Exploring the parameter space in lattice attacks

Daniel J. Bernstein Tanja Lange

Based on attack survey from 2019 Bernstein–Chuengsatiansup– Lange-van Vredendaal.

Some hard lattice meta-problems:

- Analyze cost of known attacks.
- Optimize attack parameters.
- Compare different attacks.
- Evaluate crypto parameters.
- Evaluate crypto designs.

sntrup761 evaluations from "NTRU Prime: round 2" Table 2:

Ignoring cost of memory: 368 185 enum, ignoring hybrid 230 169 enum, including hybrid 153 139 sieving, ignoring hybrid 153 139 sieving, including hybrid

Acco	ountir	ng for co
368	185	enum,
277	169	enum,
208	208	sieving,
208	180	sieving,

Security levels: ... pre-quantum ... |post-quantum

ost of memory: ignoring hybrid including hybrid ignoring hybrid including hybrid g the parameter space e attacks

- . Bernstein
- ange

n attack survey from rnstein-Chuengsatiansupan Vredendaal.

- ard lattice meta-problems:
- ze cost of known attacks.
- ize attack parameters.
- are different attacks.
- te crypto parameters.
- te crypto designs.

sntrup761 evaluations from "NTRU Prime: round 2" Table 2:

Ignoring cost of memory:

368 185 enum, ignoring hybrid 230 169 enum, including hybrid 153 139 sieving, ignoring hybrid 153 139 sieving, including hybrid

Accounting for cost of memory: 368 185 enum, ignoring hybrid 277 169 enum, including hybrid 208 208 sieving, ignoring hybrid 208 180 sieving, including hybrid

Security levels: ... pre-quantum ... post-quantum

Analysis has com and at in This tall

meter space

n

urvey from nuengsatiansup daal.

meta-problems:

known attacks.

parameters.

nt attacks.

parameters.

designs.

sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

Ignoring cost of memory:

368 185 enum, ignoring hybrid
230 169 enum, including hybrid
153 139 sieving, ignoring hybrid
153 139 sieving, including hybrid

Accounting for cost of memory:

368 185 enum, ignoring hybrid
277 169 enum, including hybrid
208 208 sieving, ignoring hybrid
208 180 sieving, including hybrid

Security levels: ... pre-quantum ... post-quantum

Analysis of typical has complications and at interfaces & This talk emphasiz

1			
се	sntrup761 evaluations from		
	"NTRU Prime: round 2" Table 2	2:	
	Ignoring cost of memory:		
	368 185 enum, ignoring hybrid		
	230 169 enum, including hybrid		
	153 139 sieving, ignoring hybric		
	153 139 sieving, including hybri	d	
nsup–			
	Accounting for cost of memory:		
	368 185 enum, ignoring hybrid		
olems:	277 169 enum, including hybrid		
acks	208 208 sieving, ignoring hybric	1	
	208 180 sieving, including hybri	d	
rs.			
-	Security levels:		
~ S			

| . . . | pre-quantum | . . . | post-quantum

sntrup761 evaluations from "NTRU Prime: round 2" Table 2:

Ignoring cost of memory:

185	enum, ignoring hybrid
169	enum, including hybrid
139	sieving, ignoring hybrid
139	sieving, including hybrid
	185 169 139 139

Accounting for cost of memory:

368	185	enum, ignoring hybrid
277	169	enum, including hybrid
208	208	sieving, ignoring hybrid
208	180	sieving, including hybrid

Security levels:

- ... | pre-quantum
 - post-quantum

761 evaluations from

Prime: round 2" Table 2:

cost of memory:

enum, ignoring hybrid enum, including hybrid sieving, ignoring hybrid sieving, including hybrid

ing for cost of memory:

enum, ignoring hybrid enum, including hybrid sieving, ignoring hybrid sieving, including hybrid

levels:

