
High-assurance crypto software

Daniel J. Bernstein, Tanja Lange

University of Illinois at Chicago,

Ruhr University Bochum;

Eindhoven University of Technology

ZDNet article

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 2

https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/

ZDNet article

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 2

https://www.zdnet.com/article/tpm-fail-vulnerabilities-impact-tpm-chips-in-desktops-laptops-servers/

Register article

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 2

https://www.theregister.co.uk/2019/11/12/don/

Golem article

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 2

https://www.golem.de/news/elliptische-kurven-minerva-angriff-zielt-auf-zertifizierte-krypto-chips-1910-144256.html

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA,

BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB,

CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA,

CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB,

CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . .

, COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA,

COB, COC, . . . , CON takes slightly longer to fail.
...

Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB,

COC, . . . , CON takes slightly longer to fail.
...

Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . .

, CON takes slightly longer to fail.
...

Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...

Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , COO takes slightly longer to fail.
Try COA, COB, COC, . . . , CON takes slightly longer to fail.

...
Password is CONGRESS.

1974: Exploit developed by Alan Bell for TENEX operating system.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 3

Exponentiation with secret exponent (RSA, DH)
Compute cd given c and d .
n = 1000001

d = 12473

c = 41241

l = d.nbits()

D = d.bits()

m = c

for i in range(l-2,-1,-1):

m = m^2 % n

if D[i] == 1:

m = m * c % n

print(m)

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 4

Exponentiation with secret exponent (RSA, DH)
Compute cd given c and d .
n = 1000001

d = 12473

c = 41241

l = d.nbits()

D = d.bits()

m = c

for i in range(l-2,-1,-1): # loop length depends on d

m = m^2 % n

if D[i] == 1:

m = m * c % n

print(m)

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 5

Exponentiation with secret exponent (RSA, DH)
Compute cd given c and d .
n = 1000001

d = 12473

c = 41241

l = d.nbits()

D = d.bits()

m = c

for i in range(l-2,-1,-1): # loop length depends on d

m = m^2 % n

if D[i] == 1: # branch depends on d

m = m * c % n

print(m)

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 6

Timings of scalar multiplication on NIST P-256

(Picture from TPM-Fail)
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 7

https://tpm.fail

Other exponentiation methods
• The timing variation depends strongly on the length of the

scalar/exponent.
• Very sparse or very dense scalars will be miscategorized.
• Faster methods reduce the number of multiplications by using

windows: 14019 =

0x36C3 =

0011︸︷︷︸
0 3

0110︸︷︷︸
1 2

1100︸︷︷︸
3 0

0011︸︷︷︸
0 3

Precompute c , c2, and c3.

c14019 =

((((c3)4 · c)4 · c2)4

· c3
)4
4

4

· c3.

Same number of squarings, 4 instead of 7 multiplications.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 8

Other exponentiation methods
• The timing variation depends strongly on the length of the

scalar/exponent.
• Very sparse or very dense scalars will be miscategorized.
• Faster methods reduce the number of multiplications by using

windows: 14019 = 0x36C3 = 0011

0011︸︷︷︸
0 3

0110

0110︸︷︷︸
1 2

1100

1100︸︷︷︸
3 0

0011

0011︸︷︷︸
0 3

Precompute c , c2, and c3.

c14019 =

((((c3)4 · c)4 · c2)4

· c3
)4
4

4

· c3.

Same number of squarings, 4 instead of 7 multiplications.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 8

Other exponentiation methods
• The timing variation depends strongly on the length of the

scalar/exponent.
• Very sparse or very dense scalars will be miscategorized.
• Faster methods reduce the number of multiplications by using

windows: 14019 = 0x36C3 = 0011︸︷︷︸
0 3

0110︸︷︷︸
1 2

1100︸︷︷︸
3 0

0011︸︷︷︸
0 3

Precompute c , c2, and c3.

c14019 =

((((c3)4 · c)4 · c2)4

· c3
)4
4

4

· c3.

