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Some hard lattice meta-problems:

• Analyze cost of known attacks.

• Optimize attack parameters.

• Compare different attacks.

• Evaluate crypto parameters.

• Evaluate crypto designs.

2

sntrup761 evaluations from

“NTRU Prime: round 2” Table 2:

Ignoring cost of memory:
368 185 enum, ignoring hybrid
230 169 enum, including hybrid
153 139 sieving, ignoring hybrid
153 139 sieving, including hybrid

Accounting for cost of memory:
368 185 enum, ignoring hybrid
277 169 enum, including hybrid
208 208 sieving, ignoring hybrid
208 180 sieving, including hybrid

Security levels:
. . . pre-quantum

. . . post-quantum
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Three typical attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret a ∈ R.

Problem 1: Public G ∈ R=q with

aG + e = 0. Small secret e ∈ R.

Problem 2: Public G ∈ R=q and

aG + e = A. Small secret e ∈ R.

Problem 3: Public G1; G2 ∈ R=q.

Public aG1 + e1; aG2 + e2.

Small secrets e1; e2 ∈ R.
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the map (a; r) 7→ (a; qr − aG)

from R2 to R2.



4

Three typical attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret a ∈ R.

Problem 1: Public G ∈ R=q with

aG + e = 0. Small secret e ∈ R.

Problem 2: Public G ∈ R=q and

aG + e = A. Small secret e ∈ R.

Problem 3: Public G1; G2 ∈ R=q.

Public aG1 + e1; aG2 + e2.

Small secrets e1; e2 ∈ R.

5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.



4

Three typical attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret a ∈ R.

Problem 1: Public G ∈ R=q with

aG + e = 0. Small secret e ∈ R.

Problem 2: Public G ∈ R=q and

aG + e = A. Small secret e ∈ R.

Problem 3: Public G1; G2 ∈ R=q.

Public aG1 + e1; aG2 + e2.

Small secrets e1; e2 ∈ R.

5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.



5

Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.

6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.



6

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).

7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.



7

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).

8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).



8

1999 May, for Problem 1: Force

a stretch of coefficients of a to

be 0. This reduces lattice rank,

speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large:

see 2016 Kirchner–Fouque.)

Other problems: same speedup.

e.g. “Bai–Galbraith embedding”

for Problem 2: Force t ∈ Z; force

a few coefficients of a to be 0.

(Slowdown if q is very large?

Literature misses module option!)

9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.



9

Standard analysis for Problem 1

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (Impact of

variations? Partial answer: 2020

Dachman-Soled–Ducas–Gong–

Rossi. Is fixed weight safer?)

Lattice has rank 2 · 761 = 1522.

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.

10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.



10

Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.

See 2001 May–Silverman.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)

11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.



11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.



11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.

Accurate experiments are slow.

Need accurate fast estimates!



11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.

Accurate experiments are slow.

Need accurate fast estimates!

Efforts to simplify are error-prone;

e.g. “conservative lower bound”

(3=2)˛=2 on (pre-q) cost is broken

for all sufficiently large sizes.



11

Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761−m = 161 equations:

i.e., project e onto 600 positions.

(1999 May.) Sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling (1997 Coppersmith–

Shamir): Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)

12

Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to

figure out cost of (e.g.) BKZ-˛

and chance it finds short vector.

Accurate experiments are slow.

Need accurate fast estimates!

Efforts to simplify are error-prone;

e.g. “conservative lower bound”

(3=2)˛=2 on (pre-q) cost is broken

for all sufficiently large sizes.

Hybrid attacks (2008 Howgrave-

Graham, : : : , 2018 Wunderer):

often faster; different analysis.