-quantum

post-quantum

Three ty

- Define \mathcal{I} "small"
- w = 286
- Attacker small we
- Problem
- aG + e =
- Problem
- aG + e =
- Problem Public a Small se

tions from und 2" Table 2:

emory:

noring hybrid cluding hybrid ignoring hybrid including hybrid

st of memory: gnoring hybrid icluding hybrid ignoring hybrid including hybrid Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

ntum

Three typical atta Define $\mathcal{R} = \mathbf{Z}[x]/$ "small" = all coef w = 286; q = 459 Attacker wants to small weight-w see Problem 1: Public aG + e = 0. Smal Problem 2: Public aG + e = A. Sma Problem 3: Public Public $aG_1 + e_1$, a Small secrets e1, e

n ble 2: 2

brid ybrid ybrid nybrid

ory: brid ybrid ybrid hybrid Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

3

Three typical attack problem

- Define $\mathcal{R} = \mathbf{Z}[x]/(x^{761} x)^{"}$ "small" = all coeffs in $\{-1, w = 286; q = 4591.$
- Attacker wants to find
- small weight-*w* secret $a \in \mathcal{R}$
- Problem 1: Public $G \in \mathcal{R}/c$ aG + e = 0. Small secret e
- Problem 2: Public $G \in \mathcal{R}/d$ aG + e = A. Small secret e
- Problem 3: Public $G_1, G_2 \in$ Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Analysis of typical lattice attack has complications at four layers, and at interfaces between layers. This talk emphasizes top layer.

Three typical attack problems Define $\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$ w = 286; q = 4591.Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$. Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$. Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$. Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

- "small" = all coeffs in $\{-1, 0, 1\};$
- Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$.

of typical lattice attack plications at four layers, nterfaces between layers. < emphasizes top layer.</pre>

Three typical attack problems

3

Define $\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$ "small" = all coeffs in $\{-1, 0, 1\}$; w = 286; q = 4591.

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Example

Secret k

- Public k and app
- Public k Hoffstei
- G = -e

lattice attack at four layers, between layers. zes top layer. 3

of lattices /ptosystems

ate-SVP'' ysis

′P'' ysis

mputation

Three typical attack problems

Define $\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$ "small" = all coeffs in $\{-1, 0, 1\};$ w = 286; q = 4591.

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Examples of target Secret key: small Public key reveals and approximation Public key for "N⁻ Hoffstein–Pipher–S G = -e/a, and A

tack

3

yers,

yers.

ver.

าร

Three typical attack problems

Define $\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$ "small" = all coeffs in $\{-1, 0, 1\}$; w = 286; q = 4591.

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$. Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$. Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$. Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1, aG_2 + e_2$.

Small secrets $e_1, e_2 \in \mathcal{R}$.

4

Public key reveals multiplier and approximation A = aG -

Examples of target cryptosy

Secret key: small *a*; small *e*

Public key for "NTRU" (199 Hoffstein–Pipher–Silverman G = -e/a, and A = 0.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Examples of target cryptosystems

4

Secret key: small *a*; small *e*.

Public key reveals multiplier Gand approximation A = aG + e.

Public key for "NTRU" (1996 Hoffstein–Pipher–Silverman):

G = -e/a, and A = 0.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Examples of target cryptosystems

4

Secret key: small a; small e.

Public key reveals multiplier Gand approximation A = aG + e.

Public key for "NTRU" (1996) Hoffstein–Pipher–Silverman):

G = -e/a, and A = 0.

Public key for "Ring-LWE" (2010) Lyubashevsky–Peikert–Regev): random G, and A = aG + e.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1, aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Examples of target cryptosystems

4

Secret key: small *a*; small *e*.

Public key reveals multiplier Gand approximation A = aG + e.

Public key for "NTRU" (1996) Hoffstein–Pipher–Silverman):

G = -e/a, and A = 0.

Public key for "Ring-LWE" (2010) Lyubashevsky–Peikert–Regev): random G, and A = aG + e.

Recognize similarity + credits: "", "NTRU" \Rightarrow Quotient NTRU.