Same number of squarings, 4 instead of 7 multiplications.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 8

Other exponentiation methods
• The timing variation depends strongly on the length of the

scalar/exponent.
• Very sparse or very dense scalars will be miscategorized.
• Faster methods reduce the number of multiplications by using

windows: 14019 = 0x36C3 = 0011︸︷︷︸
0 3

0110︸︷︷︸
1 2

1100︸︷︷︸
3 0

0011︸︷︷︸
0 3

Precompute c , c2, and c3.

c14019 =

((((c3)4 · c)4 · c2)4

· c3
)4
4

4

· c3.

Same number of squarings, 4 instead of 7 multiplications.
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 8

Timings of scalar multiplication on NIST P-256

Larger windows reduce the variability through branching but
accentuate the length.

(Picture from TPM-Fail)High-assurance crypto software Daniel J. Bernstein, Tanja Lange 9

https://tpm.fail

How much can a few bits do?
• A bit for RSA, DH, etc.

More for RSA with CRT decryption.

• A lot for DSA and ECDSA signatures:
• TPM–Fail: TPM meets Timing and Lattice Attacks

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger
https://tpm.fail/

• Minerva attack
Jan Jancar, Petr Svenda, Vladimir Sedlacek
https://minerva.crocs.fi.muni.cz/

With just a small bias in the nonces (one-time scalars) the
secret signing key leaks.

• Lots of libraries, smart cards, and TPMs affected.

• Even worse: hyperthreading attacks, cache-timing attacks, etc.
give more fine-grained timing information ⇒ more exploits.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 10

https://tpm.fail/
https://minerva.crocs.fi.muni.cz/

How much can a few bits do?
• A bit for RSA, DH, etc. More for RSA with CRT decryption.

• A lot for DSA and ECDSA signatures:
• TPM–Fail: TPM meets Timing and Lattice Attacks

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger
https://tpm.fail/

• Minerva attack
Jan Jancar, Petr Svenda, Vladimir Sedlacek
https://minerva.crocs.fi.muni.cz/

With just a small bias in the nonces (one-time scalars) the
secret signing key leaks.

• Lots of libraries, smart cards, and TPMs affected.

• Even worse: hyperthreading attacks, cache-timing attacks, etc.
give more fine-grained timing information ⇒ more exploits.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 10

https://tpm.fail/
https://minerva.crocs.fi.muni.cz/

How much can a few bits do?
• A bit for RSA, DH, etc. More for RSA with CRT decryption.
• A lot for DSA and ECDSA signatures:

• TPM–Fail: TPM meets Timing and Lattice Attacks
Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger
https://tpm.fail/

• Minerva attack
Jan Jancar, Petr Svenda, Vladimir Sedlacek
https://minerva.crocs.fi.muni.cz/

With just a small bias in the nonces (one-time scalars) the
secret signing key leaks.

• Lots of libraries, smart cards, and TPMs affected.

• Even worse: hyperthreading attacks, cache-timing attacks, etc.
give more fine-grained timing information ⇒ more exploits.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 10

https://tpm.fail/
https://minerva.crocs.fi.muni.cz/

How much can a few bits do?
• A bit for RSA, DH, etc. More for RSA with CRT decryption.
• A lot for DSA and ECDSA signatures:

• TPM–Fail: TPM meets Timing and Lattice Attacks
Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger
https://tpm.fail/

• Minerva attack
Jan Jancar, Petr Svenda, Vladimir Sedlacek
https://minerva.crocs.fi.muni.cz/

With just a small bias in the nonces (one-time scalars) the
secret signing key leaks.

• Lots of libraries, smart cards, and TPMs affected.

