x^{761}-x-1\right)$. (It doesn't.)

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)
is just as happy to find solution such as ($x a, x e$).

analysis for, e.g., ${ }^{761}-1$): Each ($x^{j} a, x^{j} e$) ice $\approx 0.2 \%$ of being in

e. These 761 chances oendent. (No, they lso, total Pr depends on 's choice of positions. 1 May-Silverman.) igger solutions ($\alpha a, \alpha e$). rd are these to find?) this analysis applies to $761-x-1$). (It doesn't.)

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)

Cost-an Huge sp For each figure ol and cha
happy to find uch as (xa,xe).
for, e.g., Each $\left(x^{j} a, x^{j} e\right)$ of being in
761 chances
(No, they
Pr depends on positions.
verman.)
ions $(\alpha a, \alpha e)$
se to find?)
sis applies to
1). (It doesn't.)

Write equation $e=q r-a G$
as 761 equations on coefficients.
Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal?
Interaction with e size variation?)

Cost-analysis chall
Huge space of att
For each of these figure out cost of and chance it find

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal?
Interaction with e size variation?)

Cost-analysis challenges

Huge space of attack lattice For each of these lattices, tr figure out cost of (e.g.) BK and chance it finds short ve

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)

Cost-analysis challenges

Huge space of attack lattices.
For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$.
Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)

Cost-analysis challenges

Huge space of attack lattices.
For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates!

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$. Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)

Cost-analysis challenges

Huge space of attack lattices.
For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates! Efforts to simplify are error-prone; e.g. "conservative lower bound" $(3 / 2)^{\beta / 2}$ on (pre-q) cost is broken for all sufficiently large sizes.

Write equation $e=q r-a G$ as 761 equations on coefficients.

Attack parameter: $m=600$.
Ignore $761-m=161$ equations:
i.e., project e onto 600 positions. (1999 May.) Sublattice rank $d=1509-161=1348 ; \operatorname{det} q^{600}$.

Attack parameter: $\lambda=1.331876$. Rescaling (1997 CoppersmithShamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748} q^{600}$. (Is this λ optimal? Interaction with e size variation?)

Cost-analysis challenges

Huge space of attack lattices.
For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates! Efforts to simplify are error-prone; e.g. "conservative lower bound" $(3 / 2)^{\beta / 2}$ on (pre-q) cost is broken for all sufficiently large sizes.

Hybrid attacks (2008 HowgraveGraham, ..., 2018 Wunderer): often faster; different analysis.