- "", "Ring-LWE" \Rightarrow Product NTRU.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Encryption for Quotient NTRU: Input small b, small d. Ciphertext: B = 3bG + d.

4

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Encryption for Quotient NTRU: Input small b, small d. Ciphertext: B = 3bG + d. Encryption for Product NTRU: Input encoded message M. Randomly generate small b, small d, small c. Ciphertext: B = bG + dand C = bA + M + c.

4

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Encryption for Quotient NTRU: Input small b, small d. Ciphertext: B = 3bG + d. Encryption for Product NTRU: Input encoded message M. Randomly generate small b, small d, small c. Ciphertext: B = bG + dand C = bA + M + c. 2019 Bernstein "Comparing encryption" includes survey of G, a, e, c, M details and variants in NISTPQC submissions.

4

- proofs of security for lattice-based

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Lattices

4

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathcal{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets $e_1, e_2 \in \mathcal{R}$.

Lattices

4

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At. given $G, A \in \mathcal{R}/q$.

Define
$$\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$$

"small" = all coeffs in $\{-1, 0, 1\};$
 $w = 286; q = 4591.$

Attacker wants to find small weight-*w* secret $a \in \mathcal{R}$.

Problem 1: Public $G \in \mathcal{R}/q$ with aG + e = 0. Small secret $e \in \mathcal{R}$.

Problem 2: Public $G \in \mathcal{R}/q$ and aG + e = A. Small secret $e \in \mathcal{R}$.

Problem 3: Public $G_1, G_2 \in \mathcal{R}/q$. Public $aG_1 + e_1$, $aG_2 + e_2$. Small secrets e_1 , $e_2 \in \mathcal{R}$.

Lattices

4

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At. given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q$.

5

$aG_1 + e_1 = A_1 t_1$, $aG_2 + e_2 = A_2 t_2$,

pical attack problems

 $\mathcal{R} = \mathbf{Z}[x]/(x^{761} - x - 1);$ = all coeffs in $\{-1, 0, 1\};$ 5; q = 4591.

r wants to find eight-w secret $a \in \mathcal{R}$.

1: Public $G \in \mathcal{R}/q$ with = 0. Small secret $e \in \mathcal{R}$.

2: Public $G \in \mathcal{R}/q$ and = A. Small secret $e \in \mathcal{R}$.

3: Public $G_1, G_2 \in \mathcal{R}/q$. $G_1 + e_1$, $aG_2 + e_2$. crets e_1 , $e_2 \in \mathcal{R}$.

Lattices

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At, given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1t_1$, $aG_2 + e_2 = A_2t_2$, given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q$.

Recogniz as a full-

5

Problem the map from \mathcal{R}^2

<u>ck problems</u>

- $(x^{761} x 1);$ fs in $\{-1, 0, 1\};$ 1.
- find
- cret $a \in \mathcal{R}$.
- $G \in \mathcal{R}/q$ with I secret $e \in \mathcal{R}$.
- $G \in \mathcal{R}/q$ and II secret $e \in \mathcal{R}.$
- $G_1, G_2 \in \mathcal{R}/q.$ $G_2 + e_2.$ $g \in \mathcal{R}.$

<u>Lattices</u>

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathbb{R}/q$. Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At, given $G, A \in \mathbb{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1t_1, aG_2 + e_2 = A_2t_2,$ given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q.$

Recognize each so as a full-rank latti

5

Problem 1: Lattice the map $(\overline{a}, \overline{r}) \mapsto$ from \mathcal{R}^2 to \mathcal{R}^2 .

(-1); $0, 1\};$

) ~•

y with $\in \mathcal{R}.$

and

 $\in \mathcal{R}.$

 \mathcal{R}/q .

Lattices

4

Rewrite each problem as finding short nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At, given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1 t_1$, $aG_2 + e_2 = A_2 t_2$, given G_1 , A_1 , G_2 , $A_2 \in \mathcal{R}/q$.

5

Recognize each solution spa as a full-rank lattice:

Problem 1: Lattice is image the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a})$ from \mathcal{R}^2 to \mathcal{R}^2 .