• Even worse: hyperthreading attacks, cache-timing attacks, etc.
give more fine-grained timing information ⇒ more exploits.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 10

https://tpm.fail/
https://minerva.crocs.fi.muni.cz/

How much can a few bits do?
• A bit for RSA, DH, etc. More for RSA with CRT decryption.
• A lot for DSA and ECDSA signatures:

• TPM–Fail: TPM meets Timing and Lattice Attacks
Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, Nadia Heninger
https://tpm.fail/

• Minerva attack
Jan Jancar, Petr Svenda, Vladimir Sedlacek
https://minerva.crocs.fi.muni.cz/

With just a small bias in the nonces (one-time scalars) the
secret signing key leaks.

• Lots of libraries, smart cards, and TPMs affected.

• Even worse: hyperthreading attacks, cache-timing attacks, etc.
give more fine-grained timing information ⇒ more exploits.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 10

https://tpm.fail/
https://minerva.crocs.fi.muni.cz/

Constant-time exponentiation
n = 1000001

d = 12473

c = 41241

l = n.nbits()

D = d.digits(2,padto = l)

m = 1 # so initial squarings don’t matter

for i in range(l-1,-1,-1): # fixed-length loop

m = m^2 % n

h = m * c % n

m = (1 - D[i]) * m + D[i] * h # selection by arithmetic

print(m)

This costs 1 multiplication per bit, so as slow as worst case.
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 11

Interplay with elliptic-curve formulas

• We can translate this to scalar multiplication on elliptic curves:
Initialize with the neutral element, for every bit compute a
doubling and an addition.

• Formulas for addition on Weierstrass curves have exceptions
for adding ∞, so initialization at ∞ does not work.

• Edwards curves have a complete addition law, easy to double
or add the neutral element (0, 1).

• The Montgomery ladder has a similar data flow, but the costs
per bit of the scalar are less than one addition plus one
doubling for Montgomery curves.

For more see https://ecchacks.cr.yp.to.
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 12

https://ecchacks.cr.yp.to

Forbes article
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 13

https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/

Forbes article
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 13

https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/

Using Valgrind to check for secret branches/addresses
#include <stdlib.h>

#include <openssl/rc4.h>

int main()

{

RC4_KEY expandedkey;

unsigned char *key = malloc(32);

if (!key) abort();

RC4_set_key(&expandedkey,32,key);

free(key);

return 0;

}
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 14

Using Valgrind to check for secret branches/addresses

$ valgrind ./rc4

==2599== Memcheck, a memory error detector

==2599== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.

==2599== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==2599== Command: ./rc4

==2599==

==2599== Use of uninitialised value of size 8

==2599== at 0x4A1A0EF: RC4_set_key (in /usr/lib/x86_64-linux-gnu/libcrypto.so.1.1)

==2599== by 0x1090BD: main (in /home/.../rc4)

...

==2599== ERROR SUMMARY: 256 errors from 1 contexts (suppressed: 0 from 0)

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 15

All good now?

Now we have constant-time exponentation / scalar multiplication if

• the arithmetic is implemented in constant time

• the processor provides constant-time arithmetic instructions.

Single-clock-cycle instructions are probably OK.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 16

All good now?

Now we have constant-time exponentation / scalar multiplication if

• the arithmetic is implemented in constant time

• the processor provides constant-time arithmetic instructions.

Single-clock-cycle instructions are probably OK.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 16

All good now?

Now we have constant-time exponentation / scalar multiplication if

• the arithmetic is implemented in constant time

• the processor provides constant-time arithmetic instructions.

Single-clock-cycle instructions are probably OK.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 16

All good now?

Now we have constant-time exponentation / scalar multiplication if

• the arithmetic is implemented in constant time

• the processor provides constant-time arithmetic instructions.

Single-clock-cycle instructions are probably OK.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 16

ARM Cortex-M3

Cortex-M3 Technical Reference Manual - ARM architecture
High-assurance crypto software Daniel J. Bernstein, Tanja Lange 17

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf

ARM Cortex-M3 – what does it really do?
Flow chart for
UMLAL (unsigned
multiply add) from
A performance
study of X25519 on
Cortex-M3 and M4
by Wouter de Groot.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 18

https://research.tue.nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4
https://research.tue.nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4
https://research.tue.nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp

function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced May 2016.

How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”

— Yes, 216 is “lower than” 2128.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 19

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp

function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced May 2016.

How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”

— Yes, 216 is “lower than” 2128.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 19

CVE-2018-0733, an OpenSSL bug

“Because of an implementation bug the PA-RISC CRYPTO_memcmp

function is effectively reduced to only comparing the least
significant bit of each byte.” Bug introduced May 2016.

How severe is this? “This allows an attacker to forge messages that
would be considered as authenticated in an amount of tries lower
than that guaranteed by the security claims of the scheme.”

— Yes, 216 is “lower than” 2128.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 19

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?

“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced July 2013.

“Attacks against DH1024 are considered just feasible”
— How much time? How much hardware?

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 20

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?

“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced July 2013.

“Attacks against DH1024 are considered just feasible”

— How much time? How much hardware?

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 20

CVE-2017-3738, another OpenSSL bug

Don’t care about PA-RISC? How about Intel?

“There is an overflow bug in the AVX2 Montgomery multiplication
procedure used in exponentiation with 1024-bit moduli.”
Bug introduced July 2013.

“Attacks against DH1024 are considered just feasible”
— How much time? How much hardware?

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 20

CVE-2017-3738, continued

Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”

— Really? How much public scrutiny
has the actual computation received from cryptanalysts?

Imagine someone saying “We have analyzed our new cryptosystem
and concluded that attacks are not likely.”

6 December 2019: Similar OpenSSL advisory for CVE-2019-1551.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 21

CVE-2017-3738, continued

Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”

— Really? How much public scrutiny
has the actual computation received from cryptanalysts?

Imagine someone saying “We have analyzed our new cryptosystem
and concluded that attacks are not likely.”

6 December 2019: Similar OpenSSL advisory for CVE-2019-1551.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 21

CVE-2017-3738, continued

Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”

— Really? How much public scrutiny
has the actual computation received from cryptanalysts?

Imagine someone saying “We have analyzed our new cryptosystem
and concluded that attacks are not likely.”

6 December 2019: Similar OpenSSL advisory for CVE-2019-1551.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 21

CVE-2017-3738, continued

Are you safe if you aren’t using DH1024? “Analysis suggests that
attacks against RSA and DSA as a result of this defect would be
very difficult to perform and are not believed likely.”

— Really? How much public scrutiny
has the actual computation received from cryptanalysts?

Imagine someone saying “We have analyzed our new cryptosystem
and concluded that attacks are not likely.”

6 December 2019: Similar OpenSSL advisory for CVE-2019-1551.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 21

Part of the CVE-2017-3738 patch

@@ -1093,7 +1093,9 @@

vmovdqu -8+32*2-128($ap),$TEMP2

mov $r1, %rax

+ vpblendd \$0xfc, $ZERO, $ACC9, $ACC9 # correct $ACC3

imull $n0, %eax

+ vpaddq $ACC9,$ACC4,$ACC4 # correct $ACC3

and \$0x1fffffff, %eax

imulq 16-128($ap),%rbx

@@ -1329,15 +1331,12 @@

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 22

September 2019: bug announced in Falcon software

Falcon: signature system in round 2 of post-quantum competition.

“The consequences of these bugs are the following:

• Produced signatures were valid but leaked information on
the private key. [emphasis added]

• Performance was artificially inflated: . . .

The fact that these bugs existed in the first place shows that the
traditional development methodology (i.e. ‘being super careful’)
has failed.”

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 23

Cryptography is notoriously hard to review

Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 24

Cryptography is notoriously hard to review

Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 24

Cryptography is notoriously hard to review

Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 24

Cryptography is notoriously hard to review

Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 24

Cryptography is notoriously hard to review

Mathematical complications in cryptography lead to subtle bugs.

Side-channel countermeasures add more complexity.

Post-quantum cryptography: even more complex.