Lattices

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At. given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1t_1$, $aG_2 + e_2 = A_2t_2$, given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q$.

Recognize each solution space as a full-rank lattice:

5

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Lattices

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find $(a, t, e) \in \mathbb{R}^3$ with aG + e = At. given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1t_1$, $aG_2 + e_2 = A_2t_2$, given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q$.

Recognize each solution space as a full-rank lattice:

5

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Lattices

Rewrite each problem as finding **short** nonzero solution to system of homogeneous \mathcal{R}/q equations.

Problem 1: Find $(a, e) \in \mathbb{R}^2$ with aG + e = 0, given $G \in \mathcal{R}/q$.

Problem 2: Find
$$(a, t, e) \in \mathcal{R}^3$$

with $aG + e = At$,
given $G, A \in \mathcal{R}/q$.

Problem 3: Find $(a, t_1, t_2, e_1, e_2) \in \mathcal{R}^5$ with $aG_1 + e_1 = A_1t_1$, $aG_2 + e_2 = A_2t_2$, given $G_1, A_1, G_2, A_2 \in \mathcal{R}/q$.

Recognize each solution space as a full-rank lattice: Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$ Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

5

each problem as finding onzero solution to system geneous \mathcal{R}/q equations.

5

1: Find $(a, e) \in \mathbb{R}^2$ + e = 0, given $G \in \mathcal{R}/q$. 2: Find $(a, t, e) \in \mathbb{R}^3$ +e=At, $A \in \mathcal{R}/q$. 3: Find , e_1 , e_2) $\in \mathcal{R}^5$ with $= A_1 t_1, aG_2 + e_2 = A_2 t_2,$, A_1 , G_2 , $A_2 \in \mathcal{R}/q$.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

6

Module

Each of module, many in

lem as finding ution to system \mathcal{R}/q equations.

5

 $(a,e)\in \mathcal{R}^2$ given $G\in \mathcal{R}/q.$ $(a,t,e)\in \mathcal{R}^3$

7

 \mathcal{R}^5 with $aG_2+e_2=A_2t_2, A_2\in \mathcal{R}/q.$

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1, A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2).$

Module structure

Each of these latti module, and thus many independent

ding stem ions.

5

 \mathcal{R}/q .

 \mathcal{R}^3

 $= A_2 t_2,$

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

6

Module structure

Each of these lattices is an '

module, and thus has, gener

many independent short vec

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

6

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

Module structure

6

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Recognize each solution space as a full-rank lattice:

Problem 1: Lattice is image of the map $(\overline{a}, \overline{r}) \mapsto (\overline{a}, q\overline{r} - \overline{a}G)$ from \mathcal{R}^2 to \mathcal{R}^2 .

Problem 2: Lattice is image of the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $(\overline{a}, \overline{t}, A\overline{t} + q\overline{r} - \overline{a}G).$

Problem 3: Lattice is image of the map $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$ $(\overline{a}, \overline{t_1}, \overline{t_2}, A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1,$ $A_2\overline{t_2} + q\overline{r_2} - \overline{a}G_2$).

Module structure

6

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors:

e.g., ((x+1)a, (x+1)t, (x+1)e).

ze each solution space -rank lattice:

1: Lattice is image of $(\overline{a},\overline{r})\mapsto(\overline{a},q\overline{r}-\overline{a}G)$ 2 to \mathcal{R}^2 .

2: Lattice is f the map $(\overline{a}, \overline{t}, \overline{r}) \mapsto$ $+q\overline{r}-\overline{a}G$).

3: Lattice is image of $(\overline{a}, \overline{t_1}, \overline{t_2}, \overline{r_1}, \overline{r_2}) \mapsto$, $A_1\overline{t_1} + q\overline{r_1} - \overline{a}G_1$, $q\overline{r_2} - \overline{a}G_2$).

Module structure

6

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors: e.g., ((x+1)a, (x+1)t, (x+1)e).