Cryptography is applied to large volumes of data.
Often individual cryptographic computations are time-consuming.
Pursuit of speed ⇒ many different cryptographic systems, and
cryptographic code optimized in many ways for particular CPUs.

e.g. Keccak Code Package: >20 implementations of SHA-3.
e.g. Google added hand-written Cortex-A7 asm to Linux kernel for
Speck128/128-XTS, then switched to (faster) Adiantum-XChaCha.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 24

Formal logic to the rescue?
Whitehead and Russell, Principia Mathematica, volume 1,
1st edition (1910), page 379:

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 25

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these proof-checking tools today.)

Proving crypto code correct is tedious but not impossible.
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 26

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these proof-checking tools today.)

Proving crypto code correct is tedious but not impossible.
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 26

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these proof-checking tools today.)

Proving crypto code correct is tedious but not impossible.
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).

Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 26

https://eprint.iacr.org/2019/757

Formal verification today
Require code reviewer to prove correctness.
Require proofs to pass a proof-checking tool.
(Mathematicians rarely use these proof-checking tools today.)

Proving crypto code correct is tedious but not impossible.
Latest EverCrypt release: verified software for Curve25519,
Ed25519, ChaCha20, Poly1305, AES-CTR (if CPU has AES-NI),
AES-GCM (same), MD5, SHA-1, SHA-2, SHA-3, BLAKE2.

Good: High confidence that subtle bugs are gone
(in the code; but worry about bugs in compiler, CPU, . . .).
Bad: Tons of effort for each implementation.
e.g. EverCrypt doesn’t have fast software for smartphone CPUs.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 26

https://eprint.iacr.org/2019/757

Testing

Testing is great. Test everything. Design for tests.

Why wasn’t the PA-RISC CRYPTO_memcmp software in OpenSSL
run through millions of tests on random inputs?
And tests on inputs differing in just a few positions?
SUPERCOP crypto test framework has always done this.

Good reaction to a bug:
“How can I build fast automated tests to catch this kind of bug?”
Even better to ask question before bug happens.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 27

Testing

Testing is great. Test everything. Design for tests.

Why wasn’t the PA-RISC CRYPTO_memcmp software in OpenSSL
run through millions of tests on random inputs?
And tests on inputs differing in just a few positions?
SUPERCOP crypto test framework has always done this.

Good reaction to a bug:
“How can I build fast automated tests to catch this kind of bug?”
Even better to ask question before bug happens.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 27

The most important complaint about testing

Testing can miss attacker-triggerable bugs for rare inputs.

e.g. November 2019 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:

“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 28

https://eprint.iacr.org/2019/1304

The most important complaint about testing

Testing can miss attacker-triggerable bugs for rare inputs.

e.g. November 2019 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:

“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results.

This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 28

https://eprint.iacr.org/2019/1304

The most important complaint about testing

Testing can miss attacker-triggerable bugs for rare inputs.

e.g. November 2019 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:

“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . .

We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 28

https://eprint.iacr.org/2019/1304

The most important complaint about testing

Testing can miss attacker-triggerable bugs for rare inputs.

e.g. November 2019 paper from Nath and Sarkar points out
bugs with probability ≈1/264 in the fastest code for Curve448:

“On certain kinds of inputs, the code will lead to overflow
conditions and hence to incorrect results. This, however, is a very
low probability event and cannot be captured using some randomly
generated known answer tests (KATs). . . . We believe that it is
important to have proofs of correctness of the reduction algorithms
to ensure that the algorithms works correctly for all possible inputs.”

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 28

https://eprint.iacr.org/2019/1304

Symbolic testing: beyond testing particular inputs

Arithmetic DAG for all 3-byte inputs:

x0
��

y0
��

x1
��

y1
��

x2
��

y2
��

^

**

^
��

^

tt

.globl CRYPTO_memcmp

CRYPTO_memcmp:

xor %rax,%rax

xor %r10,%r10

cmp $0x0,%rdx

je no_data

cmp $0x10,%rdx

jne loop

mov (%rdi),%r10

mov 0x8(%rdi),%r11

mov $0x1,%rdx

xor (%rsi),%r10

xor 0x8(%rsi),%r11

or %r11,%r10

cmovne %rdx,%rax

repz retq

loop:

mov (%rdi),%r10b

lea 0x1(%rdi),%rdi

xor (%rsi),%r10b

lea 0x1(%rsi),%rsi

or %r10b,%al

dec %rdx

jne loop

neg %rax

shr $0x3f,%rax

no_data:

repz retq

Ü |

��
uint64

��
-

��
>>63

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 29

The power of modern reverse-engineering tools

Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.

Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.

angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 30

https://angr.io

The power of modern reverse-engineering tools

Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.

Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.

angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 30

https://angr.io

The power of modern reverse-engineering tools

Easy to use angr.io for automatic symbolic execution:
machine-language software Ü arithmetic DAG.
Simplifies analysis: simpler instructions, no memory, no jumps.

Limitation, sometimes exponential blowup: angr splits universes
whenever it reaches an input-dependent branch or address.
. . . which we try to avoid in crypto anyway.

angr (via Z3 SMT solver) often sees equivalence of small DAGs.
e.g. sees that OpenSSL x86_64 CRYPTO_memcmp on 3-byte inputs
outputs 0 if x0==y0 and x1==y1 and x2==y2,
and outputs 1 otherwise. Similarly for other input lengths.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 30

https://angr.io

#include <openssl/crypto.h>

unsigned char x[N];

unsigned char y[N];

int z;

int main()

{

z = CRYPTO_memcmp(x,y,N);

return 0;

}

#!/usr/bin/env python3

import sys

import angr

N = int(sys.argv[1]) if len(sys.argv) > 1 else 16

proj = angr.Project(’cmp%d’%N)

state = proj.factory.full_init_state()

state.options |= {

angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY

}

x = {}

xaddr = proj.loader.find_symbol(’x’).rebased_addr

for i in range(N):

x[i] = state.solver.BVS(’x%d’%i,8)

state.mem[xaddr+i].char = x[i]

y = {}

yaddr = proj.loader.find_symbol(’y’).rebased_addr

for i in range(N):

y[i] = state.solver.BVS(’y%d’%i,8)

state.mem[yaddr+i].char = y[i]

simgr = proj.factory.simgr(state)

simgr.run()

assert len(simgr.errored) == 0

print(’%d universes’ % len(simgr.deadended))

for exit in simgr.deadended:

zaddr = proj.loader.find_symbol(’z’).rebased_addr

z = exit.mem[zaddr].int.resolved

print(’out = %s’ % z)

xeqy = True

for i in range(N):

xeqy = state.solver.And(xeqy,x[i]==y[i])

xney = state.solver.Not(xeqy)

for bugs in ((z!=0,z!=1),(z!=0,xeqy),(z!=1,xney)):

assert not exit.satisfiable(extra_constraints=bugs)

Symbolic execution with better equivalence testing

What if the DAG is too complicated for the SMT solver?
Answer: Build smarter tools to recognize DAG equivalence.

Case study, software library from sorting.cr.yp.to:

• New speed records for sorting of in-memory integer arrays.
This is a subroutine in some post-quantum cryptosystems.

• Side-channel countermeasures:
no secret branch conditions; no secret array indices.

• New tool verifies correct sorting of all size-N inputs.
No need for manual review of per-CPU optimized code.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 35

https://sorting.cr.yp.to

Symbolic execution with better equivalence testing

What if the DAG is too complicated for the SMT solver?
Answer: Build smarter tools to recognize DAG equivalence.

Case study, software library from sorting.cr.yp.to:

• New speed records for sorting of in-memory integer arrays.
This is a subroutine in some post-quantum cryptosystems.

• Side-channel countermeasures:
no secret branch conditions; no secret array indices.

• New tool verifies correct sorting of all size-N inputs.
No need for manual review of per-CPU optimized code.

High-assurance crypto software Daniel J. Bernstein, Tanja Lange 35

https://sorting.cr.yp.to