1999 Ma a stretch be 0. T speeding despite l

lution space ce:

e is image of (a, qr – aG)

e is $(\overline{a}, \overline{t}, \overline{r}) \mapsto \overline{a}$.

e is image of $\overline{r_1}, \overline{r_2} \mapsto \overline{r_1} - \overline{a}G_1,$

Module structure

6

Each of these lattices is an \mathcal{R} -module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (a, t, e). Lattice has short (xa, xt, xe). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors:

e.g., ((x+1)a, (x+1)t, (x+1)e).

1999 May, for Pro a stretch of coeffic be 0. This reduces speeding up variou despite lower succe

ce

6

of G)

of

Module structure

Each of these lattices is an \mathcal{R} -module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (*x*²*a*, *x*²*t*, *x*²*e*). etc.

Many more lattice vectors are fairly short combinations of independent vectors: e.g., ((x+1)a, (x+1)t, (x+1)e). 1999 May, for Problem 1: F a stretch of coefficients of *a* be 0. This reduces lattice ra speeding up various attacks, despite lower success chance

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors: e.g., ((x+1)a, (x+1)t, (x+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors: e.g., ((x+1)a, (x+1)t, (x+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

7

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Module structure

Each of these lattices is an \mathcal{R} module, and thus has, generically, many independent short vectors.

e.g. in Problem 2: Lattice has short (*a*, *t*, *e*). Lattice has short (*xa*, *xt*, *xe*). Lattice has short (x^2a, x^2t, x^2e) . etc.

Many more lattice vectors are fairly short combinations of independent vectors: e.g., ((x+1)a, (x+1)t, (x+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

7

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if q is very large?) Literature misses module option!)

structure

these lattices is an \mathcal{R} and thus has, generically, dependent short vectors.

roblem 2:

nas short (*a*, *t*, *e*). nas short (*xa*, *xt*, *xe*). has short (x^2a, x^2t, x^2e) .

ore lattice vectors / short combinations endent vectors:

(x+1)a, (x+1)t, (x+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if q is very large? Literature misses module option!)

Standard

8

Uniform secret a

ces is an \mathcal{R} -has, generically,

short vectors.

[a, t, e].(xa, xt, xe). x^2a, x^2t, x^2e).

vectors

nbinations

ctors:

+1)t,(x+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of *a* to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if *q* is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai–Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of *a* to be 0.

(Slowdown if *q* is very large? Literature misses module option!)

Standard analysis

Uniform random s secret *a* has length

 \mathcal{R} rically, tors.

7

). $x^{2}e$).

+1)e).

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner-Fouque.)

Other problems: same speedup. e.g. "Bai-Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if *q* is very large? Literature misses module option!)

Standard analysis for Proble

8

Uniform random small weigh secret a has length $\sqrt{w} \approx 1$

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai–Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if q is very large?) Literature misses module option!) 8

Standard analysis for Problem 1

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

1999 May, for Problem 1: Force a stretch of coefficients of a to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai–Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if q is very large?) Literature misses module option!) Standard analysis for Problem 1

8

Uniform random small weight-w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

1999 May, for Problem 1: Force a stretch of coefficients of *a* to be 0. This reduces lattice rank, speeding up various attacks, despite lower success chance.

(Always a speedup? Seems to be a slowdown if q is very large: see 2016 Kirchner–Fouque.)

Other problems: same speedup. e.g. "Bai–Galbraith embedding" for Problem 2: Force $t \in \mathbf{Z}$; force a few coefficients of a to be 0.

(Slowdown if q is very large?) Literature misses module option!) Standard analysis for Problem 1

8

Uniform random small weight-w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

- restrict to sublattice of rank 1509.

ay, for Problem 1: Force n of coefficients of a to his reduces lattice rank, g up various attacks, ower success chance.

a speedup? Seems to be wn if q is very large: 6 Kirchner–Fouque.)

oblems: same speedup. i-Galbraith embedding" lem 2: Force $t \in \mathbf{Z}$; force efficients of *a* to be 0.

wn if q is very large? re misses module option!)

Standard analysis for Problem 1

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

8

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

Attacker another

blem 1: Force cients of *a* to s lattice rank, us attacks, ess chance. 8

? Seems to be very large: -Fouque.)

ame speedup. h embedding" rce $t \in \mathbf{Z}$; force

of *a* to be 0.

very large? module option!)

Standard analysis for Problem 1

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$. Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?) Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

Attacker is just as another solution s

orce to

8

nnk,

2

to be

dup. ing" force 0.

tion!)

Standard analysis for Problem 1

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?) Lattice has rank $2 \cdot 761 = 1522$.

Attack parameter: k = 13.

Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

9

Attacker is just as happy to another solution such as (xa)

Uniform random small weight-w secret a has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

9

Attacker is just as happy to find another solution such as (xa, xe).

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

Attacker is just as happy to find another solution such as (xa, xe).

9

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

Attacker is just as happy to find another solution such as (xa, xe).

9

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Uniform random small weight-w secret *a* has length $\sqrt{w} \approx 17$.

Uniform random small secret e has length usually close to $\sqrt{1522/3} \approx 23$. (Impact of variations? Partial answer: 2020 Dachman-Soled–Ducas–Gong– Rossi. Is fixed weight safer?)

Lattice has rank $2 \cdot 761 = 1522$. Attack parameter: k = 13. Force k positions in a to be 0: restrict to sublattice of rank 1509. $\Pr[a \text{ is in sublattice}] \approx 0.2\%$.

Attacker is just as happy to find another solution such as (xa, xe).

9

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $Z[x]/(x^{761} - x - 1)$. (It doesn't.)

d analysis for Problem 1

- random small weight-whas length $\sqrt{w} \approx 17$.
- random small secret ngth usually close to $\overline{3} \approx 23$. (Impact of n-Soled–Ducas–Gong– s fixed weight safer?)
- has rank $2 \cdot 761 = 1522$.
- barameter: k = 13.
- positions in *a* to be 0:
- to sublattice of rank 1509. In sublattice $\approx 0.2\%$.

Attacker is just as happy to find another solution such as (*xa*, *xe*).

9

Standard analysis for, e.g., $\mathbf{Z}[x]/(x^{761} - 1)$: Each $(x^j a, x^j e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions $(\alpha a, \alpha e)$. (How hard are these to find?)

Pretend this analysis applies to $\mathbf{Z}[x]/(x^{761} - x - 1)$. (It doesn't.)

Write ec as 761 e

for Problem 1

9

mall weight-w1 $\sqrt{w} pprox 17$.

mall secret ly close to Impact of answer: 2020 Oucas–Gong– ght safer?)

 $\cdot 761 = 1522.$ k = 13.in *a* to be 0: ce of rank 1509.

 $\approx 0.2\%.$

Attacker is just as happy to find another solution such as (xa, xe). Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions $(\alpha a, \alpha e)$. (How hard are these to find?)

Pretend this analysis applies to $\mathbf{Z}[x]/(x^{761} - x - 1)$. (It doesn't.)

Write equation *e* = as 761 equations of

<u>m 1</u>

9

nt-*w*

7.

2020

g–

522.

0: 1509.

Attacker is just as happy to find another solution such as (xa, xe).

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions $(\alpha a, \alpha e)$. (How hard are these to find?)

Pretend this analysis applies to $Z[x]/(x^{761} - x - 1)$. (It doesn't.)

10

Write equation e = qr - aGas 761 equations on coefficient

Attacker is just as happy to find another solution such as (xa, xe).

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $Z[x]/(x^{761} - x - 1)$. (It doesn't.) 10

Write equation e = qr - aGas 761 equations on coefficients.

Attacker is just as happy to find another solution such as (xa, xe).

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $Z[x]/(x^{761} - x - 1)$. (It doesn't.) 10

Write equation e = qr - aGas 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 - m = 161 equations:

i.e., project *e* onto 600 positions.

(1999 May.) Sublattice rank

11

d = 1509 - 161 = 1348; det q^{600} .

Attacker is just as happy to find another solution such as (xa, xe).

Standard analysis for, e.g., $Z[x]/(x^{761}-1)$: Each $(x^{j}a, x^{j}e)$ has chance $\approx 0.2\%$ of being in sublattice. These 761 chances are independent. (No, they aren't; also, total Pr depends on attacker's choice of positions. See 2001 May–Silverman.)

Ignore bigger solutions ($\alpha a, \alpha e$). (How hard are these to find?)

Pretend this analysis applies to $Z[x]/(x^{761} - x - 1)$. (It doesn't.) 10

Write equation e = qr - aGas 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 - m = 161 equations:

i.e., project *e* onto 600 positions.

(1999 May.) Sublattice rank

d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of *a* to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?)

is just as happy to find solution such as (*xa*, *xe*).

10

d analysis for, e.g., $7^{61} - 1$): Each $(x^j a, x^j e)$ ince $\approx 0.2\%$ of being in te. These 761 chances pendent. (No, they lso, total Pr depends on 's choice of positions. 1 May–Silverman.)

igger solutions $(\alpha a, \alpha e)$. Ind are these to find?)

this analysis applies to $7^{61} - x - 1$). (It doesn't.)

Write equation e = qr - aGas 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith– Shamir): Assign weight λ to positions in *a*. Increases length of *a* to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?)

Cost-ana

11

Huge sp For each figure ou and chai

happy to find uch as (*xa, xe*). 10

for, e.g., Each (*x^ja*, *x^je*) of being in 761 chances (No, they Pr depends on of positions.

verman.)

tions $(\alpha a, \alpha e)$. se to find?)

sis applies to 1). (It doesn't.)

Write equation e = qr - aGas 761 equations on coefficients. Attack parameter: m = 600. Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} . Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of *a* to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?)

Cost-analysis chall

11

Huge space of atta For each of these figure out cost of and chance it find

```
find
a, xe).
```

10

- $x^{j}e$ in
- es
- s on
- S.
- $\alpha e).$?)
- to esn't.)

Write equation e = qr - aGas 761 equations on coefficients. Attack parameter: m = 600. Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?)

11

Huge space of attack lattice For each of these lattices, tr figure out cost of (e.g.) BKZ and chance it finds short ve

Cost-analysis challenges

Attack parameter: m = 600.

Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?)

Cost-analysis challenges

Huge space of attack lattices. For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Attack parameter: m = 600.

Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?) Cost-analysis challenges

11

Huge space of attack lattices. For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates!

Attack parameter: m = 600.

Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?) Cost-analysis challenges

11

Huge space of attack lattices. For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates! Efforts to simplify are error-prone; e.g. "conservative lower bound" $(3/2)^{\beta/2}$ on (pre-q) cost is broken for all sufficiently large sizes.

Attack parameter: m = 600.

Ignore 761 - m = 161 equations: i.e., project *e* onto 600 positions. (1999 May.) Sublattice rank d = 1509 - 161 = 1348; det q^{600} .

Attack parameter: $\lambda = 1.331876$. Rescaling (1997 Coppersmith-Shamir): Assign weight λ to positions in a. Increases length of a to $\lambda \sqrt{w} \approx 23$; increases det to $\lambda^{748}q^{600}$. (Is this λ optimal? Interaction with *e* size variation?) Cost-analysis challenges

11

Huge space of attack lattices. For each of these lattices, try to figure out cost of (e.g.) BKZ- β and chance it finds short vector.

Accurate experiments are slow. Need accurate fast estimates! Efforts to simplify are error-prone; e.g. "conservative lower bound" $(3/2)^{\beta/2}$ on (pre-q) cost is broken for all sufficiently large sizes.

Hybrid attacks (2008 Howgrave-Graham, ..., 2018 Wunderer): often faster; different analysis.